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Abstract

Consider the following two-player game, in which players take turns
removing stones from a heap of n one. On each turn,a player must remove
k stones where k in a given “rule− set” S. If the amount of stones in the
heap is lower than minS then he can remove all.The winner is the one
who takes the last stone.

Let fS be a particular function of S and n, takes values from the set
of {0,1}. fS(n) = 1 if and only if the first one wins. Let (a0a1a2a3 . . .)
be a binary string with infinity length where ai = f(S, i). The string
will be repeated (since the first or another term) with period T (S). For
convenient, let B(S) = a0a1a2a3aT (S)−1 be that unique string of S. In
this paper, we will have a research on B(S) and T (S).

For simple expression of the result and further research in various cases,
we contruct a rational number E(S) in (0, 1) as the “result − number”
of set S. It will be easier for further research if properties of E(S) are
considered.

Finally, we come up with the recurrent expression for the general case,
in which various heaps of stones and their rule sets are considered. It is
also a general problem of the Nim game.
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Part I

Project introduction and the
recurrent expression
We consider a two-player game, in which players take turns removing stones
from a heap of n one. On each turn,a player must remove k stones where k
in a given “rule − set” S. If the amount of stones in the heap is lower than
minS then he can remove all. The winner is the one who takes the last stone.
Assume that both player are extremely wise and they have the best tactics for
their turn. Let fS be a particular function of S and n, takes values from the set
of {0,1}. fS(n) = 1 if and only if the first one wins.

In this paper, we pay more advantage on the case S = {a, b, c}, which is
given as an example below:

Example: Consider a two-player game, in which players take turns removing
stones from a heap of 2010 one. On each turn,a player must remove 3, 5, or 6
stones. If the amount of stones in the heap is lower than 3 then he can remove
all. The winner is the one who takes the last stone. Who has the winning
strategy and why?

Solution: We call a number n “tactical” if and only if when we replace 2010
by n, the first player has his winning tactics. Otherwise, if the second player
has winning tactics, n is called un − tactical. It’s trivial that 1, 2 and 3 are
tactical.

A number n is tactical if and only if among n− 3, n− 5 and n− 6 there is
a un− tactical number (because the first one can win the game by making the
second one lose)

A number n is un − tactical if and only if n − 3, n − 5 and n − 6 are
ALL tactical numbers (because however the first one picks, the heap remains a
tactical number of stones for the second one’s turn)

Using induction, we will prove that k is un − tactical if and only if k is
divisible by 4. It’s easy to check that 0 and 4 are un−tactical while 1, 2, 3, 5, 6, 7
are tactical.

Assume that the statement is true ∀ k ≤ n (n ≥ 7).

If n + 1 is divisible by 4 then n + 1− 3, n + 1− 5, n + 1− 6 is not divisible
by 4 and all of them are tactical. So, in this case n+1 os un− tactical

If n+1 is not divisible by 4, among n+1−3, n+1−5 and n+1−6, there is
exactly one number which is divisible by 4 -or un− tactical. That means n+ 1
is tactical.

The result will follow. And because 2010 is not a multiple of 4, so the first
player has his winning tactics.
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In general, let f(n) be a mapping from Z to {0, 1}. f(n) = 0 if and only if
n is tactical, otherwise f(n) = 0.

Moreover,{
f(n) = 0 if and only if f(n− 3).f(n− 5).f(n− 6) = 1
f(n) = 1 if and only if f(n− 3).f(n− 5).f(n− 6) = 0

which means
f(n) = 1− f(n− 3).f(n− 5).f(n− 6) (1)

For more generality, if S = {a1, ..., ak} is the set of amount of stones that a
player can pick on his turn then (1) becomes

fS(n) = 1−
k∏

i=1

fS(n− ai) ∀ n ≥ max{S} (2)

And because if n < ai and ai 6= min{S} then fS(n) = fS\{ai}(n) and if
0 < n < min{S} then f(n)=1, so, as a result, we can write

fS(n) = 1−
∏

X∈S,X≤n

fS(n−X) ∀ n ≥ 0 (3)

So we can assume that f(n) = 1 ∀n < min{S} but n 6= 0, and (3) become
f(0) = 0;
f(n) = 1 ∀n < min{S}, n 6= 0;

f(n) = 1−
∏k

i=1 f(n− ai) ∀ n ≥ min{S}
(4)

Form now then, we assume that S = {a1, ..., a|S|}, where ai < ai + 1. We
come to the definition of ’the result binary string’

Definition I.1: The binary string B(S) = b1b2... with infinite length and
bi = fS(i) is called the unique binary string of S (or the result binary string)

Lemma I.1: There exists a number 0 ≤ i ≤ 2a|S| + a|S| + 1 that B(S) is

repeated since the ith bit

Proof: Since C(n) = bn−1, bn−2, ..., bn−a|S| is a finite-length binary string, so it
can take just 2a|S| values while there are infinite C(n). By Pigeonhole’s principle,
there exists positive integers i < j ≤ 2a|S| + a|S| + 1 such that C(i) = C(j).

