

Generalizations on the Classical Problem
‘Mice and the Poison’

Writers: Tianyi Bai, Sitao Xiang
Advisor: Mr. Lei Zhang

Email: 979593763@qq.com
School: Northeast Yucai School

Shenyang Liaoning, China
December 1, 2011

Tianyi Bai, born on 20th July, 1994

Main Awards: gold medal in 10th (2009, South Africa) Invitational World Youth Mathematics
Intercity Competition (IWYMIC), silver medal in 2010 China Mathematics Olympics (CMO)
Main Interests in Mathematics: Number Theory, Logic, Group Theory, Set Theory, Differential
Equation, Linear Algebra, Mathematical Analysis, Analytic Geometry, Informatics.

Sitao Xiang, born on 18th April, 1994

Main Awards: gold medal in 5th (2011) Asia-Pacific Informatics Olympiad (APIO),
silver medals in 27th, 28th (2010, 2011) National Olympiad in Informatics (NOI)
Main Interests in Mathematics: Combinatorics, Set Theory, Topology, Graph Theory, Theory
of Computation, Fractal Geometry, Chaos Theory, Game Theory, Philosophy of Mathematics,

N14

Page - 184

Abstract

The classical problem ‘Mice and the Poison’ is expressed as follows.
There are 1000 bottles of liquid with one of them poisoned. A mouse will die after one week if

it takes the poison. Otherwise it will remain living. Can you use only 10 mice to check out which
bottle contains the poison within one week?

This essay generalizes the problem, and obtains the following topics and conclusions.
(1) Time constraints are generalized and Radix Scheme is developed and studied.
(2) A new restriction is added to the ‘mice’, which also makes the problem more difficult. A
new method called ‘Chart-Filling’ Method is contrived, and its feasibility demonstration is
adopted to solve the new problem, which also raises new themes.
(3) Replacement for ‘the poison’ to ‘two poisons’ leads to a big challenge, which
‘Coordinates-Grouping’ Scheme is created to tackle. Upper and Lower bounds are obtained,
and computer programs are employed to work out both exact solutions and appraisal
solutions. New conjectures are also made due to these efforts.

Key words mice and the poison; radix; binary; status; coordinate; grouping; combination;
chart-filling.

N14

Page - 185

Content

1. Introduction ... 4
1.1 Original Problem and Background .. 4
1.2 Motivation.. 4
1.3 Main Results .. 5

2 Variations of the Original Problem and Corresponding Researches ... 6
2.1 Time Generalization and Radix Scheme .. 6

2.1.1 Radix Scheme and Discrete Hypothesis ... 6

2.1.2 Proof of Optimality ... 7

2.1.3 Conclusions and Other Variations ... 7
2.2 Realistic Restriction and Chart-Filling Method ... 8

2.2.1 Chart-Filling Method .. 8

2.2.2 Proof of Feasibility ... 10

2.2.3 Conclusions and Other Variations ... 14
2.3 Two-Poison Replacement and Grouping-Coordinate Scheme ... 15

2.3.1 Coordinate Scheme ... 15

2.3.2 Grouping Method and Coordinate-Grouping Scheme .. 16

2.3.3 New Problem and Compatibility .. 17

2.3.4 Qualitative Analysis of 𝒇(𝒏) ... 18

2.3.5 Further Study of Lower Bounds ... 20

2.3.6 Quantitative Computation of 𝒇(𝒏) .. 23

2.3.7 Informatics method and upper bound for 𝒄(𝒏) .. 25

2.3.8 Summarization .. 26
3. Conclusion ... 27
Acknowledgement ... 27
Appendix I Source Code of Search Algorithm in C++ .. 28
Appendix II Source Code of Random Construction in Free Pascal ... 29
Appendix III Time data for Random Program ... 31
Appendix IV Corresponding Solutions for Quantitative Analysis of 𝒇(𝒏) .. 33

