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Abstract

In this paper, we first give two proofs of Euler-Maclaurin formula in
section 1. The estimation of the remainder term and some relevant theorems
are also stated in this section. In section 2, we apply similar method to get
some further results, which generalized Euler-Maclaurin formula. In section
3, we show how Euler-Maclaurin formula is applied to deal with some
elementary summations. In section 4, we deal with some infinite series to
prepare for the work in next section. In section 5, we apply Euler-Maclaurin
formula to some series and give the orders of some finite summations.
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Introduction

In eighteenth century, Euler and Maclaurin both obtained independently a formula linking
discrete summations with continuous integrals almost at the same time. Maclaurin applied it to the
numerical computation of definite integrals, while Euler used it to calculate series. It has an
extensive application in many subjects of mathematics, such as number theory and combinatorics.
And relevant research followed continuously since then.

Definitions

The difference of a function f(x) is defined asAf (x) = f(x +1) — f(x). If there exists a
function ¢(x) such that ¢(x +1) —¢(x) = f(x), then we call ¢(x) the inverse difference of f(x),
and denote it as Z f(x)Ax. We know if ¢(x) is the inverse difference of f(x), sois ¢(x)+C,

where C is a function of period 1 (including a constant), and vice versa''!. In this paper, the
‘constant’ C is always omitted, since it always vanishes in a certain summation.

Bernoulli numbers B, are defined as the coefficients of the Taylor expansion of — E 1e.
et —
co B o B
X = ~x". ie (X )E gives Bernoulli polynomials B, (x) .
ex _1 n=0 I’l! e _1 n=0 I’l'
Main Results

1. Proofs of Euler-Maclaurin Formula

b-1
In order to calculate a discrete summation Z f(x), the method of inverse difference is

xX=a

b-1
effective. If one has found a function ¢(x) such that ¢(x +1) —¢(x) = f(x), then z f(x) is simply

equal to ¢(b) — ¢(a) . This is the main idea of the following theorem. And let us see how it is

achieved.
Before we have a rigorous statement, we show the method in a rough way so that the idea will
be showed more clearly.

Since our purpose is to find a function ¢(x) such that ¢(x +1) —¢(x) = f(x), recall the Taylor
expansion of a function at a point, we have

P+ ) = gx) + () + “”’C)sz A

n!
i, 9@,
2!

n!

Let Ax =1, we have gx+1) =@ x) + @g(x) +
/e, ¢">(x)+

Equivalently, f(x)=¢(x)+—— |
n!
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We wish to express ¢(x) via f(x), therefore, derivative either side of the equality respect to x,

and we obtain f'(x) = ¢'(x) + ¢'(x) + o+ g (x) +

2! n!

¢f“> ), #70,

n!

Similarly, /"(x) =¢"(x)+—=+...+

Then we multiply every of these identities by a coefficient, and add them together. The coefficients
are chosen so properly that all derivatives of f(x) vanish except f'(x).

Therefore, we obtain ¢f(x) =Y a, /" (x), and @x) = a, [ (x) is followed.

n=0 n=0

00

Hence, Zf(x = Z ( Dby - £ (a))

n=0

Then we prove it rigorously. First, a lemma is needed.

. d m (x 1 ) m+l1 ( )
Lemma 1: de. () —Ldt = J- f( "(t)~———dt .
Proof:

d . (xl n" 1 [ a0 (x+Ax+1-1)" . (xl )"
S0 = Jim Ax(j R A0 drj

dx
e Lfperaet oy (D11 e (X1 —1)"
—hmEU £ (@) . dt LW )t

. 1 LS N (x +1- ) o ( )
+gyglo§[j SOt = f >(r)—dr]

=" f“'”()a—(x+1 t)ndt+1imé(j f(””()—(x 1 )dt—jx Y g CEFIZDT )dtj
n' Ax -0 x+1 X
(’E +1_)'t)nldt+tlm}1 f‘””(t)—(x 0~ im f(””(t)—(x +171)
= - (m) (x+1-9)" f(M) (x) _ ey xt1=0)" v
[ e T

n!

=[" 1w

+J‘ f(m+1)( )(X l—l) di - f(m)(x)

n!

X

f“"’(x) J. f(’"”)()(x 1-1)" g — f(m)(x) J- f('””’()(x 1- )dt.

Then we turn to the main theorem of this paper.

Theorem 1 (Euler-Maclaurin)' If f (x) and its derivatives to n —1 are continuous in the interval

[a b] then Zf(x) I f(x)dx +z (f by - %V (a))+ R, , where R, is the remainder term.
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Proof: Refer to Taylor formula, we have

F"( ) Ay + F(H)(x) i [ L (X D= 1)"
F(X+AX) F(X)+F()C)AX+ Ax WAX +.[C F( )(t)wdt
Let Ax =1, we obtain Fx+1) = F(x)+ F'(x)+ L.y 4+ F7@ +["F For =07,
2 (n—1)! (n—1)!
Namely, /(9 =g+ =gt =i + L0 44 @00, g (20T,
(n=D! (n=1)!

Integrate and derivative either side of the equahty respect to x, apply lemma 1, and make the last
term before the integral remainder term in Taylor series be a multiple of ¢/"™"(x), thus we obtain

j:f(t)d”czﬂxﬂmx)+...+‘”("1)(x)+f (d")(t)(x 1- )dz

0 2P0 [ gy 10
R T e T (”()()42)'60

" " 4!/‘4)() clf” Y (x) o (x+1=0)"
F(x) =@ (x) + — ...+(n 3)'+j (o”()ﬁdt.

f(n—2) (x) — (0(71—1) (x) + J»xx+1 (0(")(1)()6 +1- t)dt .
f(n—l) (x) = I:H (0(") (t)dt .

Multiply every of these identities by a coefficienta, , and add them together. Assume @, =1and
n-1

k-1 I’l i +1_t n—k
2y~ nd we abtain f(’)d”C*Z“kf( (OEFOEN (0()0);;61();11—1{)!) dr.

-1

. o a,
Then we figure out the coefficients. The recurrence equation is Z

(n ~ !

= (0 with the initial

n-l1
condition a, =1. Let q, A , then we have Z by =0. z b, = 0. Therefore, b, is
n!’ im0 kit — k)! o\ k

Bernoulli number.

j f(t)dz+c+z I ANOET B ¢">()ZB§;‘KLI k)),

Hence, Zf(X) Ab) - Pa) = ff(X)dx+Z (S* @) = STV (@) + R,

Then we consider the remainder term.

Theorem 2: R, = —— j f(”)(x)B ([x]+1- x)arx-L j £ (x)B, (x = [x])dx.

ot [ 0E P

=—I" ¢ B, (4 1-0di = [ g 0B, (14104t
nlx nt
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_l(J-bH(a(,,)(x)Bn([x]+1—x)dx_ja+1¢n)(x)3n([x]+l_x)dxj
(ZI @" (x)B, ([x]+1- x)dx - ZJ ¢ (x)B, ([x]+1- x)dx]

k=a+l

Since B, ([x]+1—x) is a periodic function of period 1, we can rewrite the summation as

'%(Zf " e 0B, (6] 1= 3 [ (0B, (1] +1—x)dxj

_%:Z;Lkﬂf(n)(x)Bn ([x] +1 —X)dx = —%ij(n)(x)Bn([x]_l_l_x)dx '

If weuse B, (1-x)=(-1)"B,(x)(n=1), we can obtain R, eVl ) I " (x)B, (x —[x])dx

Theorem 3: R, = O(f"™ (b) - £ (a)).
Proof: Since B, ([x]+1—x) is a periodic function and has no singular point, we know
B, ([x]+1-x) is bounded. Namely, B, (x —[x]) =O0(1).

