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Abstract In this paper, we analyze the Bregman iterative model using the G-norm. Firstly, we show the

convergence of the iterative model. Secondly, using the source condition and the symmetric Bregman distance,

we consider the error estimations between the iterates and the exact image both in the case of clean and noisy

data. The results show that the Bregman iterative model using the G-norm has the similar good properties as

the Bregman iterative model using the L2-norm.
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1 Introduction

The restoration problem is modeled by f = Ku + v, here, K is blurring operator (usually
bounded linear operator), u is cartoon part and v is texture and/or noise. The total variation
(TV) denoising models are based on a variational problem with constraints using the TV norm
(TV (u) =

∫
Ω |∇u|dx) as a nonlinear nondifferentiable functional. The popular ROF (Rudin-

Osher-Fatemi) (i.e., TV-L2) model[6,11,12] is one of the most famous PDE-based image denoising
models in image processing. The TV-L1 model[1,5,7] has also been used for denoising and
cartoon-texture decomposition. Buades summarized different models based on total variation
in [2].

Y. Meyer[6] pointed out the crucial role played by a certain functional Banach space, called
the space of texture and denoted by G. The TV-G model is:

min
u∈BV (Ω)

TV (u) +
λ

2
||f − Ku||G, λ > 0, (1.1)

where BV (Ω) denotes the space of functions with bounded variation on Ω and λ > 0 is the
regularization parameter that determines the balance between goodness fit to the original image
and the amount of regularization done to the original image f in order to produce the approxi-
mation u. Because the G-norm is difficult to compute using the usual Euler-Lagrange equation
in numerical experiments, the approximation is proposed by Osher, Solé and Vese(OSV)[10]:

min
u∈BV (Ω)

TV (u) +
λ

2
||∇�−1(f − Ku)||2, λ > 0, (1.2)

where the G-norm used in the TV-G model (1.1) is replaced by an (H−1)2 fitting term. The
flexibility of the Bregman distances is attractive for achieving certain imaging tasks such as
preservation of edges[3].
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To improve the restoration effect, S. Osher et al.[8] proposed an iterative regularization
procedure based on Bregman distance

Dp(u, v) ≡ J(u) − J(v) − 〈p, u − v〉
(〈·, ·〉 denotes the usual duality product) as follows:

Algorithm. Initializing u0 and p0, and for k = 1, 2, · · ·,
uk = arg min

u

{
Qk(u) := H(u, f) + Dpk−1(u, uk−1)

}
, (1.3)

where J(·) and H(·, f) are convex non-negative regularization functionals and pk is the subgra-
dient of J(uk) with ∂J(v) =

{
p : Dp(u, v) ≥ 0, ∀u ∈ BV (Ω)

}
.

The iterative regularization model is called as ITV-L2 model[8] with J(u) = TV (u), H(u, f) =
λ
2 ||f − Ku||2. Similar as the OSV model (1.2), the ITV-G model is with the same J(u) and
H(u, f) = λ

2 ||∇�−1(f − Ku)||2.
M. Burger et al.[3] considered the error estimations for the TV-L2 model and the ITV-L2

model based on the generalized Bregman distances. Motivated by the analysis in [3,4], we first
consider the convergence theorem for the ITV-G model, then the error estimations with noise
or not will be shown.

The rest of the paper is organized as follows. In Section 2, we give the convergence analysis
of the ITV-G model. In Section 3, we consider the error estimations between the iterates and
the exact image both in the case of clean and noisy data, and derive the convergence rate. Some
concluding remarks are given in Section 4.

2 Convergence Analysis

Now we give the well-definedness of the Algorithm in the above section for the ITV-G model.

Theorem 2.1. Assume J(u) = TV (u), H(u, f) = λ
2 ||∇�−1(f − Ku)||2 and let u0 = 0,

p0 = 0 for the iterates (1.3). Then for each k ∈ N there exists a minimizer uk of Qk(u),
pk ∈ ∂J(uk) and qk ∈ ∂uH(uk, f) = λK∗�−1(f −Kuk) such that pk + qk = pk−1. If K has no
nullspace, then the minimizer uk is unique.

