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Abstract 
This paper contains seven sections primarily concerning the 

relationship between a cubic function with its tangents and secants at a 

point, the properties of the gradients of tangents and secants to a cubic 

function at a point, the properties and categorization of cubic functions, 

and a new definition of the cubic functions. We've found some interesting 

properties such as PropertyⅥⅥⅥⅥ: 
1

1
0

n

i ik=

=∑  where 
ik  is the slope of the 

tangent to a polynomial function at one of its zeros.  PropertyⅨⅨⅨⅨ: 

0

1

( )
n

i

i

k f x
=

′=∑  where 
ik  is the slope of the tangent to a polynomial 

function at ( )0 0, ( )x f x . 

The structure of this paper is as follows. 

Section 1: we introduce the background, some notations and some 

preliminary results such as definitions, lemmas and theorems. 

Section 2: we investigate the questions of intersection which concern 

a cubic function and the tangent on this function at a point. These include 

the intersection point of a cubic function and a tangent and the area of the 

figure enclosed by the tangent and the graph of the function. 

Section 3: we investigate the distance from a point on the graph of a 

cubic function to a fixed line, and we work out a new definition for the 

cubic functions. 
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Section 4: we talk about the symmetry cubic functions. 

Section 5: we concentrate on the slopes of the tangents at the zeros 

for a cubic function. We also prove corollaries for some of the properties 

by the Vandermonde determinant. 

Section 6: we investigate the slope of the line passing through both a 

point in the x-y plane and a zero of a cubic function. We also prove 

Corollaries of these properties which concern a polynomial function of 

degree n  . 

Section 7: we talk about the relationship between the types of graph 

for cubic functions and the roots of the cubic equation corresponding to 

this function. 

 

 

 

 

 

KEY WORDS: Cubic function  Graph of cubic function  Zero  

Inflection point  Turning point  Slope  Tangent  Secant  Point of 

symmetry  Area  Polynomial function of degree n  The Vandermonde 

determinant 
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Section 1 

 

Introduction 

 
1.1 Background 

 For polynomial functions, we often concentrate on quadratic functions 

which are quite familiar to us. In this paper, we will mainly investigate 

cubic functions through derivatives, because the derivative of a cubic 

function will be a quadratic function. We also use determinants to solve 

some problems while we are proving the corollary about the case of 

degree n  . 

 

1.2 Basic Notations 

1. Let R  denote the set of real numbers. 

2. Let ( )f x′  denote the 1
st
 order derivative of ( )f x  and ( )f x′′  denote 

the 2
nd

 order derivative of ( )f x . 

3. Let “
1

n

i

i

x
=
∑ ” denote the sum of the ix  over 1 i n≤ ≤ . That is to say 

1 2 1

1

n

i n n

i

x x x x x−
=

= + + + +∑ L .  

Let “
1

n

i

i

x
=

∏ ” denote the product of the ix  over 1 i n≤ ≤ . That is to    
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say 1 2 1

1

n

i n n

i

x x x x x−
=

= × × × ×∏ L  

 
1.3 Preliminary Results 

Definition 1.3.1.  A cubic function is a function of the form as follows. 

3 2( ) ( 0)f x ax bx cx d a= + + + ≠  

The domain of it is R  , and the range is R  .    

    

Definition 1.3.2.  The inflection point for a one-variable function is a 

point on the curve of the function at which the curve changes from being 

concave upwards (positive curvature) to concave downwards (negative 

curvature). Suppose the coordinate of the inflection point for the function 

( )f x  is ( )( ),
in in

x f x  ,if f is twice differentiable at ( )( ),
in in

x f x  , then 

( ) 0inf x′′ =     

    

Definition 1.3.3.  A turning point is a point at which the sign of the 

derivative changes. For differentiable functions such as cubics, the 

turning point must have a zero derivative.    

 

Definition 1.3.4.  A zero of a function is defined as an intersection point 

of the curve of the function with the horizontal axis. 

 

Lemma 1.3.1.  A cubic function has a unique inflection point at its point 
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of symmetry. 

Proof:  

Suppose     

3 2( ) ( 0)f x ax bx cx d a= + + + ≠ , 

we get ( ) 6 2 ( 0)f x ax b a′′ = + ≠  and its inflection point  

,
3 3

b b
f

a a

  − −  
  

. 

For x R∈  ，we have  

3 2

3 2

3 2

3 3

3 3 3

3 3 3

2
3 3 3

2 .
3

b b
f x f x

a a

b b b
a x b x c x d

a a a

b b b
a x b x c x d

a a a

b b b
a b c d

a a a

b
f

a

   − − + − +   
   

     = − − + − − + − − +     
     

     + − + + − + + − + +     
     

      = − + − + − +      
       

 = − 
 

 

Hence, the point of symmetry of a cubic function is its inflection point. 

 

Lemma 1.3.2.  By change of variable of the form y x k= +  , for constant 

k  , any cubic may be written in the form 

3( ) ( 0)f x ax mx n a= + + ≠ . 

Proof:  

Suppose 

3 2( ) ( 0)f x ax bx cx d a= + + + ≠ , 

this may be rewritten as 
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3

( ) ( 0)
3 3

b b
f x a x m x n a

a a

   = + + + + ≠   
   

, 

where 
2 3

2

2
, .

3 27 3

b b bc
m c n d

a a a
= − = + −  

This is a very useful conclusion, which can be used to simplify the 

problems when exploring properties of cubics. 

 

Lemma 1.3.3.  A cubic has either three real roots, or one real root and 

two complex imaginary roots. In the case of three real roots, either all of 

them are equal, two of them are equal, or all of them are different. 

 

Lemma 1.3.4  In the following discussion , the graphs of cubics are 

divided into three different types. 

1) Example:
3( )f x x x= − . 

 

  There are two turning points for this type of function, the cubic 

equation corresponding to this function may have three different real 

roots , three real roots with two of them equal or one real root and two 

complex roots. 

 

2)Example:
3( )f x x= .  
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  There is a stationary point but no turning point for this type of function, 

the cubic equation corresponding to this function may have three equal 

real roots or one real root and two complex roots. 

