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Counting, Classification and Graphic Design 

of Sudoku 

 
Abstract 

The aim of this paper is to study how to count the number of hexagonal sudokus. 

Firstly, using the method of Grobner basis theory of polynomials, we show the way to 

count the number of hexagonal sudokus and give an estimate of the number. Second, 

we consider the symmetry of hexagonal sudokus under the action of the cyclic group 

of order 6. Using the famous Burnside lemma in group theory, the number of 

hexagonal sudokus under the symmetry of rotation group is obtained. Lastly, we 

discuss the design project of the circular disc with any radius via spelling hexagonal 

sudokus, then the concept of spelling efficiency is introduced and its changing rule is 

shown.  

 

Introduction 

"Sudoku” is a Japanese word, meaning "single number" or "number which 

appears only once." Generally, Sudoku is a number-filling game. However, this 

concept did not come originally from Japan, but from Latin square, which was 

invented by the Swiss mathematician Euler in the eighteenth-century. Now the most 

widespread Sudoku is the 9×9 case, which appears in some newspapers as a puzzle 

for readers. There are even Sudoku competitions for "Sudoku Fans". Hexagonal 

Sudoku, which is studied in this paper, is one of many deformations of Sudoku. By 

redefining and analyzing the rules, we find that there are many interesting 

mathematical properties behind them. This paper is concentrated on the counting, 

classification and graphic design of hexagonal Sudoku. 

After reviewing the references we find that there are approximately 6.671×10
21 

distinct 9×9 Sudoku (see [7]). In this paper, the counting of hexagonal Sudoku is 

transferred into the number of the solutions of polynomial equations; then by using 

the Gröbner basis theory, the number of all Sudoku is calculated. Our main approach 

is to calculate a certain Gröbner basis of an ideal in polynomial ring with the help of 

computer. 
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Analogous to 4×4 Sudoku has only three essentially distinct types under 

transformation, we find that hexagonal Sudoku also has some symmetry (rotational 

symmetry). Therefore, we can give the invariant under the rotational transformation. 

That is, with the total number of hexagonal Sudoku known, Burnside’s Lemma of 

finite groups is used to classify Sudoku. Hence, the number of different Sudoku types 

and the number of Sudoku contained in each type will be found. 

Hexagonal Sudoku considered in this paper is defined as follows: 

① the nine numbers filled in each triangle are different from each other 

② the nine numbers filled in each row are different from each other. If there are less 

than nine numbers in a row, then it combines the vertex angle of the corresponding 

large triangle, as shown in the blue area in the figure. 

③ the nine numbers in each "/" hypotenuse are different from each other. If they are 

less than nine, similar to ② 

④ the nine numbers in each "\" hypotenuse are different from each other. If they are 

less than nine, similar to ② 

That is to say, numbers 1 to 9 are filled into each large triangle, horizontal line, "/" 

and "\" hypotenuses in a non-repetitive manner; the first and the last line of each level 

will combine with the vertex angle of the corresponding large triangle. 

In terms of the geometric pattern of Sudoku, hexagonal Sudoku is symmetrical,  

composed of regular triangles, and can be spliced into an unlimitedly extending 

geometric figure, into which gaps with equal size are embedded. Thus, we consider 

that this geometric figure can be used to manufacture objects with uniform pattern of 

regular shape, such as floor tiles. By calculation, we can know the scheme of the 

designed objects with regular shape which consumes the least materials, and provide 

the method for the design of possible products. 

Therefore, our discussion is divided into three parts: firstly, we use Gröbner basis 

theory to calculate the total number of hexagonal Sudoku. On this level, we regard the 

distribution of hexagonal Sudoku data in different directions to be different; secondly, 

by considering the rotational symmetry of hexagonal Sudoku, we give the total 

number of hexagonal Sudoku in the equivalent sense under the rotational symmetry 

using Burnside’s lemma; finally, we study the scheme of splicing hexagonal Sudoku 

into unlimitedly extending circular geometric figure. As the number of hexagonal 

Sudoku contained in the circle depends on the radius and area of this circle, we 
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propose the concept of splicing efficiency, i.e. the number of Sudoku contained in the 

unit disk. On this level, the variation pattern of splicing efficiency is given. This 

pattern serves as the scheme whereby we can design circular geometric figure with 

the least material and regular shape. 

In Sudoku, obviously, the status of each number 1, 2... 9 (or for the calculation, 

replaced by -2,-1, 1, 2... 7) is equal. In fact, we can consider the new Sudoku obtained 

by number permutation as the equivalent Sudoku in contrast to the original one. If this 

factor is considered in counting the total number, then the equivalent Sudoku can be 

regarded as the same, thus the total number of Sudoku is decreased. 

However, graphic design is involved here. Specifically, by matching each 

number of -2, -1, 1, 2... 7 to a certain color, Sudoku pattern after the permutation 

differs. This is precisely why we will not consider the equivalence due to data 

permutation. 

 

I. Counting of Sudoku 

As for hexagonal Sudoku, we first give the polynomial equation system 

(product-sum system) which corresponds to Sudoku’s constraint conditions.  

Since the number filled has no constraints itself, we may take the objects from 

the set S = {-2,-1,1,2,3,4,5,6,7}(this is to ensure the unique solution of polynomial 

equations. see below and [4]). Each position of hexagonal Sudoku is labeled 

as 5421 ,, aaa L , respectively, as shown in the following figure: 
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Due to the restriction of six triangles, we have the following constraint equation: 

25721)1()2(14131211104321 =++++−+−=++++++++ Laaaaaaaaa  

10080721)1()2(14131211104321 =⋅⋅⋅⋅−⋅−= Laaaaaaaaa  

252417161598765 =++++++++ aaaaaaaaa  

100802417161598765 =aaaaaaaaa  

M  

 Due to the restriction of the row, we have the following constraint equation: 

25921 =+++ aaa L  

10080921 =⋅⋅⋅ aaa L  

M  

 Due to the restriction of "/" hypotenuse, we have the following constraint 

equation: 

25721)1()2(192820211110321 =++++−+−=++++++++ Laaaaaaaaa  

10080721)1()2(192820211110321 =⋅⋅⋅⋅−⋅−= Laaaaaaaaa  

253729302223121345 =++++++++ aaaaaaaaa  

100803729302223121345 =aaaaaaaaa  

M  

Due to the restriction of "\" hypotenuse, we have the following constraint 

equation: 

25721)1()2(363527261817879 =++++−+−=++++++++ Laaaaaaaaa  

10080721)1()2(363527261817879 =⋅⋅⋅⋅−⋅−= Laaaaaaaaa  

254534332524161565 =++++++++ aaaaaaaaa  

100804534332524161565 =aaaaaaaaa  

M  

Thus, we have a total of 48 equations. 