Therefore, R, DT 1) j F™(x)B, (x - [x])dxzo(j:’ f<">(x)dx) =o(r ") - " (a)).

c 2cos(2k77x)
B,(x-[x)) _ Z @kmy " 22 (!
[5] showed that —* . = , therefore, B, (x —[x]) € ————.
: 'S 2sinkm) 2m)
(- Z ,nodd
= (km)"
!
22(’1)””' , n =2(mod4)
T,
Lehmer!'” showed that the maximum value of B ,(x—[x]) obeys M, = (2 ') ’
e - &, others
2m)"
!
- 252(”1”‘, n = 0(mod4)
1T,
while the minimum obeys m, = ( ')
~ + &, others
en

We distinguish two cases before a further consideration. If there exists an n that £ (x) is
bounded, then R, = 0(1) , and the first n —1 terms gives the main part of this summation. If any of

"™ (x) goes to infinity, then R, = O(f("_l) (b))(b - ).
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> B ) . .
Theorem 4: If Z—’; £ (x) converges uniformly in the interval [a, b], then
n=1 1

Zf (x) = i% (r@y- o).
_ L — e, Ba([x]+1=X)
Proof : R, ——;Lf (x)Bn([x]+1—x)dx——Lf ()= ——dx

B, ([x]+1-x)
(n+1)!

LSO =1 @) R

B (]*+1-x) _ ) B ([@x1+1-x) ¢,
TSR A Gl | J,ar" e

f(n)(b) f(n)(a)) v[f(n+l)() n+1([x]+1_x)dx: B

=ffW@M

( "‘1)' (”"‘1)' (n+
If Z—’: "™ (x) converges uniformly, so does Z L £ (x), therefore, R, = z LA (x).
n=1 M- i=n+l l i=n+l l

Asn — o, ii' f"P(x) - 0, R, - 0.Hence, z f(x)= i? (f("'”(b)— f(”_”(a)).

i=n+l b: xX=a n=0

Therefore, an effective estimation of the remainder term depends on the behavior of the derivatives
of f(x).Namely, we need an n such that £ (x) is bounded. Therefore, if a function increases

so rapidly that all its derivatives tend to infinity, then Euler-Maclaurin formula doesn’t work now.
However, in this case, the first few terms are so inferior to the last one that they can just be dropped.

x—1
For instance, one can easily find that Z n!< x!. The following theorem gives a criterion of this case.
n=0

Theorem 4: Assume f(x)20 and f'(x)20 if x> x,. f(x) = o(f"(x))(x - ).

Then 3 f(n) = o/ (0)x - ).

/(%)

Proof': . f(x) =o[f'(x)](x —» o), [ Given N >0, Uk, ,if x >x,, we have 0
X

Namely, f'(x)> Nf(x).
O, f'de> N[ f@de. ()= f(x)> N[ f@dt. f(x)>N] [t

>N

Since f(x) increases, we have I f(t)dt = Zj f(t)dt 2 Z f(n).

Hence, L >N, $ ) = ol F(0)(x - o).
Z f(n) n=x,

x—1
We now fix a, denote it as x,, and consider Z f(n) as a function of x. We rewrite the formula as

n :%0

Z f(n)= j f(Hdt+C, + Z % P(x)+ R, , where C, is a constant and R, is the remainder

I’IXO

term.
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) x B _ )
Sometimes .[ f(dt+C +Z—" % (x) diverges almost everywhere. But

j f(@dt+C +z %™ (x) may be the asymptotic series of Z f(n). We have the following

theorem:
Theorem : Assume /™ (x) =o(1)(x - »),and £ (x)=o(f "™ (x))(x - ») for n = N, then

S ron- . f(t)dr+C+Z LD )(x - ).

n=x

Proof : We know the remainder term R, = I R0

B ([t]+1—¢
Mdt for n = N, noticing that
n

B, ([1]*1-1) B (+1-0)  _ B,

—_ £ © £ (n+) (n)
reo= ] O™ AR
By
Zf(n) J. far - > PEANC
Therefore, for n = N, lim— - = = lim——*—
AE) = ()
@ B, ([F]+1-1) ™ () + (n+1) "+1([t]+1_t)dt
:nmL A BT +1),f @+ [ SO>S
£ @) £ (@)
(n+1) n+1 ([t] +1- t) (n+1)
. j A (n+1)! t_. 4 ()( ) _
=lim =lim
f@ W
Hence, Z f(n) ~ j f(t)dt+C+z EFED (x)(x - 00).

n=x,

Now let us consider the problem in another way. Since Weierstrass theorem states that any function
continuous in a closed interval can be approximated by polynomials, now we use Bernoulli
polynomials to expand a function.

Similarly, we have a rough sight on the operating first.

Assume that f(x) can be expanded via Bernoulli polynomials, i.e., f(x) = Zaan (x), where a, is
n=0

undetermined coefficients. To decide a,, we integrate either side of the expansion from x =0 to

1,n=

=0 . :
x =1, and notice that J:)l B, (x)dx = {O o' Therefore, we obtain a, = jol f(x)dx. To decide a,,

2

0,n=0 )
we derivative the expansion, and notice that B’ (x) = . We obtain
nB, _ (x),n>0

f'(x)= Z:na”Bn_1 (x) . Similarly, we integrate from x =0 to x =1, and obtain a, = _[01 f'(x)dx.

n=1

Since [ (x) = n(n=1)..(n=m+1)a,B, (x), eventually we obtain a, = l'.[olf(")(x)dx.
n!

n=m

Page - 8



EO7

Hence, f(x)= i% [/ @)dx B, (x).

Let x =0, and notice that B, (0) = B, , we obtain

£(0)= Z L] @B, (0) = Z =[S s =[x+ Z e w-r o)

We now come back to f(x) : —'I " (x)dx [B,(x), and replace f(x) with f(x+i), we obtain
=0 1! 70

Py =3[ 7 s 0,0 = 3 [ (s B, ().

Therefore, /(i) = f(x)dx+z (rov @+ - £o ).

> /)= Z( [ e 32 () - f“"”(i))] = [/ 10+ X2 (1) - 1 @),

And we have ‘proved’ Euler-Maclaurin formula in another way.

To make a rigorous statement, we should consider the remainder term in the expansion ie.

- Z [ 7 B, = [ e - | Z 2 o = [ (f( - Z 2 g )(r)j
I have trled to express it as an integral, but falled Therefore, let us consider

[ 1( £(0) - ZN:B"—(()) f(”)(t)jdt = [ 1( £(0) - ﬁ“ﬂ £ () Wt instead.

We use the Maclaurin expansion of £ (¢£): £ (¢) = Z A )(O)t +j fon ({)( )' df,

to obtain

1 N 1 N N-n g (n+i)
J-O(f(O)—ZB_';f(ﬂ)(t)]dt :J-O[f(o Z (Zf (O)Z +J. f(NH)(E) (l‘Ngt) ) f}jdt

= (
NB N- 0 V4l
j( zo_!z ()jdt IZ [ >(5)(er) o
- r0-3 250

(N =n)!

(O)Itd IIZ f(NH)(qz)( ) dfdt

N N-n ( i)
=f(0)- ZB—'Z (+1()(|)) ﬁjojofwﬂ)(aBN(t_f)dfdt'

Use the property of B, the first term eventually vanishes, therefore,

[ (f() Z o ><t>jdt j; [0 (&)By (e~ &)aéi,
f(0)= Z—”(f‘”’“ =)= [ ] (B - E)air.
To compute j FYV(EB, (¢ - )dE, we notice that — j FNVEB, (¢ - E)dE

= f““”(aaBN (t=&)dE+ [ OB (=& = N[ fYV OBt =EdE = £ N ©0)B, ().
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[ 7O @By=EdE= fO By~ [ F (f)d%BN (t = &)dE

==/ OBy () + N[ [ (&)By, (= &)dE .
Therefore, [ 1(€)B, (1= )4 = [ /) ()8, (1~ £)dé

[ @By(-&agdi = d[ 1V (&)B,(t~EdE = [ [ (OB, (1-E)dE
= [ (OB, ([E]+1-E)dE.
Similay. /()= Y2+ 1) = @) [ OB, 111~ ).

