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Abstract

This paper starts with the study of velocity transmission in a queue.

We assume that the velocity of an element in a queue and the distance between the
two adjacent elements satisfies a linear relation. Based upon this assumption, models
are built to mathematically analyze the influence of the acceleration (or deceleration)
of the first object in the sequence to the following objects. The computer program
Mathematica® is used to help with the calculation. The final results are presented by a
function based on Gamma Function and can also be described by the Velocity-Time
graph of every element. Real statistics are used to verify the model.

Secondly, on the basis of the similarities between the flow of vehicles in traffic
and the movement of elements in a queue, the model is applied in traffic forecast.
Statistics are taken into consideration to modify the model, which contributes to
expecting the expansion of traffic congestion, in terms of both velocity and extent.

Finally, by studying the price relation in an industrial chain, the model is also used
to analyze the influence that the price fluctuation of an upstream product may bring to
the price of downstream products. In this way, the model can be applied in traffic
dispatch, fluctuation prediction and many other fields in real life.

Key words: Queue; transmission of velocity; traffic congestion; industrial chain;
price fluctuation
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Chapter 1

Introduction

With its glamorous exhibitions and heart-warming services, the 2010 Shanghai
World Expo attracted over 70 million visitors from all over the world. When
we were paying a visit, however, it was not the Expo itself that fascinated us most. It
was an idea that we came across while lining up in the queue: each move of a queue is
actually caused by the move of the first person in the queue. In other words, when the
first person accelerates, his or her velocity is passed on to every following person.
Thus, given the velocity of the first person and the distances between every two
people, we can build a model to mathematically analyze the motion of the queue.

There are many similar situations in our real life where velocity transmission occurs.
To quote an example, in a traffic congestion, it is the first car’s sudden stop that
causes every following car to stop their motion. In these cases, our model can be used
to efficiently predict the velocity and distance of the spread of the congestion.
Similarities can also be seen in the transmission of price fluctuation in an industrial
chain. In this situation, our model contributes to the prediction of the price change in
downstream products.

In a word, we believe that the Model of Velocity Transmission in a Queue extends
from pure mathematics to the field of application. It indeed is an art of anticipation, as
well as a question of balance. Today, when we are all heading for a more efficient
society, we sincerely hope that by mathematical methods, we can understand the
world in a more sensible way. We are glad to use our own knowledge and efforts to
solve the challenges that we are facing. We believe that in the near future,
mathematics will play even a more significant role in our joint venture: making this
world a better place.



Chapter1I :

Modeling: Velocity Transmission in a Queue

2.1 Preliminary

2.1.1 Gamma Function

Gamma function (represented by the capital Greek letter I') is an extension of the
factorial function, with its argument shifted down by 1, to real and complex numbers.

® The Gamma function is defined as
Gamma[z] = It“e*dt
0
® The incomplete gamma function is defined as

Gamma[a, z] = jta‘le‘tdt

2.1.2 Notation

n  The total number of elements in a queue
a, The i-thelement in a queue

S.

The distance between a;and &,

V, The velocity of &,



2.2 Mathematical Model and Its Solution

2.2.1 Velocity Transmission during Acceleration

First, let us consider how the velocity transmits in a straight line after the first element
starts to move. We assume that there are n elements in a queue. Number the n
elementsas a, a,, a,---, a,. When the queue remains still, the distance between
every two adjacent elements is assumed to be the same (denoted by S;). When the
distance is less than a certain value (denoted by S’), V. changes linearly with S, ,;
When S, >S’, the later element moves at its maximum velocity (denoted by V'),
i.e., its velocity remains a fixed value.

We assume that the relation between V and S satisfies

V,=f(S.,) , i=23n

Vi

V/

So S’ Sia

(Figure 2.1)

To simplify the calculation, we assume that the relation between V, and S

satisfies (as shown in figure 2.1)
k(Si1—So) S, €[0,S)

Vi = f(si—l) =
v/ S, , [S,+)

where k , V', S;, S’ areall positive constants.
When t =0, we have

$,=5,=S,==5,=5,

V,=V' V=V, ==V, =0



Now let’s consider what the distance S, of every elements in a queue is at time t.

For the first element, we have

t
V=V S =S, +Vi- [Vt
0

(S, can be determined by adding the distance that a, has traveled to the initial value

S, then subtracting the distance that a, has traveled.)

For the second element a, , we have

V, = f(s,) = kNT—szdt)

(2.1)

(In an infinitesimally small period of time after a, starts, V, will not exceed V'.

Namely, V, =k(S,-S,) . We first consider how elements move under this

circumstance.)
Differentiating (2.1), we obtain,

av,
Y2 _kv'-v
it V'-V,)

= LdV2 = kdt
V'-V

2

Integrating both sides with respect to t, we have

I ) =kt+C
V-V,

Given that when t=0, V, =0, we obtain
1
C=In(—
G

1

In
(V'—Vz

1
=kt+In(—
) S
Therefore, V, satisfies

V,=V'(l-e™)

(2.2)



(From the expression (2.2), we can see that when the infinitesimally small period of

time extends, V, will still be less than V'. Only when t — 4w, V, >V'.)
By the definition of distance, we have
t t
S, =Sy + [V,dt — [Vydt
0 0

According to the assumption,
t t
Vs =K(S, = ) = k([ V,dt - [V,dt) 2.3)
0 0
Substituting (2.2) into (2.3), we have

t
k(\/‘t—jv3dt) =V'(1-e™)+V,
0

Therefore, V, satisfies

V, =V'(1-e ™ (L+kt))

Similarly, we obtain

V, =Vl-e™*(L+ kt+%k2t2)]

Vo =V l-e ™1+ kt+%k2t2 +%k3t3)]

By inductionon 1,

i—2 kjtj
Vi :V'(l—e_ktZT
i J:

)

Using Gamma function to simplify the equation, we have

Gamma[i —1, kt]
Gamma[i—1]

V, =V'(1- (2.4)

We use Mathematica® to plot function (2.4):
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(Figure 2.2)

2.2.2 \elocity Transmission during Deceleration

Now we discuss how the velocity transmits when the first element suddenly stops.