Proof. We prove the above result by induction. For k = 1, we have u1 = argmin
u

{Q1(u) =

J(u) + H(u, f)} and the existence of minimizers as well as the optimality condition p1 + q1 =
p0 = 0 is well-known. Moreover, with r1 = λ�−1(Ku1 − f) we have p1 = K∗r1.

Now we proceed from k − 1 to k, and assume that

pk−1 = K∗rk−1. (2.1)

Under the above assumption, the functional

Qk(u) : u → J(u) − J(uk−1) + H(u, f)− 〈pk−1, u − uk−1〉
is weak-* lower semicontinuous and it is bounded below by H(u, f) due to the properties of the
subgradients. Moreover, we can estimate by (2.1)

Qk(u) =J(u) − J(uk−1) − 〈rk−1, Ku − Kuk−1〉 + λ||∇�−1(Ku − f)||2
=J(u) − J(uk−1) − 〈rk−1, Ku − f〉 − 〈rk−1, f − Kuk−1〉

+ λ||∇�−1(Ku − f)||2. (2.2)

Since
〈rk−1, Ku − f〉 = −〈∇rk−1,∇�−1(Ku − f)〉, (2.3)
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we have

− 〈rk−1, Ku − f〉 + λ||∇�−1(Ku − f)||2

=λ||∇�−1(Ku − f) +
1
2λ

∇rk−1||2 − 1
4λ

||∇rk−1||2

≥− 1
4λ

||∇rk−1||2. (2.4)

By (2.2) and (2.4), we get

Qk(u) ≥ J(u) − J(uk−1) − 〈rk−1, f − Kuk−1〉 − 1
4λ

||∇rk−1||2. (2.5)

Since only the first term on the right-hand side of this inequality is not constant, boundedness
of Qk(u) implies of boundedness of J(u). This shows that the level sets of Qk(u) are bounded
in the norm of BV (Ω), and therefore they are weak∗-compact. Hence, there exists a minimizer
of Qk(u) due to the fundamental theorem of optimization. Moreover, if K has no nullspace, the
strict convexity of H(·, f) and convexity of the other terms imply the strict convexity of Qk(u),
and therefore the minimizer is unique. Since pk−1 ∈ ∂J(uk) + ∂uH(uk, f), which yields the
existence of pk ∈ ∂J(uk) and qk = ∂uH(uk, f) = λK∗�−1(f −Kuk) satisfying pk−1 = pk + qk.

�

We recall below several intermediate results as well as some of the main results shown in
[8].

Proposition 2.1. Under the above assumptions, the sequence H(uk, f) obtained from the
iterates (1.3) is monotonically non-increasing, one even has

H(uk, f) ≤ H(uk, f) + Dpk−1(uk, uk−1) ≤ H(uk−1, f). (2.6)

Moreover, let u be such that J(u) < ∞, then one has

Dpk(u, uk) + Dpk−1(uk, uk−1) + H(uk, f) ≤ H(u, f) + Dpk−1(u, uk−1). (2.7)

Theorem 2.2 (Exact data). Assume Kũ = f, u ∈ BV (Ω) and J(ũ) < ∞, then

H(uk, f) ≤ H(ũ, f) +
J(ũ)

k
(2.8)

and, in particular, uk is a minimizing sequence.
Moreover, uk has a weak∗-convergent subsequence in BV (Ω), and the limit of each weak∗-

convergent subsequence is a solution of Ku = f . If ũ is the unique solution of Ku = f , then
uk → ũ in the weak∗-topology in BV (Ω).

The similar processes of proof are in [8]. Next, we consider the noisy case.