=0 .
N

Therefore, 3 /()= 32 (1 1) = @)= | 10 (©B, (€1+1-£)d¢

:o-

Since Euler-Maclaurin formula has a long history, I believe a lot of papers have been written on it,
which means a probability of great numbers of proofs. I came up with these two proofs by myself
before I knew there exists such a formula. Later I have read [3], [4], [5] and [6], which all give
some proofs. But their proofs are not the same as ‘mine’. However, I still cannot decide whether
these proofs are truly ‘new’. Therefore, I merely say ‘two proofs’ in my title rather than ‘two new
proofs’.

2. Generalizations of Euler-Maclaurin Formula

What we have considered in section 1 is actually the solution of recurrence equation
¢(x +1)—¢(x) = f(x) with the initial condition ¢(a) = ¢(a) . Applying similar idea, we can obtain
solutions to some other recurrence equations.

We know the solution of an inhomogeneous linear ordinary recurrence equation

Ax+k)+p,_ @Ax+k-D+...+p@Ax+1)+ p,@Ax) = f(x) with the initial condition ¢(a) = ¢(a),
gla+tl)=¢(a+]), ..., ¢la+k-1)=¢(a+k-1), where p,,p,,..., p,, are constants is that to
corresponding homogeneous equation Ax +k)+ p,_ @x+k-1)+...+ p@Ax+1)+p,@Ax)=0

added by a special solution of the original equation. The following theorem gives a method of
finding the special solution.

Similarly, we have the following lemma. Since the proof of it is almost the same as that of
lemma 1, we just omit it.

+ X+ +i—-1)"
Lemma 2: j I £ (g, udt —j £ (@) udt , where i is a positive integer.
x x n!

Theorem 3: We denote n, as the lowest non-negative integer such that

p, 0" +p O"+...p,_, Wk—-1)"+k" #0, where k 21 and p, p,,..., p,_, are constants. Here we
k

define 0° =1, and P, (k) = Z Pi;(k=1)" . If f(x) and its derivatives to n are continuous in a
i=0

subset of real numbers, then one solution of

Px+k)+ p @x+k =D +...+ p@x+1)+ p,@x) = f(x) is given by
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() (x) + R, , where b, is given by the generating function

Ax) =

F, (k),o !

-—= Z—"‘x" and R, is the remainder term.
(k—-i)& =0 N
Zpk—ie !

i=0

X

Proof : Refer to Taylor formula, we have
S =@x+k)+p_@Ax+k-D+...+ p@Ax+1)+ p,@Ax)

. P(k) . k x+i —1)"
=Z—( )'W)(x)JfZPiL (ﬂ("”)(t)—(XHv V

k
—ZP( )(ﬂ(l)( )+sz' (d“l)(l‘)wdt

i=n,

We apply the same method in theorem 1, and obtain

=550 g 0+ 3 [ 0 0

( - 1!
n—2 k n=2
f"() ZP( )w(l+2)()+zpj ¢(n+1)()(xz'l 21‘;' dr

_ P (k k x+i 4 i — 1)
f(n no)(x): n(')¢(n)(x)+zpi.[x w(n )(t)(x‘l"l/l 't) dt

n—ny+1 n+l ()C l_t)no_l
S (x) = ij o O

FU@=Yp e O+

FO@=Yp [ e e

ny) n -J
And similarly, m z SO (x) + za ZP j A (t) ( t;, ———dt
ny: j=0 i=1
_ Za £O(x) + zp Zj P (a, ( f;' dt.
7, (k)¢(x) N i-n, X l-n, ()C +i- t)n_j
B LU YOI el =l

Then we deduce the generating function of a,.

The recurrence equation is ZP (k)( ~
i=0 n=i

n=ny

a;
S (n-i)!

=0 with the initial condition a, =1. Since

P,(k)=0(n<n,),
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b n—n, n=ng
Let a, =—, then ZP (k) - b, =0. [’?JbiPn_i(k) =0
0 —i)! i=0 \ /!
b, (k) b, (k) ,
| X ’ 0 b' | X ’ 0 b'
. ;. : " n,! ;
Consider the sequence b; given by k”o— = —x",wehave ——>——— =) "
(k-DE =0 n! P, (k) o 1!
Zpk—ie 27' X
i=0 n=n, n.
Pn k P k - Pn+n k - b'
o( no_z ( ) @_xn:xnoz 0( )xn _nxn'
nO‘ n=n, n=0 n' n=0 (n + Vlo)' n=0 n'

(n=0)!P,,, (k) n  &(ntn,),
P, (k) wz(i]bi (n+n, —i)! . (n+n0)'z( : ]biPano—i(k)

0

nO! n=0 n! n=0 n!
0p, =1, Z(" "OJ, o () =0(n 21).
b, (k)
P o © h
Hence, b, = b, , the generating function of b, is ¢ = ”' x"
zpk_[e(k i n=0 7t
i=0
P"o (k) n,
Y eb®
We define b,(£) a polynomial of ¢ by g e =Z g Therefore, we have
i n= n
Y pett
i=0
P (k " (n
b,(€ ) (v e b (be
00 | 00 00 n 00 e l
z n(') . nO efozz_n'xn@E'xnzz 0 : xn
=0 N Z P le(k D& n=0 M: n=0 1 n=0 n
i=0
2 (n _
Hence, b,(¢) = ( ]bif" "
=\
Pn (k)¢(x) u (i-n) k Ly pxti +1-ny) (x+i_t)”_j
ot 7T 7 = a i (x)+ ) T (ya, ————dt
no! >a,f ™ @) Zp,ZL ¢
(i—ny) n+l-ngy) (x t)” /
—Z S (x)+2p2j @ (0b, @ g

- ZT;f“‘"“ () +52pi [ o, (i =ty
i=0 - - =l

Hence, @(x) =

P(k),o !

&‘ﬁ;zaZpI¢w%mw@+rmh
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We sometimes encounter the summation Z S0 . It is somewhat difficult to deal with by means of

i 1!
f() f() with L@

Euler-Maclaurin formula, as ——= ,
F@i+1)

is not a continuous function. If we replace ——

then its derivatives are comphcated. Therefore, we come back to the former method.

gx+l) _ ¢x) _ f(x)
x! (x=1)! x!
Refer to Taylor formula,

ﬂx+Ax):ﬂx)+{d(x)Ax+@sz+ w(n)(x)Ax”+j ﬁnﬂ)()ﬂdt

Assume

e g(x+1)—xlg(x) = f(x).

UnAx=Lwemweqx+n=¢mo+¢ug+f§9 ¢ij+j ¢”K)U71 &

Therefore,

fx)=@x+)—-xlAx)=(1- x)ﬂx)+¢( )+(d(x) ) {0(”)()6)_'_-" (0(n+1)()(x 1- t) dr

Derivative it, we obtain

() =-@x)+(1- X)¢(X)+¢f(x)+¢"() W)(lx))v’LJ 4"("”)()%
" : qu“)(x) AN C)) poy oy 1=
f'(x) = =22¢(x) + (1= 0)@'(x) + ¢"(x) + (n 2)'+J' ' (1) - .

