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1 Introduction

Simulation of our previous model has shown that the model needed major struc-
tural improvement, as the simulation has revealed some problems, the most
serious of them being the huge speed buildup. This article will describe the
updated model, but it will not discuss what is new; rather, the entire model is
re-introduced. Although the updated model has some major changes, the key
principles of the model remain the same.

The main change in the updated model is that each agent has certain ideal
velocity that it tries to reach, which is determined by its own perspective. This
is different from the previous model where ideal velocity was added to the current
velocity in the form of acceleration.

Note that imaginary unit will be denoted ι in this article. Also, units for time,
length and angle will be second, meter and radian respectively.

2 Eyesight Function

We define the concept of “eyesight function” to describe how agents see things;
this function indicates the “degree of importance” that an agent puts into its
surroundings. Since the degree of importance can be thought as positive real
number, we can think of eyesight function as a scalar field that assigns real
number to every point on the plane.

2.1 How to Apply Standard Eyesight Function

However, note that same position can have different degrees of importance as-
signed, depending on position and orientation of the observer agent. Therefore,
it is reasonable to first define “standard” eyesight function that accounts for
observer agent at fixed position and orientation, and then apply it to arbitrary
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Figure 1: Plot of Distance Function

Figure 2: Plot of Angle Function

agent. That is, given the standard eyesight function w : C→ R (w for ‘weight’)
that describes degree of importance from the perspective of agent at origin
pointing to +x direction, the respective expression that agent i at position xi
and velocity vi puts on arbitrary position x would be

w

(
x− xi
vi/|vi|

)
(1)

2.2 Modelling Standard Eyesight Function

Now that we know how to apply the standard eyesight function w to arbitrary
agent, let us model the standard eyesight function. The function was modelled
based on two principles: faraway objects are hard to see, and objects off one’s
direction of sight are hard to see too. Therefore if we are concerned with object
at position z(∈ C), then we think about how large |z| and arg(z) are, and
combine the two factors to decide how clearly the observer can see the object
at z.

Distance function is modelled such that as the object goes farther, the degree
of importance decreases gradually:

1

1 + |z|2
(2)

Angle function is modelled such that as the object goes more off-sight, the degree
of importance decreases gradually, but this time with more clear boundary that
indicates “off-sight region”:

1

1 + (arg z)6
(3)
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ρ = 1 ρ = 2

α = π/6

α = π/3

Figure 3: 3D Plots of Standard Eyesight Function w

Note that, however, some agents can see farther than others, and some agents
see narrower than others. Such can be easily implemented by “strething” the
Distance and Angle functions. Now combining everything, we have:

w(z) =

(
1 +

∣∣∣∣zρ
∣∣∣∣2
)−1(

1 +

(
arg z

α/2

)6
)−1

(4)

Here, ρ denotes how far the agent can see and α denotes how wide the agent
can see.

2.3 Weighted Average

The concept of “average value” can be defined using eyesight function. When an
agent determines certain average value about its surroundings, such as average
velocity, it would rely on its eyesight to do so. Hence a reasonable way to model
how agent i decides the average value of pj , j = 1, 2, · · · , N, j 6= i would be to
use the weighted mean:

Mi(pj) =

 N∑
j=1,j 6=i

w

(
xj − xi
vi/|vi|

)
pj

/ N∑
j=1,j 6=i

w

(
xj − xi
vi/|vi|

) (5)
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Figure 4: Plot of One-to-one Cohesion/Avoidance Strength

3 The Model

In our model, each agent will determine the “ideal velocity” from its own per-
spective, and then will accelerate accordingly. The ideal velocity will be de-
termined according to the Reynold rules, which are cohesion, avoidance and
alignment. However if the agent sees too few of other agents, it will start turn-
ing around to see where the others are. (This ‘turnaround factor’ was previously
not introduced in other models because only with the concept of eyesight the
turning around is necessary.)

3.1 Ideal Velocity

The ideal velocity is modelled such that it is primarily the average velocity of
other agents (which accounts for alignment rule) but additional vector that ac-
counts for cohesion/avoidance will be added onto it, so that if an agent is too far
away or too close to others, it will accelerate or deccelerate accordingly.

