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Abstract

A new Tikhonov regularization method of Fuhry and Reichel [A new
Tikhonov regularization method, Numerical Algorithms, 59:433-445, 2011]
exhibits the excellent properties for ill-posed problems, but it can only deal
with small or moderate size problems because of the expensive computation
of singular value decomposition (SVD). In this paper, we extend the above
new Tikhonov regularization method to solve large-scale problems, e.g.,
image restoration problem with periodic boundary conditions, and realize
this extending by applying Fast Fourier Transformation (FFT) algorithm
to the spectral decomposition of the block circulant with circulant blocks
(BCCB) matrices. Experimental results confirm the superiority of our new
method.

Key words : Periodic boundary conditions; FFT algorithm; Tikhonov regulariza-
tion method; Image restoration

1 Introduction

The Fredholm integral equation of the first kind which arises from many image
or signal restoration problems is formulated as follows

∫ b

a

κ(s, t)f(t)dt = g(s), (1)
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where κ(s, t) is integral kernel and g(s) is obtained by the known κ(s, t) and f(t).
We can get the following linear system by discretization of integral equation (1),

Axtrue = btrue, (2)

where A ∈ Rm×n is blurring matrix, for simple notation, we consider m ≥ n and
xtrue ∈ Rn represents original signal with noise-free, blurred signal btrue ∈ Rm is
formulated by blurring matrix A acting on original signal xtrue.

Random noise e ∈ Rm is added to the right side of (2), so the final linear
system is as follows

Ax = b = btrue + e, (3)

where x ∈ Rn is an approximate solution of xtrue, but it is just inaccessible to the
true solution xtrue generally. Our goal is to utilize an applicable method to make
the relative error between x and xtrue minimum. Typically, this is a large-scale
ill-posed problem.

Tikhonov regularization methods are promising ways for ill-posed problems
(see, e.g., [1, 2]), the general form is as follows

min
x∈Rn

{‖ Ax− b ‖22 + ‖ Lλx ‖22}, (4)

where scalar λ > 0 is called regularization parameter and Lλ is regularization
matrix. The regularization matrix is generally λI, where I represents identity
matrix. A closely related Tikhonov regularization approach [3] by Fuhry and
Reichel showed a novel construction of the regularization matrix, that is Lλ =
DλV

T , where V T is an unitary matrix and Dλ is a diagonal matrix containing
the regularization parameter and some singular values. The numerical and visual
experiments demonstrated that the new Tikhonov regularization method [3] is
an excellent method for small or moderate size problems. However, the above
Tikhonov regularization method is based on SVD which is expensive consuming
for large-scale problems.

Since the fast algorithm such as FFT algorithm are good at doing spectral
decomposition of structure matrices (see, e.g., [2, 4]), we can deal with the above
large-scale problems using this property. We intentionally gain the BCCB ma-
trices as the blurring operators A by setting circularly symmetry point spread
functions (PSF) and assuming periodic boundary conditions (see other bound-
ary conditions in [5, 6, 7], where the reference [6] showed a fast algorithm for
deblurring models with Neumann boundary conditions, and [7] proposed a note
on antireflective boundary conditions and fast deblurring models). Then we can
exploit FFT algorithm (e.g., [8, 9]) to get the eigenvalues of BCCB matrices fast.
FFT is an efficient algorithm which is widely used in many fields such as image
filtering, image saving, image enhancement and image restoration and so on. Zhu
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et al. [10] introduced that FFT algorithm can be used for solving compressed
sensing to accelerate the computing process. Li et al. [11] showed that FFT is an
effective method in signal sparse decomposition. Since Matching Pursuit (MP)
adaptively decomposes signals in the redundant of dictionary to achieve some
sparse representations, and it is very time consuming, FFT-based MP implemen-
tation runs significantly faster than greedy MP implementation. Furthermore,
Hu et al. [12] showed that FFT can also be used in image compression. The
authors adopted Radix-4 FFT to realize the limit distortion for image coding,
and to discuss the feasibility and advantage of Fourier transform for image com-
pression. Using Radix-4 FFT can reduce data storage, computing complexity
and time-consuming.

