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Abstract

This paper contains seven sections primarily concerning the
relationship between a cubic function with its tangents and secants at a
point, the properties of the gradients of tangents and secants to a cubic
function at a point, the properties and categorization of cubic functions,

and a new definition of the cubic functions. We've found some interesting

properties such as Property VI: Zkl =0 where £, 1is the slope of the

i=1

tangent to a polynomial function at one of its zeros. PropertyIX:

Zki = f'(x,) where k is the slope of the tangent to a polynomial

P
function at (xo, f (xo)).

The structure of this paper is as follows.

Section 1: we introduce the background, some notations and some
preliminary results such as definitions, lemmas and theorems.

Section 2: we investigate the questions of intersection which concern
a cubic function and the tangent on this function at a point. These include
the intersection point of a cubic function and a tangent and the area of the
figure enclosed by the tangent and the graph of the function.

Section 3: we investigate the distance from a point on the graph of a
cubic function to a fixed line, and we work out a new definition for the

cubic functions.
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Section 4: we talk about the symmetry cubic functions.

Section 5: we concentrate on the slopes of the tangents at the zeros
for a cubic function. We also prove corollaries for some of the properties
by the Vandermonde determinant.

Section 6: we investigate the slope of the line passing through both a
point in the x-y plane and a zero of a cubic function. We also prove
Corollaries of these properties which concern a polynomial function of
degree n

Section 7: we talk about the relationship between the types of graph
for cubic functions and the roots of the cubic equation corresponding to

this function.

KEY WORDS: Cubic function Graph of cubic function Zero
Inflection point Turning point Slope Tangent Secant Point of

symmetry Area Polynomial function of degreen The Vandermonde

determinant
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Section 1

Introduction

1.1 Background

For polynomial functions, we often concentrate on quadratic functions
which are quite familiar to us. In this paper, we will mainly investigate
cubic functions through derivatives, because the derivative of a cubic
function will be a quadratic function. We also use determinants to solve
some problems while we are proving the corollary about the case of

degree n

1.2 Basic Notations
1. Let R denote the set of real numbers.
2. Let f'(x) denote the I° order derivative of f(x) and f"(x) denote

the 2" order derivative of f(x).

3. Let “)Y.x, 7 denote the sum of the x, over 1<i<n. That is to say

i=1
n
zxi =X Ry bt X
i=1

n

Let “I_| x; 7 denote the product of the x, over 1<i<n. Thatis to

i=1
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n
say []x =x xx, % xx,, *x,
i=1

1.3 Preliminary Results
Definition 1.3.1. A cubic function is a function of the form as follows.
f(x)=ax’ +bx* +cx+d(a#0)

The domain of itis R , and the range is R

Definition 1.3.2. The inflection point for a one-variable function is a
point on the curve of the function at which the curve changes from being
concave upwards (positive curvature) to concave downwards (negative
curvature). Suppose the coordinate of the inflection point for the function
f(x) is (xm,f(xm)) Jif fis twice differentiable at (xl.n,f(xm)) , then
£(6,) =0

Definition 1.3.3. A turning point is a point at which the sign of the
derivative changes. For differentiable functions such as cubics, the

turning point must have a zero derivative.

Definition 1.3.4. A zero of a function is defined as an intersection point

of the curve of the function with the horizontal axis.

Lemma 1.3.1. A cubic function has a unique inflection point at its point
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of symmetry.
Proof:
Suppose
f(x)=ax’ +bx* +cx+d (a20),

we get /"(x) =6ax+2b(a #0) and its inflection point

=3

For xOR , we have

Hence, the point of symmetry of a cubic function is its inflection point.

Lemma 1.3.2. By change of variable of the form y=x+k , for constant

k ,any cubic may be written in the form
f(x)=ax’ +mx+n (a#0).
Proof:
Suppose
f(x)=ax’ +bx* +cx+d (a20),

this may be rewritten as
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fUOZa(vhé)+w{x+£J+n(aim,
3a 3

a

2 3
where m=c—b— , n=d+ 2b2_b_c' D
3a 27a° 3a

This is a very useful conclusion, which can be used to simplify the

problems when exploring properties of cubics.

Lemma 1.3.3. A cubic has either three real roots, or one real root and
two complex imaginary roots. In the case of three real roots, either all of

them are equal, two of them are equal, or all of them are different.