Using induction and 4, we have C(i + k) = C(j + k) ∀k ≥ 0. And because
fS(n) completely depend on fS(n−1), fS(n−2), ..., fS(n−a|S|), we can deduce
that C(n) = C(n + j − i) ∀n ≥ i. In other words, B(S) is repeated since the
ith bit.

Hence, in this paper B(S) will be written in the form b0b1...bh < bh+1...bk >
with bh+1...bk is the repeated part.
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Moreover, if we change the rule to “who picks the last stone is the loser”, we
got the same recurrent expression but with different beginning values. That is:

f(0) = 1;
f(n) = 0 ∀n < min{S}, n 6= 0;

f(n) = 1−
∏k

i=1 f(n− ai) ∀ n ≥ min{S}
(5)

(4) is our key idea in building the algorithm to solve the general problem.
Our algorithm has:

Input : The set S, a number N
Output: The first N + 1 bits of B(S)

And the following is our source code (written in Pascal):

Program Stone_Picking;

Var

j,e,d,i,f: integer;

S: array[1..400] of byte;

Ax: array[1..400] of byte;

T: String;

Begin

T:=’Y’;

While T=’Y’ do

Begin

Write(’Input the size of S : ’);

Readln(e);

For i:=1 to e do

Begin

Write(’Input S[ ’,i,’ ] : ’);

Readln(S[i]);

End;

Write(’Input the length of binary string : ’);

Readln(d);

Ax[200]:=0;

For i:=1 to 199 do

Begin

Ax[i]:=1;

End;

For i:=1 to d do

Begin

If i<S[1] then Ax[i+200]:=1;

If i>=S[1] then

Begin

f:=1;

For j:=1 to e do

Begin
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f:=f*Ax[i+200-S[j] ]

End;

Ax[i+200]:=1-f

End;

End;

For i:=0 to d do

Begin

Writeln( ’f( ’, i:3 ,’ ) = ’,Ax[i+200]);

End;

Write(’Restart? <Y/N> : ’);

Readln(T);

End;

End.

By the algorithm above, we can conclude that:

Conclusion I.1: If there exists a positive integer T > max{S} that

fS(i) = fS(i + T ) ∀i ∈ [0, T ]

then fS(n) is periodic with period T

Proof: We will use induction on i to prove the Conclusion

The Conclusion is true for all i ∈ [0, T ]. Assume that it’s also true for all
i ∈ [0, k] (k ≥ T ), we have

fS(k + 1 + T ) = 1−
∏
x∈S

fS(k + 1 + T − x) = 1−
∏
x∈S

fS(k + 1− x) = fS(k + 1)

(true because k ≥ T ≥ x)

So the Conclusion is also true for all i ∈ [0, k+1]. The result will follow then.

Now, we want to express the result in a simple way. Unlike using an binary
string, which is very hard to remember, the following method uses only a rational
number.

Definition I.2: For a set S with binary string B(S) = x1x2 . . . xn . . ., we
consider following real number as the “result− number” of S:

E(S) =
∞∑
i=1

xi

2i

Lemma I.2: For all finite set S, its result−number E(S) is a rational number
in (0, 1)
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Proof: Because B(S) can not be filled with only ’0’ or ’1’ from some term
onward, then 0 =

∑∞
i=1

0
2i < E(S) <

∑∞
i=1

1
2i = 1, which means B(S) is in

(0, 1)

By LemmaI.1, B(S) can be expressed as the following form:
B(S) = b1b2 . . . bk < a1a2 . . . aT >. Then

E(S) =
k∑

i=1

bi
2i

+
T∑

i=1

ai
2k+i

(
∞∑
j=0

(
1

2
)Tj) =

k∑
i=1

bi
2i

+
2T

2T − 1

T∑
i=1

ai
2k+i

which is rational.

Lemma I.3: For all result binary string B(S), its result − number E(S) is
unique, that is

E(S) = E(S′)⇒ B(S) = B(S′)

Proof: Assume in contradiction that B(S) = x1x2 . . . 6= B(S′) = y1y2 . . .. Let
t be the smallest index that xt 6= yt. Without loss of generality, assume that
xt = 1 and yt = 0. We have:

E(S)− E(S′) =
1

2t
+

∞∑
i=t+1

xi − yi
2i

≥ 1

2t
+

∞∑
i=t+1

1

2i
= 0

The equaltion holds if and only if xi = 0 adn yi = 1 for all i > t, which is not
true because B(S) can not be filled with only ’0’ or ’1’ from some term onward.
The contraction completes the proof.
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Part II

Summary of our results
The following is our result in different cases

Lemmas and Conclusions in I

Case S = {a}
B(S) =< 0 11 . . . 1︸ ︷︷ ︸

abits

00 . . . 0︸ ︷︷ ︸
a−1bits

and E(S) = 2a

2a+1

Case S = {1, b}
If b is odd, B(S) =< 0, 1 > and E(S) = 2

3

If b is even, B(S) =< 0101..01︸ ︷︷ ︸
b bits

1 > and E(S) = 4(2b+1)
3(2b+1−1)