N14

Page - 186

1. Introduction

1.1 Original Problem and Background

 We once read an interesting passage on http://www.matrix67.com/blog/archives/4361,
which states a curious problem named ’Mice and the Poison’ and several new thoughts in this
problem. We were attracted by the amazing solution of the problem, and wanted to do some
new research on it.
 The original problem ‘Mice and the Poison’ is expressed as follows. There are 1000 bottles of
liquid with one of them poisoned. A mouse will die after one week if it takes the poison,
otherwise it will remain alive. Can you use only 10 mice to check out which bottle contains the
poison within one week? (It can be easily worked out that we can only do one experiment
according to the time constriction. What is more, to guarantee that a solution is possible, we
must suppose that several medicines can be taken by one mouse at a time and the poison works
just as it is the only one the mouse takes)

The solution given by the website writer uses binary representation. We give a binary number
to each bottle, namely from 0000000001 to 111110100. The experiment is carried out so that
the 𝑖th(1 ≤ 𝑖 ≤ 10) mouse takes all medicines whose 𝑖th digit is ‘1’. Finally, if the 𝑖th mouse is
dead one week later, we can deduce that the 𝑖th digit of the poison’s number is 1, or else it is 0.
 Hence we can easily tell that the maximum amount of bottles we are able to check by the
manipulation is the amount of all binary numbers with 10 digits, that is, 1024. Further more, if
we have 𝑛 mice instead of 10, the maximum number turns out to be 2𝑛.

This passage raised heated discussion online, and lots of other generalizations are advanced.
The author himself gave a radix 3 solution to a situation of the time generalization which we will
consider in the first part of our essay. ‘yh’ and lots of others discussed noticed difficulties of not
having the discrete hypothesis, which we are to think about as well in the first part. One
commentator named ‘yac’ displayed a concrete version of the two-poison problem which we
shall try in the third part of this essay. He claimed it to be an interview question of a company
named ‘GaoSheng’, and gave the Coordinate Scheme (named by us) of 𝑛 = 10 in addition. In
fact, this problem also has several different variations, for instance, the problem of ‘IBM Ponder
This’(May 2011). While our researches rely on concepts such as ‘mice’ and ‘poison’, we will only
consider the problem itself in the passage.

Since the only basis of our paper is the question posted on the website, we are not to show
reference again at the end of the paper.

1.2 Motivation

As we have already seen from the previous section, when we have 𝑛 mice instead of 10, the
maximum number will vary correspondingly. If we change other conditions of it, we probably
will get some similar results. Therefore, we try changing every concrete number to variable in
the problem as well as adding new restrictions and new conditions, and get three main results

N14

Page - 187

http://www.matrix67.com/blog/archives/4361

which we shall state in the following section.
Firstly, we change those numbers representing time to variables since the writer of the blog

led us to do so by changing the ‘one week’ to ‘two weeks’.
Secondly, we notice that in the original problem, each mouse has to be fed with more than

500 different kinds of medicine all at a time, which in some way is too ideal. So we add a new
constraint and get an entirely new problem.

Thirdly, we consider the two-poison problem, which was displayed in the website by yac first.

1.3 Main Results

In the Time Generalization part of our essay, we consider the following problem.
Problem1 There are some bottles of liquid with one of them poisoned. A mouse will die after

𝑡 weeks if it takes the poison; otherwise it will remain alive. Now we have 𝑛 mice to check out
which bottle contains the poison in 𝑚 weeks’ time, what is the maximum number of bottles we
are able to check from?

Let 𝑎(𝑛,𝑚, 𝑡) denotes the optimal answer, we conclude that 𝑎(𝑛,𝑚, 𝑡) = (𝑚− 𝑡 + 2)𝑛 by
generalizing the binary solution to radix scheme. While doing this, we notice the core of the
problem and introduce the discrete hypothesis. In addition, we combine the two time variables
and get an insight into the radix scheme.

In the Realistic Restriction part, we add a further constraint to the problem.
Problem 2 There are some bottles of liquid with one of them poisoned. A mouse will die if it

takes the poison, otherwise it will remain alive. Now we have 𝑛 mice to check out which bottle
contains the poison with only one experiment, where each mouse can take at most 𝑟 different
medicines at a time. What is the maximum number of bottles we are able to deal with this time?

We create a new manipulation called Chart-Filling Method to convert the problem so that a
new point of view is worked out. Thus we get the exact expression of the answer. In the process
of reaching this goal, we get an important concept called ‘status’ of a medicine, which is actually
a generalization of the binary representation.