Lemma 1.3.4 In the following discussion , the graphs of cubics are
divided into three different types.

1) Example: f(x)=x"—x.

There are two turning points for this type of function, the cubic
equation corresponding to this function may have three different real
roots , three real roots with two of them equal or one real root and two

complex roots.

2)Example: f(x)=x".
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There is a stationary point but no turning point for this type of function,
the cubic equation corresponding to this function may have three equal

real roots or one real root and two complex roots.

3)Example: f(x)=x"+x.

There are no turning points or stationary points for this type of
function. The cubic equation corresponding to this function would have

one real root and two complex roots.

Lemma 1.3.5 Vieta's theorem for a polynomial equation of degree n

-1

For ax"+a, x"" 4 +a,x+a,=0 (a, #0), this equation has n roots.

Through factorization, this equation can be reformed as
an(‘x—‘xl)(‘x—x2) ...... (‘x—xn):() (anio))
where x, are the roots of the equation.

And we have

Page - 140



N11

a
—__ "n-l1
E:xi—
i=1 an
a
— n-2
2: XXy =
1<i<j<n an
a _
2, X =
lsi<j<kSn an
a
...... — n %o
XX, x, =(-1)
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Section 2

The intersection of a cubic function
and a tangent to this function

2.1 Property [

This is a property about the intersection points of a tangent to a cubic

function with the function itself.

Suppose
F)=ax* +mx (@ 20).
The tangent at any point (x,,f(x,)) on this function except the
inflection point of this function crosses the graph of the cubic function at
exactly two points. One is (x,, f(x,)) , the otheris (x, f(x,)).

The relationship between x, and x, 1is
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Proof:
As all the cubic functions can be written as

f(x)=ax® +mx+n (a#0),
therefore, it is only needed to prove that it is true for the case

f(x)=ax’ +mx+n (a#0).
Suppose

f(x)=ax’+mx+n (a#0),

then

f(x)=3ax* +m (a2 0).
For a point (x,, f(x;)) on the graph of the function which is not the
inflection point, the goal is to find the tangent l;g to the function at
(xo', f (xo')) passing through (x,, f(x,)) .We have

Lyt y= (3ax(')2 + m) x—2axy +n,

f(x):y=ax’ +mx+n.

. X=X, .
Since { solves the equations above, so we have

y=r(x)
ax,’ +mx, = (3ax(',2 + m) x, —2axy’
For this equation, we know that x; =x, must be one of its solutions.
Through factorization, we can get another solution

R
Xo =Xy =——X,.

2
(we know that a cubic equation has three solutions, but in this situation,

. . 1
two of its solutions are same: x, =x, = —o% D)
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Similarly, if the point (x,, f(x,)) is the inflection point, which means

x, =0. In this case the only possible value for x;, is 0, which means the
tangent at the inflection point would pass the function through the tangent
point only.

Corollary:

In general, as the point of symmetry of a cubic function

b

—3—D we can obtain a more
a

f(x)=ax’ +bx* +cx+d (a#20) is (—%,f(
a

general conclusion:

The tangent at a point (x,,f(x,)) to a cubic function, which is not
the inflection point, would pass the graph of the function at (xo, f (xo))

and (xl, f (xl)) ,and the relationship between these two points is

b b
x1+3—:—2 X0+3—
a a

2.2 Property 1I

This property talks about the area enclosed by the tangent to the curve

of a cubic function and the curve itself.

Suppose
f(x)=ax’ +mx (a#0).
The tangent at point A (x,,f(x,)) on this function except at the

point of inflection would pass the graph through another point B . The
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area enclosed between the tangent and the cubic function is

S = 27r7ax04

A(xo , Yot

Proof:
Suppose
f(xX)=ax* +mx (a#0),
and the tangent at point (x,, f(x,)) on this function is
l,:y= (3ax§ +m)x —2ax; .
Let
Fx)=l,=f(x),
so we have that the area" S "of the closed graph shaped by the tangent

and the function is the absolute value of the definite integral of F(x) on

(x5,=2x,) Cor (=2xp,%,) )

-2x, -2x,
S= _[ F(x)dx|= J. (a)c3 —3ax; x +2ax§)dx
= lax4 ;2"0 —Eaxgx2 ;2"0 +2ax§x ;2"0
4 0 2 0 0
= %ax(f .
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Corollary:

In general ,the tangent at a poim‘(xo, f (xo)) on the function
f(x)=ax’ +bx’ +cx+d (a20) will enclose an area with the cubic function.
This area is given by:

27 b
S="—a(x +—)°
‘451(0 3a).