Case S = {2, b}
If b ≡ 0 (mod 4), B(S) =< 01100110..0110︸ ︷︷ ︸

b bits

01 > and E(S) = 2(2b+3−3)
5(2b+2−1)

If b ≡ 1 (mod 4), B(S) =< 01100110..0110︸ ︷︷ ︸
b−1 bits

011 > and E(S) = 2(2b+3−1)
5(2b+2−1)

If b ≡ 2 (mod 4), B(S) =< 0110 > and E(S) = 4
5

If b ≡ 3 (mod 4), B(S) =< 01100110..0110︸ ︷︷ ︸
b−3 bits

01110 > and E(S) = 2(2b+2+3)
5(2b+2−1)

Case S = {1, 2, c}
If b ≡ ±1 (mod 3), B(S) =< 011 > and E(S) = 6

7

If b ≡ 0 (mod 3), B(S) =< 011011...011︸ ︷︷ ︸
b bits

1 > E(S) = 2(3.2c+1+1)
7(2c+1−1)

Case S = {1, b, c} where b is odd
If c is odd, B(S) =< 0, 1 > and E(S) = 2

3

If c is even, B(S) =< 0101..01︸ ︷︷ ︸
c bits

11..1︸︷︷︸
b bits

> and E(S) = 2b+c+2b+1−3
3(2b+c−1)

The recurrent expression (8)
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Part III

Detailed Proofs

1 Case S = {a}
As we have proved before:{

fS(n) = 1 for n = 1, 2, ..., a− 1
fS(n) = 1− fS(n− a) ∀n ≥ a

Since fS(n) = 1−fS(n−a) = 1− (1−f(n−2a)) = f(n−2a), fS is repeated
with the period of 2a

In brief, we got the following result:

Conclusion 1.1: For all positive integer a, fS(n) where S = {a} is defined as
following: {

fS(n) = 1 for n ≡ 1, 2, ..., a (mod 2a)
fS(n) = 0 for n ≡ a + 1, a + 2, ..., 2a (mod 2a)

And E(S) = 2a

2a+1

2 Case S = {1, b}
2.1 S = {1, b} where b is odd

We can easily check that f(1,b)(0) = 0 and f(1,b)(1) = 1
Moreover, f(1,b)(n) = 1− f(1,b)(n− 1).f(1,b)(n− a) ,

Note that if n is odd, because players can take just an odd amount of stones,
after the second man’s turn, the amount of stones remains odd, so the first man
always win the game.

If n is even, after the first man’s turn, the amount of stones remains odd, so
the second man is the winner of game.

So, the result binary string in this case is < 0, 1 > and E(S) = 2
3 .

2.2 S = {1, b} where b is even

For simple writing, let f(n) be f(1,b)(n).

We can easily check that f(0) = 0 and f(1) = 1.
Moreover, f(n) = 1− f(n− 1).f(n− b)

If n < b two man have only the way to pick stones ,so if n is odd, the first
player wins and if n is even , the second one wins.
So when n = 0, 1, 2..., b− 1
f(n) = 0, 1, 0, 1, 0, 1, ...0, 1 and when n = b, f(n) = 1.
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We prove that the binary String of this case has period of a + 1
If n = b + 1, b + 2, ...., 2b + 1 we prove that f(n) = 0, 1, 0, 1..., 0, 1, 1
We can easily check that f(b + 1) = 0 and f(b + 2) = 1

Using induction, we’ll prove that f((b + 1) + k) = f(k) for all k = 0, 1, ..b
Assume that f((b + 1) + k) = f(k) is true for k, we prove that
f(b + 1) + k + 1) = f(k + 1).

We have f(n) = 1− f(n− 1).f(n− b)
⇒ f((b + 1) + k + 1) = 1− f((b + 1 + k).f(k + 2) = 1− f(k).f(k + 2)
⇒ f(b + 1 + k + 1) = 1− f(k).f(k + 2)
If k + 2 ≤ b− 1 we have f(k) = f(k + 2) so f(b + 1 + k + 1) = 1− f(k)
Note that f(k + 1) = 1− f(k) so we have f(b + 1 + k + 1) = f(k + 1)

So when N = b + 1, b + 2, ...2b f(N) = 0, 1, 0, 1, ...0, 1

Finally, we have f(2b + 1) = 1− f(2b).f(b + 1) = 1
In brief,in this case we have binary String is 0, 1, 0, 1, ..., 0, 1, 1 and E(S) =

4(2b+1)
3(2b+1−1) .

3 Case S = {2, b}
In this case, the function f(2,b) satisfies the expression:

f(2,b)(n) = 1− f(2,b)(n− 2).f(2,b)(n− b) ∀n ≥ b

The result can be divided into 3 sub-cases:

3.1 S = {2, b} where b = 4k or 4k + 1

We have the following conclusion:

Conclusion: 3.1.1 If b has the form of 4k or 4k + 1 then f(2,b)(n) = f(n),
where f(n) is defined as below:

f(n) = 0 if n ≡ 3 or n ≡ 0(mod4); n ≤ b
f(n) = 1 if n ≡ 1 or n ≡ 2(mod4); n ≤ b
f(b) = 1; f(b + 1) = 1
f(n) = f(n + b + 2) ∀n ≥ 0

Proof: It’s obvious that the function f(2,b) is unique, so we just have to prove
that f(n) satisfies all conditions for f(2,b) and complete the proof.