We assume that from the moment T, the velocity of the first element suddenly
becomes 0.

Under this circumstance, we have

T t
V=0 S =S,+VT-[V/(L-e™)dt— [V,
0 T
Given that
T t
V, = (s) =k(VT = [V'A—e™)dt - [V,dt)
0 T

And that when t=T,

—1+e™

k

;
J'V'(l—e’kt)dt =V'( +T),
0

we have
V,=Ve ™ (-1+e")
Similarly,

V, =Ve ™ (-k(t-T)+e" (L+k(t—T)—-Gamma[2,kT]))

A :V’e‘“(—k(t—T)—%kz(tz ~T)+e" 1+ k(t—T)+%k2(t—T)2 —%Gamma[& kT1))



V5=V'e‘k‘(—k(t—T)—%k2(t2—T2)—%k3(t3—T3))+
KT 1, 2 1,3 ;s 1
o (L K(E-T) + KA (E=T) 4k (t=T)" ~ < Gammal4 KT1)

By induction on i, we have

1 le (i—2)tk T it

- & G-nt )

i2 i
Vi =Ve (DRI T+ (UK - T) - :
it ) im0 )

B i—2 kjtj i—2 ki(t_T)j
_\/" kt_ ~y kT ~Nv)
oV =Ve (JZ; i +e ,Z;‘ i 1)

Using Gamma function to simplify the equation, we have

_ V'(-Gammal[i —1,kt]+ Gammal[i—1,k(t—T)])
B Gamma[i —1]

V2

(2.5)

Therefore, given the equations (2.4), (2.5), V, can be presented as:

Gamma[i —1, kt]

Vi Gammal[i —1] teloT)
V, =
V'(-Gammali -1 kt] + Gamma[i ~1k(t-T)) [TM)’
Gamma[i —1]

where i, k, V' are all positive constants.

We use Mathematica® to produce the following graph:
Vi

(Figure 2.3)



2.3 Verification

To verify the model, we investigated a real case of Velocity Transmission in a Queue.
We took a video at the China Pavilion, 2010 Shanghai World Expo. From the video,
we took down the positions at different time t of the first twenty people in the queue.
We use the statistics to plot the \elocity-Time graphs of the twenty people.

Combining the V —t graphs and the curves of V., we have the results below:
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(Figure 2.4)

*In the function of V., the parameters are k —1.45V'—50,T — 6.

From Figure (2.4) we can see that the model is verified. Although when i<3,
velocity transmission may not strictly follow our assumption, for it can be interfered
by many other factors, the function in general can well describe the motion of the
people in a queue. Thus, we consider the model a good reflection of reality.

2.4 Conclusion

From the discussion above, we can see that the change of velocity of the first element
in a queue can be transmitted to all subsequent elements. The longer the distance

between a, and a, is, the smaller the range of the change of its velocity appears to

be. The delay of the transmission is also illustrated by Figure 2.3, where the function

of V, satisfies

_ Gammali -1, kt]

VO S ammali 1] telo.m)
V, =
V'(-=Gamma[i —1,kt]+ Gamma[i -1, k(t —T)]) t [T +0)
Gamma[i —1] ’



Chapter III: Application 1

The Spread of Traffic Congestion

3.1 Study Background

Nowadays, cities have been bothered by traffic congestion. At rush hours, the traffic
becomes so heavy that congestion in a comparatively small area, if not directed in
time, will soon expand. Thus, traffic jam can cause great trouble for the traffic
department. It is also a waste of people’s time. On the basis of the similarities between
these circumstances and our model, the Model of \Velocity Transmission in a Queue
can be used to forecast the spread of traffic congestion. We can ultimately predict how
fast and how far the congestion will spread. According to the result, concerned
department will be able to take measures in advance.

3.2 Modeling & Calculation

We assume that there are N cars traveling along a straight track. The distances
between every two adjacent cars are the same. Now, traffic congestion takes place at
the front-end of the queue due to some unpredictable reasons. We further assume that
the initial velocity of all cars is a constant V', and that the distance between every
two adjacentcars S, =S'= V?Jr S, - Let the velocity of the first car turn zero at t=0.

According to the model,

i-2 |t
V,=Ve™ ) K
io J:

_ V'(i-1)Gammali —1,kt]
- Gamma]i]

V.

(3.1

We use Mathematica® to obtain the figure below:



(Figure 3.1)

Figure 3.1 presents us with the Velocity-Time graph of every car.
As in the idealized model the velocity of any of the cars will not decrease to zero, we

introduce b= \% When b <b,, the car is regarded to be in a state of stillness.

To illustrate the main idea of the solution, we take, for example, (In real cases, the
constants need to be changed to adapt to different circumstances.)