 

3)Example:
3( )f x x x= + .  

 

  There are no turning points or stationary points for this type of 

function. The cubic equation corresponding to this function would have 

one real root and two complex roots. 

 

Lemma 1.3.5  Vieta's theorem for a polynomial equation of degree n     

For 
1

1 1 0 0 ( 0)n n

n n na x a x a x a a−
−+ + + + = ≠…… , this equation has n roots. 

Through factorization, this equation can be reformed as 

1 2( )( ) ( ) 0 ( 0)n n na x x x x x x a− − − = ≠…… , 

where ix  are the roots of the equation. 

And we have 
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1

=1

2

1

3

1

0
1 2

( 1)

n
n

i

i n

n
i j

i j n n

n
i j k

i j k n n

n

n

n

a
x

a

a
x x

a

a
x x x

a

a
x x x

a

−

−

≤ < ≤

−

≤ < < ≤

 = −



=

 = −



 = −




∑

∑

∑

……

……

. 
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Section  2  

 

The intersection of a cubic function 

and a tangent to this function 

   
2.1 Property ⅠⅠⅠⅠ    

This is a property about the intersection points of a tangent to a cubic 

function with the function itself. 

 

Suppose 

3( ) ( 0)f x ax mx a= + ≠ . 

The tangent at any point ( )0 0, ( )x f x  on this function except the 

inflection point of this function crosses the graph of the cubic function at 

exactly two points. One is ( )0 0, ( )x f x  , the other is ( )1 1, ( )x f x . 

The relationship between 0x  and 1x  is 

1 02x x= −
. 
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Proof：：：： 

As all the cubic functions can be written as 

3( ) ( 0)f x ax mx n a= + + ≠ , 

therefore, it is only needed to prove that it is true for the case  

3( ) ( 0)f x ax mx n a= + + ≠ . 

Suppose 

3( ) ( 0)f x ax mx n a= + + ≠ , 

then               

 
2( ) 3 ( 0)f x ax m a′ = + ≠ . 

For a point ( )1 1, ( )x f x  on the graph of the function which is not the 

inflection point, the goal is to find the tangent tgl  to the function at 

( )0 0, ( )x f x′ ′
 passing through ( )1 1, ( )x f x .We have 

( )2 3

0 0

3

: 3 2 ,

( ) : .

tgl y ax m x ax n

f x y ax mx n

 ′ ′= + − +


= + +
 

Since 
1

1( )

x x

y f x

=
 =

 solves the equations above, so we have 

( )3 2 3

1 1 0 1 03 2ax mx ax m x ax′ ′+ = + − . 

For this equation, we know that 0 1x x′ =  must be one of its solutions. 

Through factorization, we can get another solution 

0 0 1

1

2
x x x′ = = − . 

（we know that a cubic equation has three solutions, but in this situation, 

two of its solutions are same: 0 0 1

1

2
x x x′ = = − .） 
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Similarly, if the point ( )1 1, ( )x f x  is the inflection point, which means 

1 0x = . In this case the only possible value for 0x′  is 0 , which means the 

tangent at the inflection point would pass the function through the tangent 

point only. 

Corollary: 

In general, as the point of symmetry of a cubic function 

3 2( ) ( 0)f x ax bx cx d a= + + + ≠  is ,
3 3

b b
f

a a

  − −  
  

, we can obtain a more 

general conclusion:  

The tangent at a point ( )0 0, ( )x f x  to a cubic function, which is not 

the inflection point, would pass the graph of the function at ( )0 0, ( )x f x  

and ( )1 1, ( )x f x  ,and the relationship between these two points is 

1 02
3 3

b b
x x

a a

 + = − + 
 

 

 

2.2 Property ⅡⅡⅡⅡ    

This property talks about the area enclosed by the tangent to the curve 

of a cubic function and the curve itself. 

 

Suppose 

3( ) ( 0)f x ax mx a= + ≠ . 

The tangent at point A ( )0 0, ( )x f x  on this function except at the 

point of inflection would pass the graph through another point B . The 
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area enclosed between the tangent and the cubic function is         

4

0

27

4
S ax=

. 

 

 

Proof:  

Suppose 

3( ) ( 0)f x ax mx a= + ≠ , 

and the tangent at point ( )0 0, ( )x f x  on this function is 

( )2 3

0 0: 3 2tgl y ax m x ax= + − . 

Let 

( ) ( )tgF x l f x= − , 

so we have that the area" S  "of the closed graph shaped by the tangent 

and the function is the absolute value of the definite integral of ( )F x  on 

( )0 0
, 2x x− （or ( )0 02 ,x x−  ） 

( )0 0

0 0

0 0 0

0 0 0

2 2
3 2 3

0 0

2 2 24 2 2 3

0 0

4

0

( ) 3 2

1 3
2

4 2

27
.

4

x x

x x

x x x

x x x

S F x dx ax ax x ax dx

ax ax x ax x

ax

− −

− − −

= = − +

= − +

=

∫ ∫
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Corollary: 

In general ,the tangent at a point ( )0 0, ( )x f x  on the function  

3 2( ) ( 0)f x ax bx cx d a= + + + ≠  will enclose an area with the cubic function. 

This area is given by:  

4

0

27
( )

4 3

b
S a x

a
= +

. 

Proof:  

For 3 2( ) ( 0)f x ax bx cx d a= + + + ≠ ,we can move its graph to the graph 

of 3( ) ( 0)f x ax mx n a= + + ≠  and furthermore , to 3( ) ( 0)f x ax mx a= + ≠ . 

Since area is a translation invariant, we can prove the corollary by 

proving the case 3( ) ( 0)f x ax mx a= + ≠ . As the case 3( ) ( 0)f x ax mx a= + ≠  

has already been proved, the corollary is proved as well. 
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Section  3  

 

A new definition of cubic functions 

 
3.1 Property ⅢⅢⅢⅢ    

By comparing with the polar coordinate representation of conical 

curves, we enquire as to the distance from a point on the curve to a fixed 

line which is the tangent at the inflection point for the function. 