Moreover, because 5421 ,, aaa L  are taken from the set S = {-2,-1, 1, 2, 3, 4, 

5, 6, 7}, we have the following constraint polynomial: 

} 1
2
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0)7()2)(1)(1)(2( =−−−++ iiiii aaaaa L  )54,,2,1( L=i  

With the polynomial equations above (48 +54 = 102 equations, 54 variables), we 

will next illustrate how to use Gröbner basis theory to calculate the total number of 

Sudoku (i.e. the number of solutions of the equation). 

The concept of Gröbner basis was originally proposed by B. Buchberger in 1965. 

Roughly speaking, a Gröbner basis for an ideal of polynomial ring is a set of 

generators with good properties. The good properties of Gröbner basis can be used to 

solve many theoretical and practical problems related to polynomial ideal, such as 

solving polynomial equations. Gröbner basis can be calculated from any finite 

generator of an ideal.  

Now we introduce the basic concept of polynomial ring first, and then give the 

precise definition of Gröbner basis of an ideal as follows: 

Definition 1: Let Q be the set of all rational numbers. For any number field R, the set 

containing all polynomials of n variables with respect to nxxx L,, 21  with 

coefficients on R is denoted as ],,[ 21 nxxxR L . It is usually referred to as the 

polynomial ring with respect to variables nxxx L,, 21  on R. Moreover, addition 

and multiplication is defined as the summation and multiplication of polynomials. In 

this paper, we always take the set R = Q (rational number field), i.e. Gröbner basis we 

consider is for the ideal in ],,[ 21 nxxxQ L . 

Definition 2: An ideal I of polynomial ring ],,[ 21 nxxxR L  is a subset which satisfies 

the following conditions:  

For any 1 2[ , , ]nr R x x x∈ L , a I∈ ， we always have Ira ∈ ，

i.e. 1 2[ , , ]nR x x x I I⊆L .  

Example: Let )(],[)({ xfxQxfI ∈= has no constant term}, then I is an ideal 

of ][xQ .   

Definition 3: Let 1 2[ , , ]nI R x x x⊂ L  be an ideal. The radical of I  is the set 

1 2{ [ , , ] : m

nI g R x x x g I= ∈ ∈L  for some 1}m ≥ . An ideal I  is said to be a radical 

ideal if I I= . 

Definition 4: An ideal 1 2[ , , ]nI R x x x⊂ L is said to be zero-dimensional if 

1 2[ , , ] /nA R x x x I= L  is finite-dimensional over the field R . 
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Definition 5: If an ideal I  can be generated by a finite number of elements, i.e. 

Iaaa n ∈∃ L,, 21 such that 1 2

1

{ , [ , , ], 1,2, }
s

i i i n

i

I ra r R x x x i s
=

= ∈ =∑ L L , then I  is 

said to be finitely generated by naaa L,, 21 , and the set { naaa L,, 21 } is the 

generator of I.  

Next we always consider the polynomial ring over the rational number field in 

54 variables, i.e. 1 2 5 4[ , , , ]Q a a aL . Before defining Gröbner basis, we first 

introduce the concepts about variable sequence and the first item. 

Definition 6: The total ordering "<" on the set S is called term order if the following 

conditions are satisfied: 

(1) Scba ∈∀ ,, , if ba < , then cbca <  

(2) "<" is well-ordered, i.e. any non-empty subset of S has a minimum element 

with respect to "<". 

In this paper, we always take the dictionary order for the monomials generated 

by the set },,,{ 5421 aaa L , i.e. the term order is defined as 5421 aaa <<< L . 

Example: 
2

317

2

535354 , aaaaaa >>  

Definition 7: According to dictionary order, we can arrange the monomials of a 

polynomial in a descending order. The leading term of a polynomial f  is the largest 

monomial with respect to this ordering after combining like terms, denoted as ( )lt f . 

Moreover, we define the leading term ideal of S  to be the ideal )(SLt  generated 

by the leading term of all polynomials in S, i.e. >∈=< SffltSLt )({)( .  

Example: the leading term of 
2

8

3

556

2

7 aaaaaf ++−= is 
2

8a . According to dictionary 

order, it is written as
3

556

2

7

2

8 aaaaa +−+ , i.e. 
2

8)( aflt = .  

Gröbner basis is defined as follows:  

Definition 8: Let I  be an ideal of 1 2 5 4[ , , , ]Q a a aL , and S  is a generator set 

of I . If the leading term ideal of the set S  is equal to the leading term ideal of the 

ideal I , i.e. )()( ILtSLt = , then S  is called a Gröbner basis of I . 

Example: (1) When 2 5 4

1 1 11,I a a a=< − − > , then 1{ 1}S a= −  is a Gröbner basis of I ; 

    (2) When 1 11,I a a=< − > , then 1 1{ 1, }S a a= −  is not a Gröbner basis of I . 
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This is because >=< 1)( aSLt , ],,,[1)(1 5421 aaaQILtI L>=⊇<⇒∈  and hence 

1 2 54( ) [ , , , ]Lt I Q a a a= L . 

Remarks on Gröbner Basis: 

(1) The existence and algorithm of Gröbner basis: 

In the polynomial ring 1 2 54[ , , , ]Q a a aL , the existence of Gröbner basis is 

guaranteed by Buchberger algorithm and Hilbert Basis Theorem. 

Hilbert Basis Theorem:  

Every ideal I  in 1 2 54[ , , , ]Q a a aL  has a finite generating set, i.e. there exists a finite 

collection of polynomials 1 2 1 2 5 4{ , , , } [ , , , ]sg g g Q a a a⊂L L such that 

1 2, , , sI g g g= 〈 〉L . 

Since we have already known that for any ideal I  in 1 2 54[ , , , ]Q a a aL , there 

exists Iggg n ∈,,, 21 L such that 〉〈= ngggI ,,, 21 L , then the Buchberger 

algorithm listed below tells us that how to get Gröbner basis of the ideal I  

from nggg ,,, 21 L . 