In the Two-Poison part, we will try a somewhat different problem as follows.
Problem 3 There are plenty of medicines with two of them poisoned. A mouse will die if it

takes the poison, otherwise it will remain alive. With n mice and one experiment, we can check
out that some propositions of those medicines are nontoxic. What is the maximum ratio of
nontoxic proportion we are able to get?

We consider ‘Coordinates Scheme’ and ‘Grouping Method’, which we shall combine to get our
‘Coordinates-Grouping Scheme’. Since this Problem 3 is tough to handle, we will consider a
restricted problem with respect to the idea of Grouping.

Problem 3* There are some bottles of liquid with two of them poisoned. A mouse will die if it
takes the poison, otherwise it will remain alive. Now we have n mice to check out which bottle
contains the poison within one experiment. What is the maximum number of bottles we are
able to deal with?

Main content of this part is about this answer, which is donated by 𝑓(𝑛). We get an upper
bound and several lower bounds. Moreover, lower bounds are studied carefully and coordinates
are encountered again. As the exact number of general cases cannot be worked out, we have
two computer programs, one of which is precise but slow, the other being faster but estimative.

N14

Page - 188

2 Variations of the Original Problem and Corresponding Researches

2.1 Time Generalization and Radix Scheme

2.1.1 Radix Scheme and Discrete Hypothesis

In this chapter, we consider problem 1 stated in section 1.3.
Problem 1 There are some bottles of liquid with one of them poisoned. A mouse will die after

𝑡 week if it takes the poison, otherwise it will remain alive. Now we have 𝑛 mice to check out
which bottle contains the poison in 𝑚 weeks’ time, what is the maximum number of bottles we
are able to check from?(Notation 𝑎(𝑛,𝑚, 𝑡) is created to represent the answer)

The website where the original problem comes from has already pointed out a radix 3
solution to 𝑎(𝑛, 2,1): Notice that if we give a radix 3 number to each bottle, from 0 to 3𝑛, and
let 𝑖th mouse (1 ≤ 𝑖 ≤ 𝑛) take all medicines with the 𝑖th digit ‘1’ in the first week and take all
medicines with the 𝑖th digit ‘2’ in the second week (if it is still alive). If the mouse dies after the
first week, dies after the second week or remains alive after all experiments, we can deduce
respectively that the 𝑖th digit of the poison is 1, 2, or 0. As a consequence, the number
corresponding to the poison can be worked out digit by digit.

Imitating the manipulation used, we can easily get the general solution when 𝑡 = 1.
Give a radix 𝑚 + 1 number to each bottle, from 0 to (𝑚 + 1)𝑛 − 1, and let the 𝑖th mouse

(1 ≤ 𝑖 ≤ 𝑛) take all medicines with the 𝑖th digit 𝑗(1 ≤ 𝑗 ≤ 𝑚) in the 𝑗th week if it is still alive
then. If the mouse dies after 𝑗th week, we can deduce that the 𝑖th digit of the poison is 𝑗.
Specially, if it remains alive finally, that digit is 0. As a consequence, the number corresponding
to the poison can be worked out digit by digit. Therefore 𝑎(𝑛,𝑚, 1) ≥ (𝑚 + 1)𝑛.

When 𝑡 > 1, it seems that we can take 𝑡 weeks as one time unit, thus we have 𝑚
𝑡

 units of

experiment time(not necessarily an integer), and we should get 𝑎(𝑛,𝑚, 𝑡) = 𝑎(𝑛, 𝑚
𝑡

, 1) .

However, a closer look gives a better scheme:
Give a radix 𝑚 − 𝑡 + 2 number to each bottle, from 0 to (𝑚 − 𝑡 + 2)𝑛 − 1, and let 𝑖th

mouse (1 ≤ 𝑖 ≤ 𝑛) take all medicines with the 𝑖th digit 𝑗(1 ≤ 𝑗 ≤ 𝑚− 𝑡 + 1) in the 𝑗th week if
it is still alive then. If the mouse dies after (𝑗 + 𝑡)th week, we can deduce that the 𝑖th digit of
the poison is 𝑗, or it is 0. Thus we can get the number of the poison as all experiments made by
a mouse can only have at most one ‘die’ answer, so when a mouse dies, the other experiments it
takes inevitably give ‘alive’ answers.

