Curve Unfolding

Han Wang Chen Song Jing Zi Liu
Led by the teacher Xin De Li
Experimental Middle School of Henan Province

Curve Unfolding

Abstract

In the paper, we introduce some new geometric concepts and methds and try to prove an open problem in classical geometry.

Key Words: Y-form, convex polygon, Mathematical induction

1 Introduction Mikhael Gromov [1] proposed the following open problem in classical geometry(see also [2] and [3]): for any Jordan curve, is there a movement such that the distance of any two points on the Jordan curve does not decrease and the length of curve does not change at any time? Moreover, the Jordan cuve becomes a convex Jordan curve eventually. In the paper, we introduce some new geometric concepts and use knowledge with our high school students and try to prove this open problem in classical geometry.

The paper is organized as follows. In section 2, we prove the open problem on polygon. We prove the open problem on Jordan cuve in section 3.

2 The Conjecture on Polygon

In this section, we will prove the conjecture on polygon.
A reflex angle means the angle is larger than 180°. Inferior angle means the angle is smaller than 180°. Notice there is no straight angle in polygon.

For convenance, each angle degree is less than 1800, but keep calling reflex angle 'reflex' and inferior angle 'inferior'.

We call a polygon 'Y-form' if the polygon have only 3inferior interior
angle, espectially triangle if Y -form.
We call a movement 'articulated' if the movement only change the angle of polygon.

We call a vertex is 'good' if the vertex contain a reflex angle.

bad vertex

bad vertex

Lemma 2.1 When ' Y-form' is moving articulated,each inferior angle would not decrease if each reflex angle do not decrease.

Proof. Let's begin with the the simplest quadrilateral 'Y-form'

without loss of generality we suggest $S_{A D B}>0$, then

$$
\begin{align*}
A D^{2}+ & D C^{2}-A D \times D C \times \cos D=A B^{2}+B C^{2}-A B \times B C \times \cos B \\
& \Rightarrow \frac{d \cos B}{d \cos D}=\frac{A D \times D C}{A B \times B C} \tag{2.1}\\
& \Rightarrow \frac{S_{A D C}}{S_{A B C}}=\frac{A D \times D C \times \sin D}{A B \times B C \times \sin B}=\frac{\sin D}{\sin B} \times \frac{d \cos B}{d \cos D}=\frac{\sin D}{\sin B} \times \frac{-\sin B \times d \angle B}{-\sin D \times d \angle D}=\frac{d \angle B}{d \angle D}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\frac{S_{D C B}}{S_{D A B}}=\frac{d \angle A}{d \angle C} \tag{2.2}
\end{equation*}
$$

And obviously we have

$$
\begin{equation*}
d \angle D=d \angle A+d \angle B+d \angle C \Rightarrow \frac{d \angle A}{d \angle D}+\frac{d \angle B}{d \angle D}+\frac{d \angle C}{d \angle D}=1 \tag{2.3}
\end{equation*}
$$

(2.1), (2.2) and (2.3) yield

$$
\begin{align*}
\frac{d \angle A}{d \angle D}=\frac{S_{B D C}}{S_{A B C}} \geq 0, \quad & \frac{d \angle B}{d \angle D}=\frac{S_{A D C}}{S_{A B C}} \geq 0, \quad \frac{d \angle C}{d \angle D}=\frac{S_{A D B}}{S_{A B C}} \geq 0 \\
0 & \leq \frac{d \angle A}{d \angle D}<1, \quad 0 \leq \frac{d \angle B}{d \angle D}<1, \quad 0 \leq \frac{d \angle C}{d \angle D}<1 \tag{2.4}
\end{align*}
$$

When the polygon is common 'Y-form' like:

because of degrees of 3 inferior angles can totally depend on degrees of reflex angles,so we can write a function like:

$$
\begin{equation*}
\angle A=f(\angle B, \angle D, \angle E, \angle G) \tag{2.5}
\end{equation*}
$$

from the proof of quadrilateral ' Y-form', we have

$$
\begin{equation*}
\frac{\partial \angle A}{\partial \angle B}=\frac{S_{C B F}}{S_{C A F}}, \quad \frac{\partial \angle A}{\partial \angle D}=\frac{S_{C D F}}{S_{C A F}}, \quad \frac{\partial \angle A}{\partial \angle E}=\frac{S_{C E F}}{S_{C A F}}, \quad \frac{\partial \angle A}{\partial \angle G}=\frac{S_{C G F}}{S_{C A F}} \tag{2.6}
\end{equation*}
$$

This proved lemma 2.1
Lemma 2.2 Give X, Y, A, B as $2 D$ vector in R^{2}, and $A \neq B, X \neq 0, Y \neq 0, X \neq k Y$ ($k \in \mathrm{R}$) and suffice

$$
\begin{align*}
& (X-Y)(A-B)=0 \tag{2.7}\\
& X A=0 \tag{2.8}\\
& Y B=0 \tag{2.9}
\end{align*}
$$

then for any vector C there exist a vector Z suffice

$$
\begin{align*}
& (Y-Z)(B-C)=0 \tag{2.10}\\
& (Z-X)(C-A)=0 \tag{2.11}\\
& Z C=0 \tag{2.12}
\end{align*}
$$