Indeed, we have:
1. f(2,b)(n) = f(2)(n) = f(n) ∀n ≤ b− 1 and f(2,b)(b) = f(b) = 1
2. b− 1 ≡ 0 or 3(mod4), so f(b + 1− 2) = 0, leads to f(b + 1) = 1

11
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3. We’ll prove that f(n) = 1 − f(n − 2).f(n − b). We can check that
f(n) above has the following properties:{

f(n) = 0→ f(n± 2) = 0
f(n + 2) = f(n− 2) = 1→ f(n) = 0

(6)

then we have

f(n) = 1− f(n− 2).f(n + 2) = 1− f(n− 2)f(n− b)

And the conclusion will follow.
So, in this case, the result binary string has the minimum period defined by:

the first b − 1 bits as in the case S = {2}, and then added a bit ’1’. And the

result− number is 2(2b+3−3)
5(2b+2−1)

3.2 S = {2, b} where b = 4k + 3

We have the following conclusion:

Conclusion: 3.2.1 If b has the form of 4k + 3 then f(2,b)(n) = f(n), where
f(n) is defined as below:

f(n) = 0 if n ≡ 3 or n ≡ 0(mod4); n ≤ b
f(n) = 1 if n ≡ 1 or n ≡ 2(mod4); n ≤ b
f(b) = 1; f(b + 1) = 0
f(n) = f(n + b + 2) ∀n ≥ 0

Proof: It’s obvious that the function f(2,b) is unique, so we just have to prove
that f(n) satisfies all conditions for f(2,b) and complete the proof.

Indeed, we have:
1. f(2,b)(n) = f(2)(n) = f(n) ∀n ≤ b− 1 and f(2,b)(b) = f(b) = 1
2. b − 1 ≡ 2(mod4), so f(b + 1 − 2) = 1 and f(b + 1 − b) = f(1) = 1,

leads to f(b + 1) = 0
3. We can prove, as the same way in 3.1, that f satisfies (6)
And the conclusion will follow.
So, in this case, the result binary string has the minimum period defined by:

the same first b−1 bits as in the case S = {2}, and then added a bit ’0’. Hence,

E(S) = 4(2b+2+3)
5(2b+2−1)

3.3 S = {2, b} where b = 4k + 2

We have the following conclusion:

Conclusion: 3.3.1 If b has the form of 4k + 2 then f(2,b)(n) = f(2)(n)

12
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Proof: It’s obvious that the function f(2,b) is unique, so we just have to prove
that f(2)(n) satisfies all conditions for f(2,b) and complete the proof.

Notice that f(2,b)(n) = f(2)(n) ∀n ≤ b− 1 and f(2,b)(b) = 1f(2)(b), we only
need to prove that

f(2)(n) = 1− f(2)(n− 2).f(2)(n− b) ∀n ≥ b

The expression above is trivial because f(2) has the period of 4, so:

f(2)(n) = 1− f(2)(n− 2) = 1− f2
(2)(n− 2) = 1− f(2)(n− 2).f(2)(n− b)

So, in this case, the result binary string has the minimum period defined of
< 0110 > and E(S) = 4

5 , as same as in the case S = 2.

4 Case S = {1, 2, c}
For simple writing, let f(n) be f(1,2,c)(n).

4.1 S = {1, 2, 3}
Lemma 4.1.1: The function f define above satisfies the following expression:

f(4t + k) = f(k) ∀t ∈ N and k = 0, 1, 2, 3

Proof: Indeed, when n = 0, 1, 2, 3, 4, 5, 6, 7 we have f(n) = 0, 1, 1, 1, 0, 1, 1, 1
We’ll use induction on t for the proof. It’s trivial if t = 1
Assume that f(4t + k) = f(k) for any t ∈ N and k = 0, 1, 2, 3

We have :
f(4(t + 1) + k) = 1− f(4(t + 1) + k − 1).f(4(t + 1) + k − 2).f(4(t + 1) + k − 3)
= 1− f(4t + k + 3).f(4t + k + 2).f(4t + k + 1)
= 1− f(k + 3).f(k + 2).f(k + 1)

If k = 0 we have:f(4(t + 1)) = 1− f(3).f(2).f(1) = 0 = f(0)

If k = 1 we have:f(4(t + 1) + 1) = 1− f(4).f(3).f(2) = 1 = f(1)

If k = 2 we have:f(4(t + 1) + 2) = 1− f(5).f(4).f(3) = 1 = f(2)

If k = 3 we have:f(4(t + 1) + 3) = 1− f(6).f(5).f(4) = 1 = f(3)

And the statement is also true for t + 1.