The contributions of the paper are as follows: firstly, motivated by [3], we
extend the new Tikhonov regularization method to solve the large-scale ill-posed
image restoration problem. Secondly, we exploit FFT algorithm to fast spectral
decomposition of the BCCB matrices. Finally, we test several kinds of blurs and
noises to show the robustness of our algorithms. Experimental results indicate
the advantages of the proposed method.

The organization of this paper is given as follows. Section 2 is mainly a recall of
the new Tikhonov regularization method proposed by Fuhry and Reichel. Section
3 exhibits our method based on the FFT algorithm. Computational results will
be shown in section 4. Finally, section 5 shows a conclusion about our method.

2 New Tikhonov regularization method

For completeness, we include in this section the known new Tikhonov regulariza-
tion method [3] applied to the ill-posed problem (4).

Tikhonov regularization method is a popular and classical method for ill-posed
problems, the general form is to solve the following least squares problem

min
x∈Rn

{‖ Ax− b ‖22 + ‖ Lλx ‖22}, (5)

where Lλ is the regularization matrix and scalar λ > 0 is called the regularization
parameter. In general, the regularization matrix Lλ is chosen to be λI where
I is the identity matrix, and the resulting method is called standard Tikhonov
regularization method. Furthermore, the finite differential operators are also used
when the desired solution x has some particular properties (see [13, 14, 15, 16]).
The least squares problem (5) is equivalent to the following normal equation

(ATA+ LT
λLλ)x = AT b. (6)

A closely related approach with a novel regularization matrix has been pro-
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posed by Fuhry and Reichel [3]. We exploit singular value decomposition

A = UΣV T ,

where U ∈ Rm×m, V ∈ Rn×n are two unitary matrices to construct the new
regularization matrix and Σ = diag[σ1, σ2, · · · , σn] where σi represents the i -th
singular value of A. The new regularization matrix is presented as follows

Lλ = DλV
T , (7)

where

D2
λ =

⎛
⎜⎜⎜⎝

max(λ2 − σ2
1, 0)

max(λ2 − σ2
2, 0)

. . .

max(λ2 − σ2
n, 0)

⎞
⎟⎟⎟⎠ ,

and matrix V T is the unitary matrix from the SVD of matrix A, and σi is the
i -th singular value of A.

In the light of the SVD of A and equations (6) and (7), we obtain the following
equivalent equation

x = V T (ΣTΣ +D2
λ)
−1ΣTUT b. (8)

The solving of equation (8) needs the regularization parameter λ which is
determined by discrepancy principle in [3].

It is easy to know that the regularization parameter λ satisfies σk+1 < λ < σk

which the σk represents the k -th singular value and σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σn ≥ 0.
So we have

ΣTΣ +D2
λ = diag[σ2

1, σ
2
2, · · · , σ2

k, λ
2, · · · , λ2] ∈ Rn×n. (9)

In order to avoid the propagation of the random noise e in (3) into the com-
puted approximate solution xtrue, the smallest eigenvalue of ATA+ LT

λLλ has to
be large sufficiently. Also, since our model is minimization problem, we hope Lλ

to be a small norm in order to help us decide a more accurate approximation of
x. The following two properties demonstrate that the new Tikhonov method is
a good one.

a. The smallest eigenvalue of the matrix ATA+LT
λLλ should be λ2 where λ2 ≥

σ2
i , i = k+1, k+2, · · · , n. Since ATA = V ΣTUTUΣV T = V ΣTΣV T ,LT

λLλ =
V DT

λDλV
T , then ATA+ LT

λLλ = V (ΣTΣ +DT
λDλ)V

T .

b. The regularization matrix Lλ has smaller norm than λI in Frobenius norm
||.||F . Since λ, σ1 are strictly positive and ||Lλ||2F = ||Dλ||2F =

∑
σ2
j≤λ2 (λ2 − σ2

j ) <

nλ2 = ||λI||2F , then more accurate approximation of x can be reached.
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The smallest eigenvalue of the matrix ATA + LT
λLλ is equal to the smallest

element of the diagonal matrix (9), i.e., λ2 where σ2
k+1 < λ2 < σ2

k. The corre-
sponding Theorem 2.1 and Corollary 2.2 in [3] demonstrate the new Tikhonov
regularization method indeed can achieve better balance for the above two as-
pects.