 

Suppose 

3( ) ( 0)f x ax mx am= + <  

Let a tangent tgl  pass across the inflection point of the function. For 

any line ( 0 . 0 )y kx if a then k m if a then k m= > ≥ < ≤ , the distance " d " 

from the intersection point of y kx=  and ( )f x  to the tangent tgl  is 

 

3

2

01

m k
d d

m
m

 
 −=  
 +
 

,   

where 0d  is defined as the distance from the intersection point of ( )f x  

and the normal at the inflection point to the tangent tgl . 
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Proof:  

Suppose 

3( ) ( 0)f x ax mx am= + <  

and 

( 0 . 0 )y kx if a then k m if a then k m= > ≥ < ≤ , 

Two intersection points of ( )f x  and y kx=  are 

 ( , )
k m k m

f
a a

 − −
  
 

 and ( , )
k m k m

f
a a

 − −− −  
 

.  

According to the formula of the distance from a point to a line 

3

0 0

2 2 2 1

k m
a

aAx By C
d

A B m

 −
 
 + +

= =
+ +

, 

taking 
1

k
m

= −  , we obtain 

3

0
2

1

1 1

1

m
ma

a

d m
m amm

 
− − 

 
 
 
   = = + − 

 + . 

Hence 

3

2

01

m k
d d

m
m

 
 −=  
 +
 

. 

N11

Page - 148



 

3.2 Property ⅣⅣⅣⅣ    

This property may be used as a definition of cubic functions. 

 

Given a fixed line y mx=  , for any variable line ( )( ) 0y kx m m k= × − >  , 

there are two special points on this line satisfying the equality  

( )
3

2d p k m= − , 

where d  is defined as the distance from the special point to the line 

y mx=  ,and p  is a positive constant. The set of these points would 

form the graph of a cubic function. 

Proof: 

Suppose 0 0( , )x kx  is one of the points on the graph, by the formula of the 

distance from a point to a line 

0 0

2 2

Ax By C
d

A B

+ +
=

+
, 

where     0 0y kx= , A m= , 1B = −  , 0C = , ( )
3

2d p k m= − . 

Thereby                 

 
2

0 1x p m k m= + × − . 

Since               

 
0

0

y
k

x
=  and 

2

0 1x p m k m= + × −
, 

we have  

3

0 0 02 2

sgn( )

( 1)

m
y x mx

p m

−= +
+ , 
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where                

1 0

sgn( ) 0 0

1 0

x

x x

x

 >


= =
− <

. 

This means that those points form a graph of a cubic function. 

Summarize 

According to this property, we have a new representation of a cubic 

function:  

Suppose a fixed line y mx= . For any line ( )( ) 0y kx m m k= × − >  , 

there are two special points on this variable line satisfying the equality  

( )
3

2d p k m= − , 

where d  is defined as the distance from the special point to the line 

y mx=  , and p  is a constant number. All these points would form the 

graph of a cubic function, whose point of symmetry is the origin. This 

can be seen as a new definition of a cubic function. 

Comparing with the polar coordinate representation of conical curves, 

this representation has more confining conditions. This is possibly a 

result of the fact cubic functions do not form closed graphs, while conical 

curves are. 
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Section  4  

 

The symmetry of a cubic function 

 
4.1 Property ⅤⅤⅤⅤ    

Suppose 

 3 2( ) ( 0)f x ax bx cx d a= + + + ≠ . 

If there are two different points for which the derivatives are equal to 

each other on the function, then the line passing the two points will pass 

through the inflection point for this function. 

  

Proof : 

Suppose 

3 2( ) ( 0)f x ax bx cx d a= + + + ≠ , 

then   

2( ) 3 2 ( 0)f x ax bx c a′ = + + ≠ . 

If the derivative of the function at point A is equal to the derivative at 
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point B , which means  

( ) ( )A Bf x f x′ ′= . 

Since ( )f x′  is symmetrical about the axis 
3

b
x

a
= − , we obtain that  

2 3

A Bx x b

a

+ = − . 

Because ,
3 3

b b
f

a a

  − −  
  

 is the point of symmetry of this cubic function, 

the x coordinate of A  and B  are symmetrical about the point of 

symmetry. 

Thus the line passing the two points must pass through the point of 

symmetry of this cubic function.   

This property is the result of the fact that an odd function has a even 

function as its derivative function. 
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Section  5  

 

The tangents to a cubic function at 

its zeros 

 
5.1 Property ⅥⅥⅥⅥ    

This property concentrates on the slopes of the tangents at each zero 

for a cubic function. We also prove a corollary for the polynomial 

function of degree n  by the Vandermonde determinant. 

 

Given a cubic function 

3 2( ) ( 0)f x ax bx cx d a= + + + ≠ , 

if there are three different zeros for this function 

A 1( ,0)x  , B 2( ,0)x ,C 3( ,0)x , 

then we have 

3

1

1
0

i ik=

=∑  

and  

 

3

1

0i

i i

x

k=

=∑ , 

where (1 3)ik i≤ ≤  is the slope of the tangent at ( ,0)(1 3)ix i≤ ≤ . 

 

N11

Page - 153



 

 

 

Proof:  

Since by assumption, there are three different zeros 

A 1( ,0)x , B 2( ,0)x ,C 3( ,0)x , 

then 

3 2

1 2 3( ) ( )( )( )f x ax bx cx d a x x x x x x= + + + = − − − . 

Thus we obtain 

1 2 1 3 2 3( ) ( )( ) ( )( ) ( )( )f x a x x x x a x x x x a x x x x′ = − − + − − + − − . 

Because                   1 2 3
x x x≠ ≠ , 

it follows 

1 1 2 1 3

1 1

( )( )k a x x x x
=

− −  , 

2 2 1 2 3

1 1

( )( )k a x x x x
=

− −  , 

3 3 1 3 2

1 1

( )( )k a x x x x
=

− −  , 

and 

3

1 1 2 1 3 2 1 2 3 3 1 3 2

1 1 1 1

( )( ) ( )( ) ( )( )i ik a x x x x a x x x x a x x x x=

= + +
− − − − − −∑
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2 3 1 3 1 2

1 2 1 3 2 3

( ) ( ) ( )

( )( )( )

x x x x x x

a x x x x x x

− − − + −=
− − −  

       1 2 1 3 2 3

0

( )( )( )a x x x x x x
=

− − −  

       0= . 