Buchberger Algorithm: 

Input: ],,,[},,{ 542121 aaaQgggI n LL ⊆=  

Output: Gröbner basis S  of I  to make I S⊆ . 

:S I= ; 

: {{ , }: ,X f g f g S= ∈ such that }f g≠ ; 

While X ≠ ∅  do 

{ , }: ( )f g pop X= ; 

: ( , )R S f g= —a paradigm of S ; 

If 0R ≠  then 

          : {{ , }: }S S h R h S= ∪ ∈ ; 

          : { }S S R= ∪ ; 

      End 

End 

Return S; 

For more details, see [2]. 

(2) The good properties of Gröbner basis:  

① It can keep all of the information of the root of each polynomial of the 

generating set of the original ideal; 
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② To some extent it can be "triangulated", i.e. making the polynomial solving 

convenient, which is required in this paper. 

(3) Several applications of Gröbner basis: 

① solving linear equations by Gauss elimination; 

② obtaining the greatest common factor of polynomials by Euclidean algorithm. 

Now let us return to hexagonal Sudoku. Gröbner basis of the ideal I  generated 

by the corresponding polynomials of 102 constraint equations is calculated. 

Lemma 1.1: With the other numbers in hexagonal Sudoku are remain unchanged, the 

number in the two grids of each vertex angle of large triangle (e.g. 1a  and 3a ) can be 

interchanged and still satisfy the rules of Sudoku. 

Proof: According to the rules of hexagonal Sudoku, 1a and 3a  should satisfy the 

following conditions: 

① 921 ,,, aaa L are numbers from{ }1,2,3, 4,5,6,7,8,9 without repetition;  

② 192820211110321 ,,,,,,,, aaaaaaaaa  are numbers from { }1,2,3, 4,5,6,7,8,9 without 

repetition; 

③ 534443321413431 ,,,,,,,, aaaaaaaaa  are numbers from { }1,2,3, 4,5,6,7,8,9 without 

repetition; 

④ 14131211104321 ,,,,,,,, aaaaaaaaa  are numbers from { }1,2,3, 4,5,6,7,8,9 without 

repetition. 

Under these conditions, we can see that 1a and 3a  are having the same status 

and can be interchanged. Similarly, 19a and 20a  can also be interchanged. Therefore, 

under the condition that the other number in hexagonal Sudoku remain unchanged, 

the numbers in the two grids of each vertex angle of large triangle (e.g. 1a and 3a ) can 

be interchanged and still satisfy the rules of Sudoku.                       ※※※※ 

Lemma 1.2: The numbers in the small triangle next to each side of the regular 

hexagon in the middle are equal to the numbers in the hourglass position (e.g. 

5a and 14a ). 

Here we give two proofs of this lemma. 

Proof 1: Let 921 ,,, aaa L  are equal to the numbers 1,2,3,4,5,6,7,8 and 9, respectively. 

In particular, 5 5a = . 

Then, the position of 1413121110 ,,,, aaaaa  are numbers from { }5,6,7,8,9  
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without repetition.  

Because 5 5a = , so 1312 ,aa can not be 5. If one of 1110 ,aa is 5, then 5 can not be 

filled in the positions of 19282021 ,,, aaaa . Because 5 5a = , 5 also can not be filled in 

3730292322 ,,,, aaaaa . Therefore, large triangle of 373029282322212019 ,,,,,,,, aaaaaaaaa  

lacks 5, so both 1110 ,aa are not 5, therefore, 14a = 5. 

Similarly, 2310 , aa  and other cases are equal. Therefore, the numbers in the 

small triangle next to each side of the regular hexagon in the middle are equal to the 

numbers in the hourglass position (e.g. 5a and 14a ).                       ※※※※ 

Proof 2: For the two "/" types hypotenuse on the left of hexagonal Sudoku, we have 

25192820211110321 =++++++++ aaaaaaaaa   ……① 

253730292322131254 =++++++++ aaaaaaaaa  ……② 

For the two large triangles on the left of hexagonal Sudoku, we have: 

2514131211104321 =++++++++ aaaaaaaaa    ……③ 

25373029282322212019 =++++++++ aaaaaaaaa ……④ 

    By equation calculation（①+②）-（③+④）, we obtain that 514 aa = . Therefore, 

the numbers in the small triangle next to each side of the regular hexagon in the 

middle are equal to the numbers in the hourglass position (e.g. 5a and 14a ).    ※※※※                 

Remarks: Proof 1 is based on the observation of the hexagonal Sudoku, and the 

number-filling rules are appropriately used to give this descriptive proof. In Proof 2, 

we express hexagonal Sudoku rules by mathematical language—equation, which 

makes proof more clear and concise. 

According to Lemma 1.1, 1.2, we use Maple software to calculate the Gröbner 

basis required. 

First, let 7,6,5,4,3,2,1,1,2 14131211104321 =======−=−= aaaaaaaaa . 

Moreover, when 1,2,7,6,2,5,4,3,1 545251424153444332 =−=======−= aaaaaaaaa , 

we can get the Sudoku as shown in the following figure according to the rules of 

hexagonal Sudoku: 
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According to Lemma 1.2, 3,2,1,7 2350325 ==−== aaaa  

We can know that 87 , aa can not be -1 because 13 −=a ; since 132 −=a , we 

know that 3635343332272625 ,,,,,,, aaaaaaaa  can not be -1, from which 117 −=a  can 

be derived. 

Since 32 45 21, 1, 1a a a= − = − = − , we know that 37302928212019 ,,,,,, aaaaaaa  

can not be -1. Moreover, 323 =a , from which 122 −=a  can be derived.  

Similarly, either 46a  or 47a  is equal to -1. According to Lemma 1.1, we can know 

that 4746 ,aa  can be interchanged. Therefore, we may let 147 −=a . 