£ ()= == D@ (1) + (1= )" () + g7 () + [ P @)+ 1 -1

S =g )+ (=0 @)+ [ e
Suppose

c (k) _& (0(") (x) _ ) ) AN (x+1- t)n_k
20V = 2,0 =+ (=0, (g7 0+ [T O a0
The recurrence equation is Z ( (x;' +(1-x)a,(x)-(n+1)a,, (x) =0 with the initial condition

i=0 (11—

a,(x)=1.Let a,(x)= A ”( *) , then we can rewrite the recurrence equation as

< BKx) B, ( ) ,3 4 () < Bi(x) _ 2B B(x) _
;mw—m - lnt (+Dv0’;m&—m+a 0 PR
§ AW A0, ,6’,, @), Bu® & B _ B© B

= il —1)! n! n! n! = il —1)! n! n!

Z( ]/3 () =xB,(x)+ B, (x) -

i=0

Assume B(x, §) = 2’8"—(')5”, then we have B (x, §) z ('8 ()8' &l z B (X)
n=0 n. - g .
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n nj
. Dew
o B =3 e D e =S I (’ g =3 P L = 1 4B, 6).

n=0 n. = n=0 ' n=0

B &) _ p o o dBOE) ]
T3 (e* =x)B(x, §), B(x. &)
Since B(x, 0) =e"*¢ = B,(x) =1, we obtain C =~1, B(x, &) =e* ™.

=(e <(_)C)dg(, logB(x, &) =e* —x [+ C, B(x,qz):ee‘—xﬂhc.

. There seems no wonder

Notice that B(0, &) = el = Zi’:f " gives Bell number, and 5, = Z ];d
n=0 k=0

why B(x, ) appears here.

Hence,
;/B’m 100y = Z 5 )k%? (xk))'+(1-x>—/3ﬂ("‘)¢">(x)+ j“‘qu"*”(z)gﬂk(x)%d%
Z'B(x)f(k)() ﬁnﬂ(x)(”(,,)( )+ — J' ¢<n+1>( )Z,B(X) (x+1—kt;;1 kdt'
5[t
o I [pGHE = B, (x) (x+1—t) n ‘ "= et
21 )szz'gmnz(; gn:o " §r=et T

Hence, Z—ﬂ"(, 0y = P ,jl,( )w‘”)(x)+—, [RAROYAGRS

n)
1 Z ﬂ (x) f(k) (x) = (0( (x) 1 J’ (p(nﬂ) (t)ﬂ (¢t =1)dt.

Ban)iz K n ﬂH( )
¢gr(x) _ 1 B o L 1 )
iy v P e A e P A GG

Integrate the equation, and we obtain the result.

3. Applications of Euler-Maclaurin Formula to Elementary Summations
We list some elementary summations in this section. All these results can be established in

elementary methods. In spite of it, we want to show how Euler-Maclaurin formula can be used to
deal with these problems in a common way.

n

Refer to [5], we know the convergence radius of is 271. Therefore, in the

e’ —1 = n!
disk center at z = 0 with radius 272, we can derivative the series term by term.

1
,,On' e—l

o0 n_n= e )
T
(1)
PR =303
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> B 1 > B e(e-3) B 2e(e’ —2e-2)
4 n+l — _ : n+2 — _ : n+3 — D
( )Z; n! (e=1)’ 2 n! (e—1)3 Z n! (e—1)*
=B,

Proof : From —~— = Z L

ex _1 n=0 I’l! n=0 I’l _1
Replace x with —x, we obtaln = Z( 1) . Therefore, Z( " — —% =L1.

n=0 I’l e - e—

o 2 4o 2 “ B,
* +f=f(e ljzf ere” ——coth( j 2(2 ) " Replace x with ix, we obtain
n=0 n

ix ix)_x X - mo— l l
ECOth(EJ_ECOt(E) ;(2 )'(zx) Z_(‘;( )" 2 (2 ) . Therefore, Z( )" —2 (2 )' 2cot(2j.

n=0

d x _ xef-e'+1_d & B = © B, B, .,
dve -1 R IRt =3 Bty
dx e* -1 (e* —])2 dx ‘= n! s dx nl = (n— 1)' ~ g

0 B —o+
Therefore, ) —% = _e~¢ 21 __ 1 :

el (e—1) (e—1)

=B — © B 2 A
Similarly, 3 =2 __ele 33)’ S Bus _2e(e 2e4 D

=N = (e-1)

Then we consider some most basic summations. We focus on the application of Euler-
Maclaurin formula.

D

The inverse difference of x*™ is given by

k k-n
B,x
© B, d"l e S B (k=1)!Ix* ‘Zk: n
ol dx"” i (k-n)! 4 k '

X

3t B ),
Hence, we have an_l :ank_lAn 22 Z : —Z lk .

n=1 i=o i=o i=o
k
=1 g B,
Since ZT =0, we can simplify it as follow,

k k(k
B- k-n B k—n_B
Lpe $opeon

k k k '

i=o
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A similar method can be used as follow.

I S
AR N LR WL\ VI W AR A .

0 k g & k

1
n=l1 n=0 i=o

Suppose P(x) is a polynomial of degree k —1, we have P (x)(n = k) = 0. Therefore, its
inverse difference is a polynomial of degree k. The method of undetermined coefficients is
applicable, Newton series is also effective. However, I think Euler-Maclaurin formula is more direct
and convenient.

(2)26" .

0 B dn—l 0 B 0 B ex
The inverse difference of e* is given b e Nx = u e’ = et =e* P= .
& Y 2 =~ n! dx"" =~ 7! [Z n  e-1

n=o n=o n=o

X
n

e _e -1

x-1
X
Hence, we have E e" = E Oe"An = .
o e-1, e-l

(3)§nﬂ?”.

We prove a lemma first.

n

Lemma 2: (x@x):(x+n)@x(nDN).

n

0

Proof : Ifn = 0, then %()@X)q@* = (x+0) 2",
X

: dk+l X d dk X d X X X X
Notlcethatﬁ(x@ ):E(dx_k(x@ )j=a((x+n)@ )=e' +(x+m @ = (x+n+1)2".

Hence, from mathematical induction we know it is true for nON .

The inverse difference of sin(x) is given by
B, B B

X —_— c Bn dn_l X _oo X — X n n X
> xle Ax—nzo - dxn_lx@ -Z " (x+n-DR* =(x-1) DZ !+n:0;n@
_(x-D +exDZBn+1=(x—l)Bz e y

e—1 = n! e—1 (e—-1)

Hence, we have
S o (DR e Y _@-DR e (e
;n@ -Zln@m-( e—1 (e—l)zjl e-1  (e-1) ((e—l)zj
:(x—l)ﬂz)‘_ e’ L€ :(x—l)@x_e(ex_l—l)

e—1 (e-1* (e-1)? e—1 (e-1)?
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X - x x-1 _
Similarly, we have Zn o= D" _2(x-1)le LeletDe™ -1

nel el (e—1)° (e-1)°
le 3 = (x— 1) [&* 3(x—1)2 [&" + 3(x-D 2 (e+]) ~ 6(62 +4€+1)(ex_1 ~1)
el (e=1)’ (e=1)’ (e-1)’ T

(4) XZ_E sin(n).

The inverse difference of sin(x) is given by

n! = (2 ! 2
cos(lj sin(lj cos(lj [¢os(x) + sin(lj [$in(x) cos(x - 1]
1 2 2) .. 1 2 2 _ 2
=—— [¢os(x) + Bin(x) |=—— == .
21 . (1 (1 2 (1 (1

sin| — sin| — sin| — 2sin| —

[2j (2j (2j (2j

Hence, we have

- cos(n—;j cos[x—;j cos[;j cos(x—;j—cos(;j
;gn(n):zlmn(n)An:— (lj =- (lj + .(lj:_ (1}
2sin| — 2sin| — 2sin| — 2sin| —
2) 2 2 2
) (x—lj . (xj ) (x—lj ) (xj
—2sin| — |sin| — sin| —— |sin| —
_ 2 2 _ 2 2 .
2sin(1j sin(lj
2 2

(%) xz_lcos(n).