3 The new method combined FFT algorithm

with new Tikhonov regularization method

Motivated by the idea of new Tikhonov regularization method proposed in [3], and
due to the fast FFT algorithm, we use FFT algorithm to accelerate the spectral
decomposition of BCCB matrices in the process of new Tikhonov regularization
method. Particularly, where the BCCB matrix which is gained by imposing
circularly symmetric PSF and periodic boundary conditions (see [2, 8, 9]). The
detailed FFT algorithm is showed in this section.

3.1 FFT algorithm applied to BCCB matrices

It is well known that BCCB matrices which are normal matrices have the partic-
ular spectral decomposition

A = F∗ΛF , (10)

where F ∈ Cn×n is 2D unitary discrete Fourier transform (DFT) matrix, ∗ rep-
resents conjugate transpose and the diagonal matrix Λ = diag[λ1, λ2, λ3, · · · , λn]
contains all eigenvalues of A ∈ Rn×n. This matrix F has a very convenient prop-
erty which can perform fast matrix-vector multiplications without constructing F
explicitly. In MATLAB, the function fft2 and ifft2 are used for matrix-vector
multiplications of F and F∗, respectively.

Since the implicit matrix F is a unitary matrix, we have the following equation
according to the properties of Fourier transforms,

A = F∗ΛF ⇒ FA = ΛF ⇒ Fa1 = Λf1 = λ/
√
N, (11)

where λ ∈ Rn×1 is a vector which contains all eigenvalues of A. It is well known
that the first column of F , f1, is a vector of all ones, and the first column of
A, a1, can be gained by PSF and MATLAB function circshift (see [2]). We
assume the matrix A−1 exists, so the final computing form is as follows

b = Ax = F∗ΛFx⇒ x = A−1b = F∗Λ−1Fb, (12)

where b is the observed image and A is the BCCB matrix which can exploit the
FFT algorithm.
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3.2 The new Tikhonov regularization method using FFT
algorithm (NTRF)

Tikhonov regularization method is a classical and promising method for image
deblurring, but it shows disadvantages if we impose the random noise on the
images. Fuhry and Reichel recently proposed a novel construction of the regular-
ization matrix Lλ = DλV

T introduced in section 2 (see [3]), called new Tikhonov
regularization method.

Combining section 2 with section 3.1, we extend the new Tikhonov regulariza-
tion method for small or moderate size problems to new Tikhonov regularization
method for large-scale problems. Similar to section 2, for solving the least squares
problem (5), we get the normal equation (6) easily. Differently, the regularization
matrix is as follows

L̃µ = D̃µF , (13)

where F ∈ Cn×n is the 2D unitary discrete Fourier transform (DFT) matrix and
∗ represents conjugate transpose. And regularization matrix D̃µ ∈ Rn×n is as
follows

D̃2
µ =

⎛
⎜⎜⎜⎝

max(µ2 − λ2
1, 0)

max(µ2 − λ2
2, 0)

. . .

max(µ2 − λ2
n, 0)

⎞
⎟⎟⎟⎠ ,

where µ ∈ R is also the regularization parameter just like the λ in section 2 and
λi is the i -th eigenvalue of matrix A.

From least square problem (5), the following equation can be gained and A is
a real matrix,

(A∗A+ L̃∗µL̃µ)x = A∗b.