In brief,we have f(4t + k) = f(k) for all t, k ∈ N

So we have the binary string is < 0, 1, 1, 1 > and the period is 4.
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4.2 S = {1, 2, 4}
Lemma 4.2.1: The function f define above satisfies the following expression:

f(3t + k) = f(k) ∀t ∈ N and k = 0, 1, 2

Proof: When n = 0, 1, 2, 3, 4, 5 we have f(n) = 0, 1, 1, 0, 1, 1
We’ll use induction on t for the proof. It’s trivial if t = 1
Assume that f(3t + k) = f(k) for any t ∈ N and k = 0, 1, 2

We have :
f(3(t + 1) + k) = 1− f(3(t + 1) + k − 1).f(3(t + 1) + k − 2).f(3(t + 1) + k − 3)
= 1− f(3t + k + 2).f(3t + k + 1).f(3t + k)
= 1− f(k + 2).f(k + 1).f(k)

If k = 0 we have:f(3(t + 1)) = 1− f(2).f(1).f(0) = 0 = f(0)

If k = 1 we have:f(3(t + 1) + 1) = 1− f(3).f(2).f(1) = 1 = f(1)

If k = 2 we have:f(3(t + 1) + 2) = 1− f(4).f(3).f(2) = 1 = f(2)

And the statement is also true for t + 1.

In brief,we have f(3t + k) = f(k) for all t, k ∈ N

So we have the binary string is < 0, 1, 1 > and the period is 3.

4.3 S = {1, 2, 5}
Lemma 4.3.1: The function f define above satisfies the following expression:

f(3t + k) = f(k) ∀t ∈ N and k = 0, 1, 2

Proof: When n = 0, 1, 2, 3, 4, 5 we have f(n) = 0, 1, 1, 0, 1, 1
We’ll use induction on t for the proof. It’s trivial if t = 1
Assume that f(3t + k) = f(k) for any t ∈ N and k = 0, 1, 2

We have :
f(3(t + 1) + k) = 1− f(3(t + 1) + k − 1).f(3(t + 1) + k − 2).f(3(t + 1) + k − 3)
= 1− f(3t + k + 2).f(3t + k + 1).f(3t + k)
= 1− f(k + 2).f(k + 1).f(k)

If k = 0 we have:f(3(t + 1)) = 1− f(2).f(1).f(0) = 0 = f(0)

If k = 1 we have:f(3(t + 1) + 1) = 1− f(3).f(2).f(1) = 1 = f(1)

If k = 2 we have:f(3(t + 1) + 2) = 1− f(4).f(3).f(2) = 1 = f(2)
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And the statement is also true for t + 1.

In brief,we have f(3t + k) = f(k) for all t, k ∈ N

So we have the binary string is < 0, 1, 1 > and the period is 3.

4.4 S = {1, 2, 6}
Lemma 4.4.1: The function f define above satisfies the following expression:

f(7t + k) = f(k) ∀t ∈ N and k = 0, 1, 2, 3, 4, 5, 6

Proof: When n = 0, 1, 2., .., 12, 13 we have f(n) = 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1
We’ll use induction on t for the proof. It’s trivial if t = 1
Assume that f(7t + k) = f(k) for all t ∈ N and k = 0, 1, 2, 3, 4, 5, 6

We have :
f(7(t + 1) + k) = 1− f(7(t + 1) + k − 1).f(7(t + 1) + k − 2).f(7(t + 1) + k − 3)
= 1− f(7t + k + 6).f(7t + k + 5).f(7t + k + 4)
= 1− f(k + 6).f(k + 5).f(k + 4)

If k = 0 we have:f(7(t + 1)) = 1− f(6).f(5).f(4) = 0 = f(0)

If k = 1 we have:f(7(t + 1) + 1) = 1− f(7).f(6).f(5) = 1 = f(1)

If k = 2 we have:f(7(t + 1) + 2) = 1− f(8).f(7).f(6) = 1 = f(2)

If k = 3 we have:f(7(t + 1) + 3) = 1− f(9).f(8).f(7) = 0 = f(3)

If k = 4 we have:f(7(t + 1) + 4) = 1− f(10).f(9).f(8) = 1 = f(4)

If k = 5 we have:f(7(t + 1) + 5) = 1− f(11).f(10).f(9) = 1 = f(5)

If k = 6 we have:f(7(t + 1) + 6) = 1− f(12).f(11).f(10) = 1 = f(6)

In brief,we have f(7t + k) = f(k) for all t, k ∈ N

And the statement is also true for t + 1.

So we have the binary string is < 0, 1, 1, 0, 1, 1, 1, > and the period is 7.
It make us predict if c = 3k then the period is c+ 1 and the binary string is

< 0, 1, 1, 0, 1, 1, , 0, 1, 1, 1 > and when c = 3k ± 1 the binary string is < 0, 1, 1 >
and E(S) = 6

7 .
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4.5 S = {1, 2, c} where c = 3k ± 1

We have f(n) = 1− f(n− 1).f(n− 2).f(n− c)
We can easily check that f(0) = 0 and f(1) = 1, f(2) = 1,f(3) = 0.
We use induction to prove the proposition :f(3k ± 1) = 1,f(3k) = 0
From f(n) = 1− f(n− 1).f(n− 2).f(n− c)
If n = 3k then f(n− 1), f(n− 2), f(n− c) = 1 so f(n) = 0
If N = 3k + 1 then f(n− 1) = 0 =⇒ f(n) = 1
If n = 3k + 2 then f(n− 2) = 0 =⇒ f(n) = 1
In brief, the proposition is true.