V'=20(7%)
k=0.44(s")
S, =5(m)
S"=50(m)
b, = 0.05
Substituting the constants above into (3.1), we obtain the value of i (representing the

serial number of the car that stops at time t ). The resulting sequence of i is
depicted by Figure 3.2.
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Since
V= ds di L. f[t+dt]- f[t]
at a EIM—
We have
b t f[t] f[t+dt] Vp
0.05 0o /
0.05 5 1.617904 1.618097 0.193265
0.05 10 2.790471 2.790736 0.264746
0.05 15 4.204527 4.204825 0.297544
0.05 20 5.744342 5.744659 0.316969
0.05 25 7.36399 7.364321 0.330148
0.05 45 14.29082 14.29118 0.358375
0.05 65 21.60893 21.6093 0.372164
0.05 85 29.14347 29.14385 0.380715
0.05 105 36.82058 36.82096 0.38668
PM61 ------ 15



0.05 125 4460075 44.60114 0.391143
0.05 195 72.36023  72.36063  0.400902
0.05 265 100.6331 100.6335  0.406468
0.05 335 129.2234  129.2238 0.41018
0.05 405 158.0351  158.0355 0.412882
0.05 475 187.0125 187.0129 0.414961
0.05 600 239.0653 239.0657 0.417723
0.05 725  291.4123  291.4128 0.419735
0.05 850 343.9799  343.9804 0.421285
0.05 975 396.7208 396.7212  0.422526
0.05 1100 449.6024 449.6029 0.423549

0.05 1225 502.6014 502.6018 0.424411
(Table 3.1)

Using the figures in the table, we have

b
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(Figure 3.3)

From Figure (3.3), it can be seen that the transmission velocity of the phase is an
increasing function of Time. Its slope appears to be decreasing.
We then use the method of Least Square to fit the data.



We find that the function can be best fitted by the equation V =at°Ln(t) +b. Using

the computer program Mathematica® to solve this equation, we have
a—0.11237237,b — 0.09181098,c — -0.12348419

V, =0.11237237t %% n(t) + 0.09181098 (3.2)

Using computer to plot the function, we have

b

04 r v

03

0.2

0.1

10 20 30 400

(Figure 3.4)
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(Figure 3.5)
From Figure (3.4) and (3.5), we can see whent > 50, the data are well fitted. When
t <50, there is a deviation of the function from the statistics.
Then we calculate the distance that traffic congestion (the status at which a car moves



at a relatively low velocity, whichis b-V') travels.
Considering the relation between the distance that traffic congestion travels (denoted

by D,)and the distance that & travels (denoted by D, ), we have
D, =(i-1)S, - D,

Integrating (3.1), we have

t t Ppn A
D, = [V,dt = jV (i —)Gammali 1, ki]

0 B Gamma[i]
D — V' (ktGammali -1, kt] + Gamma[i,0] - Gammal[i, kt])

' kGamma[i —1]
Similarly, by integrating (3.2), we get

t
i = [Vdt = 0.0918t +0.1124t°*"* (~1.302+1.141Ln[t])
0

1 1 1 1 1
2 100 120 20 0

(Figure 3.6)
From Figure (3.6) we note that there is deviation from the fitted curve to the given
data points. Thus we come to update the fitting.

Let i=at+bt°(d +eLn[t]). We find the fitting constants below using the method

of Least Square:

a— -3.4553978 , b — 0.99490992 ,c — 0.95957738 ,
d — 3.5569785 , e — 0.22815992

Hence, the function i can be written as:

i =-3.4553981t +0.99490992 t****""**(3,56569785 + 0.22815992Ln[t]) (3.3)



Having plotted the function in Figure (3.7), we can see that the original statistics are
better fitted with the function.

20 40 60 a0 1000 1200
(Figure 3.7)

Substituting i into the formula of D,, we have

D, =V'(ktGamma[-3.455t + 0.995t%%%(3.557 + 0.22816Ln[t]) — 1, kt]
+ Gammal[-3.455t + 0.995t°%%(3.557 + 0.22816Ln[t]),0]
— Gamma[-3.455t + 0.995t%%%(3.557 + 0.22816Ln[t]), kt])

/(kGamma[-3.455t + 0.995t%%%(3.557 + 0.22816LLn[t]) —1])
Therefore, we get,

D, = (-3.455t +0.995t°%* (3,557 + 0.22816Ln[t]) ~1)S,

—V’(ktGamma[-3.455t +0.995t°%%(3.557 + 0.22816 Ln[t]) — 1, kt]
+Gamma[-3.455t + 0.995t°%% (3.557 + 0.22816 Ln[t]),0]

— Gamma[-3.455t + 0.995t%%% (3.557 + 0.22816 Ln[t]), kt])
/(kGamma|[-3.455t + 0.995t%%%(3.557 + 0.22816Ln[t]) —1])

Substituting the following data:
V'=20("%)
k =0.44(s™)
S, =5(m)
S'=50(m)

We have



D, = —45.4545+176.94t°® ~172.77t

— (45.45(0.44tGamma[-3.455t + 0.995t°%* (3.557 + 0.22816 Ln[t]) —1,0.44t]

+ Gammal-3.455t + 0.995t°%% (3.557 + 0.22816 Ln[t]),0] (3.4)
— Gamma[-3.455t + 0.995t %% (3.557 + 0.22816 Ln[t]),0.44t]))

/ Gamma[-3.455t + 0.995t%%*(3.557 + 0.22816Ln[t]) —1] +11.35t***Ln[t]

Now we re-plot the D, -t graph (Figure 3.8). It can be seen that the fitting is

enhanced.

Do
0 ¢

20 40 a0 &0 100 2
(Figure 3.8)
Conclusion:

From (3.2), (3.3), (3.4), we can obtain V, (the velocity at which the traffic

congestion spreads) at time t and D, (the spread distance from the original

congestion spot).

3.3 Application Analysis

From the analyses above, we can see that the model of Velocity Transmission in a
Queue can be applied in traffic problems. In real life, we can obtain the initial velocity
and distance between cars by investigation. Once given those statistics, we will be
able to substitute them in to the function and then calculate the velocity and extent of
the congestion transmission. It will be a convenient and accurate way to predict the
congestion. With the help of the model, the traffic department could direct the cars in
advance, which would be a remedy for the congested area, and thus reduce the
negative impact that traffic congestion may bring.