Theorem 2.3 (Noisy data). Assume Kũ = f, u ∈ BV (Ω),

||∇�−1(f δ − f)|| ≤ δ (2.9)

and J(ũ) < ∞, then

Dpk(ũ, uk) +
k∑

j=1

[Dpj−1 (uj , uj−1) + H(uj, f
δ)] ≤ λkδ2

2
+ J(ũ). (2.10)
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Proof. The sequence H(uk, f δ) obtained from the iterations (1.3) is monotonically non-increasing,
(2.6) and (2.7) hold when f is replaced by f δ. Using (2.9), we have

Dpj (ũ, uj) + Dpj−1 (uj , uj−1) + H(uj, f
δ) ≤ λδ2

2
+ Dpj−1 (ũ, uj−1), ∀ j ∈ N. (2.11)

Summing (2.11) up from 1 to k, we arrive at (2.10).
We get the similar conclusions as the conclusions of the ITV-L2 model[8]. It should be

noticed that we use ||∇�−1(f δ − f)|| ≤ δ to replace ||f δ − f || ≤ δ that is often used in
ITV-L2/TV-L2 model. �

3 Error Estimation

In the following, we discuss the basic ideas needed for the error estimation. The so-called source
condition[3]:

(SC) There exists ξ ∈ ∂J(ũ) such that ξ = K∗q for a source element q ∈ L2(Ω).

Since the Bregman distance is not symmetric in general, which can be remedied partly by using
the symmetric Bregman distance[3]:

Dsymm(u1, u2) = 〈u1 − u2, p1 − p2〉 = Dp1(u2, u1) + Dp2(u1, u2), pi ∈ ∂J(ui). (3.1)

The symmetric Bregman distance depends on the specific selection of the subgradients pi, when
the subgradients are not unique.

Now we derive the error estimation between a solution of the equation Ku = f and the
iterates uk produced by the ITV-G model.

Theorem 3.1 (Exact data). Let ũ ∈ BV (Ω) be a solution of Ku = f and assume that the
source condition (SC) is satisfied. Then

Dpk(ũ, uk) ≤ ||∇q||2
2λk

. (3.2)

Proof. Let

xk = λ

k∑

j=1

�−1(Kuj − f). (3.3)

According to Theorem 2.1, qk = ∂uH(uk, f) = λK∗�−1(f − Kuk) satisfying pk−1 = pk + qk

and p0 = 0. The following equalities are obtained:

pk = −
k∑

j=1

qj = −λK∗
k∑

j=1

�−1(f − Kuj) = K∗xk (3.4)

and
xj−1 − xj = λ�−1(f − Kuj). (3.5)

From the definition of symmetric Bregman distance (3.1), we get for any j ∈ N, 0 < j ≤ k,

λDpj (ũ, uj) + λDξ(uj , ũ) = λ〈pj − ξ, uj − ũ〉. (3.6)
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The above relation, together with (3.4), (3.5) and (SC), shows

λDpj (ũ, uj) + λDξ(uj , ũ) =〈K∗xj − K∗q, λ(uj − ũ)〉
=〈xj − q, λ(Kuj − f)〉 = 〈xj − q,�(xj − xj−1)〉
=〈∇(xj − q),∇(xj−1 − xj)〉. (3.7)

It is obvious that

〈∇(xj − q),∇(xj−1 − xj)〉
=〈∇(xj − q),−∇(xj − q) + ∇(xj−1 − q)〉
=

1
2
||∇(xj−1 − q)||2 − 1

2
||∇(xj − q)||2 − 1

2
||∇xj−1 −∇xj ||2

≤1
2
||∇(xj−1 − q)||2 − 1

2
||∇(xj − q)||2 − 1

2
||λ∇�−1(f − Kuj)||2

≤1
2
||∇(xj−1 − q)||2 − 1

2
||∇(xj − q)||2. (3.8)

Based on (3.7) and (3.8), we obtain

λDpj (ũ, uj) + λDξ(uj , ũ) ≤ 1
2
||∇(xj−1 − q)||2 − 1

2
||∇(xj − q)||2.

By summing up the last inequalities from j = 1 to k, using the non-negativity of Dξ(uj, ũ),
and the fact that Dpj (ũ, uj) is non-increasing with respect to j, it follows that

Dpk(ũ, uk) ≤ 1
k

k∑

j=1

Dpj (ũ, uj) ≤ ||∇q||2
2λk

.