By increasing the conditions of hexagonal Sudoku, the number of polynomials of 

hexagonal Sudoku has been reduced, thus improving the operation efficiency of the 

computer. Then by using the Gröbner Basis package of Maple software in 

programming, we obtain the leading terms of Gröbner basis (totaling 39) for ideal I , 

determined by the polynomials corresponding to the above 102 equations. Now we 

list them as follows: 

 

 

 

 

We have already known that how to obtain the Gröbner basis of an ideal I  by 

the foregoing discussion, from now on we will establish the relationship between the 

number of hexagonal Sudoku N and the leading terms of Gröbner basis 

1 2 1 2 54{ , , , } [ , , , ]ns s s Q a a a⊆L L , according to [2][4][5][6]: 

,,,,,,,,,,,,,
2

19

2

20

2

2076

2

2061920

4

19

3

1976

3

1918

2

169

2

8

2

7

2

6 aaaaaaaaaaaaaaaaaaaa

494846393836

2

35343331

2

303029

2

2030 ,,,,,,,,,,,, aaaaaaaaaaaaaaa

,,,,,,,,,,,,, 192030

3

1930730

2

29

2

2029

3

192967292827262521

3

20 aaaaaaaaaaaaaaaaaaaaa
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Lemma 1.3 [6] (Finiteness Theorem) Let 1 2[ , , , ]nI C x x x⊆ L  be an ideal. Then the 

following conditions are equivalent: 

(1) 1 2[ , , , ] /nA C x x x I= L  is finite-dimensional over C , where C  is the complex 

number field. 

(2)  the variety ( )V I (the set of common zero points of all polynomials in I ) is a 

finite set. 

Lemma 1.4 [6, Proposition 2.7] Let 1 2[ , , , ]nI C x x x⊆ L  be a zero-dimensional ideal. 

For each 1, 2, ,i n= L , let i
p be the unique monic generator of [ ]iI C xI  and let 

,i redp  be the square-free part of ip . Then 1, ,, ,red n redI I p p= + L . 

Lemma 1.5 [6, Proposition 2.10] Let I  be a zero-dimensional ideal in 

1 2[ , , , ]nC x x xL , and let 1 2[ , , , ] /nA C x x x I= L . Then dimC A  is greater than or 

equal to the number of points in ( )V I . Moreover, equality occurs if and only if I  is 

a radical ideal.  

Lemma 1.6 [5, Proposition 2.1.6] Let 1 2, , , mI s s s= L  be an ideal of 

1 2[ , , , ]nC x x xL , then a basis for the C -vector space 1 2[ , , , ] /nC x x x IL  consists of 

the cosets f f I= +  of monomials 1 2

1 2
nii i

nf x x x= L  such that ( )ilt s  does not 

divide f  for all 1, 2, ,i m= L . 

With the Lemma 1.3 to 1.6, now we list our main theorem in this section below. 

Theorem 1.7 The number of hexagonal Sudoku N and the leading terms of Gröbner 

basis 1 2 1 2 54{ , , , } [ , , , ]ns s s Q a a a⊆L L  have the following relationship: 

(*) 541 2

1 2 54#{ |
ii iN f a a a f= = L can not be divided by ( )ilt s  for all 1,2, }i n= L  

where ( )ilt s  is the leading terms of polynomial is  under the dictionary order, # is 

the number of elements in a set. 

Proof: We have concluded the constraint conditions of hexagonal Sudoku to 102 

equations, so that we have the following relations: 

the number of hexagonal Sudoku N  = the number of common solutions of 102 

equations = the number of common zero points of 102 polynomials 

    Let I  be the ideal generated by the 102 polynomials, we should prove that I  

is a radical ideal and zero-dimensional ideal first. 
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    Whatever the number of hexagonal Sudoku N  is, it is a finite number, so that 

the variety ( )V I  corresponding to the ideal I  is a finite set. By lemma 1.3 

1 2 54[ , , , ] /A Q a a a I= L  is finite-dimensional over the rational field Q , i.e. I  is a 

zero-dimensional ideal.  

Moreover, for any 1, 2, ,54i = L , [ ] ( 2)( 1)( 1) ( 7)
i i i i i

I Q a a a a a= + + − −I L , so 

( 2)( 1)( 1) ( 7)i i i i ip a a a a= + + − −L , , ( 2)( 1)( 1) ( 7)i red i i i i ip a a a a p= + + − − =L , 

then by lemma 1.4, 

1, , 1 1 54 54, , ( 2) ( 7), , ( 2) ( 7)red n redI I p p I a a a a I= + = + + − + − =L L L L  

Thus I  is a radical ideal. 

     Because I  is a radical ideal and zero-dimensional ideal, by lemma 1.5 we 

obtain the following equation: 

the number of common zero points of 102 polynomials = dimQ A  

where 1 2 54[ , , , ] /A Q a a a I= L . 

    The Gröbner basis 1 2{ , , , }ns s sL  is obviously a generating set of ideal I , so at 

last by lemma 1.6 we have  

541 2

1 2 54dim #{ |
ii i

Q A f a a a f= = L can not be divided by ( )ilt s  for all 1,2, }i n= L  

Combining the equations above, we can derive our result. i.e. the number of 

hexagonal Sudoku 541 2

1 2 54#{ |
ii iN f a a a f= = L can not be divided by ( )ilt s  for all 

1,2, }i n= L , which completes the proof. 

    For IaaaQA ],,,[ 5421 L=  and dimQ A  which occurs in the above lemmas 

and theorem, we interpret as follows: 

(i) A  is called the quotient ring of ],,,[ 5421 aaaQ L  modulo ideal I , consists of the 

elements in the set 1 2 54{ : { [ , , , ]}h h I h Q a a a= + ∈ L . 

Its addition and multiplication are defined by 1 2 1 2 1 2 1 2,h h h h h h h h+ = + ⋅ = ⋅ . 

(ii)  If there are p  elements 1 2, , , ph h hL  in A  such that for any h A∈ , there exists 

a unique linear combination 1 1 2 2 p ph c h c h c h= + + +L , where 1 2, , , pc c c Q∈L , then p  

is called the dimension of A , denoted as dimQp A= . 

In this paper, we prepare to use the Inclusion-Exclusion Principle to calculate N . 
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Lemma 1.8 (Inclusion-Exclusion Principle) Let 1 2, , , nA A AL  be finite sets, then  

nnnnn AAAAAAAAAAAAAA ∩−∩−−∩−∩−+++=∪∪∪ −1131212121 LLLL

                 n

n AAAAAAA ∩∩∩∩−++∩∩+ +
LL 321

1

321 )1(  

    where A  means the number of elements in the set A . 