According to the previous paragraph, we get a solution which guarantees 𝑎(𝑛,𝑚, 𝑡) ≥
(𝑚 − 𝑡 + 2)𝑛. Comparing the two methods, we can see that the stronger one does not wait
until the end of an experiment to carry out another experiment with the same mouse.

It seems perfect that we have already worked out the best solutions. But this astonishing
manipulation not only illustrates that instinct does not always give the right answer, but
motivates us to examine the intrinsical structure of the problem as well.

Carrying this idea back to the original 𝑡 = 1 situation, we find that if we take the one week

N14

Page - 189

of delitescence as seven days and 𝑚 weeks of experiment time as 7𝑚 days, we should get an
even better solution! As the time interval gets smaller and smaller, our function 𝑎 approaches
infinity easily! This is a terrible disaster, so we must take measures to stop it.

We examine our convention and add a new restriction that ‘time’ here should be discrete. To
be precise, one week should be the least time interval. Things get consistent again after this
hypothesis is added.

So now we can satisfactorily announce our radix scheme gives 𝑎(𝑛,𝑚, 𝑡) ≥ (𝑚 − 𝑡 + 2)𝑛.

2.1.2 Proof of Optimality

Notice that our problem 1 requests the best solution, and we should prove the optimality of
the scheme in order to really solve this problem.
Theorem 1 𝑎(𝑛,𝑚, 𝑡) = (𝑚 − 𝑡 + 2)𝑛
Proof:

No matter what scheme we adopt, the only data we can get from it is the death time of every
mouse (A mouse can also survive all experiments, which is considered a special case ‘die after
infinite time’). As the discrete hypothesis guarantees that a mouse can only die after 𝑡 to
𝑚 + 1 weeks (𝑚 + 1 stands for infinity), there are only 𝑚 − 𝑡 + 2 possible states for each
mouse. Thus there are (𝑚 − 𝑡 + 2)𝑛 possible data for us.

From another point of view, we have 𝑎(𝑛,𝑚, 𝑡) possible states of which medicine being
poisoned. If this number is bigger than (𝑚 − 𝑡 + 2)𝑛, according to the well-known Pigeon-hole
Principle, there must be one experiment data corresponding to two possibilities of the poison, in
which case we fail to examine the poisoned medicine precisely. So 𝑎(𝑛,𝑚, 𝑡) ≤ (𝑚 − 𝑡 + 2)𝑛.

Combine this inequality with the one we got in the previous section, and we gives proof to
theorem 1. QED.

2.1.3 Conclusions and Other Variations

 According to section 2.1.1 and 2.1.2, problem 1 is solved completely. Long story short, we
generalized the binary solution given by the author of the website, added a new discrete
hypothesis to make things consistent, and finally proved the optimality of this solution.
 Since 𝑚 and 𝑡 appear at the same position in the answer, it is indicated that these two
variables are related constitutionally. In fact, 𝑚 and 𝑡 do the same job of qualifying how many
experiments we can make. As all experiments can be made in an arbitrary order and this does
not affect the result, we can replace 𝑚 and 𝑡 with one variable, the number of experiments.
This replacement also implies the discrete hypothesis, so it gives us a further insight of the
problem.
 Some similar questions can be easily asked and solved. Adding possibilities such as a mouse
has a risk of dying naturally will do no good since the problem relies on certainty. Now we may
consider one more similar problem in order to illustrate that mice can be even more powerful.
 Let 𝑎′(𝑛, 𝑝) be the maximum amount of bottles we are able to check from with 𝑝
experiments (notice that we have already abandon 𝑚 and 𝑡 to make it clearer) when all
conditions of problem 1 holds except that a mouse will recover immediately after the poison

N14

Page - 190

takes effect.
 We can at once convert the optimality proof and announce 𝑎′(𝑛, 𝑝) ≤ 2𝑛𝑛 since each mouse
now has 𝑝 chances of choosing to ‘die’ or not and has 2𝑝 possible situations in all.
 The corresponding scheme can be made on purpose to satisfy the proof: number each bottle
with an 𝑛 × 𝑝 matrix whose components are either 1 or 0, and use 𝑎𝑖,𝑗𝑗 to note component
(𝑗,𝑘) of the 𝑖th matrix. Let mouse 𝑗(1 ≤ 𝑗 ≤ 𝑛) take all medicines 𝑖 with 𝑎𝑖,𝑗𝑗 = 1 at the
𝑘th (1 ≤ 𝑘 ≤ 𝑝) experiment, and the result of experiments gives the poison’s matrix.