The inverse difference of cos(x) is given by

sm(x) Z( )" =2 cos(x) - lsm(x) = —%cot( j [¢os(x) — —sm(x)

1 1
—cos(x) nz(;( 1" (2 ) —="_sin(x) —Ecos(x) —Ecot[ j [$in(x) ——cos(x)

cos(lj sin(lj cos(lj [8in(x) — sin(lj [¢os(x) sin(x - lj
_ 2) . 2 1 2 2 _ 2
= [8in(x) —

[¢os(x) |=—

= s (i)

Hence, we have
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: n: . 1 (1 . 1) . (1
sin| n—— sin| x —— sin| — sin| x —— |+sin| —
( 2) ( 2 ] ( 2) ( 2 j ( 2)
= + = 1
2 sin(lj 2 sin[lj 2 sin[lj 2 sin(j
2) |, 2 2 2
x=1) . (x x=1).(x
2cos| — |[sin| — cos| — |sin| —
_ 2 2 _ 2 2
2 sin(lj sin(lj
2 2

4. Some Infinite Series

icos(n) = ZZcos(n)An =

We consider some infinite series in this section. They may seem to have little to do with our
subject. However, it is these series that led me to the discovery of Euler-Maclaurin formula.
Moreover, some of the results are relevant to the issues in section 6.

The relevant research is so plentiful that I can hardly decide whether the results have already
been in literature. I will point it out if I know it has already been known.

a)ji£ﬁ3>1y

We know it is the well known zeta function on the real axis s >1. We show how it can be
transformed into a definite integral. The result has already been known.

1 &1 1 sl gz _ - . f
S Loy lo b fretea- (S_l),mzj f(j ¢

x=1 X x=1 X (S - 1)' X

e 6) T g4 2
s zhe () d"(s—l)!D;joe o

X X

3yl gy = —zl e £l
(s 1)'[j :Z: d= (s-—l)'[j 1-¢” a.

-t s—1 s—1
! q' ¢ _ldr= ! q' C gr= q' L ar
o x’ (s—l)! 0]-e™ (s=D! Yo e -1 M(s) e -1

The last formula can serve as an equivalent definition of {'(s) on the real axis s >1.

Let t= é, we obtain

Similarly, we can obtain

ST I gl gz o €
g(wa)s_-o(xw)sm( wq ¢des (s—l)'DZI [mJ v

ot Das—] 9. — o 7 gy = 1 o _ol—e o
DZI (et g = s—l)'q mZe ldt—(s_l)!tjoe S e

(s 1)' l-e
Let n —» oo, we obtain
00 1 1 o —aldl ~ 1 o (1-a)d B 1 o (1-a)ld B
> = " de = " S—rar=——0 “—r"dr.
S(x+a) (s-D! l-e (s=1! 0 ¢ =1 M(s) © e -1
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We know it is Hurwitz zeta function {(s,a).

Lastly,
LoD & (D T . _{( £ j £
= B _ d
XZ—:?(x+a)“' Z—;(x+a)‘“ (S—l)'EI ¢ = 1)'EZI( D x+a x+a
x —(x+a)m 5= ld — —aE 1 tl._m‘ts—ldt
el i Z( b
1 |:j e—am 1 +( e_t)”"'l v—ldt
(s 1)! l+e™ '
Let n — oo, we obtain
) _1\* o —ald o o=@ 0 om0
> b -1 0" —rar = 1 0" S—rdr = : 0" S—ar
S(x+a) (s—D! o l+e” (s=1D! 0 e +1 (s) 0 e +1

=1
2 -
) Zl =
As usual, we begin from

gl g JS = R
1)'EI ereaEs ZL( -1 [xj ZI‘) (x e

Notice that the series converges unlformly Change the order of series and integral, we obtain

ZIO (x e e _j z(x ! _xm“dt‘j _tEE(x 1),9_(x_1)mtx_ldt=j0 e [ "t .

Let x=¢™",ie. t = —In(x), we obtain .roe_’ ¢ %dr = —.[ xx™ [ﬁ——jdx =J-1x”‘dx.
0 0 X 0

xlx xlx

1dx
Thus we obtain an amazing identity: Z— =), =
x=1 X x

1
3
()xlch'

We prove a relevant theorem before we consider this series. A lemma is needed first.

k
Lemma 3: z ! (k=21L,kUON).

!;l(nﬂ) = l'@"l)'D( i)

k

. rol (n+i) .
Proof : Suppose ——— z then we have Za = Zal |_| n +z
U (n + l) i=0 (n + l) i=0 i=0 J7i

GO02. k).

Page - 19



EO7

Let n==i(i =0,l,...k), then we obtain q, |_| (j-i)=1.

i
1 1 1 1 1
Hence, a; = — = — — =D - E—F—.
NG-9 -9 07" 6o
1 j<t i1
Theorem 4: i - ! = klﬂc' (k=2LKkUON).
7= (n+i) )

i”w Eﬁz o [£:%)

The formula can be simplified as follow.

g (I8 BB () - ()
=E%gewﬂjijk&(z<>&n —

0

g;azzxmxn'ixmluJ_%f ZI w@)__Zju D!

x=1

tdt .

Notice that the series converges uniformly. Change the order of series and integral, we obtain

> j o 1)' j z(x b e ™"tdt = j:e" 2 Odt.

, wWe obtain

Letx—e

}: = —1x@xm—mu»dchm@):fx@xmmxnﬁ—l}h:—j}xmxmdn
x 0 0 X 0

© R e 1 L (o epmy
Similarly. ; m_;ﬂﬂwﬂ!“xmeW1wj ¢mde
Lo e ()7 ¢, -
(wﬂyzj (x - D(Ej x (wﬂyqu(x w .
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Notice that the series converges uniformly. Change the order of series and integral, we obtain
w _—(x-D@

— 1 wg e n-1 7, 1 ® € n—1
(n— 1)vDZJ G-t _(n—l)!q()xz::‘(x—l)!m dt_(n—l)!qoe Eg‘(x—l)!E dt

q‘ —tlj?e’ljnldt

m D!

1
Let x =e™", we obtain
; x"! Dc' (n ! q

x n=l 1+ l)n1 nl — nl
(n_l),tj x[2* [in(x)) Eﬁxj 1),Ej * fin(x)) r() Ej * fin(x))

x° Q-In(x))"" d(~In(x))

00

. . . 1
Let us have some further consideration on it. If we define &, = ZTDC" then we know &, =e—1,
o1 X !

E,=e,...Ingeneral, £ =B [é for n>1, where B, denotes nth Bell number, whose

exponential generating function is e®

x" . Hence the generating function of £_, for n =0
n=0 n!

00

£ . . .
=1+ z;”x” . As for the generating function of &, for n = 0, we have the following result:
n=0

1 (o)
Theorem : The generating function of &, for n =0 is given by _[0 e' @°dt = Z(—l)" £ x".

n=0
n=0 n=0 "t n=0 )

Notice that the series converges uniformly. Change the order of series and integral, we obtain

S a(wdr =[Ye D(Mdr =[e' @"dr = [ o' @t
n=0 n. n=0 n.

IS

4

( );; o
n

We use the identity I'(a)['(8) =T (a + f)B(a, ) to transform the summand into
1 M+l _TQ2n+2)

(2;1] F2n+1) T Q2n+1)

n

(Bn+1,n+1)=Qn+1)B(n+1,n+1) = (2n+1)j01x"(1—x)”dx

= [[@u+D(x-x*)dr.