In particular, when 3n = , i.e. there are , ,A B C  three classes of things to be 

counted, and then Inclusion-Exclusion Principle can be described as follows: 

The number of elements in either class ,A B or C = the number of 

elements in class A  + the number of elements in class B  + the number of 

elements in class C —the number of elements in both classes A  and B —the 

number of elements in both classes B  and C —the number of elements in both 

classes A  and C + the number of elements in all three classes ,A B  and C , 

that is 

A B C A B C A B B C A C A B C∪ ∪ = + + − ∩ − ∩ − ∩ + ∩ ∩  

To apply the Inclusion-Exclusion principle, we define the following notations: 

541 2

1 2 54{ |
ii i

iA f a a a f= = L can be divided by ( )}ilt s  

    now we consider the set 541 2

1 2 54{ |
ii i

U f a a a f= = L can be divided by some 

( ), 1, 2, }ilt s i n= L . Obviously, nAAAU ∪∪∪= L21 . 

According to Inclusion-Exclusion principle, we have the following formula: 

nnnnn AAAAAAAAAAAAAAU ∩−∩−−∩−∩−+++=∪∪∪= −1131212121 LLLL  

n

n AAAAAAA ∩∩∩∩−++∩∩+ +
LL 321

1

321 )1(  

    then by taking the appropriate universal set S (we may choose different 

universal set S  according to different leading terms of Gröbner basis, for the 

specific selecting method, see remark below), we get 1 2 nN U A A A= = ∪ ∪ ∪L  (U  

is the complement set of U  in S ). 

Remark: For general leading terms of Gröbner basis, the universal set S  will be 

taken by following rules: 

3 52 53 541 2

1 2 3 52 53 54{ | 0 -1, 1, 2,3, ,54}
i i i ii i

j jS a a a a a a i l j= ≤ ≤ =L L  

If ja  appears in the leading terms of Gröbner basis, then define jl  be the 

highest degree of ja  in the basis; 
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If ja  does not appear in the leading terms of Gröbner basis, then define 1jl = ; 

    In particular, for the above-mentioned 

{ 1,3, 4,5}{2,6,7, 2,1}− − (where the labeling 

rules of { 1,3, 4,5}{2,6,7, 2,1}− −  is shown in 

the right figure), the universal set of hexagonal 

Sudoku is  

3 5 6 7 8 91 2 4

6 7 8 16 19 20 29 30 35{
i i i i i ii i i

S a a a a a a a a a=  

1 2 3 4 7 8 9 5 6| 0 , , , , , , 1,0 3,0 2}i i i i i i i i i≤ ≤ ≤ ≤ ≤ ≤  

Finally, by using the Inclusion-Exclusion 

Principle, we calculate our results in the table below. Under the premise of{ 1,3, 4,5}− , 

the number of hexagonal Sudoku of each permutation corresponding to the five-tuple 

{2,6,7, 2,1}−  as well as the total number are calculated.  

Sudoku Types Counting Multiple Number Sudoku Types Counting Multiple Number 

{2,6,7,-2,1} 384 ×2×2 1536 {7,2,1,-2,6} 192 ×2×2×2 1536 

{2,7,6,-2,1} 384 ×2×2 1536 {1,2,6,-2,7} 208 ×2×2×2 1664 

{6,2,7,-2,1} 320 ×2×2 1280 {1,6,2,-2,7} 48 ×2×2×2 384 

{6,7,2,-2,1} 528 ×2×2 2112 {2,1,6,-2,7} 16 ×2×2×2 128 

{7,2,6,-2,1} 384 ×2×2 1536 {2,6,1,-2,7} 80 ×2×2×2 640 

{7,6,2,-2,1} 592 ×2×2 2368 {6,1,2,-2,7} 64 ×2×2×2 512 

{1,6,7,-2,2} 48 ×2×2×2 384 {6,2,1,-2,7} 64 ×2×2×2 512 

{1,7,6,-2,2} 64 ×2×2×2 512 {7,-2,1,2,6} 0 ×2×2×2 0 

{6,1,7,-2,2} 64 ×2×2×2 512 {-2,7,1,2,6} 0 ×2×2×2 0 

{6,7,1,-2,2} 136 ×2×2×2 1088 {-2,1,7,2,6} 0 ×2×2×2 0 

{7,1,6,-2,2} 96 ×2×2×2 768 {6,-2,1,2,7} 0 ×2×2×2 0 

{7,6,1,-2,2} 152 ×2×2×2 1216 {-2,6,1,2,7} 0 ×2×2×2 0 

{1,2,7,-1,6} 0 ×2×2×2 0 {-2,1,6,2,7} 0 ×2×2×2 0 

{1,7,2,-2,6} 112 ×2×2×2 896 {2,-2,1,6,7} 0 ×2×2×2 0 

{2,7,1,-2,6} 56 ×2×2×2 448 {-2,2,1,6,7} 0 ×2×2×2 0 

{2,1,7,-2,6} 16 ×2×2×2 128 {-2,1,2,6,7} 0 ×2×2×2 0 

{7,1,2,-2,6} 208 ×2×2×2 1664     

Total 23360 
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Remark 1: The 33 situations listed above have already covered all the permutations 

corresponding to five-tuple{2,6,7, 2,1}− . 

This is because for the first 6 situations, there are two types of permutation, while for 

the last 27 situations, there are four types of permutation. 

For example: ① in the case of{2,6,7, 2,1}− , the two permutations included are 

{2,6,7, 2,1}−  and{2,6,7,1, 2}− ;  

② in the case of {1,6,7, 2, 2}− , the four permutations included are 

{1,6,7, 2, 2}− ,{1,6,7,2, 2}− ,{ 2,6,7,1, 2}−  and { 2,6,7, 2,1}− . 

Since 6 × 2 +27 × 4 = 120, we have considered all of the 120 permutations. 