Chapter IV: Application 2
The Transmission of Price Fluctuation in an

Industrial Chain

4.1 Study Background

The interaction between the upstream and downstream products in an industrial chain
is one of the important topics studied in microeconomics. With a certain product’s
price going up, change will be brought to the cost of the next part in the chain. And
this fluctuation is passed on to every following product, which finally to the increase
of CPI and other consumption indexes. In real life, the rise of price may be influenced
by many factors, such as financial policies, supply-demand relationship etc. This fact
in some way makes the fluctuation unpredictable. Here, we simplify the situation,
assuming that the fluctuation in prices of downstream products is only affected by the
upstream ones. By calculation, we hope that we can predict the influence that the
price fluctuation of an upstream product may bring to the price of downstream
products.

4.2 Modeling and Computations of the model

We assume that when t =0, the price of a benchmark product suddenly changes from
P, to P'.When t=T, the price goes backto P,.

In the primal model in Chapter 11, the longer the distance between a, and a, is, the
smaller the influence of the acceleration of a, appears to be. Similarly in this case,
we use n to depict this influence. Therefore, The price of the a-th product in the
chain satisfies P, = A, - f(k,,t). k,can be understood as a parameter that indicates
how close P, isrelatedto P, ,. A, denotes the ratio of theinitial P, to P,.

From ChapterII, we have

Gamma[n, —1,k,t]
Gamma[n, —1]

AR+ (P'-R)A- ) te[0,T)

(P'—PR,))(-Gamma[n, -1,k t]+Gamma[n, -1k, (t—T)])
Gamma[n, —-1]

AR+

) te[T,+m)




Substituting different parameters into the function above, we have the following
graphs:
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(Figure 4.1)

From the graphs, we can see that price fluctuation in upstream products do bring
influences to the whole industrial chain. However, when the parameters are different,
the results vary accordingly. In some cases, the fluctuation is magnified in the
transmission, which means that the fluctuation becomes more obvious. In other cases,



the fluctuation can be digested in the process, making the influence weaker in
downstream products.

4.3 Case Analysis

Pork price has always been the indicator of consumption prices. Its fluctuation can
reflect the price of pig feed, as well as affecting the price of the industrial chain of
pork. Now, we use the industrial chain of corn (pig feed)-pork-spare ribs to analyze
the price fluctuation in real life.

The table below shows the prices of corn (pig feed), pork and spare ribs from June 8",
2010 to August 24", 2010.

Corn Corn
] Pork Spare ribs ] Pork Spare ribs
Date (pig feed) (RMB/kg) (RMB/kg) Date (pig feed) (RMB/kg) (RMB/kg)
(RMB/kg) (RMB/kg)
Jun-08 1.80 N/A N/A Jul-20 2.10 N/A N/A
Jun-11 1.60 N/A N/A Jul-21  N/A 13.60 N/A
Jun-13 1.70 N/A N/A Jul-24  N/A N/A 18.12
Jun-14 N/A N/A 15.62 Jul-25  N/A 13.00 N/A
Jun-15 2.00 N/A N/A Jul-29 2.16 N/A 18.26
Jun-18 2.10 N/A N/A Jul-30  N/A 12.40 N/A
Jun-19 N/A N/A 15.76 Aug-02 N/A 13.20 N/A
Jun-21 2.08 N/A N/A Aug-03 2.16 N/A N/A
Jun-23 N/A 9.80 N/A Aug-06 N/A 12.80 N/A
Jun-24 2.08 N/A 15.76 Aug-08 2.00 N/A N/A
Jun-25 N/A 10.80 N/A Aug-09 N/A 12.80 N/A
Jun-27 2.10 N/A N/A Aug-11 2.16 N/A N/A
Jun-28 N/A 10.40 N/A Aug-12 N/A 13.00 N/A
Jun-29 2.10 N/A 16.00 Aug-14 2.15 N/A 19.62
Jul-03  1.98 10.50 N/A Aug-15 N/A 12.70 N/A
Jul-04 N/A N/A 16.38 Aug-17 2.15 N/A N/A
Jul-07 2.10 N/A N/A Aug-18 N/A 13.20 N/A
Jul-09 N/A 10.60 17.26 Aug-19 N/A N/A 19.38
Jul-11  2.10 N/A N/A Aug-22 2.00 N/A N/A
Jul-14 N/A 11.50 17.62 Aug-23 N/A 13.00 N/A
Jul-16  N/A 11.80 N/A Aug-24 N/A N/A 20.50
Jul-19 N/A N/A 17.62
(Table 4.1)

The data in Table (4.1) can be presented by the graph below:
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(Figure 4.2)

Let June 8" be the time t = 0. We then try to find the fitting function.

Considering that during this period of time, the prices are monotone increasing, we
may only analyze the part of function when t<T .

Therefore,

Gamma[n, —1,k.t]
P, = P+(P-P)1- a2
L= AR+ (PR =)
Adjusting the parameters, we have
P, >16,P">21LA —>1n —10,k —15

That is,

Gamma|10 —1,1.5t])
Gamma[10 —1]

P=16+(21-1.6)1-

Using computer to plot the function, we have
PL

5

v @ o o = o
(Figure 4.3)



Substituting Py —>1.6,P' > 2.1, A, = % =6.25 into the equation of P,, we have

P, —>16,P">21A —6.25n, ->15k, » 04
That is,

Gamma[l5 — 1,0.4t]))

P, =6.251.6+(2.1-1.6)(1-
2 ( ( X Gamma[l5 —1]

The expression of P, can be graphed as Figure (4.4):

P2
15 -

uf

» © © &
(Figure 4.4)
15.7

Substituting P, »1.6,P" —> 2.1, A, :ﬁ:9.81 into the equation of P, similarly,
we have
P, —>16,P "> 21A —>98Ln, > 6,k, > 0.1

Hence,

Gammal6 —1,0.1t]))
Gamma[6 —1]

P, =9.81(1.6+ (2.1-1.6)(1—




Combining the three graphs, we have
M

(Figure 4.6)

4.4 Conclusion

From the graph we can see that our function well fits with the price fluctuation in real
life. With the help of the price model, we can analyze the price change of a certain
product, and then to anticipate the fluctuation that may appear in the downstream
prices. The influences that price fluctuation may bring to an economy are significant.
Using the model of Velocity Transmission in a Queue will be of great value for the
producers’ management. Meanwhile, policy-makers can take it as a reference when
trying to exert macro adjustment policies. Consumers may also refer to it for help
when making their shopping choices.