4.6 S = {1, 2, c} where c = 3k

Assume that ≥ 3.
We can easily check that f(0) = 0 and f(1) = 1, f(2) = 1,f(3) = 0.
For all k ≤ c−1, two player only have pick 1 or 2 , we prove that for all k ≤ c−1,
f(k) = 0 if k = 3t and f(k) = 1 if k = 3t± 1

It is easily because the case (1, 2) we have for all k ≤ c−1, f(k) = 0 if k = 3t
and f(k) = 1 if k = 3t± 1

When k = c we have f(c) = 1
So, when N = 0, 1, 2, ...c we have f(N) = 0, 1, 1, 0, 1, 1, ..., 0, 1, 1, 1

We prove that for all N = c+1, c+2, ...2c+1 we have f(N) = 0, 1, 1, 0, 1, 1, ..., 0, 1, 1, 1
This problem is equivalent with for all k = 0, 1, 2, ...c we have f(c+1+k) = f(k)
We prove the proposition for all k = 0, 1, 2, ...c we have f(c + 1 + k) = f(k)
We can easily check that :
f(c + 1) = 1− f(c).f(c− 1).f(1) = 0
f(c + 2) = 1− f(c + 1).f(c).f(2) = 1

Assume that the proposition is true for all 1 ≤ k ≤ c− 1
We have f(c + 1 + k + 1) = 1− f(c + 1 + k).f(c + 1 + k − 1).f(k)
Follow the assumption, we have:f(c+1+k) = f(k) and f(c+1+k−1) = f(k−1)
=⇒ f(c + 1 + k + 1) = 1− f(k).f(k − 1)
If k = 3t we have f(c + 1 + k + 1) = 1 = f(k + 1)
If k = 3t + 1 we have f(c + 1 + k + 1) = 1 = f(k + 1)
If k = 3t + 2 we have f(c + 1 + k + 1) = 0 = f(k + 1)
So we have the proposition is true for all 1 ≤ k ≤ c− 1
Finally, we have f(c + 1 + c) = 1− f(2c).f(2c− 1).f(c + 1) = 1
=⇒ the proposition is true for all k = 0, 1, 2..., 2c + 1

In brief, the binary string in this case is < 0, 1, 1, 0, 1, 1, ..., 0, 1, 1, 1 > and

E(S) = 2(3.2c+1+1)
7(2c+1−1) .
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5 Case S = {1, 3, c}
For simple writing, let f(n) be f(1,3,c)(n).

5.1 S = {1, 3, 4}
When n = 0, 1, 2... we have f(n) = 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1...

It make us predict the binary string in this case is < 0, 1, 0, 1, 1, 1, 1 > and
the period is 7.

Note that we have f(n) = 1− f(n− 1).f(n− 3).f(n− 4),
Simple induction complete the proof.

5.2 S = {1, 3, 5}
When n = 0, 1, 2... we have f(n) = 0, 1, 0, 1, .....
It make us predict the binary string in this case is < 0, 1 > and the period is 2.

Note that if n is odd, because players can take just an odd amount of stones,
after the second player’s turn, the amount of stones remains odd, so the first
one always win the game.

If n is even, after the first man’s turn, the amount of stones remains odd,
so the second man is the winner of game. In brief, we have the binary string in
this case is < 0, 1 > and the period is 2.

5.3 S = {1, 3, c} where c is odd

We prove that the binary string in this case is < 0, 1 > and the period is 2.
Specific, we prove f(2k) = 0 and f(2k + 1) = 1

We can easily check that f(0) = 0 and f(1) = 1.

Let x, y, z is the number of times that 1,3,c stones are picked we have:

N = x.1 + y.3 + z.c = (x + y + z) + 2.y + (c− 1).z

Note that n− 1 is even, we inferred :
If n is even, we have x + y + z is even ⇒ After a even number of turns, the

stone will equal to 0 ⇒ the second man is the winner because one who picks
the last stone is the second man ⇒ f(2k) = 0

If n is odd, we have x + y + z is odd ⇒ After a odd number of turns, the
stone will equal to 0 ⇒ the first man is the winner because one who picks the
last stone is the first man ⇒ f(2k + 1) = 0
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5.4 S = {1, 3, c} where c is even

We can easily check that f(0) = 0 and f(1) = 1.
We have : f(n) = 1− f(n− 1).f(n− 3).f(n− c)

For all 0 ≤ n ≤ c−1 , two player only have pick 1 or 3, so after the first man
and the second man pick , the amount of stones’ parity remains unchanged, we
infer that if n is odd, the first man is the winner, and if n is even, the second
man is the winner.

In brief, when n = 0, 1, 2, ..., c− 1 we have f(n) = 0, 1, 0, 1, ...1 because c− 1
is odd.