Proof. Assume that $\mathrm{A}=0$ from (2.7)(2.8) we have $\mathrm{XB}=0$, because $\mathrm{X} \neq \mathrm{kY}$, and
(2.9), we have $B=0$, which contradict from $\mathrm{A} \neq \mathrm{B}$. the same if we assume $\mathrm{B}=0$. so we have

$$
\begin{equation*}
A \neq 0, B \neq 0 \tag{2.13}
\end{equation*}
$$

if $A=m B(m \in \mathrm{R})$ consider (2.9) we have $Y A=0$, by (2.8) and $X \neq k Y$ we get A $=0$ which contradict from (2.13). So there exist $\lambda_{1}, \lambda_{2} \in \mathrm{R}$ such that

$$
\begin{equation*}
C=\lambda_{1} A+\lambda_{2} B \tag{2.14}
\end{equation*}
$$

Let

$$
\begin{equation*}
Z=\lambda 1 X+\lambda 2 Y \tag{2.15}
\end{equation*}
$$

From (2.14), we have

$$
\begin{align*}
C Z & =\lambda_{1} A Z+\lambda_{2} B Z \\
& =\lambda_{1} A\left(\lambda_{1} X+\lambda_{2} Y\right)+\lambda_{2} B\left(\lambda_{1} X+\lambda_{2} Y\right) \tag{2.16}\\
& =\lambda_{1}^{2} A X+\lambda_{1} \lambda_{2}(A Y+B X)+\lambda_{2}^{2} B Y
\end{align*}
$$

By (2.7),

$$
\begin{equation*}
X A+Y B=X B+Y \tag{2.17}
\end{equation*}
$$

(2.17),(2.8) and (2.9), we have

$$
\begin{equation*}
X B+Y A=0 \tag{2.18}
\end{equation*}
$$

(2.16),(2.18), (2.8), (2.9), we have

$$
\begin{equation*}
C Z=0 \tag{2.19}
\end{equation*}
$$

By (2.14) and (2.15),

$$
\begin{gather*}
B Z+C Y=B\left(\lambda_{1} X+\lambda_{2} Y\right)+\left(\lambda_{1} A+\lambda_{2} B\right) Y=\lambda_{1}(B X+A Y)+2 \lambda_{2} B Y=0=B Y+C Z \\
(B-C)(Z-Y)=0 \tag{2.20}\\
A Z+C X=A\left(\lambda_{1} X+\lambda_{2} Y\right)+\left(\lambda_{1} A+\lambda_{2} B\right) X=\lambda_{2}(A Y+B X)+2 \lambda_{1} A X=0=A X+C Z \\
(A-C)(Z-X)=0 \tag{2.21}
\end{gather*}
$$

(2.19),(2.20) and (2.21) means Z is what we want.

Remark 2.1 Lemma 2.2 means if P, Q, R are vertexes of triangle and we draw line $P Q \perp X, Q O \perp Y$. Let $\quad A=P-O, B=Q-O, C=R-O$, and X, Y suffice (2.7),(2.8),(2.9), let $X=\frac{d A}{d t}, Y=\frac{d B}{d t}, Z=\frac{d C}{d t}$, which means the speed of vertexes. (2.7), (2.10) and (2.11) means it keep the length of edge. So, lemma 2.2 means in rigid body motion every point is rotate around a 'instantaneous center' in each moment.actully the condition can be loose for general situation, and it has been used frequently in mechanics.

Theorem 2.1 When 'Y-form' is moving articulated,distance between each couple of points would not be shorten if each reflex angle do not decrease.

Proof. Choose two point P and Q randomly,just like lemma 2.1, the distance between P and Q are completely depend on degrees of reflex angles, so if every $\frac{\partial|P Q|}{\partial \angle D} \geq 0$ which D is an reflex angles.

The lemma will be proved.
We divide the ' Y -form' into 4 broken line which endpoint is 3 inferior angle and D .
If P, Q are in the same broken line or in the 2 broken line which are Neighboring, the proposition is obviously.

Else, the only situation rest on the picture above. P, Q are in the different, apart broken line.and D is the only increasing reflex angle (the rest degree of reflex angle retain fix for calculate the $\left.\frac{\partial|P Q|}{\partial \angle D}\right) \cdot K$ is intersection of line CD and line $\mathrm{AB} . \angle D$ is increase means $\frac{d \angle D}{d t}>0$. We denote the position vector of X as X, and movement vector $\frac{d X}{d t}$ as $X^{\prime \prime}$ which X means an angle such as A, B, C, D, P, Q, K. Then

$$
(D-C)^{2}=a^{2}
$$

which a is an constant.differentiate it we have

$$
\begin{equation*}
(D-C)\left(D^{\prime}-C^{\prime}\right)=0 \tag{2.22}
\end{equation*}
$$

The same we have

$$
\begin{align*}
& (A-B)\left(A^{\prime}-B^{\prime}\right)=0 \tag{2.23}\\
& (D-A)\left(D^{\prime}-A^{\prime}\right)=0 \tag{2.24}\\
& (P-D)\left(P^{\prime}-D^{\prime}\right)=0 \tag{2.25}\\
& (A-P)\left(A^{\prime}-P^{\prime}\right)=0 \tag{2.26}
\end{align*}
$$

as we fix the broken line CB (i.e $\left.\mathrm{C}^{\prime}=0, \mathrm{Q}^{\prime}=0, \mathrm{~B}^{\prime}=0\right),(2.22)$ and (2.23) reduce to

$$
\begin{align*}
& D^{\prime}(D-C)=0 \tag{2.27}\\
& A^{\prime}(A-B)=0 \tag{2.28}
\end{align*}
$$

C, D, K are in the same line, B, K, A are in the same line. By(2.27) and (2.28), we have

$$
\begin{align*}
& D^{\prime}(D-K)=0 \tag{2.29}\\
& A^{\prime}(A-K)=0 \tag{2.30}
\end{align*}
$$

$S_{C D A}>0 \Rightarrow A^{\prime} \neq 0$. If $D^{\prime}=0$ from lemma 2.1, $S_{A D B}=0$, so $D P A$ collinear,

$$
\begin{gather*}
P^{\prime}=k A^{\prime} \quad(k>0, \in \mathrm{R}) \tag{2.31}\\
P^{\prime}(P-Q)=P^{\prime}(P-A+A-Q)=k A^{\prime}(P-A)+k A^{\prime}(A-Q) \tag{2.32}
\end{gather*}
$$

by (2.26)and (2.31), we have

$$
\begin{gather*}
(k-1) A^{\prime}(P-A)=0 \tag{2.33}\\
k-1 \neq 0 \Rightarrow A^{\prime}(P-A)=0 \\
k-1=0 \Rightarrow P=A \Rightarrow A^{\prime}(P-A)=0
\end{gather*}
$$

and $\frac{d \angle B}{d t}>0 \Rightarrow A^{\prime}(A-Q)>0$ with (2.32) we have $P^{\prime}(P-Q)$ which means theorem proved in this situation.