Likewise 

3
31 2

1 1 2 1 3 2 1 2 3 3 1 3 2( )( ) ( )( ) ( )( )

i

i i

x xx x

k a x x x x a x x x x a x x x x=

= + +
− − − − − −∑  

       
1 2 3 2 1 3 3 1 2

1 2 1 3 2 3

( ) ( ) ( )

( )( )( )

x x x x x x x x x

a x x x x x x

− − − + −=
− − −

 

       0= .    

Corollary: 

For any polynomial function of degree n with n different zeros ,the 

equation 

1

1
0

n

i ik=

=∑  

holds, 

where (1 )ik i n≤ ≤  is defined as the slope of the tangent to this function at 

one of the zeros ( ,0)(1 )
i

x i n≤ ≤ . 

 

Definition 5.1.3.1 A matrix is a rectangular array of numbers. The 

individual items in a matrix are called its elements or entries. 

Definition 5.1.3.2 The determinant is a value associated with an n-by-n 

matrix.The determinant of a matrix A is denoted as det(A), det A, or |A|. 
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In the case where the matrix entries are written out in full, the 

determinant is denoted by surrounding the matrix entries by vertical bars 

instead of the brackets or parentheses of the matrix. For instance, the 

determinant of the matrix 

a b c

d e f

g h i

 
 
 
 
  

is written 

a b c

d e f

g h i

. 

Lemma 5.1.3.1  Laplace's formula  

Laplace's formula expresses the determinant of a matrix in terms of its 

minors. The minor ijM  is defined to be the determinant of the 

(n−1)×(n−1)-matrix that results from A by removing the 
thi  row and the 

thj  column. The expression ( 1)i j

ijM+−  is known as the cofactor of ija . 

ija  is defined as the entry from the 
thi  row and 

thj  column of A. The 

determinant of A is given by 

1 1

det( ) ( 1) ( 1)
n n

i j i j

ij ij ij ij

j i

A a M a M+ +

= =

= − = −∑ ∑ . 

Lemma 5.1.3.2  The Vandermonde determinant 

( )
1 2 3

2 2 2 2

1 2 3

1

1 1 1 1

1 2 3

1 1 1 1

n

n n i j

j i n

n n n n

n

x x x x

D x x x x x x

x x x x

≤ < ≤

− − − −

= = −∏

L

L

L

M M M M

L

. 
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Lemma 5.1.3.3 If two or more columns or rows of a determinant are 

equal，then the value of the determinant is equal to zero. 

Proof: 

Suppose 

1 2 3( ) ( )( )( ) ( )( 0)nf x a x x x x x x x x a= − − − − ≠L , 

then 

1 2 3

1

1
( ) ( )( )( ) ( )

n

n

i i

f x a x x x x x x x x
x x=

′ = − − − − ×
−∑L . 

Thus we can obtain 

1 1 1 2 1 3 1

2 2 2 1 2 3 2

1 2 1 1

1 2 1

( ) ( )( ) ( ),

( ) ( )( ) ( ),

( ) ( )( ) ( )( ) ( ),

( ) ( )( ) ( ),

n

n

i i i i i i i i i n

n n n n n n

k f x a x x x x x x

k f x a x x x x x x

k f x a x x x x x x x x x x

k f x a x x x x x x

− +

−

′= = − − −
 ′= = − − −

 ′= = − − − − −



′= = − − −

L

L

L

L L

L

L

 

therefore, 

( ) ( )
( )

1

1 1 , ,

1

1

1
1 1

n
i

j k
n

i j k n j k i

i i i j

i j n

x x

k a x x

−

= ≤ < ≤ ≠

=
≤ < ≤

 
− × − 

 = ×
−

∑ ∏
∑ ∏ . 

We only need to prove 

( ) ( )1

1 1 , ,

1 0
n

i

j k

i j k n j k i

x x
−

= ≤ < ≤ ≠

 
− × − = 

 
∑ ∏ . 

Considering the determinant as follows 
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1 2

2 2 2

1 2

2 2 2

1 2

1 1 1

1 1 1

n

n

n n n

n

x x x

x x x
D

x x x− − −

=

L

L

L

M M M

L

L

. 

 

According to Lemma 5.1.3.3 

0D = . 

Expanding the last row of D , we obtain 

2 3 1 3

2 2 2 2 2 2

2 3 1 31 2

3 3 3 3 3 3

2 3 1 3

1 2

2 2 2

1 2 12

3 3 2

1 2 1

1 1 1 1 1 1

( 1) ( 1)

1 1 1 1 1 1

1 1 1

( 1) .

1 1 1

n n

n nn n

n n n n n n

n n

n

nn

n n n

n

x x x x x x

x x x x x x
D

x x x x x x

x x x

x x x

x x x

+ +

− − − − − −

−

− − −
−

= − + −

+ + −

L L

L L

L L

M M M M M M

L L

L L

L

L

L
L

M M M

L

L
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According to the Vandermonde determinant 

( ) ( ) ( )

( )
( ) ( ) ( )

1 2 3

2 1 , , 1 1 , , 2

2

1 1

1
121

1 1 , ,

( 1) ( 1) ( 1)

( 1)

( 1) ( 1) 1 ,

n n n

k j k j k j

j k n j k n j k j k n j k

n

k j

j k n

n n
in

j k

i j k n j k i

D x x x x x x

x x

x x

+ + +

≤ < ≤ ≤ < ≤ ≠ ≤ < ≤ ≠

≤ < ≤ −

−
−+

= ≤ < ≤ ≠

= − − + − − + − −

+ + − −

 
= − − − × − 

 

∏ ∏ ∏

∏

∑ ∏

L

 where 
1

2

n − 
 
 
 

 is the number of ways of selecting 2 things from (n-1) . 