Therefore, Z

1
n=l1 27’1
n

= ijol(znﬂ)(x—xz)"dx.
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Notice that the series converges uniformly. Change the order of series and integral we obtain

Zj(znﬂ)(x XY dx = j2(2n+1)(x x)"d == X _zx;ixl)_”d =5+ %’

Similarly, we can calculate z

o
el (211}
n
n

n-1
at where s <1. Z (=D at where s <1 can also be
n=l

)

computed in this way. Some other identities includes Z; = l( 2)= i ,
= 2(2;1] 3 18
n
n
z; =_L 17 17” Z - 1) %Z (3) . etc. Since these identities appeared in Apery’s

= 2 AT E
n n

paper proving {(2) and {(3) are irrational, we have some further consideration.

00 n 00 n 00 12 00 —1\ 2
Let us begin from zx— , we transform it into z ol = z (211.) x" = zmx”
= 2n = 2n) SEn (2ol E (2n)!
n n
00 00 o0 _ 42y\n-1
-5 Do rm) =SB B Sy,
1 (2n+ l) = 2n+]) ' 2n =0 2n

Notice that the series converges uniformly. Change the order of series and integral, we obtain

-y e =), ologli—@—)y) L (Jx)
;L—Zn th_jo;—z x"dt = j dt =2sin > |

n 0 2t-t?)
. 2
Hence, we obtain )| L 2sin™ (lj = T = l( (2).
£ 2) T18 3

2
Then let us consider Z il . We can obtain Z X = ZJX sin” ﬁ @
5[ 2n o 2 X
Therefore, z

1 1, _
—=2j'sm1
= 4 2n 0 2
n
n

2 2
Apply the variable substitution u = Jx , we obtain 2J-01 sin”' [—J —=4 .[ 1 sin”! [%j @
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2

Similarly, Z}ﬁ(ks 21)=2 .[:...J.OX3 J.Oxz sin”' (@J xildxldxz...dxs
n +s

n

o[ I[J_ J

2

2 S
XXy XX X3

2
:...:2jx...jlfsm'l{Vx‘x”'xs] L dvdv,..dx,
0 J00 2 XX, X,

oo

2
L dv, .. dx. =2LX...j;j;sin‘l[Vx1x2x3] L e, dx

2
X, X,5...X
=2 sin”| A2 L ixdr,..dx. .
Q 2 XX, X, ‘

2
@ XXy X
Hence, z;z(s >1)= 2!9 sin_l{ i ] ! dx,dx,...dx, .
n=l 2+g
n

n 2 XX, X,
n

The integral area is a s-dimensional unit cube [0, 1]°.

u, A XXy X X, u,
u, X Xy U,
We apply the variable substitution | u, | = X, ,Le | x; | = u,
us xx—l xs u]
UsUy.. U

To calculate the Jacobi determinant of it, we may notice that

0 1 0 0
0 0 1 0
a(xlaxzr“axx ) —
O(uy,uy sy ) 0 0 0 1
2u, 3 ul2 3 ul2 : uf
u2u3...us u22u3...us u2u32...us u2u3...uf
1 0 ... 0 0 0 .. 0 01 .. 0
ey 2 0 1 .. o_(_ 21,[12 jo 1. 0+...+(— u} zjo 0 .. 0o
UpUsy ol foon v e ol U Uyl Jloee e e ol UgUsy o, Jler oo e ol
0 0 .. 1 0 0 .. 1 0 0 .. 0

Notice that if there is a line filled by 0, then the determinant vanishes. Therefore, only the first term

- . 0(X Xy ey X, L 2u
remain, and we obtain (¥, %, ;) =(-1)"" L
(510 enstt) Uylly.. U
uz uz u2
The new integral area is [0, 1]x[u], 1] X[, 1]X[——, 1]x...X[ 1 1.
Uy Uy Uyl U
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du,du,...du

[ 2 2
2I sin_l[ xlxz...xsl 1 dx,dx, ...dx =2j sin_l(ﬂj i|6(x1,x2,...,xs)
Q $ Q

2
2 X, X5 X, 2) u ‘a(ul,uz,...,us)

wY 1 2u wY 1
=2Lzsin_1(—lj ——du du,..du, —4j sin 1(—1j ———du,du,..du,

2 ) ul uyuy..u, 2 ) wuyuy..u,
_ 1, - ”1 dul lduz 1 du3 1 dus
—4osm — ) u? el .
2 Uy = Uy Ty s T, Us
du du 1 du
To compute .[ — |2 — .| » -
Uty u3 Uply.. Uy us
| duz 1 du3 1 du, ¢ du, ¢ du, ¢ du ,, _ Lt du,
v+1(u) » “12 y - 2 » . 21 u— . 2 | U - 20 u_.
3 s+l Uy T A - Uy = | - s+l l VU 2
uzuz Upll ...l s (\/Z] us [\/E] Uty ...l ’ :

I,(u,)=1, 1,(u,) =—log(u,), assume I (u,) = p, log(u,)’™", where p, is a constant, then

s=1 -1
T
2 2 2 2 2 2

1

~2 T -2
- ps log 1/[1 - ps
s )| T

Uy

log(u,)* = p,, log(u,)".

(-2
(s—1!°

-2 ~
Therefore, p ., = Py ,S!p, =25 =D!p,, (s=D!p, =(-2)'", p, =
s

Hence, i >1) = G2 2™ j sm_l(z) Mdu

PP (s=Dt-o 2 u
n

Apply the variable substitution & =sin™' (%j, we obtain

m

( )v+1 | U (log(u))H _ (—2)”1 z 52 ' »
(s=Dro 'f " (2j u = (s=1)! '[0 2sin(§) (10g(2 sm(g‘))) 2cos(¢)ds

((2);), [+ € cot(&)(log(2sin() ™ dé

Notice that cot(&) = % log(2sin(&)) . Therefore, we have

1)!
_ (—2)“1
(s =1)!

D[ & cod(onasin(e)) e =, 2);;' Jy ”f " log(2sin(E))
I ©2&(log(2sin(é))) dEJ (( 2)1)' [¢ £llog(2sin(£)))" d€ .

(52 (log(2 sin(c‘)))s

Let us consider the case when s =1.
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We have z = 4! &’ cot(&)dé . Apply the Fourier expansion of cot(&),

n
cot(¢) =2 sin(2nx) , we have 4 jf & cot(&)dé =8 jf > &2 sin(2nx)dé .
n=1 n=l1
Notice that the series converges uniformly. Change the order of series and integral, we obtain

8 LZZ & sin(2nxdé =8 jOZ £ sin(2nx)dé
. = cos(nnj sin(nnj cos(mj
_ z _7 3 + 2 3 49 3)_2

n 3 n’ n’ n’

nit
- Cos(j DGR (C
Since Z Z —z

2% 245
nit
o COS() 1 & l)nl © (- l)nl Gl_ Gl_
; EZ —n G’ 2( 8)((3)—— 7(1—2 j5(3) —5(3)-
. ([ nIT

© 2T sm(3j 4

We eventually obtain Z L _27 — _EZ 3).
n=l n

in im
————= can be written via polylogarithm as %(Liz (e 3 j -Li, (e 3 B :
n’ i

5. Applications of Euler-Maclaurin Formula to Series

The applications of Euler-Maclaurin formula should not stop here. We continue to use it to
deal with some series in this section.

05

It is the well known series as zeta function at s =2, and we know it is precisely o We have

transformed it into a definite integral in section 4. This time we apply Euler-Maclaurin formula
directly.

d"' 1 a1 1! . .
—=(-0 —» Where n is a non-negative integer.