If $D^{\prime} \neq 0$ and K exist infer $D^{\prime} \neq k A^{\prime}(k \in \mathrm{R})$. Let

$$
\begin{equation*}
P^{\prime}=\lambda_{1} D^{\prime}+\lambda_{2} A^{\prime} \tag{2.34}
\end{equation*}
$$

which λ_{1}, λ_{2} suffice

$$
\begin{equation*}
(P-K)=\lambda 1(D-K)+\lambda 2(A-K) \tag{2.35}
\end{equation*}
$$

by lemma 2.2, this P fit (2.25), (2.26). Combine (2.24), it means $D P A$ is rigid.
Because of the position of P and (2.35), we have $\lambda_{1} \geq 0, \lambda_{2} \geq 0$, combine (2.35)

$$
\begin{gather*}
P^{\prime}=\lambda_{1} D^{\prime}+\lambda_{2} A^{\prime} \\
\Rightarrow P^{\prime}(P-Q)=P^{\prime}(P-K+K-Q)=P^{\prime}(K-Q) \\
=\left(\lambda_{1} D^{\prime}(K-Q)+\lambda_{2} A^{\prime}(K-Q)\right) \\
=\left(\lambda_{1} D^{\prime}(K-D+D-Q)+\lambda_{2} A^{\prime}(K-A+A-Q)\right) \tag{2.36}
\end{gather*}
$$

$$
=\lambda_{1} D^{\prime}(D-Q)+\lambda_{2} A^{\prime}(A-Q)
$$

as D, Q are in neighboring broken line, we have $D^{\prime}(D-Q) \geq 0$. as A, Q are in neighboring broken line, we have $A^{\prime}(A-Q) \geq 0$.and by (2.35), (2.36)

$$
P^{\prime}(P-Q)=\lambda_{1} D^{\prime}(D-Q)+\lambda_{2} A^{\prime}(A-Q) \geq 0
$$

And $\frac{d \angle D}{d t}>0$. we have

$$
\frac{\partial(P-Q)^{2}}{\partial \angle D}>0
$$

Theorem proved.
Lemma 2.3 Each polygon can divide into $n-2$ piece of ' Y-form', and every vertex is 'good'. Here n is number of polygon's reflex angle.

Proof. When $\mathrm{n}=3$, lemma obviously. When $\mathrm{n}>3$, we numbered the inferior angle sequentially.denote inferior angle numbered 1 and inferior angle numbered 3 as A, C, we can draw a broken line from A to C, which completely in the polygon (can touch or partly coincides with the boundary). Let $A, P_{1}, P_{2}, \ldots, P_{k}, C$ be the shortest one. connect 2 point from different segment of this broken line,it must cross the boundary of polygon,or the broken line can be shorter,contradict with the assumption.So P_{i} are coincide with the reflex vertex of polygon, and P_{i} is good vertex. Because inferior angle number 2 and number 4 does not on the broken line ,so the broken line split the polygon at least 2 part.choose that segment of broken line that can split the polygon.

If P_{i}, P_{i+1} split the polygon, because P_{i}, P_{i+1} is good vertex, a reflex angle in $P_{\boldsymbol{i}}$ split into one inferior angle,one reflex angle.another reflex angle in P_{i+1} split into one inferior angle,one reflex angle too.

If A, P_{1} split the polygon, a inferior angle of A split into 2 inferior angle, a reflex
angle in P_{1} split into one inferior angle, one reflex angle.situation P_{k}, C is the same.
If A, C split the polygon.it means no P_{i} between them, a inferior angle of A split into 2 inferior angle, a inferior angle of C split into 2 inferior angle.

All the situation above shows that the count of inferior angle increase 2 ,and reflex angle remain the same.

Now we get 2 polygon which total inferior angle in $n+2$ and each polygon at least have 3 inferior angle, it means each polygon at most have $n-1$ inferior angle.then we can assume polygon have $n-1$ inferior angle can suffice the lemma by mathematical induction.then we know that polygon have n inferior angle suffice the lemma.

Lemma 2.4 For each non-convex polygon,grouped by $N(N \geq 2)$ pieces of 'Y-form',and each vertex is 'good', we choose any one of these 'Y-form',there exist one 'Y-form' which different from what we chosen,and without this 'Y-form',rest 'Y-form' are still grouping as one polygon.

Proof. $N=2$, lemma obviously, when $N>2$, we denote the chosen 'Y-form' as Y_{1}.first we can choose a ' Y -form' Y_{2} different from $Y-1$ and at lest one edge is the polygon's boundary.If the rest ' Y-form' can grouping as one olygon, $Y 2$ is what we want.else, infer that $Y 2$ cut the polygon into 2 piece (denote as P_{1}, P_{2}). We choose the piece which doesn't contain Y_{1} (denote as P_{1}). $P_{1} \cup Y_{2}$ is one polygon, which grouped by $M \quad(M \geq 2)^{\prime}$ ' Y-form', because $Y 1$ doesn't in it, so $M<N$. By mathematical induction, we know there exist a $Y-$ form (denote as Y_{3}) different from $Y-2$ and let $\left(P_{1} \cup Y_{2}\right) \backslash Y_{3}$ be one polygon, because Y_{2} cut original polygon into unattached P_{1}, P_{2}, so $Y_{3} \in P_{1}$ dose no effect to P_{2}. So $\left(P_{1} \cup Y_{2} \cup P_{2}\right) \backslash Y_{3}$ is one polygon,
which means Y_{3} is what we want.