( ) ( )1

1 1 , ,

1 0
n

i

j k

i j k n j k i

x x
−

= ≤ < ≤ ≠

 
− × − = 

 
∑ ∏ . 

 

5.2 Property ⅦⅦⅦⅦ    

A geometric property about the normals to a cubic function at zeros. 

 

Suppose we have 

3 2( ) ( 0)f x ax bx cx d a= + + + ≠ . 

If there are three different zeros for this function 

A 1( ,0)x  B 2( ,0)x  C 3( ,0)x , 

choose any two of these three points, such as A  and B  , and we 

denote the normals at these two points as Al  and Bl  respectively, then 

C  is the middle point of the segment 
A BK K ,where    A

K  is defined as the 

intersection point of  Al  and the vertical line passing through C , with 

KB  defined in the same way.                     
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Proof:  

Given a cubic function ( )f x  with three different zeros for this 

function. The zeros are  

A 1( ,0)x , B 2( ,0)x ,C 3( ,0)x . 

Let ik  to be the slope of the tangent at ( ,0)ix . 

By the Property ⅥⅥⅥⅥ, we have 

3

1

1
0

i ik=

=∑  

and 

3

1

0i

i i

x

k=

=∑ . 

Thus  

3 3

3

1 1

3 1 2 3

1 2

1
0

.

i

i ii i

x
x

k k

x x x x

k k

= =

× − =

− −
⇒ =

∑ ∑

 

Since k  is the slope of the tangent at a point, 
1

k
−

 is the slope of the 

normal at the same point. Note that 3 1x x−  is the length of AC  and 
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2 3x x−  is the length of BC , so we can obtain 3 1

1

x x

k

−
 is the length of 

ACK  and 2 3

2

x x

k

−
 is the length of BCK  

3 1 2 3

1 2

3 1 2 3

1 2

x x x x

k k

x x x x

k k

− −=

− −
⇒ =

. 

Thus the length of ACK  is equal to the length of BCK . 

For any sequence of positions for A , B and C, points AK ,KB are 

always on the opposite sides of C  , along with the fact that the length of 

ACK  is equal to the length of BCK ,then we obtain that C  is the 

midpoint of the segment 
A BK K . 

 
5.3 Property ⅧⅧⅧⅧ    

Though the zeros change when we move by translation the graph of 

the cubic function, the sum of the three slopes of the tangents at each zero 

will be a constant number unless we change the curve. 

 

Suppose we have a cubic function with three zeros.  

The equality 

3

1 0
3

i

i

k

k =+ =
∑

0  

holds, 

N11

Page - 161



 

where 0k  is defined as the slope of the tangent at the inflection point, and 

(1 3)ik i≤ ≤  is the slope of the tangent at the point ( ,0)ix  which is one of 

the three zeros. 

Proof:  

Suppose  

3 2

1 2 3( ) ( )( )( ) ( 0)f x ax bx cx d a x x x x x x a= + + + = − − − ≠ . 

Let (1 3)ik i≤ ≤  be the slope of the tangent at ( ,0)ix , 

1 2 1 3 2 3( ) ( )( ) ( )( ) ( )( )k f x a x x x x a x x x x a x x x x′= = − − + − − + − −  

3

1 2 1 3 2 1 2 3 3 1 3 2

1

( )( ) ( )( ) ( )( )i

i

k a x x x x a x x x x a x x x x
=

= − − + − − + − −∑  

           2 2 2

1 2 3 1 2 2 3 1 3( ) ( )a x x x a x x x x x x= + + − + +  

           2

1 2 3 1 2 2 3 1 3( ) 3 ( )a x x x a x x x x x x= + + − + + . 

By Vieta's theorem (Lemma 1.3.5), we can obtain that 

23

1

3i

i

b c
k a a

a a=

   = − −   
   

∑
 

                       

2

3
b

c
a

= − . 

Since              

                   2

0 0 0( ) 3 2f x ax bx c′ = + +  

         

2

3 2
3 3

b b
a b c

a a

   = − + − +   
   

 

                        

2

3

b
c

a
= − + , 

where ( )0 0, ( )x f x  is the inflection point, then we have 
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3

03 ( )i

i

k f x′= −∑ . 

Therefore 

3

1 0
3

i

i

k

k =+ =
∑

0 . 

 

5.3.3 Corollary: 

The zeros for a function are the intersection points of both the curve of 

the function and 0y = . If 0y =  is replaced by y px q= + ,we can 

obtain 

3

1
0

( )
3

i

i

k

f x p= ′+ =
∑

, 

where ( )0 0, ( )x f x  is the inflection point. 

Proof:  

Similarly, by Vieta's theorem, we can prove 

23

1

3 3
i

i

b
k c p

a=

= − +∑ . 

                   2

0 0 0( ) 3 2f x ax bx c′ = + +  

         

2

3 2
3 3

b b
a b c

a a

   = − + − +   
   

 

                        

2

3

b
c

a
= − + . 

Hence 
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3

1
0( )

3

i

i

k

f x p= ′+ =
∑

. 
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Section  6  

 

The slope of the line passing through 

an arbitrary point and one of the 

zeros for a cubic function 
 

6.1 Property ⅨⅨⅨⅨ    

This property concentrates on the slope of the line passing through 

both a point on the function and a zero for this function. 

 

Take a cubic function with three different zeros. For any point 

0 0
( , ( ))F x f x  on the graph of the function, 

the equality  

0
( )

AF BF CF
k k k f x′+ + =  

holds, 

where AF
k  is defined as the slope of the line passing through both 

F and A ， with BFk  and CFk  defined similarly. Here A , B and 

C are the three zeros for this function.  
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Proof: 

Suppose we have 

3 2( ) ( 0)f x ax bx cx d a= + + + ≠ . 

For any point 0 0
( , ( ))F x f x  on the graph of the function, we can denote 

0

0

( ) ( )
= (1 3)i

i

i

f x f x
k i

x x

− ≤ ≤
−

, 

where ( ,0)(1 3)ix i≤ ≤  is a zero of this function, ik  is the slope of the 

line passing through both ( ,0)(1 3)ix i≤ ≤  and point F . 