Proof:

For f(x)=ax’+bx’+cx+d (a #0),we can move its graph to the graph
of f(x)=ax’ +mx+n (a#0) and furthermore ,to f(x)=ax’ +mx (a 20).
Since area is a translation invariant, we can prove the corollary by
proving the case f(x)=ax’ +mx(a#0).As the case f(x)=ax’+mx(a#0)

has already been proved, the corollary is proved as well.
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Section 3

A new definition of cubic functions

3.1 Property III

By comparing with the polar coordinate representation of conical
curves, we enquire as to the distance from a point on the curve to a fixed

line which is the tangent at the inflection point for the function.

Suppose
f(x)=ax’ +mx (am <0)
Let a tangent 1, pass across the inflection point of the function. For
any line y=kx(if a>0 then k=m. if a<0 then k <m), the distance "d "

from the intersection point of y=hx and f(x) to the tangent 1, is

2
m—k

1
m+—
m

d=

d,,

where d, is defined as the distance from the intersection point of f(x)

and the normal at the inflection point to the tangent 1, .
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Proof:
Suppose
f(x)=ax’ +mx (am <0)
and
y=kx(if a>0 then k=m. if a<O0 then k<m),

Two intersection points of f(x) and y=kx are

(\/k_m,f(\/k_m]) and (- k'—’”,f(— k"”])-
a a a a

According to the formula of the distance from a point to a line

3
( k—mj
a
a

J _|4x, + By, +C| _

A+ B m? +1
. 1 .
taking k=-— , we obtain
m
3
1
- —m
a m
a
d = :(m+ij —L
0 m?+1 m am
Hence
3
2
m—k
d= | dy
m+—
m
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3.2 Property IV

This property may be used as a definition of cubic functions.

Given a fixed line y=mx , for any variable line y=kx(mx(m-k)>0) ,
there are two special points on this line satisfying the equality
a=p(j=ni),

where d is defined as the distance from the special point to the line
y=mx ,and p is a positive constant. The set of these points would
form the graph of a cubic function.

Proof:

Suppose (x,,kx,) 1s one of the points on the graph, by the formula of the

distance from a point to a line

d:‘Ax()-i-ByO-i-q

VA +B

3
where Yo =kxy, A=m, B=-1 ,C:O,de(|k—m|)5,

Thereby
ol =l 1=
Since
=2 ana ] = o 1 =]
we have
=,
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I x>0
where sgn(x)=<0 x=0.
-1 x<0

This means that those points form a graph of a cubic function.
Summarize

According to this property, we have a new representation of a cubic
function:

Suppose a fixed line y = mx . For any line y =kx(mx(m—k)>0) ,
there are two special points on this variable line satisfying the equality

a=p(j-nl),

where d is defined as the distance from the special point to the line
y=mx ,and p is a constant number. All these points would form the
graph of a cubic function, whose point of symmetry is the origin. This
can be seen as a new definition of a cubic function.

Comparing with the polar coordinate representation of conical curves,
this representation has more confining conditions. This is possibly a
result of the fact cubic functions do not form closed graphs, while conical

curves are.
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Section 4

The symmetry of a cubic function

4.1 Property V
Suppose
f(x)=ax’ +bx* +cx+d(a #20).
If there are two different points for which the derivatives are equal to
each other on the function, then the line passing the two points will pass

through the inflection point for this function.

Proof :
Suppose

f(x)=ax’ +bx’ +cx+d (a20),
then

f'(x)=3ax’ +2bx +c (a 20).

If the derivative of the function at point 4 is equal to the derivative at
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point B , which means
F(xa)= 1" (%)

Since f'(x) is symmetrical about the axis x = —33, we obtain that
a

2 3a

Because [_3i, f[_3in is the point of symmetry of this cubic function,
a a

the x coordinate of 4 and B are symmetrical about the point of

symmetry.