Lemma 4:

d“ 1
2

-1
dx~ x

Proof: If n =0, we have

1
o
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Notice that d_kkiz:i(ﬂ 1] [( 1)]{1 j =(-)"" kE——5> k 1) =(-D* ékl

dx® x dx\ dx*' x?

Hence, from mathematical induction we know it is true for all n N .
We may use Euler-Maclaurin formula to obtain its inverse difference as follow.
Z— d“_i - ._Z( 1)”13

s n' dx"™! n!

But this series diverges everywhere except when X - o ittendsto 0.

We may deal with this series as follow. Anyone who first see it may think it too lax. However, since
theory of divergent series has already been established, a strict foundation may also be built up.

> B
We begin from the identity = z (=" —"‘t” , and apply Laplace transform to either side of

the equality, we have I i E—I—dt = IO i DZ( 1) —t'dt.

Regardless of the divergence of the series in the 1ntegrand we change the order of series and
integral, and obtain j e EE:( 1) —tdt = Z( 1)" j O3 dt

Then the integral in summand is easy to deal w1th Let E =xI[t,we have

2(1) j‘xmﬂdt—Z(l) j [ﬁj

n+1 ”'_Z( 1) n+1 '

Thus we obtain Y —Av = ~[ e B—"dr.
X 0 e -1

il e

Therefore

> L Z Ax=~lim " e O—"—dt + "™ [—I—dt

_lx X >0 J0 e -1 0 -1

Amazingly, the result is true.

Then let us consider the ‘identity’ J- B G—dt = Z( 1) . The =" may seem unpleasant
here, we change it to ‘~’.

00

B,,
= 1 2"andthe51nof is (=D)"" for n>1.
Z() Zl g (2n)! (-1
_t N
e -1 ( Z:‘2)1 j'
® —x _t _ n —_ —x _t _ —x[d
joe B i Z( )" Oe Ele_t—_ldt Z( )" j 3" dt

n+1
n=0
B
—Z(—l)”—”t” t
1 3 n!

Notice that

I)A’Mz‘m+2 for t>0.

Therefore,
(2N +2)!

=[’ -xm[.l_dt—j ‘XEDZ( 1)" zdt—j e
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_J’ (- ) 2N+2 PN gy = (_I)N Byyis j”e—xm F2V*2 gy = (_I)N By (2]\;\:32)'
(2N+2)' (2N +2)!% (2N +2)! x

X —> 00

Therefore, lim x*" (L e [—)—ldt - Z( 1" ””j =0.

> B . . .
Hence, Z(—l)” —— is the asymptotic series of J-O e E—I—dt .
n=0

n+l 1

(2) Zi? , where s is an integer = 2.
x=1 X

It is zeta function on the real axis s >1.

4™ 1 Ly 9

at (s+n-—2)!
s+n1 (_1) l

(s -
()" =sMs+ 1) ...(s +n—2) denote rising factorial, and we define (s)™ =1(nON).

Lemma 5:

(s=22,sON,n0N), where

Since the proof is almost the same as that of lemma 4, we will just omit it.

1 °B d"™" 1 &B,, . (s+n-2 1 )" (s+n-2)!B,
z K Ax = n—1 S = _( 1) 1 ( S+3 1 z( ) ( s+n-1 )
= n dx =~ n (s - (s =4 nl
1 z( 1)“mn+1)<‘3>u3
(S 1) s+n-1

B, o0 -
As is shown in theorem , we have Z( D" = —IO e [—I—tdt .

n+l -t
e X e’ —1

Derivative it respect to x, we obtain

ds 2 o (n+1)(s 3) ds—2 o _ —¢
dczz( 1" n+1 Z( I)Bdsz n+l 2( I)B Xl _dxs—zjroeIﬂ !

- -j: aax_zz e De_?t_ldz = —j ) J—dl t= —J‘:e”‘m

o 1
zxé

x=1

=z;’°iSAx=(—1)°“1[1im j‘”e'xm e SN j‘”e‘xm D(is_;dt
X

1
x—w (g =1)190 e’ -1 (s =1

D(_t)s—ldt: 1 ro 5 e 1 ro 5!

=(=D" (s—l)"[ e o 1 (s=1)!% ¢ -1 _I'(s) |

(3)2—

n=1 1

It is known as harmony series and has been solved at least since Euler. We just have a look at how
Euler-Maclaurin formula is applied in this case.
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d"‘l_( o b

The proof is omltted.

(n=21).

Lemma 6:

We only take the first term of Euler-Maclaurin formula, but that is enough to obtain

Zi‘%_ ld—§+0( j+0(1) zlog(x)+0Gj+0(1).

To know more about the constant, we take all of the last terms,
=B, d" 1 iB (D! _$ (D™'B,
nln'dn1 n=l1 x n=1 nDC"

< an n-1
‘1j=2(‘1) gf
Therefore, :e jdf I e Z( )" B, ”lef Z( )" I ~EEIgE
e
_Z( )" j [ﬁxj . z

= ;(—1 .=;(—1)"ﬁ

(1)“3 e*‘ -& _ef —et
z 0 ¢ [ﬁe_‘(—l ljdf_jo (e_’f—l

Similarly, we begin from the identity 1 ( _

e Oy

( l)nlB
R

n=1

e o 1 1
et (g e

jd{ and it is known as Euler-Mascheroni constant.

x=1

1 1
| fe
y =0.5772156649...

We denote y = j:(

x—1
Hence, zl ~log(x) + (x — ), which has already been known to Euler.

n=1

Y log(n).

n-1 _ |
Lemma 7: d —log(x) = (=1)" ( _12)' (n=22).
dx" x"
The proof is omitted.

We take the first two terms of Euler-Maclaurin formula to obtain

glog(n) = J-lx log($)d¢ - % log(¢) 1 + OGJ +0() = (x - %) log(x) —x+1+ OGJ +0(1).

To know more about the constant, we take all of the last terms,
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B d" e n- 2 @ -1)"B,
>l tog) =y Sy 2D B
o n!odx = n! Snln-1)&
Similarly,

e E - 2 - 2
7= jdf xgtﬁz( D e g jdf 2( )2 [ g
=i<—1>"—:J:eﬂ€%J PR,

B,
,,1(” 2)! Z( )" W

Therefore,

°.  (-1"B, (-1)"B, e‘fté—f__ij IS S

;nmn—l)w" - Z_;‘nmn—l) 0 &2 e -1 : ng IO(E(ef—l) et 2&5}15.

11
&ef-1) & 2&°

x—1
Therefore, logl (x) = ZIOg(n) ~ (x —%) log(x)—x+ %log(zﬂ)(x — ), which has already been

n=1

After some further calculation, we may know j:( de = —10g(27T) 1.

known to de Moivre and Stirling.

(%) XZ:: nlog(n).

Lemma &:

— xlog(x) = (=1)

The proof is omitted.

d"‘l n-1 (n 3) (n > 3)
x

We take the first three terms of Euler-Maclaurin formula to obtain

anog(m: J| €roe@ae - —d—gflog@ (ljw(”
= ﬁ—f+i log(x)—ﬁ"'l"'o(lj"'o(l)
2 2 12 4 4 x '

To know more about the constant, we take all of the last terms,

Ztln(t)At = y i —tlog(t) ——log(t) —ﬁ —%tlog(t) +%(10g(t) +1) .