Lemma 2.5 For each non-convex polygon,grouped by N pieces of ' Y-form',If an articulated movement keep each reflex angle of polygon doesn't decrease then this articulated movement keep angle of each ' Y-form' not decrease.

Proof. In lemma 2.1, we have already proved situation $N=1$. When $N>1$, denote the polygon as O_{1}. we fix the reflex angle of polygon except one (denote as P_{1}). P_{1} can contain many angle of ' Y -form'. Because P_{1} is good, so it contain one reflex angle of 'Y-form'.denote this 'Y-form' as Y_{1}.By lemma 2.4, we can find a 'Y-form' Y_{2} different from Y_{1} and $O_{1} \backslash Y_{2}$ is polygon.denote $O_{1} \backslash Y_{2}$ as O_{2}. denote inferior angle of Y_{2} as P_{2}, P_{3}, P_{4}. Denote reflex angle of Y_{2} which is also the inferior angle of O_{2}, as $Q_{1}, Q_{2}, \ldots, Q_{s}$.denote $\frac{d \angle P_{j}}{d t}$ as $P_{\boldsymbol{j}} \quad(\boldsymbol{j}=1,2,3,4)$.denote $\frac{d \angle Q_{j}}{d t}$ as $Q_{j} \quad(j=1,2, \ldots, \mathrm{~s})$.

Situation 1: 3 inferior angle of Y_{2} are both the reflex angle of O_{2}. and P_{1} is not one of P_{2}, P_{3}, P_{4}.

Because we fix all the reflex angle of O_{1} except P_{1} which means we fix all the reflex angle of O_{2} except $P_{j} \quad(j=1,2,3,4)$. By mathematical induction on O_{2}, we have

$$
\begin{equation*}
q_{i}=\sum_{j=1}^{4} k_{i j} p_{j} \quad(i=1,2, \cdots, s) \tag{2.37}
\end{equation*}
$$

here $k_{i j} \geq 0$ suffice

$$
\begin{equation*}
\sum_{i=1}^{s} k_{i j} \leq 1 \quad(j=1,2,3,4) \tag{2.38}
\end{equation*}
$$

Because we fix all the reflex angle of Y except Q_{i}, by lemma 2.1 on Y_{2} we have

$$
\begin{equation*}
p_{j}=\sum_{i=1}^{s} m_{i j} q_{i} \quad(j=2,3,4) \tag{2.39}
\end{equation*}
$$

here $m_{i j} \geq 0$ suffice

$$
\begin{equation*}
\sum m_{i j}=1 \quad(i=1,2, \cdots, s) \tag{2.40}
\end{equation*}
$$

(2.37) substitute (2.39) we get

$$
\begin{equation*}
p_{j}=\sum_{t=1}^{4} u_{t j} p_{t}, \quad u_{t j}=\sum_{i=1}^{s} k_{i t} m_{i j} \quad(t=1,2,3,4 ; j=2,3,4) \tag{2.41}
\end{equation*}
$$

Let

$$
\begin{equation*}
K_{j}=1-\sum_{i=1}^{s} k_{i j} \quad(j=1,2,3,4) \tag{2.42}
\end{equation*}
$$

Since (2.38), we have

$$
\begin{equation*}
K_{j} \geq 0 \tag{2.43}
\end{equation*}
$$

(2.42) and (2.40) infer

$$
\begin{equation*}
\sum_{t=2}^{4} u_{j t}+K_{j}=\sum_{i=1}^{s} k_{i j}+K_{j}=1 \tag{2.47}
\end{equation*}
$$

Form (2.41)
$p_{2}=u_{12} P_{1}+u_{22} P_{2}+u_{32} P_{3}+u_{42} P_{4}$
$\left(u_{22}+u_{23}+u_{24}+K_{2}\right) P_{2}=u_{12} P_{1}+u_{22} P_{2}+u_{32} P_{3}+u_{42} P_{4}$
$\left(u_{23}+u_{24}+K_{2}\right) P_{2}=u_{12} P_{1}+u_{32} P_{3}+u_{42} P_{4}$
The same we have

$$
\begin{align*}
& \left(u_{32}+u_{34}+K_{3}\right) p_{3}=u_{13} p_{1}+u_{23} p_{2}+u_{43} p_{4} \tag{2.45}\\
& \left(u_{42}+u_{43}+K_{4}\right) p_{4}=u_{14} p_{1}+u_{24} p_{2}+u_{34} p_{3} \tag{2.46}
\end{align*}
$$

(2.44),(2.45) and (2.46) get

$$
\begin{equation*}
K_{2} p_{2}+K_{3} p_{3}+K_{4} p_{4}=\left(u_{12}+u_{13}+u_{14}\right) p_{1} \tag{2.47}
\end{equation*}
$$

(2.44) and (2.45) get

$$
\begin{equation*}
\left(u_{24}+K_{2}\right) p_{2}+\left(u_{34}+K_{3}\right) p_{3}=\left(u_{12}+u_{13}\right) p_{1}+\left(u_{42}+u_{43}\right) p_{4} \tag{2.48}
\end{equation*}
$$

(2.44) and (2.46) get

$$
\begin{equation*}
\left(u_{23}+K_{2}\right) p_{2}+\left(u_{43}+K_{4}\right) p_{4}=\left(u_{12}+u_{14}\right) p_{1}+\left(u_{32}+u_{34}\right) p_{3} \tag{2.49}
\end{equation*}
$$

(2.44) and (2.45) get

$$
\begin{equation*}
\left(u_{32}+K_{3}\right) p_{3}+\left(u_{42}+K_{4}\right) p_{4}=\left(u_{13}+u_{14}\right) p_{1}+\left(u_{23}+u_{24}\right) p_{2} \tag{2.5}
\end{equation*}
$$

(2.37) (2.40) have $s+3$ linear equations, and $s+4$ variable, so it has not all zero solutions. Let P_{j}, q_{i} be this not all zero solution.