Thus the line passing the two points must pass through the point of

symmetry of this cubic function. []

This property is the result of the fact that an odd function has a even

function as its derivative function.
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Section 5

The tangents to a cubic function at
its zeros

5.1 Property VI
This property concentrates on the slopes of the tangents at each zero
for a cubic function. We also prove a corollary for the polynomial

function of degree 7 by the Vandermonde determinant.
Given a cubic function
f(x)=ax’ +bx’ +cx+d (a 20),
if there are three different zeros for this function

A (x,0) B (xzao)ac (%3,0),

then we have

and

where k(1<i<3) is the slope of the tangent at (x,,0)(1<i<3).
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Proof:
Since by assumption, there are three different zeros
A (x,0), B (x,,0),C (x,,0),
then
f(x)=ax’ +bx* +cex+d =a(x—x)(x—x,)(x—x,).
Thus we obtain
') =alx—x)(x—x,)+ta(x—x)(x—x;)+a(x—x,)(x—x;).
Because X, F X, F Xy,

it follows

1
ky a(x —x)(x —x;)

and

1

: a(xl —x,)(x —x;)  alx, —x)(x, —x;)  alx; —x)(x; —x,)

i[M-
»‘l»—‘
—_
—_
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— (2, =x3) = (o = x3) +(x, —x,)
a(x; =x,)(x =x;)(x, —x;)

_ 0

B a(x; =x,)(x = x;)(x, —x;)

=0.
Likewise
ii = 4 + % + i
ko a(n —x,)(x —x) alx, —x)(x, —x;)  alx; —x,)(x —x,)
_ X505 m ) a0 T X)X — X))
a(x, = x,)(x, = x3)(x, —x;)
=0.
Corollary:

For any polynomial function of degree n with n different zeros ,the

equation

holds,

where k(1<i<n) is defined as the slope of the tangent to this function at

one of the zeros (x;,0)(1<i<n).

Definition 5.1.3.1 A matrix is a rectangular array of numbers. The

individual items in a matrix are called its elements or entries.

Definition 5.1.3.2 The determinant is a value associated with an n-by-n

matrix.The determinant of a matrix A is denoted as det(A), det A, or |A|.

Page - 155



N11

In the case where the matrix entries are written out in full, the
determinant is denoted by surrounding the matrix entries by vertical bars

instead of the brackets or parentheses of the matrix. For instance, the

determinant of the matrix

a b c a b c
d e f |ISwritten |g ¢ f|-

g hi g h i

Lemma 5.1.3.1 Laplace's formula

Laplace's formula expresses the determinant of a matrix in terms of its
minors. The minor M j is defined to be the determinant of the

(n—1) x(n—1)-matrix that results from A by removing the i" row and the
J " column. The expression (_1)i+j M ij 1S known as the cofactor of 4.

a;; is defined as the entry from the i" row and J " column of A. The

determinant of A is given by

det(A4) = Z(—l)l’*f a,M, = Z(—l)i*f a,M,
j=1 i=1

Lemma 5.1.3.2 The Vandermonde determinant

1 1 1 1
X Xy X3 X,
| .2 2 2 2 | _ _
D =|x x; xi - x |= |_| (x,. xj)
1<j<i<n
n-1 n—1 n-1 n—1
X Xy X3 X,
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Lemma 5.1.3.3 If two or more columns or rows of a determinant are

equal, then the value of the determinant is equal to zero.

Proof:
Suppose
S(x) = a(x=—x ) (x—x,)(x —x3)---(x —x,)(a #0),
then
' LS|
f(x) :a(x_x1)(x_x2)(x_x3)"‘(x_xn)xzx_x )
i=1 i

Thus we can obtain

k, :f,(x1) =a(x; —x,)(x = x3) (X, = x,),
kz :f’(xz) = a(xz _xl)(xz _x3)"'(x2 _xn)a

k= f(x) = a(x, = x)(x; =x,)- - (X =x, )%, = x,)+ (X, = x,),

k, = f(x,)=a(x, =x)(x, =x,) - (x, =x,),

therefore,
n
1) ( - )
11 lel " ISj<k|:|n,,-,k¢i o
s koa [ (xi_xﬁ)

I<i<j<n
We only need to prove

n

20T N (-x)p=o

i=1 1< j<ks<n,jk#i

Considering the determinant as follows
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1 1
X X,
2 2
X Xy
D=
n—2 n—=2
X X,
1 1