We have already calculated the total number of standard hexagonal Sudoku is 

23360 by using Gröbner basis theory when 32 43 44 531, 3, 4, 5a a a a= − = = = . For the 

remaining 23 types, the same method applies similarly (the total number of 

permutations in the four-tuple { 1,3, 4,5}− is 24). Therefore, after we finding that the 

total numbers of hexagonal Sudoku when 32 43 44 531, 3, 5, 4a a a a= − = = = and 

32 43 44 531, 4, 5, 3a a a a= − = = = are 47424 and 384, respectively, we give the 

estimation of the total number of standard hexagonal Sudoku 1D , that is  

1

23360 47424 384
24 569344

3
D

+ +≈ × =  

The reason of our estimation is as follows: Firstly we divide the standard 

hexagonal Sudoku into four groups and different groups with different numbers filled 

in the 32a position. Secondly, each group is divided into 2 types, respectively, every 

type with 
1

3
3C = different ways filling in the 53a  position. For instance, in the first 

group with { 1,3, 4,5},{ 1,3,5,4},{ 1 4,5 3},{ 1, 4,3,5}{ 1,5 3, 4}{ 1,5 4,3}− − − − − −， ， ， ， ， ， , we 

calculate the total number of standard hexagonal Sudoku for the first type 

{ 1,3, 4,5},{ 1,3,5,4},{ 1 4,5 3}− − − ， ， , and then give our estimation. 

Unfortunately, this estimation is rough. It is because due to constraints of 

hexagonal Sudoku itself, it does not have good symmetry properties, so that swapping 

any two adjacent numbers will lead to different results. Limited by time constraints, 

we have not yet calculated the total number of standard hexagonal Sudoku of all 24 

types. The remaining 21 types will be calculated in our subsequent study with the use 

of Gröbner basis theory and finally we will obtain the precise value of the total 

numbers of standard hexagonal Sudoku. 

Now we will give the estimation of the total number of all the hexagonal Sudoku 

D as follows: 

11

1 19! 362880 206603550720 2.066 10D D D= × = × ≈ ≈ ×  

E12

Page - 76



II. Classification of Sudoku 

We have already estimated the total number of hexagonal Sudoku in the last 

section. Next, by applying group theory (the group action on a set, Burnside's 

Lemma), we will do some classification of hexagonal Sudoku. 

First, we will introduce the concept and examples of group.  

Defining a binary operation "•" on a non-empty set G  ( ba •  is abbreviated as ab ), 

if the following four conditions ( ), ( ), ( ), ( )i ii iii iv are satisfied, then the set G is called 

a group. 

( )i  For any Gba ∈, , there is Gab ∈ ; 

( )ii  For any Gcba ∈,, , there is Gbcacab ∈= )()( , i.e. the associative law holds.  

( )iii  There is an element Ge ∈  such that aeaae == for any Ga ∈ , moreover, this 

element is called the identity element of G ; 

( )iv  For any Ga ∈ , there is inverse element 1−a , i.e. eaaaa == −− 11 . 

If +∞<G ,G  is called a finite group, and then nG = is called the order of 

group G . If there is an element g  in group G  such that any element in G  is a 

certain power of g , then G  is called a cyclic group with g  the generator, denoted 

as gG = . 

The concept of group is the best tool to understand the symmetric structure in 

nature, such as the rotation, reflection, central symmetry and axisymmetric of some 

pattern, all of which can be interpreted by group. This is our main method discussed 

in this section. 

Now we introduce the Burnside’s Lemma: 

Let G  be a finite group, X  be a set. Denote gX
 
as the fixed-points of X  

acted by Gg ∈ , that is, }|{ xxgXxX g =⋅∈= . 

Burnside's Lemma states as follows: The number of orbits for group G  acting 

on set X  can be calculated by the formula ∑
∈

=
Gg

gX
G

GX
1

/ , i.e. the average 

number of fixed-points of X acted by the elements ofG . 

Here we give a simple example: 

Example: Coloring a 2×2 chessboard with two colors, i.e. one color for each grid. 

Under the equivalence of counterclockwise rotation, how many essential different 

coloring plans there? 
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Solution: If rotation is not allowed, then there are 42 16=  different coloring plans. 

Now we will number these 16 plans from 1 to 16. Denote the set of 16 coloring 

plans as }16,,2,1{ L=X , and list them as follows;  

 

We will call two coloring plans equivalent if they coincide under the rotation 

permutation. 

Next we discuss the permutation happens in the above 16 coloring plans under 

the counterclockwise rotation of angles 0
o
, 90

 o
, 180

 o
 and 270

 o
, respectively.  

� Rotation 0
 o

 ： 1p =(1)(2)…(16)； 

� Rotation 90
 o
： 2p =(1)(2)(3 4 5 6)(7 8 9 10)(11 12)(13 14 15 16)； 

� Rotation 180
o
： 3p =(1)(2)(3 5)(4 6)(7 9)(8 10) (11)(12)(13 15)(14 16)；                              

11  22  33  44  

55  66  77  88  

1100  1111  1122  

1133  1166  1155  1144  

99  
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� Rotation 270
o
： 4p =(1)(2)(6 5 4 3)(10 9 8 7)(11 12)(16 15 14 13)； 

� Obviously, 1 2 3 4{ , , , }G p p p p= is a group of order four; 

� Moreover, the coloring plans in the same orbit are exactly the same plan.  

� Therefore, the number of orbits of G acting on X is equal to the number of 

coloring plans. By using Burnside’s lemma, we have: 

6
4

24216)()()()( 41312111 =+++=
+++

=
G

pcpcpcpc
T  

    These 6  essential different coloring plans are given as follows: 

 

Now we calculate the number of hexagonal Sudoku under symmetrical 

equivalence using Burnside’s Lemma. 

According to the characteristic of hexagonal Sudoku, its symmetric raises only 

through counterclockwise rotation by an angle of 0
o
, 60

 o
, 120

 o
, 180

 o
, 240

 o
 and 300

o
, 

and hence making the equivalence of Sudoku. Hexagonal Sudoku has no other 

symmetry. 

①①①① Calculation of Group G of hexagonal Sudoku 

Denote the counterclockwise rotation by an angle of 0
o
, 60

 o
, 120

 o
, 180

 o
, 240

 o
 

and 300
o 

as ,,,,,, 543210 PPPPPP respectively. Moreover, let },,,,,{ 543210 PPPPPPG = . 

By the definition of rotation, there are the following equations:  

10110 PPPPP == ,∀ 5,4,3,2,1,0=i ; 

1( )i

iP P= ,∀ 5,4,3,2,1,0=i . 

Then, G  becomes a cyclic group of degree 6 whose composition is the 

composition of rotations and 1P  is its generator, i.e. >=< 1PG , and 6=G , in other 

words, 6G Z≅ . 
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②②②② Calculation of fixed-points gχ of hexagonal Sudoku. 