If $P_{1}=P_{2}=P_{3}=P_{4}=0$ from (2.37) we know $q_{i}=0(i=1,2, \ldots, s)$ it means all variable equal to zero. Contradict by assumption.

To complete the prove of this situation,we first prove that $K_{j}>0(\boldsymbol{j}=2,3,4)$. If for one j suffice $\sum k_{i j}=1$,it is to say in O_{2} it exist a movement as p_{j} increasing, $q_{i}(i=$ $1,2, \ldots, s$) non-decreasing (but sum is equal to p_{j}) and the boundary which also is O_{1} 's boundary unchanged and $p_{t}(t \neq \boldsymbol{j})$ unchanged. It infer that in Y_{2} exist a movement as p_{j} increasing, $q_{i}(i=1,2, \ldots, s)$ non-decreasing(but sum is equal to $\left.p_{j}\right)$ and all the rest angle unchanged.but from (2.4), we knows that if one reflex angle is increasing,at lest 2 inferior angle is increasing.but the movement just before only one inferior angle is increasing.Contradict occur.so $\sum k_{i j}<1$.from (2.45) we have

$$
\begin{equation*}
K_{j}>0 \quad(j=2,3,4) \tag{2.51}
\end{equation*}
$$

from (2.47), (2.51), if $p_{1}=0$ then $p_{2}=p_{3}=p_{4}=0$.
so in the no all zero solution $p_{1} \neq 0$ if $p_{1}>0$ from (2.47) we know it at lest one of p_{2}, p_{3}, p_{4} must ≥ 0,then at lest one right hand side of (2.48)(2.49)(2.50) \geq 0 ,so at lest one of the left hand side of $(2.48),(2.49)(2.50) \geq 0$.then at lest 2 of p_{2}, p_{3}, p_{4} are ≥ 0 then at lest one of right hand side of (2.48)(2.49)(2.50) is ≥ 0. then all p_{j}
$\geq 0(j=2,3,4)$ then all $q_{i} \geq 0(i=1,2, \ldots, s)$.
Above all ,there exist $a_{j} \geq 0(\boldsymbol{j}=2,3,4), b_{i} \geq 0(i=1,2, \ldots, s)$ suffice $p_{j}=a_{j} p_{1}$, $q_{i}=b_{i} p_{1}$, it means O_{1} suffice the lemma.

Situation 2: not all inferior angle of Y_{2} is reflex angle of O_{2} and P_{1} is not inferior angle of Y_{2}.

If P_{t} is inferior angle of Y_{2} but not reflex angle of O_{2}, then the equation is strictly the same as (2.37) - (2.42) which $k_{i t}=0(i=1,2, \ldots, s)$ and prove $K_{j}>0(j=2,3,4$, $\boldsymbol{j} \neq t)$ the same as situation 1.and $K_{t}=0$ and the rest prove is the same as situation 1 .

Situation 3: P_{1} is one of $P_{j}(j=2,3,4)$.
Without loss of generality, let P_{2} in Y_{2} is P_{1} in O_{2}.here p_{2} needn't equal to p_{1}.so we treat P_{2} in Y_{2} as it doesn't attach O_{2}. then following proof is the same as situation $2 k_{i 2}=$ $0(\boldsymbol{i}=1,2, \ldots, s)$.but different from situation 2 , we shall prove $p_{2}<p_{1}$. From (2.37),(2.42),(2.51) and $k_{i 2}=0(i=1,2, \ldots, s)$

$$
\begin{gathered}
\sum_{i=1}^{s} q_{i}=\sum_{i=1}^{s} \sum_{j=1}^{4} k_{i j} p_{j}=\sum_{j=1}^{4}\left(1-K_{j}\right) p_{j}<p_{1}+p_{3}+p_{4} \\
p_{2}<p_{1}+p_{3}+p_{4}-p_{3}-p_{4}=p_{1}
\end{gathered}
$$

Lemma is proved.
Theorem 2.2 For each non-convex polygon, there exist an articulated movement suffice the con-junction.

Proof. Denote the polygon as O_{1}. make a convex hull of O_{1} (denote as HO), then we get some more polygon $S_{1}, S_{2}, \ldots, S_{z}$. split all of these polygon to 'Y-form' as lemma 2.3 ,the movement go on by these step below:

Step 1 : we choose one edge on $H O$'s boundary but not O_{1} 's boundary.This edge belong to a ' Y-form' (denote as Y_{1}).because all the angle on H_{O} 's boundary is
inferior, so Y_{1} has 2 inferior angle on $H O$'s boundary, and has one edge on $H O$'s boundary (if has two, HO is not the convex hull).we erase this edge.then expose the rest one Y_{1} 's inferior angle (denote the vertex as P_{1} angle as $\angle A P 1 B$) and all reflex angle to the boundary of $H \backslash Y_{1}$. Denote $H O \backslash Y_{1}$ as O_{2}.

Step 2 : increase $\angle A P 1 B$ until any vertex reach $180^{\circ} . O_{2}$ has only one reflex angle P_{1}, by lemma 2.5 , when P_{1} is increasing all the angle will not decrease.polygon fit lemma 2.5 until one vertex reach 180°.