Chapter V

Retrospect

he study of this project has been a precious experience for us. On the one hand,
the study has greatly improved our capacity of mathematical thinking. We have

learned how to build up the model on the basis of a practical problem, and more
importantly, to use the model in real life. In the process, we used many practical
methods to solve the challenges we are faced with. When trying to cope with
transcendental equations, for instance, we substituted real statistics into the equation.
Also, we have used graphic tools to plot the functions to deal with the data, which has
greatly helped with the analysis. We believe that these methods will play a significant
role in our future math study as well as in our life.

On the other hand, we have had the opportunity to learn some advanced mathematical
knowledge. From our research about Gamma Function, to the solution of
transcendental equations, to the use of graphic tools, we have gained a better
understanding of the true meaning of mathematics that it is of not only pure beauty,
but also practical value. We have come to realize that in an era when progress is being
made in every single field, mathematics has never been more connected to our life as
it is now. We appreciate the opportunity it offers us with: Equipped with knowledge,
shouldered with moral responsibilities, we can make full use of mathematics to serve
our community.

Meanwhile, our project does call for further improvement. Firstly, we have simplified
the queue as a straight line, which is unlikely in real cases. Secondly, when we are
studying the transmission of price fluctuation in an industrial chain, we have
neglected the influence of other factors, such as the financial policies and the
supply-demand relationship. Partly due to this, our function is still slightly deviated
from the real figures.

In the future, we want to keep perfecting this model. For instance, we are considering
introducing another variable to indicate the effect caused by other factors. We can also
take the differences between the maximum velocities of people into consideration.

We believe that the model can be further improved in this way.

At the very end of this report, we want to express our gratitude to our mentors at
Hangzhou Foreign Languages School. This report will not be the destination of our
study. In the future, our joint efforts will still be a great encouragement to our further
study on this project, which we are all looking forward to.
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Appendix [ : The Original Data Used in 2.3

Time Position (pixel) *

(sec.) 1% 2" 3" 4" 5" 6" 7" 8" 9" 10"
0 110 148 162 182 234 256 280 316 311 336
0.4 101 141 158 182 234 256 280 316 311 336
0.8 88 126 158 180 234 256 280 316 311 336
1.2 73 114 155 180 234 256 280 316 311 336
1.6 49 98 145 175 234 256 280 316 311 336
2 36 81 131 166 234 248 280 306 311 336
2.4 18 57 113 154 224 241 280 300 311 336
2.8 N/A 38 90 137 216 233 280 291 307 336
3.2 N/A 16 63 119 204 223 272 284 305 336
3.6 N/JA 0 49 98 188 211 258 277 303 336
4 N/A  N/A 28 76 168 194 240 262 297 336
4.4 N/A N/A 10 56 146 179 221 251 287 336
4.8 N/A  N/A  N/A 36 125 162 202 236 274 330
5.2 N/A  N/A  N/A 18 107 145 187 221 261 322
5.6 N/A  N/A  N/A 1 85 129 169 203 242 307
6 N/A N/A  N/A  N/A 61 113 152 186 229 294
6.4 N/JA N/A  N/A  N/A 43 94 134 168 215 278
6.8 NJA N/A  N/A  NA 21 75 117 151 200 261
7.2 N/A N/A N/A  N/A 1 54 96 135 181 247
7.6 N/A N/A  N/A  N/A N/A 36 76 119 167 232
8 N/A N/A  N/A  N/A N/A 17 48 100 151 215
8.4 N/A N/A  N/A N/A N/A N/A 25 79 133 196
8.8 NJA N/A N/A N/A NA NA O 57 113 179
9.2 N/A N/A N/A  N/A N/A N/A N/A 39 95 160
9.6 N/A N/A  N/A N/A N/A N/A N/A 25 78 144
10 N/JA N/A N/A N/A N/A  N/A N/A 8 57 123
10.4 N/A N/A  N/A N/A N/A NA N/A NA 41 106
10.8 N/A  N/A  N/A  N/A N/A N/A N/A NA 22 88

1.2 N/A  N/A NA NA NA NA NA NA 5 65

11.6 N/A  N/A N/A N/A NA NA NA NA N/A 55

12 N/A N/A  N/A N/A NA NA N/A NA N/A 37

12.4 N/A N/A  N/A N/A N/A N/A N/A NA N/A 18

Time Position (pixel) *
(sec.) 11" 12" 13" 14" 15" 16" 17" 18" 19" 20"
PM61 ---——- 29
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363
363
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363
363
363
363
363
363
363
363
363
363
363
362
356
345
334
316
301
281
261
240
217
198
178
159
138
118
100
78

60

42

20

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
385
381
374
364
350
338
322
306
289
272
250
234
216
200
185
169
152
140
124
108
104
102
102
102
102
102
102
102
102

413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
413
407
403
394
386
375
365
352
334
322
302
287
270
249
231
211
194
175
159
145
138
135
130
130
130
130
130
130
130

426
426
426
426
426
426
426
426
426
426
426
426
426
426
426
426
426
426
419
415
410
403
392
379
369
352
336
318
301
284
268
249
231
213
195
179
166
155
150
145
141
141
141
141