One-to-one cohesion/avoidance ‘strength’ is modelled using the function (2x2−
1)/(1 + x2)2. Here the unit vector to the direction xj − xi is multiplied to

produce the one-to-one interaction vector
xj−xi

|xj−xi|
2|xj−xi|2−1
(1+|xj−xi|2)2 (in a strict sense,

this is a complex number not vector but it can be thought as a vector.) Hence
taking average of velocities and adding a constant multiple of average one-to-one
cohesion/avoidance vectors, we obtain:

Vi = Mi(vj) + kMi

(
xj − xi
|xj − xi|

2|xj − xi|2 − 1

(1 + |xj − xi|2)2

)
(6)
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as the ideal velocity. (the constant k will be determined accordingly after sim-
ulations)

3.2 Turnaround

It is natural that if a person in the crowd can’t see enough of the others the
person will start turning around out of doubt to look for others. Hence we
will introduce τi ∈ {−1, 0,+1} to indicate whether agent i is turning, and if
turning, which direction it is turning to. τi will change according to whether
agent i is seeing enough of other agents. Number of agents that it sees will be
given by

N∑
j=1,j 6=i

w

(
xj − xi
vi/|vi|

)
(7)

because agents off the eyesight can’t be seen clearly. Meanwhile, let us define
constant L, which indicates the minimal number of agents that need to be seen
so as to ‘comfort’ the observer agent. Hence we have:

τi =

0 if
∑N
j=1,j 6=i w

(
xj−xi

vi/|vi|

)
≥ L

+1 or − 1 if
∑N
j=1,j 6=i w

(
xj−xi

vi/|vi|

)
< L

(8)

where whether τ = +1 or −1 is decided randomly. In the simulation, nonzero

value of τ stays the same as long as
∑
w
(
xj−xi

vi/|vi|

)
< L, so that each agent will

keep on turning to the same direction once it starts doing so.

3.3 How is the Ideal Velocity Reached?

We treat speed and orientation separately. That is,

vi =sie
ιθi(vi ∈ C, ι =

√
−1) (9)

The agent will accelerate faster when the speed discrepancy between the current
speed and ideal speed is larger. Hence it is reasonable to make dsi

dt = |Vi| − si.
However, even if the ideal speed is very large, it is reasonable that agents would
have some maximum speed that it can move no faster than. Hence to account
for maximum speed Li of agent i, we multiply 1−eLi−si and hence obtain

dsi
dt

= (|Vi| − si)(1− eLi−si)

(when τ 6= 0) The choice of function 1−eLi−si here was such that when si � Li,
1 − eLi−si → 1, while as si approaches Li more, 1 − eLi−si will grow negative
very fast.
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Meanwhile, Li will follow a normal distribution with respective mean and stan-
dard deviations that depend on choice of the type of agent.

It is also reasonable to think that θi adjusts faster when the discrepancy between
θi and ideal orientation arg Vi is larger. That is,

dθi
dt

= arg Vi − θi

However this time, we do not have maximal angle or such and hence no ‘mod-
eration’ is required. Summarizing the above, we have:

dsi
dt

=(|Vi| − si)(1− eLi−si) (10)

dθi
dt

= arg Vi − θi (11)

The above accounts only for the case of τi = 0. The situation is different when
τi 6= 0, when agent wants to turn around and look for others. The agent will of
course start slowing down, and it will start turning to the random direction of
left or right. That is, when τ 6= 0,

dsi
dt

=− si (12)

dθi
dt

=τiT (13)

(Constant T denotes how fast the agent turns.)

3.4 The Model

Combining the above results, we obtain the equations for the model:

dsi
dt

=

{
(|Vi| − si)(1− eLi−si) if τi = 0

−si if τi 6= 0
(14)

dθi
dt

=

{
arg Vi − θi if τi = 0

τiT if τi 6= 0
(15)

4 Simulation

Simulation is yet to be implemented, however the simulation will be shown in
the presentation of the project.
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