�

Suppose that the given noisy data f δ satisfies (2.9). The next result shows that a priori
stopping rule k∗(δ) ∼ 1

δ yields semi-convergence of the regularization method.

Proposition 3.1. Let ũ ∈ BV (Ω) verify Kũ = f , and assume that the (SC) and (2.9) are
satisfied. Moreover, let the stopping index k∗(δ) be chosen of order 1

δ . Then, {J(uk∗(δ))}δ is
bounded and hence, as δ → 0, there exists a weak∗-convergent subsequence {uk∗(δn)}n in BV (Ω)
whose limit is a solution of Ku = f . Moreover, if the solution of the equation is unique, then
uk∗(δ) converges in the weak∗-topology to the solution as δ → 0.

Proof. The proof follows the pattern of the proof of Theorem 2.2 for the exact data case, but
it is provided here for the sake of completeness. From inequality (2.10), we have

J(ũ) + λkδ2 ≥
k∑

j=1

Dpj−1(uj , uj−1)

=J(uk) − 〈pk−1, uk − ũ〉 +
k−1∑

j=1

〈pj − pj−1, uj − ũ〉,

and by (3.4),

J(ũ) + λkδ2 ≥J(uk) +
k−1∑

j=1

〈qj , uk − ũ〉 −
k−1∑

j=1

〈qj , uj − ũ〉
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=J(uk) − λ

k−1∑

j=1

〈�−1(Kuj − f δ), Kuk − f〉

+ λ

k−1∑

j=1

〈�−1(Kuj − f δ), Kuj − f〉

=J(uk) + λ
k−1∑

j=1

〈∇�−1(Kuj − f δ),∇�−1(Kuk − f)〉

− λ

k−1∑

j=1

〈∇�−1(Kuj − f δ),∇�−1(Kuj − f)〉

=J(uk) + λ

k−1∑

j=1

〈∇�−1(Kuj − f δ),∇�−1(Kuk − f δ)〉

− λ

k−1∑

j=1

〈∇�−1(Kuj − f δ),∇�−1(Kuj − f δ)〉.

Next we use Cauchy-Schwarz inequality, (2.10) and the inequality ab ≤ a2

2 + b2

2 to get

J(ũ) + λkδ2 ≥J(uk) − 3λ

2

k−1∑

j=1

||∇�−1(Kuj − f δ)||2 − kλ

2
||∇�−1(Kuk − f δ)||2

≥J(uk) − 4J(ũ) − 4λkδ2.

So we have the following estimate

J(uk) ≤ 5J(ũ) + 5λkδ2, (3.9)

which further implies that the sequence {J(uk∗(δ))}δ is bounded for δ > 0 sufficiently small
and for k∗(δ) ∼ 1

δ . Thus we get the boundedness of ||uk∗(δ)||BV for any δ > 0. On one
hand, since BV (Ω) is provided with a weak∗-topology, we conclude that there is a subsequence
{uk∗(δn)}n which converges to a point ū with respect to that topology. Due to the embedding
of (BV (Ω), w∗) into (L2(Ω), || · ||2) for spatial dimension less or equal two, this subsequence
converges to ū in the L2(Ω)-norm. Because of the continuity of the operator K on L2(Ω), thus
lim

n→∞Kuk∗(δn) = Kū. On the other hand, we derive from (2.10) the inequality

H(uk∗(δn), f
δ) ≤ λδ2

n +
J(ũ)

k∗(δn)
.

By our special choice of k∗(δn), we obtain lim
n→∞Kuk∗(δn) = f and then, Ku = f . �

The error estimates for the noisy data case are established below.