462
462
462
462
462
462
462
462
462
462
462
462
462
462
462
462
462
462
458
452
444
437
428
417
407
394
381
365
351
332
319
304
290
269
247
231
214
196
183
173
169
166
166
166

475
475
475
475
475
475
475
475
475
475
475
475
475
475
475
475
475
475
475
475
473
469
459
453
446
436
425
413
400
385
370
351
340
326
311
296
282
267
248
235
224
209
201
194

482
482
482
482
482
482
482
482
482
482
482
482
482
482
482
482
482
482
482
482
482
482
482
476
471
464
457
446
433
420
408
391
380
364
349
333
319
304
292
280
270
253
241
232

509
509
509
509
509
509
509
509
509
509
509
509
509
509
509
509
509
509
509
509
509
509
509
509
507
500
495
487
479
470
457
443
428
410
397
381
368
351
340
323
310
298
282
271

526
026
026
526
526
526
526
526
526
526
026
026
526
526
526
526
026
526
526
026
026
526
526
526
526
019
515
510
499
491
481
470
460
450
436
423
409
394
380
365
353
337
324
312

544
544
544
544
544
544
544
544
544
544
544
544
544
544
544
544
044
544
544
544
544
544
544
544
544
044
544
540
933
023
515
507
497
484
471
457
446
431
419
404
392
377
364
349



17.

18

18.
18.
19.
19.

20

20.

S DN O W

S

20.8

21.

2

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

102
102
102
102
102
102
102
102
102
102

130
130
130
130
130
130
130
130
130
130

141
141
141
141
141
141
141
141
141
141

166
166
166
166
166
166
166
166
166
166

188
181
181
181
181
181
181
181
181
181

224
214
208
207
207
207
207
207
207
207

260
247
242
237
232
227
227
227
227
227

299
284
273
264
250
245
245
245
245
245

334
320
307
297
286
277
272
270
270
270

*The position of each person is measured from the video took at China Pavilion.



Appendix II: Mathematica® Programs

In[1]:=

DSolve[{v'[t]-=-k+ (m-vw[t]}, v[0] = 0}, v[t], t]
out[1]=

(v[t] ™" (-1 +& ") m}}

In[2]:=

Simplify[*]

out[2]=

fiv[t] sn-e¥*

m}}

In[3]:=

DSolve[{kww[t] -- krm-mekre ™" v '[t], ¥[0] - 0}, vitl, t]
Out[3]=

w[t] = e %n (-1 +&®" —k £y}

In[4]:=

DSulve[{kw[t] s ' [t]==kveF'm [_1+ et " _kt], ¥[0] -- u}, v[t], t]

Out[4]=

{{v[t] = % ¥ n-z+2e -2kt -k 1;2)}}

In[5]:=

1
DSolve[{k+v[t] +¥ '[t]==k= 3 e m(-2+ 2" -2kt - X' t%), v[0] == 0}, v[t],

t]

{{v[t] —;%u&'}‘tm (-6+6E" " -6k t-3K 1;2-}:31;3)}}

-2
me 1—2{{]&"1*1:“1} FAN)Yx e FF
i=0

Out[6]=



(-1+n) Gammal[-1+n, kt£]
mw|l-

ramma [1]

In[7]:=

FullSimplify[m [1_ {-1+n)Gamma[-1+n, kt] ]]

ammaln]

out[7]=

nGammal-1+n, kt]

Famma[-1 + 1]

In[8]:=

DSolve[{v'[t] == k+ (0 -v[t]), ¥[0]=-m [1_ (-1+2) Gamna[[—z:;+ 2, khb] ]}; VIt],
t]

out[8]=

{{wt] — gk -1 +lEbkj mh}

In[9]:=
D50l ITET cc ko fePEEE £ 4, otk _w[t]), v[0] -- [1_ {—1+3}Ga11m[_1+3;kh]] ;
olve[{r'[t] (e { e Jm-v[t]), v[0] :-m - )
v[t], t] a
Out[9]=

fivie] s e P e _xcae®™ koo e™* Gammalz, bk])}}
In[10]:=

DSolve[{v'[t] ==k« (e™** " m (e"* -kt +e"* kt - ¢"* Gamma[2, bk]) - v[t1),
(-1+4) Gamma[-1+4, kb] ]}; v[t], t]
Gamma [4]

1I.I’[l]] == I [1_

Out[10]=

1
{{v[t] N ePE Tty ze®r ks 2e®reo2b Rt ook 2t e e R f - e Gauwats, hklj}}

In[11]:=
DSolve|
{'\F'[t] ==
kw[;t'bk'ktm[zmbk—zkt+2tbkkt—2hk2t—k2t2+tbkk2t2—ebkﬂanm[3;hk]]—v[t]],
(-1+5) Gaoma[-1+5, kh]
n == 1— N t- N t-
v[0] m[ B ]} ritl, t]
out[11]=



1
{{v[t] = Eua“‘”‘“‘“‘m 6e* _ekt+eet Rt 6bhk £-

R R iR S B I L B T L T L P Ll P

In[12]:=

Fullsimplify|

1

{mtt
il il
i_J 1- i H

out[12]=

{m [-Gammal[-l+n, K] + Fanma[-1l+n, kE (-b+ t1]] }
Gamma[-1 + 1]

In[13]:=

mGEammal-1+n, kt]
ammal-1 +n]
m{-Gammal-1+n, kt] + zammal-1+n, k {-h +t}]}
Gammal[-1 + n] ]

£[t_]1:=If[0zt=h, m-

In[14]:=

n-2 = = = -2 = =
k*i t*"i-bh"i ki t-h)"i
kxt _Z w }+E}:-x]:-*z v { 3

{n-2)!