First, we may denote the total number of hexagonal Sudoku as D . Due to the 

formula of Burnside’s Lemma, for 6g Z∈ , we discuss into four cases respectively: 

① g is identical transformation, i.e. [0]g =  

Clearly, all hexagonal Sudoku remain unchanged under the transformation, i.e. 

all hexagonal Sudoku are fixed-points, thus g Dχ = . 

② g  is the rotation 60°or 300°, i.e. [1]g = or[5] . 

Next we mainly discuss the case when g  is the rotation 60°; when rotation 300 °, 

the case is similar. 

We may assume that the original hexagonal Sudoku is standard, so we can fill in 

the upper left triangle with numbers -2 -1,1,2,3, 4,5,6,7， , respectively. After rotation by 

60°, we will find that in the 5a  position, the original hexagonal Sudoku have 

number 5 7a =  according to Lemma 1.2, however in the new one 5 3a = , which is a 

contradiction. Therefore, when [1]g = , 0gχ = , i.e. there is no fixed point (see the 

figure below): 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

When [5]g = , we only need to check the position 23a . Before rotation, 23 3a = ; 

after rotation, 23 7a = . In this case, gχ is also equal to 0. 

The original one The new one 
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③ g  is the rotation 120°or 240°, i.e. [2]g =  or[4] .  

Similarly, we will discuss the case when g  is the rotation 120 °; when rotation 

240 °, the case is similar. 

We may again assume that the original hexagonal Sudoku is standard, so we can 

fill in the upper left triangle with numbers -2 -1,1,2,3, 4,5,6,7， , respectively. After 

rotation by 120 °, we focus on the 10a  and 18a position. In the original hexagonal 

Sudoku, because 10 3a = , so that 18 3a ≠  according to the number-filling rules. But in 

the new one, we find 18 3a = , which indicate that after the rotation by 120°, hexagonal 

Sudoku does not remain constant, i.e. when [2]g = , 0gχ = . 

 

 

 

  

 

 

 

  

 

 

 

When [4]g = , we only need to check two positions 10 50,a a . In the original 

hexagonal Sudoku, 10 503, 3a a= ≠ , however, after rotation 50 =3a . Therefore, in this 

case, gχ  is also equal to 0. 

④ g  is the rotation 180°, i.e. [3]g = . 

After ①, ②, ③, we will examine the case when the rotation angle is 180°. We 

again assume that the original hexagonal Sudoku is a standard one. 

After rotation by 180°, we get the new Sudoku as shown below: 

 

 

 

 

  

 

  

 

 

The original one The new one 

The original one The new one 
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After rotating by180°, Sudoku is required to remain the same. By comparing the 

numbers in the two corresponding positions between the original and new Sudoku, we 

get the following conditions for the original Sudoku to satisfy: 

⑴ 32 45 41 50 42 43 44 51 52 53 543, 7, 6, 5, 4, 2, 1, 1, 2a a a a a a a a a a a= = = = = = = = = = − = −  

⑵ 6 49 7 48 8 47 9 46 15 40 16 39 17 38 24 31, , , , , , ,a a a a a a a a a a a a a a a a= = = = = = = =  

⑶ 18 37 25 30 26 29 27 28 33 22 34 21 35 20 36 19, , , , , , ,a a a a a a a a a a a a a a a a= = = = = = = =  

⑷ 18 24 31 37a a a a= = =  

Under these constraints, using the theory discussed in the first section and 

Maple14 software, we calculate the leading terms of the corresponding Gröbner 

basis are
.  

Then by using of theorem 1.7, we obtain the relationship between the number of 

hexagonal Sudoku N and the leading terms of Gröbner basis 

],,,[},,,{ 542121 aaaQsss n LL ∈ , it is shown as below: 

541 2

1 2 54#{ |
ii iN f a a a f= = L can not be divided by ( )ilt s  for all 1,2, }i n= L  

Now the number of Sudoku 72N =  is obtained using Mathematica5.0 software, 

i.e. when [3]g = , the number of fixed-points 72 9! 72 362880 26127360gχ = × = × =  

(here 9! is due to number permutation, under assuming that the original Sudoku is 

standard). 

In summary, from ①, ②, ③, ④, we obtain the following table: 

Degree of 

rotations 

Number of 

fixed-points 

Degree of 

rotations 

Number of 

fixed-points 

0° D  180° 26127360  

60° 0 240° 0 

120° 0 360° 0 

 

Finally, by the formula of Burnside’s Lemma, the number of equivalent classes 

of hexagonal Sudoku under the rotation group 6Z  is  

66

1 26127360
34438279680

6
g

g Z

D
M

Z
χ

∈

+= = ≈∑  

where D  is the total number of hexagonal Sudoku. Here D  is substituted by 

the estimated value 206603550720 . 
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III. Graphic Design of Sudoku 

The above two sections are focused on the algebraic and combinatoric properties 

of Sudoku. Through the observation of Sudoku pattern, we make some analysis on 

graphic design.   

Proposition 3.1: In splicing of Sudoku, the number of Sudoku on the n th− level 

( )2n ≥  is )1(6 −= nan ; for all n  levels, the total number is 23 3 1nT n n= − + . 

Proof: We denote nv  as the number of the external angles on the n th− level. We 

will use mathematical induction to prove that 18 12( 2)nv n= + − . 

(1) When 1, 2n = , we can see the number of external angles 1 26, 18v v= = directly. 

 (2) When 3n ≥ , assume that the equation holds when n k= , i.e. )2(1218 −+= kvk . 

By observation we can find that among the three angles of the Sudoku on the 

second level not connected to the Sudoku on the outer level, the two side angles and 

the adjacent side angle of the adjacent Sudoku can form a new Sudoku; the middle 

angle can form a new Sudoku itself. Moreover, the three new Sudoku formed must be 

connected, such that there are two unconnected angles of the Sudoku on the two sides. 

These two angles are called 2-angle; there are three unconnected angles of Sudoku in 

the middle, we call them 3-angle. 

The concepts of 2-angle, 3-angle, 2-angle Sudoku, 3-angle Sudoku and how to 

generate new Sudoku on the ( 1)k th+ −  level from the k th−  level can be shown in 

the following figures: 
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Therefore, when 2n = , there are 6 3-angle Sudoku and 0 2-angle Sudoku; 

        when 3n = , there are 6 3-angle Sudoku (generated by middle angles of 

6 Sudoku on the second level), 122
2

)13(6 =×−×
 2-angles Sudoku. 