Step 3: divide into few situation:
Situation 1: angle in vertex P_{1} reach 180^{0} (denote the angle as $\angle C P_{1} D$).divide into 3 situations:

Situation 1.1: both of $C P_{1}, D P_{1}$ are O_{2} 's boundary.
Because only $A P_{1}, B P 1$ is $O 2$'s boundary at vertex P_{1}. It is to say C, D is the same as A, B, in another word, $\angle A P_{1} B=180^{0}$. So O_{2} is convex hull of O_{1} and amount of 'Y-form' compare to HO decrease 1.If $\mathrm{O}_{2}=\mathrm{O}_{1}$ movement finish. else denote O_{2} as HO and go to step 1 .

Situation 1.2: both of $C P 1, D P 1$ are NOT O_{2} 's boundary.
First we draw a new edge connect $C D$ directly, then if $C P_{1}$ is edge of O_{1}, we erase line segment $D P 1$, else we erase line segment $C P 1$. This operation keep boundary of O_{1}, O_{2}, and new splitting make each part still a 'Y-form' and amount of 'Y-form' doesn't change, and the angle in vertex P_{1} is not 180° anymore, and each vertex is 'good'.So we can go to step 2.

Situation 1.3 : has one and only one of $C P 1, D P 1$ is O_{2} 's boundary. Without loss of generality,let $C P 1$ is O_{2} 's boundary.

Situation 1.3.1: $C P 1$ is NOT O_{1} 's boundary and $D P_{1}$ is O_{1} s boundary.First we erase edge $C P 1$, then we draw a new edge connect $C D$ directly.This operation keep boundary of O_{1}, but let $C D, D P_{1}$ replace $C P 1$ become the boundary of O_{2}, new splitting make each part still a ' Y -form' and amount of ' Y -form' doesn't change,and each vertex is 'good', but $A P_{1} B$ no longer exist. Replace $\angle A P_{1} B$ by $\angle C D P_{1}$. If operation cut O_{2} into 2 part connected by only one vertex D, because O_{2} as only one reflex angle D,so 2 part are both convex.then erase the part doesn't contain O_{1} and go to step 1 . else go to step 2.

Situation 1.3.2: otherwise, First we erase edge $D P_{1}$ then we draw a new edge connect $C D$ directly.This operation keep boundary of O_{1}, O_{2}, and new splitting make each part still a ' Y -form' and amount of ' Y -form' doesn't change, and the angle in vertex P_{1} is not 180° anymore, and each vertex is 'good'. So we can go to step 2.

Situation 2: angle in vertex $V\left(V \neq P_{1}\right)$ reach 180° (denote the angle as $\angle E V F$). First we draw a new line segment connect $E F$ directly, then if EV is edge of O_{1} we erase line segment $F V$, else we erase line segment $E V$. This operation keep bundary of O_{1} O_{2}, New splitting make each part still a ' Y-form' and amount of 'Y-form' doesn't change, and the angle V is not 180° anymore, and each vertex is 'good'. So we can go to step 2.

The fig above is about operation of reconnect the vertex.
Only step 3 situation 1.1 and situation 1.3 .1 can go to step 1,from step 3 situation 1.1 to step 1,the amount of ' Y-form' decrease 1 ,from step 3 situation 1.3 .1 to step 1,the
amount of 'Y-form' decrease at least 1. So step 1 execute limit times.
Without step 1,only step 3 situation 1.3.1 can change O_{2} 's boundary. if step 3 situation 1.3.1 happen limit times, the total length of O_{2} 's boundary is limit,each operation in step 3 will increase one edge's length at least the shortest edge's length.and the shortest edge's length does not decrease.And the amount of edge is fixed,and the maximum length of edge less then length of O_{2} 's boundary,So operation in step 3 execute limit times,So movement will finish in limit step.

Situation 1.3.1 replace $\angle A P_{1} B$ by another angle $C D P_{1}$ which $D P_{1}$ is O_{1} 's boundary.

If vertex D has a reflex angle in O_{1} (denote as $\angle J D L$), then before $C D$ become a edge of 180° angle, $\angle J D L$ will become 180^{0} first.then by Situation 1.3.2,operation will let vertex D detach O_{2} and every operation in step 3 will not attach a vertex to O_{2}.So Situation 1.3 .1 will not happen again.

Else vertex D has NO reflex angle in O_{1}. denote the other edge on D as K D. Because D is 'good',so $\angle C D K>\angle C D P 1$, So $\angle C D P 1$ will not reach 180° before $\angle C D K$ reach 180°,So as situation 1.3.1 happen again,the reflex angle of O_{2} transfer from D to K.

Denote the transfer route of O_{2} 's reflex angle as $P_{1}, P_{2}, P_{3} \ldots .$. Transfer will terminate when reach a P_{i} which has a reflex angle in O_{1} or the transfer cut O_{2} into 2 part connected only one public vertex P_{i}. from previous description,step 3 situation 1.3.1 will not happen before execute step 1.so situation 1.3.1 execute limit times between two execution of step 1 .

Above all,the movement will stop in limit step and make O_{1} become convex.If we
give a positive number to $\frac{d \angle A P_{1} B}{d t}$, the movement will stop in limit time.