According to Lemma 5.1.3.3

D=0,

Expanding the last row of D , we obtain

1 1 1
Xy X3 Xy
2 2
X X X
2 3 n
D =(-1)""
x;—3 x;—S xn—3
1 1 1
1 1
'xl ‘x2
2 2
X X
.o+ (—1)2” 1 2
n-3 n=3
xl x2
1 1

+ (_1)n+2
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According to the Vandermonde determinant

D =(-1)"" |_| (xk —xj) +(—1)"*? |_| (xk —xj) +(-1)"" |_| (xk —xj)

2<j<ksn 1< j<k<n, j k#1 1< j<k<n, j k#2

rer e ] (50x)

1< j<k=n-1

=l )i{(-l)’” < I [ )}

i=1

n—1

where ( J is the number of ways of selecting 2 things from (n-1) .

2

n

20T N (-x)p=o

i=1 1< j<ksn,j k#i

5.2 Property VI

A geometric property about the normals to a cubic function at zeros.

Suppose we have
f(x)=ax’ +bx* +cx+d(a #0).
If there are three different zeros for this function
A (x,0) B (x,,0) C (x,,0),
choose any two of these three points, such as A and B , and we

denote the normals at these two points as 1, and 1, respectively, then
C is the middle point of the segment K ,K,, where K, is defined as the
intersection point of 1, and the vertical line passing through C, with

K, defined in the same way.
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Proof:

Given a cubic function £(x) with three different zeros for this

function. The zeros are

A (xlaO)SB (xz,O), C (x390)'
Let & to be the slope of the tangent at (x,,0).

By the Property VI, we have

and

Thus

1
Since k is the slope of the tangent at a point, T is the slope of the

normal at the same point. Note that |x3 —x1| is the length of AC and
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‘xz —x3‘ is the length of BC, so we can obtain |21/ is the length of

Xy T Xy

CK, and is the length of CK,

2
BTH_XHTX

kl kZ

xz_x3"
k|

X3 7 X

kl

—

Thus the length of CK, is equal to the length of CK,.

For any sequence of positions for A , B and C, pointsK,, K, are

always on the opposite sides of C , along with the fact that the length of

CK, is equal to the length of CK,,then we obtain that C is the

midpoint of the segment K,K,.

5.3 Property VI
Though the zeros change when we move by translation the graph of
the cubic function, the sum of the three slopes of the tangents at each zero

will be a constant number unless we change the curve.

Suppose we have a cubic function with three zeros.

The equality

holds,
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where k, is defined as the slope of the tangent at the inflection point, and
k.(1<i<3) is the slope of the tangent at the point (x,,0) which is one of
the three zeros.
Proof:
Suppose

f(x)=ax’ +bx* +cex+d =a(x—x)(x—x,)(x—x;) (a#0).
Let k(1<i<3) be the slope of the tangent at (x,,0),

k= f(x)=a(x=x)(x=x,)+a(x=x)(x=x;) +a(x—x,)(x —x,)
3
Zki =a(x, —x,)(x, = x3) +alx, —x)(x, =x;) +a(x; —x)(x; —x,)
i=1
= a(x +x; +x3) —a(xx, + 0,0+ xx,)
=a(x, +x, +x,)° =3a(xx, + X,x, +x,x;).
By Vieta's theorem (Lemma 1.3.5), we can obtain that

S = 2] s

b2

a

3c.

Since

f'(x,) =3ax; +2bx, +c

2
:3a(—£j +2b[_£j+c
3a 3a

2

=_—+C,
3a

where (x,, f(x,)) is the inflection point, then we have
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Therefore

5.3.3 Corollary:
The zeros for a function are the intersection points of both the curve of
the function and y=0. If y=0 is replaced by y=px+q we can

obtain

3
2.k,
= +f’('x0):p)
3
where (x,,f(x,)) is the inflection point.

Proof:

Similarly, by Vieta's theorem, we can prove
3 2
Dk Zb——3c+3p.
i=1 a
f'(x,) =3ax, +2bx, +c

2
=3a(—llj +2b[—ll)+c
3a 3a

2

=_—+C,
3a

Hence
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3

Sk

%-'-f,(xo):p.
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Section 6

The slope of the line passing through
an arbitrary point and one of the
zeros for a cubic function

6.1 Property IX
This property concentrates on the slope of the line passing through

both a point on the function and a zero for this function.