Next, we have f(c) = 1, and:
f(c + 1) = 1− f(c).f(c− 2).f(1) = 1 because c− 2 is even
f(c + 2) = 1− f(c + 1).f(c− 1).f(2) = 1

So when n = 0, 1, 2, ...c + 2 we have f(n) = 0, 1, 0, 1, ...0, 1, 1, 1, 1

We use induction to prove that for n = c + 3, c + 4, ...2c + 2, we have:
f(n) = f(n−(c+3)), in other words f((c+3)+k) = f(k) for all k = 0, 1, ...c+2

f(c + 3) = 1− f(c + 2).f(c).f(3) = 0

f(c + 4) = 1− f(c + 3).f(c + 1).f(4) = 1

f(c + 5) = 1− f(c + 4).f(c + 2).f(5) = 1
Assume that f(c + 3 + k) = f(k) is true for any k ≥ 2 we prove that

f(c + 3 + k + 1) = f(k + 1).

We have f(c + 3 + k + 1) = 1 − f(c + 3 + k).f(c + 3 + k − 2).f(k + 4). By
the assumption, we have f(c + 3 + k − 2) = f(k − 2) so
f(c + 3 + k + 1) = 1− f(c + 3 + k).f(k − 2).f(k + 4)

Note that k − 2 and k + 4 have the same parity, so if k ≤ c− 7
we have k + 4 ≤ c− 3 so f(k − 2) = f(k + 4).

If k is even, we have
f(k) = f(k − 2) = f(k + 4) = 0 so f(c + 3 + k + 1) = 1 = f(k + 1)

If k is odd, we have
f(k) = f(k−2) = f(k+4) = 1 so f(c+3+k+1) = 1−f(c+3+k) = 1−f(k) = 0

In brief, we have f(c + 3 + k) = f(k) ∀k = 0, 1, 2...c− 7
We can easily check that:

f(c + 3 + c− 6) = 1− f(c + 3 + c− 7).f(c + 3 + c− 9).f(c− 3)
= 1− f(c− 7).f(c− 9).f(c− 3) = 0 = f(c− 6)
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f(c+ 3 + c− 5) = 1− f(c+ 3 + c− 6).f(c+ 3 + c− 8).f(c− 2) = 1 = f(c− 5)

f(c + 3 + c− 4) = 1− f(c + 3 + c− 5).f(c + 3 + c− 7).f(c− 1)
= 1− f(c− 5).f(c− 7).f(c− 1) = 0 = f(c− 4)

f(c + 3 + c− 3) = 1− f(c + 3 + c− 4).f(c + 3 + c− 6).f(c) = 1 = f(c− 3)

f(c+ 3 + c− 2) = 1− f(c+ 3 + c− 3).f(c+ 3 + c− 5).f(c+ 1) = 0 = f(c− 2)

f(c + 3 + c− 1) = f(c + 3 + c) = f(c + 3 + c + 1) = f(c + 3 + c + 2) = 1

In brief, we have for all n = c + 4, ...2c + 2, f(n) = 0, 1, 0, 1...., 0, 1, 1, 1, 1
By induction, we have f(t(c + 3) + k) = f(k) for all k = 0, 1, ...c + 2 and for all
t∈ N
So the binary string in this case is < 0, 1, 0, 1..., 0, 1, 1, 1, 1 > and the period is
c + 3.

6 Case S = {1, b, c} where b is odd

Because, as we have considered before, in the case S = 1, b it’s easier if b is odd,
we just pay more advantage on the case that b is odd

6.1 S = {1, b, c} where b and c are odd

It’s trivial that the function f(1,b,c)(n) defined by: f(1,b,c)(0) = 0
f(1,b,c)(1) = f(1,b,c)(−n) = 1 ∀ n ∈ Z+

f(1,b,c)(n) = 1− f(1,b,c)(n− 1).f(1,b,c)(n− b).f(1,b,c)(n− c) ∀ n ≥ 1

is unique.

So, we’ll prove that f(n) = 1−(−1)n
2 , which means f(n) = 1 if n is odd and

f(n) = 0 if n is even, satisfies all conditions above. We can easily check that
f(0) = 0 and f(1) = 1.

Moreover, f(n) = 1− f(n− 1).f(n− b).f(n− c) ∀n ≥ 1 is true because n
and n−1, n−b, n−c has different parity so f(n) and f(n−1), f(n−b), f(n−c)
take different values from the set {0, 1} So we can conclude that in the case
S = {1, b, c} where b and c is odd:

f(1,b,c)(n) = f(n) =
1− (−1)n

,
E(S) =

2

3
2

6.2 S = {1, b, c} where b is odd and c is even

The problem becomes more and more complex because of the complexity of its
result.

19

PO02 ------  19



For example, in the case S = {1, 3, 7} the output string returns < 01010101111 >,
which has last 4 bits are ’1111’
The following is some trivial fact that we can observe while approaching the
problem:

1. For all n ≤ c− 1, f(1,b,c)(n) = f(1,b)(n) (because f(1,b,c)(n− c) = 1 so

f(1,b,c)(n) = 1− f(1,b,c)(n− 1).f(1,b,c)(n− b).f(1,b,c)(n− c) = f(1,b)(n)).