- e'* Gauma[a, hk])}}

Gammaf[n - 1, kwh]]]}]

Plot[{f[t] /. {fn—2, m—=5, k=0.5, b5}, f[t] /. {n=3, m—5, k= 0.5, h - 5),
f[t]1/. fns4, m—5, k0.5, h8), f[t]1 /. {n=5, m—=5, k=0.5, b5},
f[t]1/. fn—+6, m—5, k=0.5, b5}, f[t] /. {n=17, m—=5, k=0.5, h= 5},
f[t]/. fn=8, m—5, k= 0.5, h5)), {t, 0, 40}, AxesLabel — {t, Vn}]

Out[14]=
= Graphics -
In[15]:=

mi{-1+n)zammal-1+n, kt]

Plot[{ foim—=5, k=09, n—2},

amma[n]
m{-1+n)cammal[-1+n, kt]
Gamma [n]
m{-1+n)Gammal-1+n, kt]
Gamma [n]
m{-1+n)cammal-1+n, kt]
Gamma [n]
m{-1+n)cammal[-1+n, kt]
Gamma [n]
m{-1+n)Gammal-1+n, kt]
Gamma [n]

out[15]=

= Graphics -

In[16]:=

. [m—=5,k=0.5, no 3},

7. Im=5, k0.5 n-4),

. fm=5,k=0.5, no5),

. m=5,k=0.5 no6),

F.{m—=5,k=0.5 017}, {t, 0, 25}, AxesLabel - {t, Vn}]



pts = {{5, 0.193264861), {10, 0.264745909), {15, 0.29754447}, {20, 0.316969089},
£25, 0.330147927), {45, 0.358375118)}, {65, 0.37216392}, {85, 0.380715453},
{105, 0.386679602), {125, 0.391143396), {195, 0.400901785), {265, 0.406468223),
{335, 0.410180352), {405, 0.412881733), {475, 0.414960955), {600, 0.417722877),
{725, 0.419735016}, {850, 0.4212849}, {975, 0.422526127}, {1100, 0.423549188},
{1225, 0.424411317))

Out[16]=

{{5, 0.193265}, {10, 0.264746}, {15, 0.297544}, {20, 0.316963},
(25, 0.3301481, {45, 0.355375), {65, 0.372164), (85, 0.350715}, {105, 0.38668],
{125, 0.391143%, {195, 0,400902}, {265, 0.406468}, {335, 0.410158},

(405, 0.4128821, {475, 0,414961), {600, 0.417723), {725, 0.4197351,
{850, 0.421285), {975, 0.422526), {1100, 0.423549), {1225, 0.424411))

FindFit[pts, avLog[x] »rx*c+b, {a, b, c}, x]
{a—0,167739, b= -0,0159267, c— -0.141343}

In[17]:=

Show[ListPlot [pts, PlotStyle — PointSize[0.01], AxesLabel — {t, V)],
Plot[a«Log[x] »x"c +b /. {a - 0.11237237271871775", b - 0.09181098106195348 ",
c— -0.12348418701155632" }, {x, 0, 1300}]]

Oout[17]=
= Graphics -
In[18]:=

FindFit[{{5, 1.617903887}, {10, 2. 79047123}, {15, 4.20452728}, {20, 5.744342022},
{25, T7.363990446), {45, 14. 29081861, {65, 21. 60892536}, {85, 29. 14346833},
{105, 36.820937517}, {125, 44. 60075318}, {195, 72.36022529}, {265, 100.6331049},
{335, 129.2234163%, {405, 198. 0350738}, {475, 187.0124679), {600, 239.0652523},
{725, 291.4123477Y, {850, 343.9799432), {975, 396.72071926%, {1100, 449.6024275},
{1225, 502.6014086}}, arxXx +brx"Cc {(d +e »Log[x]}), {a, b, c,d, e}, x]

FindFit: : cvmit

Failed %o conwerge %o the requested accuracy or precision within 100 iterarions. More..

out[18]=

{a—s -3.45365, b - 0.994349, ©— 0.959569, d— 3.55543, e - 0.226133)

In[19]::

Fullsimplify[ [ 2410 Gama[[—]hn, KD o)
Gamma [n

out[19]=



n(k tGanma[-1 +n, k t] + Ganma[h, 0] - Gamma[n, k £]]

kGanmal-1 +1]
In[20]:=

m{kt Gammal[-1+n, kt]+Gama[n, 0] - Garmma[n, kt]) ;
kGamma[-1 +n] )

n-=
fart+bhrt*c{d+e~Log[t]) /. {a—-3.455397765703369", b — 0. 994909920785172",
C—0.9595773762661212° , d— 3.5569785040642334° , e — 0.22815991816971726" }}

Out[20]=

{(m (k tGammal-1 - 3.4554 £ +0.9949] ¢ #4577

Gamma[-3. 4554 € + 0. 9940] " ¥
Gauma[-3. 4554t + 0.9949] £
(k Gamma[-1 - 3.4554t +0.9949] t

{3.55695 + 0.22816 Log[t]), k] +
{3.55695 + 0.22816 Log[t]), O] -

(3. 55698 + 0.22816 Log[t]), kt])) /
PISIETT po £oEOS 4 0.22816 Log[t]1]) )

0.353577

In[21]:=

Fullsimplify|
(-3.455397765703369" t + 0.994909920785172" t° #7877 ez’
{(3.5569785040642334 " + 0.22815991816971726° Log[t]) - 1) » 50 -
(m
(kt Gamma[-1-3.455397765703369" t + 0.994909920785172" t
(3.5569765040642334" + 0. 22615991816971726° Log[t]), kt] +
Gamma[-3.435397765703369" t + 0, 9949099207517 " =T Te2e1L
(3.5569785040642334" + 0. 22815991816971726" Log[t]1)}, 0] -
Gamma[-3.455397765703369° t + 0. 9949099207517 " =oTTTe2e1212
(3.5569785040642334" + 0. 22815991816971726" Log[t]}, kt])) /
(kGamma[-1." - 3.455397765703369° t . 0.994909920785172" " S°57Ieee1
(3.5569765040642334" + 0. 22615991816971726" Log[t]}]) /. (k= 0.44, m - 20}]