Take a cubic function with three different zeros. For any point
F(x,, f(x,)) on the graph of the function,
the equality
kg ¥ ke ke = 11(X)
holds,

where k,. is defined as the slope of the line passing through both

F and A , with ky and k.. defined similarly. Here A , B and

C are the three zeros for this function.
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Proof:
Suppose we have
f(x)=ax’ +bx* +cx+d (a#0).
For any point F(x,, f(x,)) on the graph of the function, we can denote

L) iy

X, =X,
where (x,,0)(1<i<3) is a zero of this function, % is the slope of the
line passing through both (x,,0)(1<i<3) and point F .

1) When F(x,,f(x,)) isnotone of the three zeros.

Since x,=x, #0,

then we get

(= )=/ ()

X, X,

(ax,” +bx," +cx, +d) - (atx,.3 +bx” +cx, + d)

Xo =X
2 2
- a(xy = x,)(xg +xox, +x,7) +b(x, —x,)(x, +x, ) +c(x, —x,)

Xo =X

= a(xy + X%, +x7) +b(x, +x, ) +c.

Therefore

ikl. =3ax; +axoz3:xl. +az3:xi2 +3bx, +bz3:xl. +3c,

i=1 i=1 i=1 i=1
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By Vieta's theorem

and

we have

Zglkl. =3ax; +2bx, +c = f'(x,).

i=l

2) When F(x,,f(x,)) is one of the three zeros, it is obvious that the
property holds.
Corollary:

This property holds not only for cubic functions, but also functions of

degree n (with n different zeros).
Suppose we have a polynomial function
f(x)=a(x=x)(x=x,)(x-x,) (a#0),
where X EX, EE X,
Given a point F(xo,f(xo)) on the curve and (x,,0) (1<i<n,i0ON)is
one of the zeros for this function.

The equality
2.k = 11(x,)
i=1

holds,
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where k;, (1<i<n,i0ON) is defined as the slope of the line passing

across both (x,,0)and F(xo,f(xo)).

6.2 Property X
According to Property IX, we have a property about a point on the
curve. What about the case of a point not on the curve, like the case of a

point on the vertical line passing through a turning point.

Take a cubic function with three different zeros, for any point
F(xy,Yy) on the vertical line passing through a turning point for the
function, the equality
kAF +kBF +kCF =0
holds,
where k,. is defined as the slope of the line passing through both
F and A , with k,. and k.. defined similarly. Here A , B and C

are the three zeros for this function.

Proof:

Suppose
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f(x)=ax’ +bx’ +cx+d (a20).
Given a point F(x,,y,) on the vertical line passing through a turning
point and (x,,0)(1<i<3) is the zero for this function .

Denote

k=200 1 gie3)

X, — X,
where k,- is the slope of the line passing through both (x,0)(1<i<3)
and point F .

Because f(x,)=0, then we get

3 3 1
Dk=vD)
i=1

_ (g =2y =x,) + (g =2,))(xg =x3) + (3 = x,)(x, _xs)}
=W
L (xo -—X )(xo X, )(xo —)C3)
=y _3x02 = 2x,(x; +x, +x;) + (x5, + X, X, +x1x3)}
°l (%o = X,)(%, =%, )(x, = ;)
By
3 b
o=t
i a
1<i<;<3 oa’
we can get

{ 3ax; +2bx, +c }

(X, _x1)(x0 = X,)(Xy —x3)

i=1 a

According to f'(x) =3ax’ +2bx +c, we have

S5 =2 L /(%) }
i=1 a

Xo _x1)(xo X )(xo _xs)

Since (x,,/(x,)) is a turning point for this function, which means that
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f'(x,) =0, therefore

Corollary:
This property holds not only for cubic functions, but also functions of
degree n (with n different zeros).
Suppose we have a polynomial function

f(x)=a(x=x)(x=x,)(x~x,) (a#0),
wherex £x, - £x,.
Given a point F(x,,y,) on the vertical line passing through a turning
point for this polynomial function and (x;,0) (1<i<n,i0ON) is one of
the zeros for the function.

The equality

holds,
where k; (1<i<n,i0N) is defined as the slope of the line passing
through both (x;,0)and F(x,,y,).