So, in [0, c− 1], f(1,b,c) altenatively takes value of ’0’ and ’1’.
2. Some special value of f(1,b,c): f(1,b,c)(c − 1) = f(1,b,c)(c) = 1 because c is

even

Now, we’ll prove that ”For all b ≤ n ≤ b + c− 1, f(1,b,c)(n) = 1”.

Lemma 1: For all c ≤ n ≤ b + c− 1,

f(1,b,c)(n) = 1

where b is odd and c is even.

Proof: For simple writing, let F (n) be f(1,b,c)(n).
Because c ≤ n ≤ b+ c− 1, we can infer that n− b and n− c belong to [0, c− 1].
And because they have different parity, F (n − b) 6= F (n − c), which deduces
F (n− b).F (n− c) = 0 (F can take just 2 kinds of values).

The result will follow because of the expression

F (n) = 1− F (n− 1).F (n− b).F (n− c) (7)

It could be infer from the Lemma 1 that F (b+c) = 1−F (b+c−1).F (b).F (c) = 0
Our next step is proving that:

”For all b + c ≤ n ≤ b + 2c− 1, f(1,b,c)(n) = f(1,b,c)(n− b− c)”

Lemma 2: For all b + c ≤ n ≤ b + 2c− 1,

f(1,b,c)(n) = f(1,b,c)(n− b− c)

where b is odd and c is even.

Proof: For simple writing, let F (n) be f(1,b,c)(n). The aim of the Lemma 2 is
to prove that the output binary string is alternative with ’0’ and ’1’ from the
b + cth bit to the b + 2c− 1th bit

It’s true that F(b+c)=F(0). We will prove:

F (n) = 1− F (n− 1) ∀ n ∈ [b + c + 1, b + 2c− 1]

and everythings will follow.
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It’s obvious that n−1 > n−b > n−c and n−b ∈ [c, b+c−1]∪[b+c, b+2c−1].

If n− b ∈ [c, b + c− 1] then F (n− b) and F (n− 1).F (n− b) = F (n− 1).
Otherwise n−b ∈ [b+c, b+2c−1], because n−1 and n−b are in [b+c, b+2c−1]

and have the same parity, by simple induction, we infer that F (n−1) = F (n−b)
and F (n− 1).F (n− b) = F (n− 1)2 = F (n− 1)

And in all cases, F (n− 1).F (n− b) = F (n− 1)

Moreover, because n ∈ [b + c, b + 2c− 1], n− c ∈ [0, c− 1] ∪ [c, b + c− 1].
If n− c ∈ [c, b+ c− 1] then F (n− 1).F (n− b).F (n− c) = F (n− 1) (because

F (n− c) = 1).
Otherwise n − c ∈ [0, c − 1] while n − b ∈ [b + c − 1, b + 2c − 1]. Be-

cause |[c, b + c− 1] ∩ Z| is odd, so if n− c and n− b have different parity then
F (n−c) = F (n−b). Hence, F (n−c) = F (n−b) and F (n−1).F (n−b).F (n−c) =
F (n − 1).F (n − b)2 = F (n − 1).F (n − b) = F (n − 1). And in all cases,
F (n− 1).F (n− b).F (n− c) = F (n− 1).

The result is then follow.

Now we come to the most important result:

Lemma 3: For all n ≥ b + c,

f(1,b,c)(n) = f(1,b,c)(n− b− c)

where b is odd and c is even.

Proof: The statement is true, as we have proved above, for all b + c ≤ n ≤
b + 2c− 1
If the statement is true for n ≤ k with k ≥ b+ 2c− 1. We’ll prove that it’s also
true for n = k + 1.
Indeed,

f(1,b,c)(k + 1) = 1− f(1,b,c)(k).f(1,b,c)(k + 1− b).f(1,b,c)(k + 1− c)

= 1−f(1,b,c)(k−b−c).f(1,b,c)(k+1−2b−c).f(1,b,c)(k+1−b−2c) = f(1,b,c)(k−b−c)

Conclusion: In this case, the binary string is < 010101...011...1 > with the

length of b + c and the last b + 1 bits are ’11...1’. And E(S) = 2b+c+2b+1−3
3(2b+c−1)
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Part IV

Open problems
For more generality, we have the recurrent expression in the case that there are
N heaps with the amount of stones are a1, a2, ..., aN and in the ith heap, player
can pick an number of stones in Si.

By the same way we have done before, the recurrent expression of f(S1,...,S−N)(a1, ..., aN )
( for simple writing, we call it F ) is

F (a1, ..., aN ) = 1−
N∏
i=1

∏
x∈Si

F (a1, ..., ai − x, ..., aN ) (8)

with the suitable beginning values ( that by the reason of lacking time, we
couldn’t find out ) that could make the algorithm works

In the case S1 = S2 = ... = SN = T , the above problem becomes the
Nim game, which is said to have originated in China, named and developed by
Charles L. Bouton.[1]

However, solving the recurrent expression (8) is really complex, so we left it
as an open problem for our paper.
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