2.2 Realistic Restriction and Chart-Filling Method

2.2.1 Chart-Filling Method

Notice that in the original problem, each mouse has to be fed with more than 500 different
kinds of medicine all at a time according to the radix scheme, which in some way is too ideal. So
we add a new restriction that each mouse has a limitation with the amount of medicines it takes
at a time (We will consider only one experiment for the time being to make it easier):

Problem 2 There are some bottles of liquid with one of them poisoned. A mouse will die if it
takes the poison, otherwise it will remain alive. Now we have 𝑛 mice to check out which bottle
contains the poison within only one experiment, where each mouse can take at most 𝑟
different kinds of medicine at a time.(1 ≤ 𝑟 ≤ 2𝑛−1) . What is the maximum number of bottles
we are able to deal with this time? (The answer is noted 𝑏(𝑛, 𝑟))
 Now that radix scheme can not be used to solve this problem, we must create an entirely new
method, which is, Chart-Filling Method. To introduce this method, we shall have some new
concepts leading to a new point of view first.
 Definition 1 𝑛-troop: a group of 𝑛 mice with each of them able to take 𝑟𝑖(1 ≤ 𝑖 ≤ 𝑛) more
medicines is called an 𝑛-troop. Specially, a mouse which is already full (cannot take more
medicines) is still considered a legal member of a troop.
 In addition, when some more medicines are fed to a troop, 𝑟𝑖 will decrease and we consider
this add-medicine process same as a troop-decline process. By this means, we will study
troop-decline process or add-medicine process instead of the original problem. To get a better
view, we will illustrate a troop by plotting a chart with 𝑛 rows and 𝑟𝑖 columns.
 Definition 2 Space: If a mouse in a troop can take 𝑟 more medicines, we say it has 𝑟 spaces.
Spaces of all mice add up to the spaces of the troop. If a medicine is planned to be fed to 𝑥
mice, we say it takes up 𝑥 spaces.
 According to this definition, a scheme cannot take up more spaces than the troop really has,
while we are not sure whether or not a scheme is feasible if it takes up less spaces. In addition, a
medicine cannot take up more than one space of one mouse, because using the same medicine
to feed the same mouse for more than one time is of no use.
 Definition 3 𝑚-status: When we choose a scheme for one medicine, we can deduce the
result of what will happen if it is poisoned. This ‘result’ can be noted as a binary number called
the status of the medicine. The method used here is similar to the one used in the first part, that
is, use 𝑛 digits to represent the 𝑛 mice, and a digit is ‘1’ if the medicine is fed to this mouse,
otherwise it is ‘0’. If a status contains 𝑚 digits ‘1’ (so it takes up 𝑚 spaces), it is called an

N14

Page - 191

𝑚-status.
We notice that if a medicine is poisoned, status of it stands for the result we will get from the

experiment, thus status signifies all the information about the corresponding medicine in the
scheme. To make it clearer, two kinds of medicine can be told apart if and only if their statuses
are different.

Now our problem is converted to how to choose the biggest amount of statuses so that each
one is distinct and they do not take up more spaces than the troop provides.

We will show manipulation we used in this Chart-Filling Method by considering the following
example of 𝑏(5,8).