6.3 Property XI

From Property X, we have a property regarding points on a special

line, so we consider the case of a general point in the plane.
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Take a cubic function with three different zeros. For any point

F(x,,y,) in the plane and (x,,0) is not any one of the zeros for the

function, the equality

f(x,)
" ()

Ky thpe Yhkep =y

holds,

where Kk, is defined as the slope of the line passing through both

F and A , with k. and k.. defined similarly. Here A , B and

C are the three zeros for the function.

Proof:
Suppose
F(x)=ax’ +bx* +cx+d =a(x - x,)(x —x,)(x = x;) (a 20).
Given a point F(x,,y,) while (x,,0) is not any one of the zeros for the

function and(x,,0)(1<i<3)is a zero for the function.

Then we obtain

&=2i2{1ﬁ305is3),

Xy~ X,

1
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where k, is the slope of the line passing through both (x,0) and

F(x45¥0) -

Because f(x;,)=0, then we get

3 3 1

k=0,

i=1 =l Xg T X;

=y (o0 =X)( =X,) + (x5 = 2,))(xp —x3) + (o) = x,)(x, _xs)}

() =x,)(X =X, (X, =)

_ _3x02 = 2x,(x; +x, + ;) + (x5, + X, X +x1x3)}
=W .

(g =x)(xX) =X, )(X, = ;)

We have
3 b
Y=t
i a
_ C
Z XXy ==
1i<;<3 a
therefore

ik':&|: 3ax; +2bx, +c }
i=1 l a '

(g =2)(x) =X, )(Xy —X3)

But f'(x)=3ax’ +2bx+c,

hence we have

(g =2)(x) =X, )(Xy —X3)

S5 = 2 { /() }
i=1 a

Since f(x)=a(x—x)(x—x,)(x~x;)(a#0), we have

L fi(y)
k =y,
2= s

Corollary:

This property holds not only for cubic functions, but also functions of

degree n (with n different zeros).
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Suppose we have a polynomial function

S(x)=a(x=x)(x=x,)(x~x,) (a#0),
where x #x,#-#x,.
Given a point F(x,,y,) in the coordinate plane while (x,,0) is not any
one of the zeros for the function and (x,,0) (1<i<n,i0ON) is one of the
zeros for the function.

The equality

- f’(xo)
k =y,
2.k = 00 50

holds,
where k; (1<i<n,i0ON) is defined as the slope of the line passing
through both (x,,0) and F(x,,y,).
Summarize

Obviously, Property IX and Property X are special cases of
Property XI. When (x,,»,) is on the graph of the function,
i.e.y, = f(x,), we can obtain PropertyIX from PropertyXI. On the other
hand, when (x,,y,) is on the vertical line passing through a turning point
for the function, ie. f'(x,)=0, we can obtain Property X from

PropertyXI.
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Section 7

The division of the graph of a cubic
function

7.1 Property XI
This property concentrates on how to categorize the graphs of a cubic

function based on its roots.

If the three roots to a cubic equation are known, one of which is a real
root X, , while the others are complex roots p*qi. Then we can deduce
the type of the graph of the function corresponding to this equation.
Proof:

Take
f(x)=ax’ +bx’ +cx+d(a 20),
withroots X, , pzxqi.

The inflection point can be obtained as follows
b b
Ferl2))

b _xyt(ptgD)t(p—qi) _x,*+2p
3a 3 307

By Vieta's theorem

which is the x coordinate of the inflection point on the coordinate plane.
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Then we can obtain
f'(x)=3ax* +2bx +c(a % 0),
and the x coordinate of the zero for the derivative function is equal to the

x coordinate of the turning point for the cubic function.

Thereby
b _sc
¥ _—bi'\/bz—Sac ___b a2 a
e 3a 3¢ 3

By Vieta' theorem , we can obtain

2
\/(Zslxij -3 Z XX
-b i=1 li<j<3

xturn: 361 i 3

1) When

2
305 om0 o loorlo
i=1

1<i<;<3

The function has two turning points (such as f(x) = X’ =x ).