Similarly,
-¢ :i(_l)nﬂp,% ¢ ¢ Ej Sty B

ef-1 & n! Ele? -1 2 12) “= n!
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(oS Ten S e e e
= g(—l)" B—, [[e” E@dl - i(—l)” B[ e

w "2(” = ;} V mn—néa—2ﬁ3*“
Therefore,

. e “  py s )
nﬂnEnESEnégﬂ”JFI:Z;nﬂi}SiZLZ):_L6}3 af{1_ _g_fé}%-

_ R
B .[0 (52(65_1) 5365 25265 lzfefjdf

< x> ox 1 x°
Hence, Z nlog(n) ~ (7 - 5 + EJ log(x) — Y +C(x - ).

n=l1

We denote 4 =e“ =exp l—re“( 1,1 d¢ |, and it is known as
40 &et-n & 2 12<r

Glaisher-Kinkelin constant. 4 =1.2824271291...

(5) xz_l n’ log(n)(s 2 0).

n-1

Lemma 4: -
dx

x" log(x) = (5)(,, X" """ log(x) +C, ;x*""(1s n < s +1), where C,_, is a constant

and (s),,, denote falling factorial, (s),_,, =s(s —1)..(s =k +2).
0

Proof: If n =1, we have %xs log(x) = x" log(x).
X

k k-1
Norice that - log(x) = ﬁ;i 5 log<x)] = {90y 08+ € )

= (S)(k) X log(x) + (S)(k—l) X % +(s—k+ l)ck—lxs_k = (S)(k) X log(x) + Ckxs_k

Hence, from mathematical induction we know it is true forall (1<n<s+1).

Then we consider the constant C, . From lemma 4 we know that C, = (s —n + l)C” T €) PN

C 1
therefore, —2— = —! .C,=0,C,=(s), =(s),,
(S)(n) (S)(n—l) s+l- ( )Z ( )z
. s+ xs+1
Lemma 4: I ¢’ log(é)dé = log( )+
1 ( +1)
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d xs+1 1 _ S+1 xv+1 1 xs ‘
Proof: — log(x) + =x"log(x) + - =x"log(x),
dx(s+l &) (s+1)° ] &) s+lx s+1 &)
1 xs+1 N s+ +1
+ =0 . Therefore, *lo = lo X
G J| € log()a¢ g+ ( e

We take the first s +2 terms of Euler-Maclaurin formula to obtain

s+1 n-1

'dgrnl

¢ log($)

+ O(lj +0(1)
X
S+1 ¥+1

1 og(x )+ - 1) ; i ((S)(n l)xé n+l log(x)+C,_x*" ntl Cn—1)+ O[%j +0(1).

( - +§: (S)(n 1)xb "Hjlog(x)+P+l(x)+0[1j+0(1)

+1

( - "”jlog(x) +P+l<x)+0(1j+0<1>

s+l 5 n' (S—n+1)'
s+l 1
= s+1 + B s+l-n 1 +P +O = +01
S+1( Z( j nX J 0g(x) + P, (x) [xj M

= %Bm (x)log(x)+ P, (x)+ O( ! j +0(1), where P, (x) is a polynomial of x of degree s +1.
s

N B N B
P (x) =xP (x)+ 1 2 Cors 1 2 T Co-
(s+1) - nl (s +1)” 3 n!

R < 0
_(s+1)2 ~ nl (S—n)',Z:Si (s+1) z(n]B",os—l

n=1

IO Y

Hence, Zn 10g(n)~%B?+l (x)log(x)+ P, (x)+C, (x —» ).

n=1

f s+2
In a similar way, we obtain C| I I [ - Z( ) j £.

(6) XZ_E tan "' (n).

n-1

-1
—tan" (x)

Lemma 12:

0, n odd
= " , where n>2.

(=) Un-2)!, neven

x=0

Proof : Recall the Taylor expansion of tan~'(x), we have tan™ (x) = z; 1_')_1 e
n=0

n

tan ' (x)

® dx” -

Meanwhile, we have tan ™ (x) = z —x".
n=0
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Equate the coefficients of the two equalities, we obtain
dn i {0, n odd

(—1)E l n—2)!, neven

—tan~ '(x)

x=0

We take the first two terms of Euler-Maclaurin formula to obtain

Xitan “(n) = 2 tan” (n) = j “tan” (6)dé —%tan (&) . o(izj +0(1)
n=l =0 0 0 x

= (x - lj tan ' (x) — llog(x2 +1) + O(%) +0(1)
2 2 X

To know more about the constant, we take all of the last terms,

L) n-1

B
> d —tan” (x)
= n!dx"

00

—_ BZn n—1 n-1 n
Fo_;(z e 2)";( T (2n D’

S » By, x X n-1 Pon 2n-2 _L _X X

2V G =500, ;( Y (2 e x2(1 2C°t(2n'

we _s N B,, w2 = |y net Ban (- pan-2
Lo (l C°t 2)% [ gxe @n )"( ]‘( A @n )'I e

n=1 n=1

) -y y2n Y _ n-1 By 1 -y M1.2n-2
2! <z>vfe [H b R

n=l1 X
1

00
00

n-1 Bn
2"1(2 _2)'_2( b, (2n—1) x*"

Z::‘ (2 )'

n-1 2n — e _i i
z( ) 2n(2n 1)_I° & (1 2C0t(2jjd£'

Hence, :Z:: tan ' (n) ~ (x —%) tan ' (x) —% log(x*> +1)+C, where C = I:%(l - g cot(ijjdf

2

We know in (4) that z 2n(2n 5 - J‘“’ e (g coth jdf =—log(2m) —1, but I failed to figure

B,, e
out a closed form of Y (=1)"" = ——cot 2 .
WZ:;( ) 2n(2n 1) I ( 2 2 ]df

(7) in” .

n-1

Lemma 13: e x* =x"" P (x(log(x) +1)) ~ x* (log(x) +1)" ™ (x - ), where n>1 and

P _ (x(log(x) +1)) denotes a polynomial of x(log(x)+1) of degree n—1.
0

Proof: Ifn =1, we have %xx =x" =x"(log(x) +1)°.

t
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dt* dx \ dx*! dx
= x" (x(log(x) +1) =k +1) [P, (x(log(x) + 1)) + x* ™" [P,_, (x(log(x) + 1)) [{log(x) + 2)
= x*"" [P, (x(log(x) +1)) ~ x* (log(x) +1)*.
Hence, from mathematical induction we know it is true for all n>1.

k k-1
Notice that d—x d ( d xj -4 (x"_“1 [P,._, (x(log(x) + 1)))

From lemma 13 we know all derivatives of x* goes to infinity as x increases. Therefore, the
remainder term can never be dropped if x is sufficient large, which means we cannot use Euler-
Maclaurin formula directly. Let us have a observation of the following operating.

Seag=y 0 j;,”ff [efags 2 > j{,,_ £ T o)+

& & (log@ﬂ )

—(gfgee_ S £ _

If det og($) + 1; n! jf det log(¢) +1{ " —1 !
é é

=[¢ dg+£(eﬂf 1 lg(aﬂj(f ).

-, \ ¢ B, d"' | . f 11 ) &B, d"
z =>""n"An = j5d5+; WWIE jfdaf[ i 10g({)+1J >
= [Fge £ 1 B, d" .

.[E dé+ ¢ (e[f " 10g(f)+1} C, where C = 2 ag & 11saconstant.

I have computed the summation to some magnitude, and found that the last formula did
approximate to it. It’s also one of the problem I will consider further afterwards.

® o513 Lo,

We take the first term of Euler-Maclaurin formula to obtain

! dE+O(LJ :;_+O(Lj
y (s —Dx* x*

Hence, Z—~( 1) —(x — ) orZ—— (%)

This theorem is also commonly used in number theory.

(S Sl )

We take the first term of Euler-Maclaurin formula to obtain
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Sl Lol S el D:“*Dbg(xl-lw(l)

¢
(1 n+l x+1 (1
Hence, Z(— —log( D~(x+l) log(—J —1(x - o) or Z(; J
n n x

n=x
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