0. 95957 73762661212

out[21]=

“E0. +176.944 "7 _ 195 97

{45.4545 (0,44 ¢ Gamma[-1 - 3. 4554 £ +0.99491 ¢ {3.55695 + 0. 22816 Log[t]), 0.44%] +
Gammal-3.4554 ¢ + 0.99491 £" " 3 55895 4+ 0.22516 Log[t]), O] -
Gamma[-3. 4554t + 0.99491 £ (3.55698 + 0. 22816 Log[t]), 0.44t])) [

Gamma[-1. - 3.4554+ +0.99401 " ¥y cogos . 0.22816 Log[t])] +

11.3499 £ B Lagrg)

0, 353577

0.3548737

In[22]:=



Show [Plot [-45.45454545454546° + 176.94366008565532° 0 959STIIIEIEELILL

172.76988826516846° t -
(45.45454545454546°
{0.44° t Gamma|-1-3.455397765703369" t +
0.994909920785172 ¢ #FHFTIIIREGLIL
{3.5569785040642334° + 0. 22615991816971726° Log[t]), 0.44" t] +
Gamma[-3.455397765703369" t + 0. 994909920785172 " T
{(3.5569785040642334 " + 0.22815991816971726" Log[t]), 0] -
Gamma[-3.455397765703369" t + 0, 9949099207517 ¢ T
(3.5569785040642334" + 0.22815991816971726" Log[t]), 0.44° t]))/
Gamma[-1." - 3.435397765703369 ¢ +
0.994909920785172 " #5AFTTIIEIEALIL
(3.5569785040642334" + 0, 22615991816971726" Log[t])] +
11.349928305629236° 7 279FTTIIEOLIL y L [t], £, 0, 1300}, AxesLabel — {t, sp}].
ListPlot [{{10, 10.734856342759997}, {265, 463.6456080089526},
{1225, 2302.5604021482977}}, PlotStyle - PointSize[0.01]]]

L igue g i CEIEY 1 sagg o 258507 Log[%]

Famma [ == 1= ]
i= neot a machine-=ime real nuamber at & = 0. 000052 1EEEEEEE6666663" . Mare..

Flot::plnr @ -35_3535 4 176.933 ¢

out[22]=

= Graphics -

In[23]:=

Gammal[-1+n, kt]
f[t_]:=If[ﬂ£t5h,a[p+{m—p} [1— ]],

Fammal[-1+n]
a[ (m -p) {—Ga]ma[—1+n,kt]+l;a11ma[-1+n,k{-h+t}]}]
B Fammal[-1+n] ]

In[24]:=

Plot[{

f[t1/.fn—-2, k=0.9, m—=5%, p—-1,bh—=30, a—-1.9%,

f[t1/.fn—-+3, k=09, m—=5 p—-1, b 30, a2},

f[t]1 /. fn—-4, k—=-0.9, m—=5% p—-1,bh—=30,a—-2.9%,;

f[t1/.fn-5, k=09, m—=5%, p-1,b =30, a—-3},

f[t]1 /. fn—-6, k—=0.5, m—-5 p—-1,b-30,a-3.5%}, {t, 0, 50},
Plotityle —» {Red, Magenta, Green, Blue, Black}, hxesLabel — {t, Pn},
PlotRange — Automatic]

Out[24]=
= Graphics -

In[25]:=



Gamma[-1+n, kt] ]]

f[t 1:= - 1-
[ a[p+{m F}[ Gammal-1 + n]

In[26]:=

Show[Plot[£[t] /. fn—10, k-~ 1.5, m— 2.1, p»1.6, a—1}, {t, 0, 15},
PlotRange — {0, 5}, AxesLabel — {t, P1}],

ListPlot[{{0, 1.8), {3, 1.6}, {5, 1.7}, {7, 2}, {10, 2.1}, {13, 2.08), {16, 2.08),
£19, 2.1y, £21, 2.13, {25, 1.98), {29, 2.1}, {33, 2.1}, {42, 2.1}, {51, 2.16},
{96, 2.16}, {61, 2}, {64, 2.16}, {67, 2.15}, {70, 2.15}, {15, 2}},

PlotStyle — PointSize[0.01]1]

Out[26]=
= Graphics -
In[27]:=

Show[Plot[f[t] /. {(n—15, k0.4, m— 2.1, p -1.6, a =6.25), {t, 0, 80},
PlotRange — {8, 15}, AxesLabel — {t, P2}],
ListPlot[{{15, 9.8}, {17, 10.8}, {20, 10.4}, {25, 10.5}, {31, 10.6}, {36, 11.5},
{38, 11.8Y%, {43, 13.6}, {47, 13}, {52, 12.4}, {55, 13.2}, {59, 12.8}, {62, 12.8},
(65, 13}, {68, 12.7), {11, 13.2), {16, 13}, PlotStyle — PointSize[0.01]]1]

out[27]=
= Graphics -
In[28]:=

Show[Plot[£[t]/. {fn—6,k=0.1, m=2.1, p 1.6, a—9.81), {t, 0, 80},
PlotRange — {13, 23}, AxesLabel — {t, P3}],
ListPlot[{{6, 15.62), {11, 15.76}, {16, 15.76}, {21, 16}, {26, 16.38), {31, 17.26},
{36, 17.62), {41, 17.62), {46, 18.12), {51, 18.26), {67, 19.62), {72, 19.38},
{77, 20.5)), PlotStyle  PointSize[0.01]]1]

out[28]=

= Graphics -
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