Theorem 3.2 (Noisy data). Let ũ ∈ BV (Ω) verify Kũ = f , and assume that the (SC) and
(2.9) are satisfied. Then, the following estimate holds:

Dpk(ũ, uk) ≤ ||∇q||2
2λk

+ δ||∇q|| + λδ2k, ∀ k ∈ N. (3.10)

Moreover, if a prior choice k∗(δ) ∼ 1
δ is made, then the following convergence rate is obtained

Dpk∗(δ)(ũ, uk∗(δ)) = O(δ).
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Proof. Let

xk = λ

k∑

j=1

�−1(Kuj − f δ). (3.11)

From (3.4) and (SC), we get for any positive j ∈ N, 0 < j ≤ k,

λDpj (ũ, uj) + λDξ(uj, ũ) = λ〈pj − ξ, uj − ũ〉
=〈K∗xj − K∗q, λ(uj − ũ)〉
=〈xj − q, λ(Kuj − f)〉
=〈xj − q, λ(Kuj − f δ)〉 + λ〈xj − q, f δ − f〉.

The above relation, together with (3.11), leads to

λDpj (ũ, uj) + λDξ(uj , ũ)
=〈xj − q,�(xj − xj−1)〉 − λ〈∇(xj − q),∇�−1(f δ − f)〉
=〈∇(xj − q),∇(xj−1 − xj)〉 − λ〈∇(xj − q),∇�−1(f δ − f)〉
≤〈∇(xj − q),∇(xj−1 − xj)〉 + λδ||∇(xj − q)||, (3.12)

where we used (2.9) in the last equality. Thus we have

〈∇(xj − q),∇(xj − xj−1)〉 ≤ λδ||∇(xj − q)||, (3.13)

that is, ||∇(xj − q)|| ≤ ||∇(xj−1 − q)|| + λδ. By the method of induction, it follows that

||∇(xj − q)|| ≤ ||∇q|| + λδj. (3.14)

Combining (3.8) and (3.12)–(3.14), we obtain

λDpj (ũ, uj) ≤ 1
2
||∇(xj−1 − q)||2 − 1

2
||∇(xj − q)||2 + λδ||∇q|| + λ2δ2j.

Fix a positive k ∈ N and sum the last inequalities up from 1 to k, we get

λ

k∑

j=1

Dpj (ũ, uj) ≤ ||∇q||2
2

+ λδk||∇q|| + λ2δ2 k(k + 1)
2

(3.15)

and thus,
k∑

j=1

Dpj (ũ, uj) ≤ ||∇q||2
2λ

+ δk||∇q|| + λδ2 k(k + 1)
2

. (3.16)

Note that monotonicity of the sequence Dpj (ũ, uj) is not guaranteed, as in the noise free case.
So we employ a monotonicity-like inequality derived from (2.11):

Dpj+1(ũ, uj+1) − Dpj (ũ, uj) ≤ λδ2

2
.

Summing up these inequalities up to k yields

Dpk(ũ, uk) − Dpj (ũ, uj) ≤ (k − j)λδ2

2
.
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Summing up again with respect to j up to k implies

kDpk(ũ, uk) −
k∑

j=1

Dpj (ũ, uj) ≤ λ

2

(
k2 −

k∑

j=1

j
)
δ2,

which means

kDpk(ũ, uk) ≤
k∑

j=1

Dpj (ũ, uj) +
k(k − 1)λδ2

4
. (3.17)

From (3.16) and (3.17), we have

kDpk(ũ, uk) ≤ ||∇q||2
2λ

+ δk||∇q|| + λδ2k2.

Thus (3.10) follows immediately. �

4 Concluding Remarks

In this paper, we discuss the iterative regularization method based on the generalized Bregman
distance, especially using the G-norm. Firstly, we analyze and show the convergence of the
Bregman iterative model (i.e. ITV-G model). Secondly, we consider the error estimations for
the ITV-G model based on the source condition and the symmetric Bregman distance. The
results illustrate the ITV-G model has the similar good properties with the ITV-L2 model. It
should be noticed that ||f δ − f || ≤ δ (that is often used when analyzing the ITV-L2 model) is
replaced by ||∇�−1(f δ − f)|| ≤ δ to analyze the ITV-G model.
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