Since the number of spaces is limited, we tend to choose statuses that take up few spaces first.
Thus the 0-status(00000) is considered at the beginning. However, there is only one 0-status,
and we then turn to 1-statuses, 10000, 01000, 00100, 00010, 00001. Filling these statuses into
the troop, we can get a chart like this:

Mouse 1 2

Mouse 2 3

Mouse 3 4

Mouse 4 5

Mouse 5 6

This 5×8 form illustrates the original condition of 𝑏(5,8), and the numbers inside stand for

the second to the sixth statuses are 10000 to 00001, respectively. (The first is 00000, so it does
not appear in the form)

Now think about 2-statuses, it is clear that there are �5
2� of them (and �𝑛𝑚� 𝑚-statuses for

𝑛-troop in general) and filling in all of them costs us 20 spaces. We still have 45 spaces now, so
probably we can do it. The form looks like this after the previous step:

Mouse 1 2 7 8 9 10

Mouse 2 3 7 11 12 13

Mouse 3 4 14 8 11 15

Mouse 4 5 14 16 9 12

Mouse 5 6 15 16 13 10

3-statuses seem the same, but we encounter a problem now. All 3-statuses will take up

3 �5
3� = 30 spaces while we have only 15 left. Thus at most 15

3
= 5 3-statuses can be placed. If

we do this carefully, we may have a form as follows.

Mouse 1 2 7 8 9 10 17 18 19
Mouse 2 3 7 11 12 13 17 18 20
Mouse 3 4 14 8 11 15 17 19 21
Mouse 4 5 14 16 9 12 18 20 21
Mouse 5 6 15 16 13 10 19 20 21

Before we happily accept the fact that this Char-Filling Method works, let’s see what we will

N14

Page - 192

get if we are not careful enough and get stuck with less than five 3-statuses:

Mouse 1 2 7 8 9 10 17 18 19
Mouse 2 3 7 11 12 13 17 18 20
Mouse 3 4 14 8 11 15 17 19 20
Mouse 4 5 14 16 9 12 18 19 20
Mouse 5 6 15 16 13 10

There are still three spaces but we cannot fill them with a 3-status. As a result, this method

gives an upper bound but we are not sure whether we have a scheme to reach it.

The upper bound, in general, is 𝑏(𝑛, 𝑟) ≤ [
𝑛𝑛−𝑆𝑖0−1

𝑖0
] + ∑ �𝑛𝑗�

𝑖0−1
𝑗=0 , where 𝑆𝑖 = ∑ 𝑗 �𝑛𝑗�

𝑖
𝑗=0 and

𝑖0 is an integer satisfying 𝑆𝑖0−1 < 𝑛𝑛 ≤ 𝑆𝑖0. This formula is an instant result of our method

since we hope to fill the troop with all 0, 1,…,(𝑖0 − 1)-statuses and some 𝑖0-statuses so that
there are less than 𝑖0 spaces left(when we just run out of 𝑡-status, 𝑡 spaces left is also
considered acceptable, but in this case, we tend to consider that we have used all 𝑡-statuses
and finish with using zero (𝑡 + 1)-status so that 𝑡 + 1 is the actual 𝑖0). Since for every
possible management, we can convert a 𝑝-status to a 𝑞-status if we have not used all
𝑞-statuses and 𝑞 < 𝑝, and when all those adjustments are made, the final management will not
contain more statuses than this method does, thus it gives the best solution if this goal is
reachable. As a consequence, all we need is to prove the feasibility of Chart-Filling Method.

2.2.2 Proof of Feasibility

We need more concepts in order to describe our situation before actually trying to solve the
problem.

Definition 4 (𝑛, 𝑟)-party: An (𝑛, 𝑟)-party is an 𝑛-troop where each mouse has either 𝑟
spaces or 𝑟 − 1 spaces and at least one of them has 𝑟 spaces. Specially, when 𝑟 is omitted,
we write it as 𝑛-party. Further more, when all mice have 𝑟 spaces, the troop is called a perfect
(𝑛, 𝑟)-party.

 𝑟 columns

Mouse 1
Mouse 2 … … …
Mouse 3
 …

 …

 …
 …

Mouse n-3
Mouse n-2
Mouse n-1 … … …
Mouse n

N14

Page - 193

We can deduce instantly that an (𝑛, 𝑟)-party has more than 𝑛(𝑟 − 1) and not more than
𝑛𝑛 spaces. When it has exactly 𝑛𝑛 spaces, it is a perfect (𝑛, 𝑟)-party, in other words, a matrix.