We exploit spectral decomposition A = F∗ΛF and L̃µ = D̃µF to gain the
following eqution

F∗(Λ∗Λ + D̃∗
µD̃µ)Fx = F∗Λ∗Fb.

Similar to equation (12), it is easy to get the following equation

x = F∗(Λ∗Λ + D̃∗
µD̃µ)

−1Λ∗Fb. (14)

The above equation (14) is our final computing scheme. The following exper-
iments in section 4 demonstrate the equation (14) is indeed a promising way for
image restoration. The following Theorem shows that if the smallest eigenvalue
of A∗A + L̃∗µL̃

∗
µL̃µ is sufficiently large, this can avoid propagation of the noise.

Moreover, since our goal is to get smaller norm, the choosing of the regularization
matrix L̃∗µL̃µ is proper which can help to determine the approximation solution.
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Theorem 3.1 Let M = A∗A + L̃∗µL̃µ,M ∈ Rn×n, where A ∈ Rn×n satisfies

equation (10) and L̃µ ∈ Cn×n satisfies equation (13). Let µ > 0 be the regular-
ization parameter, then

i) The smallest eigenvalue of the matrix M is µ2 where µ2 ≥ λ2
i , i ∈ S̄ where

index set S = {j|λ2
j > µ2, j = 1, 2, · · · , n}.

ii) The regularization matrix L̃µ has smaller Frobenius norm than µI, where µ
here is the regularization parameter of Tikhonov model.

Proof. i) According to the definitions of M , A, L̃µ, we have

M = A∗A+ L̃∗µL̃µ = F∗Λ∗ΛF + F∗D̃∗
µD̃µF = F∗(Λ∗Λ + D̃∗

µD̃µ)F = F∗DF ,

where D is a diagonal matrix (i.e., Λ∗Λ+ D̃∗
µD̃µ) that includes diagonal elements

λ2
i and µ2, i ∈ S, S = {j|λ2

j > µ2, j = 1, 2, · · · , n}.
Due to the symmetric matrix M and unitary matrix F , matrix M has the

smallest eigenvalue µ2.
ii) We have

||L̃µ||2F = ||D̃µF||2F = ||D̃µ||2F = Σλ2
j<µ2(µ2 − λ2

j), j ∈ S̄,

and 0 < µ2 − λ2
j < µ2,

||L̃µ||2F = Σλ2
j<µ2(µ2 − λ2

j) < nµ2 = ||µI||2F .
�

The new algorithm is shown as follows:
Algorithm 1 (New Tikhonov regularization method using FFT algorithm (NTRF))

1. Compute Λ by spectral decomposition A = F∗ΛF where A is a BCCB matrix.
2. Compute parameter µ where µ = 5µgcv, µgcv is obtained by GCV method.
3. Construct

D̃2
µ = diag[max(u2 − λ2

1, 0),max(u2 − λ2
2, 0), · · · ,max(u2 − λ2

n, 0)].
4. Directly compute

x = F∗(Λ∗Λ + D̃∗
µD̃µ)

−1Λ∗Fb,
where F is not explicit, but matrix-vector multiplication Fb and F∗b
can be obtained by fft2(b) and ifft2(b) fastly in practical MATLAB
implementation.

4 Experimental results

In this section, we present four different images synthetic, cameraman, lena,
einstein in Figure 1 which are all of size 256 × 256 pixels to show the ef-
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fectiveness and feasibility of our proposed method. The Tikhonov regulariza-
tion method based on FFT (TRF), called tik fft in the MATLAB pack-
age HON1 from [2], is compared with our method NTRF by imposing peri-
odic boundary conditions. Particularly, the traditional Tikhonov regulariza-
tion method based on FFT method (TRF) is different from NTRF method.
Mainly due to the different construction D̃2

µ where the diagonal matrix of TRF
method is diag[µ2

gcv, µ
2
gcv, · · · , µ2

gcv], and the diagonal matrix of NTRF method is
diag[max(u2 − λ2

1, 0),max(u2 − λ2
2, 0), · · · ,max(u2 − λ2

n, 0)].
In the following examples, we mainly compare visual quality of restored image

and the peak signal-to-noise ratio (PSNR) value which is defined as follows:

PSNR(u, v) = 10 · log10 2552

1
mn

∑
i,j(ui,j − vi,j)2

where vi,j and ui,j denote the pixel values of the restored and the original images,
respectively. Mainly we have that larger PSNR means better restored image.