2) when

3 2
(le.] -3 Z xx; =0 or |xo—p|:‘\/§q‘
i=1

1<i<;j<3

The function has no turning point but it has a stationary point (such as

fx)=x").
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3) When

3 2
(sz) -3 Z xixj<0 or |x0_p|<‘\/§Q‘
i=1

1<i<;j<3

The function has no turning point (such as f(x) = x> +x ).
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Appendix

The initial proof of the corollary of
Property VI

Suppose
() =alx=x)(x=x,)(x=x)---(x—x,)a #0),

then

100 = ax=x)(x=x,)(r=x5) - (r=x, ) x Y

i=1 X_Xl- ’

we can obtain

k, :f,(x1) =a(x; —x,)(x = x3) (X, = x,),
kz :f'(xz) = a(x2 _xl)(xz _x3)"'(x2 _xn)a

ki = f'('xi) = a('xi _xl)(xi _xz)"'(xi _xi—l)('xi _xi+1)"'(xi _’xn)7

k, = f(x,)=a(x, =x)(x, =x,) - (x, = x,),

n

Sl )

i=1

]
;;i_a |_| (xl.—xj)

I<i<j<n

According to Lemma 5.1.3.2, the determinant D, . is defined as follows
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1< j<k<n,j k#i

I<i<j<n

1 1 1 1
X X Xia Xin
— 2 2 2 2
Dn/i s Xy Xin1 Xit1
n—2 n-2 n—=2 n-2
X X Xiw i
thus
"5
2
. (=D %
1 1
SL-ls
= k. a
n—1
where
2

n

Z[(_I)H an/z} =0,

i=1

(“%'_xb)

J is the number of ways of selecting 2 things from (n-1).

According to induction, suppose for the case 7 =k the equation holds,

then for the case n =k +1:

According to Lemma 5.1.3.1,

D

k
where 4 ; is defined as the cofactor of X

nli

1< j<k+1, j#i
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k+1 . k+1 4
1\ _ 1\ ” k-1
Z( 1) XDn/i_Z ( 1) X Z X, XA,
i=1 i=1 1< j<k+1, j#i
k-1 i-1 ,
= 3t 3 [(1) T,
x] |: 1 A](Dn/l')i|
1< j<k+1 1<isk+1,i# ]

k-1
where A j(D,;) is defined as the cofactor of X;  which is an

element of the determinant Dn /i -

i-1
The sum Z (_1) Aj (D) 1s exactly the sum of some (k -1)

1<i<k+1,i# )

order Vandermonde determinant and the number of those determinants
is k.

1) while > j

)C1 xz xj—l xj_‘_l xi—l xi+l cee xk+1
— [ _ k+j 2 2 2 2 5 ) )
Aj(Dn/i) . ( 1) xl x2 e x]_l x1+1 xl—l xl+1 e xk+1
k=2 k=2 k=2 k=2 k=2 k-2 k-2
& 12 Xj-1 X+ Xiy Xi+l Xi+1
2) while 1< J
xl x2 “es xi—l .Xl.ﬂ cee x]—l x1+1 “es xk+1
— (1Y L2 2 2 2 ) ) s
Aj(Dn/i) a ( 1) X X o X XNy X X Xy
k=2 k-2 k=2 k=2 k=2 k=2 k=2
X, X, X X X Xl X4
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Hence we have, when i = j =1 | the sign of the determinant 4, , is

o \JT2HkSIH o \2j+k3
(-1) =(-1)

b

when = j+1 | the sign of the determinant 4, , is

(_1)j+k+j — (_1)2j+k.
So we can prove that the signs of any two of the determinants which are
contiguous are opposite.
Let XXy o m X Xy " Xy
correspond separately to
J

J oy J...

... J
Xi 5 Xy o X, X7 X
Hence
1 1 1 1 1
J J J J J
X X Xio Xivl Xk

Dj/i - (xlj )2

n

()7 ()7 ()7 ()T ()

SO

k
i-1 i-1 -
_ — — j
2. (-1) 4@M{ZU1)xDﬁ]
1i<k+1,i# j i=1
According to induction, we have

S[(-1)"xp),]=0.

i=1
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Therefore
o i-1
Z[(_l) an/i:| =0
i=1
Clearly, when n =2
2 .
>|(-1)" %D, |=1-1=0.
i=1

By induction, we prove that forany 7 =2,
< i1
Z[(_l) an/z}:O,

i=1

then

and the conclusion is proved.
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