1) When 0 0
( , ( ))F x f x  is not one of the three zeros. 

Since                     0 0ix x− ≠ , 

then we get 

( )

0

0

3 2 3 2

0 0 0

0

2 2

0 0 0 0 0 0

0

2 2

0 0 0

( ) ( )
=

( )

( )( ) ( )( ) ( )

( ) ( ) .

i
i

i

i i i

i

i i i i i i

i

i i i

f x f x
k

x x

ax bx cx d ax bx cx d

x x

a x x x x x x b x x x x c x x

x x

a x x x x b x x c

−
−

+ + + − + + +
=

−

− + + + − + + −=
−

= + + + + +

 

Therefore 

3 3 3 3
2 2

0 0 0

1 1 1 1

3 3 3i i i i

i i i i

k ax ax x a x bx b x c
= = = =

= + + + + +∑ ∑ ∑ ∑ . 
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By Vieta's theorem 

3

1 3

,

,

i

i

i j

i j

b
x

a

c
x x

a≤ < ≤

 = −


 =


∑

∑
 

and 

2
3 3

2

1 1 1 3

2i i i j

i i i j

x x x x
= = ≤ < ≤

 = − 
 

∑ ∑ ∑ , 

we have  

( )
3

2

0 0 0

1

3 2i

i

k ax bx c f x
=

′= + + =∑ . 

2) When 0 0
( , ( ))F x f x  is one of the three zeros, it is obvious that the 

property holds. 

Corollary: 

This property holds not only for cubic functions, but also functions of 

degree n  (with n  different zeros).    

Suppose we have a polynomial function 

1 2( ) ( )( ) ( ) ( 0)nf x a x x x x x x a= − − − ≠…… , 

where                   1 2 nx x x≠ ≠ ≠L . 

Given a point ( )( )0 0
,F x f x  on the curve and ( ,0)ix (1 ,i n i≤ ≤ ∈ Ν )is 

one of the zeros for this function. 

The equality 

0

1

( )
n

i

i

k f x
=

′=∑  

holds, 
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where i
k (1 ,i n i≤ ≤ ∈ Ν ) is defined as the slope of the line passing 

across both ( ,0)ix and ( )( )0 0
,F x f x . 

 

6.2 Property ⅩⅩⅩⅩ    

According to Property ⅨⅨⅨⅨ, we have a property about a point on the 

curve. What about the case of a point not on the curve, like the case of a 

point on the vertical line passing through a turning point. 

 

Take a cubic function with three different zeros, for any point 

0 0( , )F x y  on the vertical line passing through a turning point for the 

function, the equality  

0AF BF CFk k k+ + =
 

holds, 

where AF
k  is defined as the slope of the line passing through both 

F and A ， with BFk  and CFk  defined similarly. Here A , B andC  

are the three zeros for this function. 

    

Proof: 

Suppose  
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3 2( ) ( 0)f x ax bx cx d a= + + + ≠ . 

Given a point 0 0( , )F x y  on the vertical line passing through a turning 

point and ( ,0)(1 3)ix i≤ ≤  is the zero for this function . 

Denote 

0

0

( )
= (1 3)i

i

i

y f x
k i

x x

− ≤ ≤
− , 

where ik  is the slope of the line passing through both ( ,0)(1 3)ix i≤ ≤  

and point F . 

Because ( ) 0if x = , then we get 

3 3

0

1 1 0

1
i

i i i

k y
x x= =

=
−∑ ∑  

0 1 0 2 0 2 0 3 0 1 0 3
0

0 1 0 2 0 3

( )( ) ( )( ) ( )( )

( )( )( )

x x x x x x x x x x x x
y

x x x x x x

 − − + − − + − −=  − − − 
 

2

0 0 1 2 3 1 2 2 3 1 3
0

0 1 0 2 0 3

3 2 ( ) ( )

( )( )( )

x x x x x x x x x x x
y

x x x x x x

 − + + + + +=  − − − 
. 

By  

3

1 3

,

,

i

i

i j

i j

b
x

a

c
x x

a≤ < ≤

 = −


 =


∑

∑
 

we can get 

23
0 0 0

1 0 1 0 2 0 3

3 2

( )( )( )
i

i

y ax bx c
k

a x x x x x x=

 + +=  − − − 
∑ . 

According to 
2( ) 3 2f x ax bx c′ = + + , we have  

3
0 0

1 0 1 0 2 0 3

( )

( )( )( )
i

i

y f x
k

a x x x x x x=

 ′
=  − − − 

∑ . 

Since ( )0 0, ( )x f x  is a turning point for this function, which means that 
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0( ) 0f x′ = , therefore  

3

1

0i

i

k
=

=∑ . 

Corollary: 

This property holds not only for cubic functions, but also functions of 

degree n  (with n  different zeros).    

Suppose we have a polynomial function 

1 2( ) ( )( ) ( ) ( 0)nf x a x x x x x x a= − − − ≠…… , 

where 1 2 nx x x≠ ≠ ≠L . 

Given a point 0 0
( , )F x y  on the vertical line passing through a turning 

point for this polynomial function and ( ,0)ix (1 ,i n i≤ ≤ ∈ Ν ) is one of 

the zeros for the function. 

The equality 

1

0
n

i

i

k
=

=∑  

holds, 

where i
k (1 ,i n i≤ ≤ ∈ Ν ) is defined as the slope of the line passing 

through both ( ,0)ix and 0 0
( , )F x y . 

 

6.3 Property ⅪⅪⅪⅪ    

 

From Property ⅩⅩⅩⅩ, we have a property regarding points on a special 

line, so we consider the case of a general point in the plane. 
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Take a cubic function with three different zeros. For any point 

0 0( , )F x y  in the plane and 0( ,0)x  is not any one of the zeros for the 

function, the equality  

0
0

0

( )

( )
AF BF CF

f x
k k k y

f x

′
+ + =

 

holds, 

where AFk  is defined as the slope of the line passing through both 

F and A , with BFk  and CFk  defined similarly. Here A , B and 

C are the three zeros for the function. 