Moreover, since 3-angle Sudoku can only be generated by the middle angle of 

Sudoku on the previous level, the number of 3-angles Sudoku is always 6. Therefore, 

when kn = , i.e. when )2(1218 −+= kvk , there are 6 3-angles Sudoku, and 

)2(6
2

36-2)-12(k18 −=×+
k  2-angle Sudoku. 

When 1n k= + ,  

241212182
2

)2(62)13(6
361 −++=×−×+−×+×=+ k

k
vk  

)21(1218121218 −++=−+= kk  

which completes the induction and )2(1218 −+= nvn .  

Moreover, because the number of 3-angles Sudoku is always 6, so that 

na = 66
2

36)2(1218
6 −=×−−++ n

n
 

Finally, by the summation formula of arithmetic sequence (starting from the 

second term), we calculate the total number of Sudoku for all n levels is 

22
1 2

( )( 1) (6 6 6)( 1)
1 1 3 3 1

2 2

n
n n

a a n n n
S a a a n n

+ − − + −= + + + = + = + = − +L  

Proposition 3.2: Suppose the length of the side of any small triangle in hexagonal 

Sudoku is 1. The radius of the disk with n levels whose center just is the center of the 

median hexagonal Sudoku is equal to 73339 2 +−= nnrn , the area of this disk is 

( )239 33 7nS n n π= − + .  
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Proof: We establish Cartesian coordinate system O xy−  as shown in the figure, 

where ( )0,0O  is the center of the original hexagonal Sudoku. By observation we 

can find that point nA  is the point farthest away from the original point O  of 

Sudoku on the n th−  level, as shown in the figure below: 

 

Hence OAr nn =  

Suppose ),( nnn yxA , then from the figure we can see: 

when 1n = ,
2

7
5.0131 =+×=x ， 1y  =

2

3− ; 

when 2n ≥ , 1−− nn xx  =6， 1−− nn yy = 32
2

3 −=×− ; 

so nx = ( )7
6 1

2
n+ − = 

2

512 −n
， ny = )1(3

2

3 −−− n =
2

3)12( −− n
; 

hence 2 2 239 33 7n n nr x y n n= + = − + , ( )2 239 33 7n nS r n nπ π= = − +  

Now we define the concept of splicing efficiency, i.e. 
n

n

S

T
, the number of 

Sudoku contained in the unit area of disk, and consider the variation rules of splicing 

efficiency. 
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Theorem 3.3: In the splicing figure composed by hexagonal Sudoku, when the 

number of levels n  is 1 (i.e. a single Sudoku), splicing efficiency 1

1

T

S
 reaches its 

maximum value 
π13

1
 ; when the number of levels n  is 2, splicing efficiency 2

2

T

S
 

reaches its minimum value 
1 91

13 97π
× ; when n  tends to ∞ , the splicing efficiency 

n

n

S

T
is strictly increasing with limit 

π13

1
. 

Proof: By Proposition 3.1 and 3.2, we have obtained that 

23 3 1nT n n= − + , ( )239 33 7nS n n π= − + ; 

    So )
73339

66
1(

13

1

)73339(

133

S

T
22

2

n

n

+−
−−=

+−
+−=

nn

n

nn

nn

ππ
; 

When 1n = , 
1

1

S

T
＝

π13

1
.  

Moreover, for any 2,3,n = L , we have 1
73339

66
0

2
<

+−
−<

nn

n
, thus 0<

n

n

S

T

π13

1< , 

2,3,n = L .  

It is easy to calculate that 

 
n

n

S

T
－

1-n

1-n

S

T
＝

)7)1(33)1(39)(73339(

6511739

13

6
22

2

+−−−+−
+−

nnnn

nn

π
 

When 2n = , the numerator is 0652117239 2 <+×−× ; when 3n ≥ , it is easy to 

see that the numerator 239 117 65 0n n− + > . Thus, there is always n n-1

n n-1

T T
1

S S
> > . 

Hence, for any Nn ∈  , the minimum value of splicing efficiency 
n

n

S

T
 is 

n 2

n 2min

T T

S S
= =

2

1 6 2 6 1 91
(1 )

13 39 2 33 2 7 13 97π π
× −− = ×

× − × +
.  

Therefore, the maximum splicing efficiency occurs on the first level, i.e. the 

single hexagonal Sudoku. The minimum splicing efficiency occurs on the second 

level; Moreover, when  n  tends to ∞ , the splicing efficiency is always increasing, 

and 
ππ 13

1
)

73339

66
1(

13

1

S

T
2

n

n

limlim =
+−

−−=
∞>−∞>− nn

n

nn

, that is to say, it will approach 

π13

1
  but never reaching. 
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IV. Further Research  

As the further research, we will focus on the following three aspects: 

⑴ We will continue to use Gröbner basis theory to find the total number of 

standard hexagonal Sudoku of the remaining 21 types, to obtain the precise total 

number of standard hexagonal Sudoku of all 24 types and the precise value of D . 

⑵ In the application of Burnside’s Lemma, we focus on the action of rotation 

group 6Z . However, due to the equivalence of number status, we also know that there 

is another permutation group 9S of hexagonal Sudoku apart from 6Z . In this case, 

Sudoku can also be considered as equivalent. By taking 6Z  and 9S  into account at 

the same time, we can first classify all hexagonal Sudoku due to the number 

equivalence, so that only standard Sudoku is considered. Finally, when we use 

Burnside’s Lemma, the fixed points considered are not the fixed points in the original 

sense, but in the sense of equivalence (or fixed orbits, if the equivalent class is seen as 

an orbit), i.e. { | }g x X g x xχ = ∈ ⋅ = , where X is the set of all standard hexagonal 

Sudoku; x is the equivalent class of hexagonal Sudoku in number permutation, 

i.e. 9{ | }x x Sσ σ= ⋅ ∈ . 

⑶ When studying splicing efficiency in the disk of hexagonal Sudoku, we can further 

fix the radius of the circle, and then give the maximum number of Sudoku contained 

in this circle. Moreover, by combining ⑴ and ⑵, we can give the total number of all 

hexagonal Sudoku in the sense of equivalence with the given circle of fixed radius. 

This is meaningful for graphic design.    
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