Definition 5 𝑝-fill: If we have a scheme to fill an 𝑛-troop with 𝑝-statuses so that only less
than 𝑝 spaces are left clear, we say this 𝑛-troop can be 𝑝-filled.

Definition 6 𝑍(𝑛, 𝑟): For each pair of (𝑛, 𝑟)(1 ≤ 𝑟 ≤ 2𝑛−1), there exists a number 𝑖 such

that 𝑆𝑖−1 < 𝑛𝑛 ≤ 𝑆𝑖 (𝑆𝑖 = ∑ 𝑗 �𝑛𝑗�
𝑖
𝑗=0). This number is donated by 𝑍(𝑛, 𝑟). (That is the 𝑖0 we

discussed in the previous section)
Now the problem of feasibility is converted to a problem of whether a perfect (𝑛, 𝑟)-party

can be filled with all 0, 1,…,(𝑍(𝑛, 𝑟) − 1)-statuses and then be 𝑍(𝑛, 𝑟)-filled.
We will give a solution by induction of a stronger proposition. To do so, we need a view of

what it looks like when a chart is filled with all 𝑝-statuses, which will be described in Lemma 1.
This lemma will give us a well-known equation, Lemma 2, containing binominal coefficients
which we shall also use. In addition, our proof will rely on a division which will be proved legal in
Lemma 3. With all three lemma, we shall use induction to prove the reinforced Theorem 2,
which implies the feasibility of Chart-Filling Method. So let’s begin our journey now.

Lemma 1 All 𝑖-statuses for a big enough 𝑛-troop will take up �𝑛−1𝑖−1� spaces of each mouse.

Proof:

It can be examined that there are �𝑛−1𝑖−1� 𝑖-statuses containing each row, for one component

of them must be this row, and the other 𝑖 − 1 components can optionally distribute in the
other 𝑛 − 1 rows. Since each of them takes up one space of the mouse, altogether the number

is �𝑛−1𝑖−1�.

This statement is valid for every mouse. QED.

Lemma 2 𝑥�𝑛𝑥�= 𝑛�𝑛−1𝑥−1�

Proof: (In fact, proof of this equation need not use the concepts we created)
Consider a big enough 𝑛-troop, with all 𝑥-statuses filled in. Let’s try two ways of calculating

the amount of spaces they take up totally.

(1)There are �𝑛𝑥� 𝑥-statuses, each of which has 𝑥 components, so these add up to 𝑥�𝑛𝑥�

(2)As it is in Lemma 1, those statuses take up �𝑛−1𝑥−1� spaces in each row, thus in total they

take up 𝑛�𝑛−1𝑥−1� spaces.

Since the two ways must give the same answer, we have 𝑥�𝑛𝑥�=𝑛�𝑛−1𝑥−1�. QED.

Lemma 3 For every (𝑛, 𝑟)-party and every (𝑛, 𝑠)-party such that 𝑠 ≤ 𝑟 and the former party
contains not less spaces than the later one, there exists a scheme to divide the former party into
two 𝑛-parties with one of them the later 𝑛-party.
Proof:
 Let the former (𝑛, 𝑟)-party be party A and let A1 be the set of all 𝑥 mice in party A having 𝑟

N14

Page - 194

spaces, A2 be the set of all the other 𝑛 − 𝑥 mice in party A having 𝑟 − 1 spaces. Similarly,
donate the amount of mice in the later party having 𝑠 spaces by 𝑦.
 If we have 𝑟 > 𝑠, and 𝑥 ≥ 𝑦, we can find 𝑦 mice in A1. Let these 𝑦 mice contribute 𝑠
spaces each, and the other 𝑛 − 𝑦 mice contribute 𝑠 − 1 spaces, and we have a requested
(𝑛, 𝑠)-party. After this manipulation, there are still 𝑥 − 𝑦 mice having 𝑟 − 𝑠 + 1 spaces and
𝑛 − 𝑥 + 𝑦 mice having 𝑟 − 𝑠 spaces left. Thus party A is divided into a requested party and
another 𝑛-party as well.
 If 𝑟 > 𝑠 and 𝑥 < 𝑦, we let 𝑦 − 𝑥 mice from A2 and all 𝑥 mice from A1 contribute 𝑠
spaces each, while the other 𝑛 − 𝑦 mice contribute 𝑠 − 1 spaces, similarly we get the
requested party and what left is a 𝑛-party also.
 If 𝑟 = 𝑠, since party A must be bigger than the requested party, we get 𝑥 ≥ 𝑦 directly. Thus
we can make it using the same manipulation carried out in the situation of 𝑟 > 𝑠, 𝑥 ≥ 𝑦.
 In one word, no matter what situation we encounter, a means of doing the requested job is
always guaranteed. QED.