The noise-free blurred image btrue is computed as btrue = Axtrue (see equation
(2)). The elements of the noise vector e are normally distributed with zero mean,
and if we set b = btrue + α · ‖btrue‖2 · e where btrue is blurred signal. In this case,
we say that the level of noise is α. For example, if b = btrue+0.01 · ||btrue|| · e, the
level of noise is 1%

The corresponding regularization parameters α of all examples are generated
by Generalized Cross Validation (GCV) for TRF, for simplicity, five times α for
NTRF due to empirical estimation. The following numerical examples are all
implemented with MATLAB (R2010a) and the computer of test has 1G RAM
and Intel(R) Pentium(R) D CPU @2.80GHz @2.79GHz.

Here, we consider two kinds of blur in our experiments, i.e., Gaussian blur and
Moffat blur. The blurred images also are corrupted by additive noise-Gaussian
noise. We not only compare the visual quality, but also compare the PSNR
values of TRF method and NTRF method. From the following tables and restored
images, we can easily get the fair comparisons of our NTRF method and TRF
method. We also get that our method is more effective and stable.

4.1 Example 1

We consider images which are corrupted by blur and noise, where the blur is
10×10 pixels Gaussian-shaped PSFs with standard deviation(σ2) with 1, 1.5 and
2, meanwhile, two kinds of Gaussian noise level are 0.5% and 1% . Table 1 shows
the results obtained by TRF method and NTRF method. From the table, we
can see that NTRF method gets larger PSNR values than TRF method. That

1www.siam.org/books/fa03.
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Fig. 1: Original images.

demonstrates the better numerical results of our NTRF method. Furthermore,
from the PSNR comparisons of the two methods, we obtain that the numerical
difference of PSNR in our NTRF method becomes larger with the standard de-
viation σ2 decreasing and Gaussian noise increasing. For example, the PSNR
value difference of σ2 = 1 and 1% noise between TRF and NTRF is larger than
σ2 = 2 and 0.5% noise. It demonstrates that our NTRF method behaves better
under the condition of lower blur and higher noise. Figure 2 shows the images
degenerated by σ2 = 1.5 blur and 0.5% noise and the restored results by TRF
method and NTRF method. Figure 3 displays the images degenerated by σ2 = 2
blur and 1% noise and the restored images by TRF method and NTRF method.
Evidently, the visual results with TRF method leave more noise (see the black
region of second column in Figure 2) than our method. And our NTRF method
shows the favorable denoising ability.

Table 1: Corresponding PSNR values using TRF method and NTRF method
under the different Gaussian blurs and Gaussian white noises.

Examples
Variance σ2 = 1 σ2 = 1.5 σ2 = 2
Noise 0.5% 1% 0.5% 1% 0.5% 1%

synthetic
TRF 74.9845 72.2842 74.4708 72.7537 73.0333 71.6071
NTRF 78.7617 77.2222 75.7437 75.0221 74.0365 73.5287

lena
TRF 79.1305 76.7826 77.3220 76.0470 75.1652 74.2478
NTRF 81.2388 79.8669 77.4890 76.8047 75.4911 74.9820

einstein
TRF 79.8850 77.3747 78.0915 76.7371 76.0327 74.9479
NTRF 82.3276 80.8633 78.2457 77.4736 76.1387 75.6452
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Fig. 2: First column: blurred and noisy images with Gaussian blur(σ2 = 1.5)
and Gaussian noise(0.5%); Second column: restored images using TRF method ;
Third column: restored images using NTRF method.