Now we shall prove distance between each 2 point in O_{1} will not decrease by movement above. Denote the whole broken line which is on the boundary of O_{2} and not on the boundary of O_{2} 's convex hull as l. Let the vertex on 1 arrange as P_{2}, Q_{1}, $Q_{2}, \ldots, Q_{t}, P_{1}, Q_{t+1}, Q_{t+2}, \ldots, Q_{s}, P_{3}$, here $P_{j}(j=1,2,3), Q_{i}(i=1,2, \ldots, s)$ is vertex on O_{2} and P_{1} is the only reflex angle of O_{2}, P_{2}, P_{3} is vertex on convex hull of $O_{2}, Q_{i}(i=1,2, \ldots, s)$ is vertex between P_{2}, P_{3}. Suppose A on l between $P_{1} P_{2}, B$ on l between $P_{1} P_{3}$, and the vertex arrange as

$$
A, Q_{m}, Q_{m+1}, \cdots, Q_{t}, P_{1}, Q_{t+1,}, Q_{n-1}, \cdots, Q_{n}, B
$$

then

$$
\begin{gather*}
\frac{\partial A B}{\partial \angle P_{1}}=\frac{A P_{1} \times B P_{1} \sin \angle A P_{1} B}{A B}=\frac{S_{A P_{1} B}}{A B} \tag{2.52}\\
\frac{\partial A B}{\partial \angle Q_{i}}=\frac{-A Q_{i} \times B Q_{i} \sin \angle A Q_{i} B}{A B}=\frac{S_{A Q_{1} B}}{A B} \tag{2.53}\\
A B \frac{d A B}{d t}=S_{A P_{1} B} \frac{d \angle P_{1}}{d t}-\sum_{i=m}^{n} S_{A Q_{i} B} \frac{d \angle Q_{i}}{d t} \tag{2.54}\\
S_{A P_{1} B}>S_{A Q_{i} B} \quad(i=m, \cdots, n) \tag{2.55}
\end{gather*}
$$

By lemma 2.5 we have

$$
\begin{equation*}
\frac{d \angle P_{1}}{d t}>\sum_{i=m}^{n} \frac{d \angle Q_{i}}{d t} \tag{2.56}
\end{equation*}
$$

If $\frac{d \angle P_{1}}{d t}>0$, then from lemma 2.5 we have $\frac{d \angle Q_{i}}{d t}>0$. Then (2.54), (2.55) and (2.55) lead to

$$
\begin{equation*}
\frac{d A B}{d t}>0 \tag{2.57}
\end{equation*}
$$

So as movement go by $A B$ will not decrease.
Let movement act from t_{0} to t_{1}, at moment t_{1} give any 2 point K_{1}, K_{2} from O_{2}, at t_{1} moment line segment $K_{1} K_{2}$ intersect ' Y -form' at $T_{1}, T_{2}, \ldots, T_{S}$, and T_{i} in time t0 is T^{\prime}, K_{1}, K_{2} in moment t_{0} is K^{\prime}, K^{\prime} then from theorem 2.1 we have

$$
\begin{equation*}
K_{1} T_{1}>K_{1}^{\prime} T_{1}^{\prime}, \quad T_{i} T_{i+1}>T_{i}^{\prime} T_{i+1}^{\prime} \quad(i=1,2, \cdots, s-1), T_{s} K_{2}>T_{s}^{2} K_{2}^{\prime} \tag{2.5}
\end{equation*}
$$

so

$$
\begin{equation*}
K_{1} K_{2}=K_{1} T_{1}+\sum_{i=1}^{s-1} T_{i} T_{i+1}+T_{s} K_{2} \geq K_{1}^{\prime} T_{1}^{\prime}+\sum_{i=1}^{s-1} T_{i}^{\prime} T_{i+1}^{\prime}+T_{s}^{\prime} K_{2}^{\prime}=K_{1}^{\prime} K_{2}^{\prime} \tag{2.59}
\end{equation*}
$$

It means distance between $\mathrm{K}_{1} \mathrm{~K}_{2}$ will not decrease from t0 to tl theorem proved.

3 The conjecture on Jordan curve

Lemma 3.1 Give a Jordan curve, There exist a polygon sequence $\left\{A_{n}\right\}, n \in \mathrm{~N}$ that vertex are on C and A_{n} 's vertex are also A_{n+1} 's vertex and suffice for any neighborhood $G p$ of any point $p \in C$, there exist a $N \in \mathrm{~N}$ that for each $m>$ N, A_{m} has a vertex in $G p$.

Now we denote vertex of A_{n} as $p_{n, i}\left(i=1,2, \ldots M_{n}\right)$,here M_{s} is amount of vertex of A_{n}.by lemma 3.1, $p_{n, i} \in C$.so we denote $C\left(\rho_{n, i}\right)=p_{n, i}$.

Lemma 3.2 Let $\alpha=\oint|k| d$ s. Here k is curvature of C. let

$$
\alpha_{n}=\sum_{i=1}^{M_{n}}\left(\pi-\angle P_{n, i}\right)(s=1,2, \cdots)
$$

Then we have $\quad \alpha>\alpha_{n}$.

Proof. If C is of class C^{1}, then use Cauchy mean value theorem can prove it easily.

Let $G_{n}(i, t)$ be the position of vertex $p_{n, i}$ at time t when move follow Theorem 2.2,we can fix $G_{n}(1, t)=(0,0)$ and set

$$
\begin{equation*}
\sum_{i=1}^{M s} \frac{d \angle P_{s, i}}{d t}=\alpha_{s}-2 \pi \tag{3.1}
\end{equation*}
$$

Then when $t=1, \sum \angle P_{n, i}=2 \pi$. It is to say the polygon is convex.
Let $f_{n}(\rho, t):(\mathrm{R} / 2 \pi,[0,1]) \rightarrow \mathrm{R}^{2} \quad$ be the movement that:

1) $\mathscr{f}_{n}(\rho, 0)=C(\rho)$;
2) $\boldsymbol{f}_{n}\left(\rho_{n, i}, t\right)=G_{n}(i, t)$;
3) for each point ρ between 2 vertex $p_{n, i}, p_{n, j}$, we have $\left|f_{n}(\rho, t)-f_{n}\left(p_{n, i}, t\right)\right|$
$=\left|\mathcal{f}_{n}(\rho, 0)-\boldsymbol{f}_{n}\left(p_{n, i}, 0\right)\right|$ and $\left|f_{n}(\rho, \boldsymbol{t})-\boldsymbol{f}_{n}\left(p_{n, j}, \boldsymbol{t}\right)\right|=\left|\mathscr{f}_{n}(\rho, 0)-\boldsymbol{f}_{n}\left(p_{n, j}, 0\right)\right|$ for any t.