                                                                

Proof:  

Suppose 

3 2

1 2 3( ) ( )( )( ) ( 0)f x ax bx cx d a x x x x x x a= + + + = − − − ≠ . 

Given a point 0 0( , )F x y  while 0( ,0)x  is not any one of the zeros for the 

function and ( ,0)(1 3)ix i≤ ≤ is a zero for the function. 

Then we obtain 

0

0

( )
= (1 3)i

i

i

y f x
k i

x x

− ≤ ≤
−

 , 
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where ik  is the slope of the line passing through both ( ,0)ix  and 

0 0( , )F x y . 

Because ( ) 0if x = , then we get  

3 3

0

1 1 0

1
i

i i i

k y
x x= =

=
−∑ ∑  

0 1 0 2 0 2 0 3 0 1 0 3
0

0 1 0 2 0 3

( )( ) ( )( ) ( )( )

( )( )( )

x x x x x x x x x x x x
y

x x x x x x

 − − + − − + − −=  − − − 
 

2

0 0 1 2 3 1 2 2 3 1 3
0

0 1 0 2 0 3

3 2 ( ) ( )

( )( )( )

x x x x x x x x x x x
y

x x x x x x

 − + + + + +=  − − − 
. 

We have 

3

1 3

,

,

i

i

i j

i j

b
x

a

c
x x

a≤ < ≤

 = −


 =


∑

∑
 

therefore 

23
0 0 0

1 0 1 0 2 0 3

3 2

( )( )( )
i

i

y ax bx c
k

a x x x x x x=

 + +=  − − − 
∑ . 

But 
2( ) 3 2f x ax bx c′ = + + , 

hence we have  

3
0 0

1 0 1 0 2 0 3

( )

( )( )( )
i

i

y f x
k

a x x x x x x=

 ′
=  − − − 

∑ . 

Since 1 2 3( ) ( )( )( )( 0)f x a x x x x x x a= − − − ≠ , we have 

3
0

0

1 0

( )

( )
i

i

f x
k y

f x=

′
=∑

. 

Corollary: 

This property holds not only for cubic functions, but also functions of 

degree n  (with n  different zeros).    
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Suppose we have a polynomial function 

1 2( ) ( )( ) ( ) ( 0)nf x a x x x x x x a= − − − ≠…… , 

where 1 2 nx x x≠ ≠ ≠L . 

Given a point 0 0( , )F x y  in the coordinate plane while 0( ,0)x  is not any 

one of the zeros for the function and ( ,0)ix (1 ,i n i≤ ≤ ∈ Ν ) is one of the 

zeros for the function. 

The equality 

0
0

1 0

( )

( )

n

i

i

f x
k y

f x=

′
=∑  

holds, 

where i
k (1 ,i n i≤ ≤ ∈ Ν ) is defined as the slope of the line passing 

through both ( ,0)ix  and 0 0( , )F x y . 

Summarize 

Obviously, Property ⅨⅨⅨⅨ    and Property ⅩⅩⅩⅩ  are special cases of 

Property ⅪⅪⅪⅪ . When 0 0( , )x y  is on the graph of the function, 

i.e. 0 0( )y f x= , we can obtain PropertyⅨⅨⅨⅨ from PropertyⅪⅪⅪⅪ. On the other 

hand, when    0 0( , )x y  is on the vertical line passing through a turning point 

for the function, i.e. 0( ) 0f x′ = , we can obtain Property ⅩⅩⅩⅩ  from 

PropertyⅪⅪⅪⅪ. 
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Section  7  

 

The division of the graph of a cubic 

function 

 
7.1 Property ⅫⅫⅫⅫ    

This property concentrates on how to categorize the graphs of a cubic 

function based on its roots. 

 

If the three roots to a cubic equation are known, one of which is a real 

root 0x  , while the others are complex roots p qi± . Then we can deduce 

the type of the graph of the function corresponding to this equation. 

Proof:  

Take 

3 2( ) ( 0)f x ax bx cx d a= + + + ≠ , 

with roots 0x  ， p qi± . 

The inflection point can be obtained as follows 

,
3 3

b b
f

a a

  − −  
  

. 

By Vieta's theorem 

0 0( ) ( ) 2

3 3 3

x p qi p qi x pb

a

+ + + − +− = = , 

which is the x coordinate of the inflection point on the coordinate plane. 
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Then we can obtain  

2( ) 3 2 ( 0)f x ax bx c a′ = + + ≠ , 

and the x coordinate of the zero for the derivative function is equal to the 

x coordinate of the turning point for the cubic function. 

Thereby 

2

2 2
3

3
=

3 3 3
turn

b c

b b ac b a a
x

a a

−− ± − −= ± . 

By Vieta' theorem , we can obtain 

 

2
3

1 1 3

3

=
3 3

i i j

i i j

turn

x x x
b

x
a

= ≤ < ≤

  − −  ±
∑ ∑

. 

1) When 

 

2
3

1 1 3

3 0i i j

i i j

x x x
= ≤ < ≤

  − > 
 
∑ ∑  or  0 3x p q− >  

The function has two turning points (such as 
3( )f x x x= − ). 

 

2)  when  

2
3

1 1 3

3 0i i j

i i j

x x x
= ≤ < ≤

  − = 
 
∑ ∑  or 0 3x p q− =  

The function has no turning point but it has a stationary point (such as 

3( )f x x= ). 
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3) When 

 

2
3

1 1 3

3 0i i j

i i j

x x x
= ≤ < ≤

  − < 
 
∑ ∑  or 0 3x p q− <  

The function has no turning point (such as 
3( )f x x x= + ). 
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Appendix   

 

The initial proof of the corollary of 

Property ⅥⅥⅥⅥ 

Suppose 

1 2 3( ) ( )( )( ) ( )( 0)nf x a x x x x x x x x a= − − − − ≠L , 

then 

1 2 3

1

1
( ) ( )( )( ) ( )

n

n

i i

f x a x x x x x x x x
x x=

′ = − − − − ×
−∑L , 

we can obtain 

1 1 1 2 1 3 1

2 2 2 1 2 3 2

1 2 1 1

1 2 1

( ) ( )( ) ( ),

( ) ( )( ) ( ),

( ) ( )( ) ( )( ) ( ),

( ) ( )( ) ( ),

n

n

i i i i i i i i i n

n n n n n n

k f x a x x x x x x

k f x a x x x x x x

k f x a x x x x x x x x x x

k f x a x x x x x x

− +

−

′= = − − −
 ′= = − − −

 ′= = − − − − −



′= = − − −

L

L

L

L L

L

L

 

( ) ( )
( )

1

1 1 , ,

1

1

1
1 1

n
i

j k
n

i j k n j k i

i i i j

i j n

x x

k a x x

−

= ≤ < ≤ ≠

=
≤ < ≤

 
− × − 

 = ×
−

∑ ∏
∑ ∏ . 