4.2 Example 2

We add Moffat blur into the images in this subsection. The detail of Moffat blur
can be got from [17, 18]. And we use (x, y, z) to denote blur, where x represents
the size of Moffat blur, y denotes standard deviation (σ2) of the blur, z is a
parameter. Here the noisy-blurry images have σ2 = 1 and σ2 = 1.5 blur and
0.5% and 1% Gaussian noise. Table 2 shows the excellence of NTRF method
duo to the larger PSNR values using NTRF method for all test images. Similar
as example 1, the numerical difference of PSNR in our NTRF method becomes
larger with the standard deviation decreasing and Gaussian noise increasing. So
we can also conclude that our NTRF method behaves better under the condition
of lower blur and higher noise. Figure 4 shows the blurred and noisy images with
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Fig. 3: First column: Blurred and noisy images with Gaussian blur (σ2 = 2)
and Gaussian noise (1%); Second column: Restored images using TRF method ;
Third column: Restored images using NTRF method.

Moffat blur (σ2 = 1) and Gaussian noise (0.5%). Figure 5 shows the blurred and
noisy images with Moffat blur (σ2 = 1.5) and Gaussian noise (0.5%). From the
restored images in Figure 4 and 5, the more residual noise using TRF and less
residual noise using our NTRF method demonstrate the better visual results of
our method.

5 Conclusions

In this paper, we apply the new Tikhonov regularization method with FFT algo-
rithm to generate a novel method , i.e. NTRF method, for dealing with large-scale
ill-posed image restoration problems, since FFT algorithm is good at computing
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Fig. 4: First column: blurred and noisy images with Moffat blur (σ2 = 1) and
Gaussian noise (0.5%); Second column: restored images using TRF method ;
Third column: restored images using NTRF method.

the spectral decomposition. Our new method retains the stability and effective-
ness of the method in [3], and reduces time-consuming by using FFT algotithm.
The structure of blurring matrix is a key step and should be BCCB structure
that generated by circularly symmetric PSF and periodic boundary conditions.
In the numerical tests, we employed different variances of different types blur and
Gaussian noise to compare the effectiveness of TRF method and NTRF method,
respectively. Meanwhile, the comparison results show that our NTRF method
works better than TRF method under different blurs and noises. Furthermore, it
is easy to discover that the difference of PSNR values using our NTRF method
becomes bigger if we set more Gaussian noise and the smaller standard devia-
tion of blur. It demonstrates that our NTRF method behaves better under the
condition of lower blur and higher noise, and shows the favourable denoising abil-
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Fig. 5: First column: blurred and noisy images with Moffat blur (σ2 = 1, 5)
and Gaussian noise (0.5%); Second column: restored images using TRF method
; Third column: restored images using NTRF method.

ity. Moreover, the restored images processed by TRF method contain more noise
from the visual results while our NTRF method is not. Due to this, the proposed
NTRF method performs better than the TRF method in the denoising process.

The reason why our new method for large-scale problems can be implemented
is that we can exploit the fast algorithm of structure matrix to gain the spec-
tral decomposition, e.g., FFT algorithm. Similar as the idea of our method, the
another structure matrix which can also gain the spectral decomposition by fast
algorithm discrete cosine transformation (DCT) will be gained if we impose re-
flexive boundary conditions and circularly symmetric PSF on the images. This
work will be considered in the following paper.
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Table 2: Corresponding PSNR values using TRF method and NTRF method
under the different Moffat blurs and Gaussian white noises.

Examples
Variance σ2 = 1 σ2 = 1.5
Noise 0.5% 1% 0.5% 1%

cameraman
TRF 74.6245 72.1259 74.8573 73.0050
NTRF 78.5629 76.2789 75.5309 73.8735

lena
TRF 75.9755 73.3959 76.5289 74.5310
NTRF 80.5133 78.3322 77.6106 75.9278

einstein
TRF 76.5182 73.9135 77.2480 75.1816
NTRF 81.3081 79.2094 78.7393 76.7393
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