From condition 2), $\left|\boldsymbol{f}_{n}\left(p_{n, j}, \boldsymbol{t}\right)-\boldsymbol{f}_{n}\left(p_{n, i}, \boldsymbol{t}\right)\right|=\left|\boldsymbol{f}_{n}\left(p_{n, j}, 0\right)-\boldsymbol{f}_{n}\left(p_{n, i}, 0\right).\right|$ So condition 3) is to say each piece of curve $p_{i, n} p_{i+1, n}, p M_{n}, n p_{1, n}$ is rigid during the movement.The whole movement seems like binding the curve on the polygon.
$\left\{f_{n}\right\}$ keep the curve's length,so it is uniformly bounded.
Form (3.1) and Lemma 3.2 we have $\sum \frac{d \angle p_{s, i}}{d t}<\alpha-2 \pi$. By Theorem 2.2 we have $\frac{d \angle p_{s, i}}{d t}>0$. So $\left\{\mathcal{f}_{n}\right\}$ is equicontinuous.

By Arzela-Ascoli theorem $\left\{f_{n}\right\}$, there exists a subsequence $\left\{f_{n_{k}}\right\}$ that conver -ges uniformly.

Let \boldsymbol{f} be the function that subsequence $\left\{\boldsymbol{f}_{n k}\right\}$ converge to, because the conver
-gence is uniformly, \boldsymbol{f} is continuous.
For any $0 \leq t_{1}<t_{2} \leq 1$, if there exist 2 point ρ_{1}, ρ_{2} that

$$
\begin{equation*}
\left|\mathcal{f}\left(\rho_{1}, t_{1}\right)-\boldsymbol{f}\left(\rho_{2}, t_{1}\right)\right|-\left|\mathfrak{f}\left(\rho_{1}, t_{2}\right)-\boldsymbol{f}\left(\rho_{2}, t_{2}\right)\right|=\epsilon>0 \tag{3.2}
\end{equation*}
$$

Then exist a N_{1} that when $k>N_{1}$

$$
\begin{equation*}
\left|f_{n_{k}}\left(\rho_{1}, t_{1}\right)-f_{n_{k}}\left(\rho_{2}, t_{1}\right)\right|-\left|f_{n_{k}}\left(\rho_{1}, \boldsymbol{t}_{2}\right)-\boldsymbol{f}_{n_{k}}\left(\rho_{2}, \boldsymbol{t}_{2}\right)\right|>\in / 2 \tag{3.3}
\end{equation*}
$$

From lemma 3.1 we can find ρ_{3} in ρ_{1} 's neighborhood and ρ_{4} in ρ_{2} 's neighborhood suffice $\left.\left|\int_{\rho_{1}}^{\rho_{3}} C(\rho) d s\right|<\frac{\varepsilon}{16} \int_{\rho_{2}}^{\rho_{4}} C(\rho) d s \right\rvert\,<\frac{\varepsilon}{16}$, and for every $k>N_{2}, \rho_{3}$ and ρ_{4} is vertex of $A_{n k}$ then for every $k>N_{2}$

$$
\begin{equation*}
\left|f_{n k}\left(\rho_{3}, t_{1}\right)-f_{n k}\left(\rho_{4}, t_{1}\right)\right|<\left|f_{n k}\left(\rho_{3}, t_{2}\right)-f_{n k}\left(\rho_{4}, t_{2}\right)\right| \tag{3.4}
\end{equation*}
$$

let $N_{\max }$ be the maximum one of $N_{1} \cdot N_{2}$, for every $k>N_{\max }$,

$$
\begin{equation*}
\left|f_{n k}\left(\rho_{1}, t_{1}\right)-f_{n k}\left(\rho_{2}, t_{1}\right)\right|-\left|f_{n k}\left(\rho_{1}, t_{2}\right)-f n_{k}\left(\rho_{2}, t_{2}\right)\right|<\frac{\varepsilon}{4} \tag{3.5}
\end{equation*}
$$

Contradict from (3.3).
So for every $0 \leq t_{1}<t_{2} \leq 1$ and ρ_{1}, ρ_{2} we have

$$
\begin{equation*}
\left|f\left(\rho_{1}, t_{1}\right)-f\left(\rho_{2}, t_{1}\right)\right|<\left|f\left(\rho_{1}, t_{2}\right)-f\left(\rho_{2}, t_{2}\right)\right| \tag{3.6}
\end{equation*}
$$

Let $d\left(\rho_{1}, \rho_{2}, \boldsymbol{t}\right)$ be the curve length between ρ_{1}, ρ_{2} at time $\operatorname{tin} \boldsymbol{f}\left(\rho_{1}, \boldsymbol{t}_{1}\right)$. The same we can prove.

References

[1] Mikhael Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), no 1, 1-147.
[2] Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Birkhauser Boston Inc., Boston, MA, 1999, Based on the 1981 French original [MR 85e: 53051], With appendices by M. Katz, P. Pansu and S. Semmes, Translated
from the French by Sean Michael Bates.
[3] Robert B. Kusner and John M. Sullivan, On distortion and thickness of knots, Topology and geometry in polymer science (Minneapolis, MN, 1996), Springer, New York, 1998, pp.67-78.