 

According to Lemma 5.1.3.2, the determinant /n iD  is defined as follows 
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( )
1 2 1 1

2 2 2 2 2

/ 1 2 1 1

1 , ,

2 2 2 2 2

1 2 1 1

1 1 1 1 1

i i n

n i i i n k j

j k n j k i

n n n n n

i i n

x x x x x

D x x x x x x x

x x x x x

− +

− +
≤ < ≤ ≠

− − − − −
− +

= = −∏

L L

L L

L L

M M M M M

L L

, 

thus 

( ) ( )

( )

1
12

/

1

1

1

( 1) 1
1 1

n n
i

n in
i

i i i j

i j n

D

k a x x

−
−

=

=
≤ < ≤

 − × − ×
 

= ×
−

∑
∑ ∏ , 

where 
1

2

n − 
 
 
 

 is the number of ways of selecting 2 things from (n-1). 

Our goal is to prove  

( ) 1

/

1

1 0
n

i

n i

i

D
−

=

 − × =
 ∑ . 

According to induction, suppose for the case n k=  the equation holds, 

then for the case 1n k= + : 

According to Lemma 5.1.3.1, 

1

/

1 1,

k

n i j j

j k j i

D x A−

≤ ≤ + ≠

= ×∑
, 

where jA  is defined as the cofactor of 
1k

jx −
. 
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( ) ( )

( )
/

1 1
1 1 1

/

1 1 1 1,

11

( )

1 1 1 1,

1 1

1
n i

k k
i i k

n i j j

i i j k j i

ik

j j D

j k i k i j

D x A

x A

+ +
− − −

= = ≤ ≤ + ≠

−−

≤ ≤ + ≤ ≤ + ≠

 
− × = − × × 

 

 
 = × − ×  

 

∑ ∑ ∑

∑ ∑
, 

where /( )n ij DA  is defined as the cofactor of 
1k

jx −
 which is an  

element of the determinant /n iD . 

The sum ( )
/

1

( )

1 1,

1
n i

i

j D

i k i j

A
−

≤ ≤ + ≠

−∑  is exactly the sum of some ( )-1k  

order Vandermonde determinant and the number of those determinants  

is k . 

1) while i j>  

( )
/

1 2 1 1 1 1 1

2 2 2 2 2 2 2

( ) 1 2 1 1 1 1 1

2 2 2 2 2 2 2

1 2 1 1 1 1 1

1 1 1 1 1 1 1

1
n i

j j i i k

k j

j D j j i i k

k k k k k k k

j j i i k

x x x x x x x

A x x x x x x x

x x x x x x x

− + − + +

+
− + − + +

− − − − − − −
− + − + +

= −

L L L

L L L

L L L

M M M M M M M

L L L

2) while i j<  

( )
/

1 2 1 1 1 1 1

1 2 2 2 2 2 2 2

( ) 1 2 1 1 1 1 1

2 2 2 2 2 2 2

1 2 1 1 1 1 1

1 1 1 1 1 1 1

1
n i

i i j j k

k j

j D i i j j k

k k k k k k k

i i j j k

x x x x x x x

A x x x x x x x

x x x x x x x

− + − + +

− +
− + − + +

− − − − − − −
− + − + +

= −

L L L

L L L

L L L

M M M M M M M

L L L
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Hence we have, when 1i j= −  , the sign of the determinant 
/( )n ij DA  is  

( ) ( )2 1 2 3
1 1

j k j j k− + − + + −− = − , 

when 1i j= +  , the sign of the determinant 
/( )n ij DA  is  

( ) ( )2
1 1

j k j j k+ + +− = − . 

So we can prove that the signs of any two of the determinants which are 

contiguous are opposite. 

Let                     1 2 1 1 1, ,j j kx x x x x− + +L L  

correspond separately to 

1 2 1, ,j j j j j

j j kx x x x x−L L . 

Hence 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 1 1

2 2 2 2 2

/ 1 2 1 1

2 2 2 2 2

1 2 1 1

1 1 1 1 1

j j j j j

i i k

j j j j j j

n i i i k

k k k k k
j j j j j

i i k

x x x x x

D x x x x x

x x x x x

− +

− +

− − − − −

− +

=

L L

L L

L L

M M M M M

L L

, 

so  

( ) ( )
/

1 1

( ) /

1 1, 1

1 1
n i

k
i i j

j D n i

i k i j i

A D
− −

≤ ≤ + ≠ =

 − = − ×
 ∑ ∑ . 

According to induction, we have 

( ) 1

/

1

1 0
k

i j

n i

i

D
−

=

 − × =
 ∑ . 
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Therefore  

( )
1

1

/

1

1 0
k

i

n i

i

D
+

−

=

 − × =
 ∑ . 

Clearly, when 2n =  

( )
2

1

/

1

1 1 1 0
i

n i

i

D
−

=

 − × = − =
 ∑ . 

By induction, we prove that for any 2n ≥ , 

( ) 1

/

1

1 0
n

i

n i

i

D
−

=

 − × =
 ∑ , 

then 

( ) ( )

( )

1
12

/

1

1

1

( 1) 1
1 1

0

n n
i

n in
i

i i i j

i j n

D

k a x x

−
−

=

=
≤ < ≤

 − × − ×
 

= × =
−

∑
∑ ∏ , 

and the conclusion is proved. 
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