Theorem 2 An (𝑛, 𝑟)-party which has 𝑥 spaces can be 𝑖-filled if 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑥 ≤ 𝑖�𝑛𝑖 �.

 The following proof is a little complicated, so we will introduce our idea at the beginning of it.
The main idea is to use induction. We are to prove ‘𝑛 = 𝑘 + 1’ situation under the assumption
that ‘𝑛 = 𝑘’ is done. Some points are to be made in advance, namely special cases of 𝑖, and
some inequalities which will be used(Those inequalities seem useless considering their
somewhat silly meanings, while they are necessary in the proof since there are so many special
cases and we will miss some if we are careless in dealing with those inequalities). Then in the
core step, we will try dividing the original party into three parts, X1, B and C. To make sure it can
be divided as we wish, conditions are studied and special cases are worked out independently.
Last but not least, we will fill up B and C separately using ‘𝑛 = 𝑘’ hypothesis and add X1 to the
scheme of B to finish our proof.
Proof:

Perform induction on 𝑛.
a)When 𝑛 = 1，

∵ 1 ≤ 𝑖 ≤ 𝑛 = 1 ∴ 𝑖 = 1

∴ 1 ≤ 𝑥 ≤ 𝑖�𝑛𝑖 � = 1 ∴ 𝑥 = 1

So we have only one space now, and of course it can be 1-filled.
b) Assume this proposition holds when 𝑛 = 𝑘 (𝑘 ≥ 1). When 𝑛 = 𝑘 + 1, it can be proved by

the following six steps:
I. In this step we consider the special cases of 𝑖 = 1, 𝑛.
According to Definition 4, we have 𝑛(𝑟 − 1) < 𝑥 ≤ 𝑛𝑛 ……(1)

As a result, when 𝑖 = 1, 𝑛(𝑟 − 1) < 𝑥 ≤ 𝑖�𝑛𝑖 � = 𝑛, so 𝑟 = 1.

Therefore the only possibility is that there are 𝑥 mice having one space while the other
having nothing. Filling in blanks one by one gives the desired solution.

Similarly, when 𝑖 = 𝑛, the only possibility is that 𝑥 ≤ 𝑛, 𝑟 = 1. If 𝑥 < 𝑛 in this case,
filling is not needed. If 𝑥 = 𝑛, filling in the only 𝑖-statuses solves the problem.

So we assume 2 ≤ 𝑖 ≤ 𝑛 − 1 in the next five steps.

N14

Page - 195

II. This step is performed to get some important inequalities in order to make it easier when
we are trying to work out other inequalities in the following steps.

According to (1) and the conditions of this theorem, we have 𝑛(𝑟 − 1) < 𝑥 ≤ 𝑖�𝑛𝑖 �.

Use Lemma 2 and we get 𝑛(𝑟 − 1) < 𝑖�𝑛𝑖 � = 𝑛�𝑛−1𝑖−1� ∴ 𝑟 − 1 < �𝑛−1𝑖−1�

Since each side of the inequality is integer, 𝑟 ≤ �𝑛−1𝑖−1�. ……(2)

From (1), we have 𝑟 ≥ 𝑥
𝑛

 .

……(3)

III. This step gives one of the parties which we are going to divide our original party into
since we intend to use division to perform induction.

Let 𝑟(𝑖 − 1) ≡ 𝑦(𝑚𝑚𝑚 𝑛 − 1) (1 ≤ 𝑦 ≤ 𝑛 − 1), so 𝑛 − 1|𝑟(𝑖 − 1) − 𝑦 .
Take out one row of 𝑟 spaces, namely X1, from the original (𝑛, 𝑟)-party, we get an

(𝑛 − 1)-party A, which has 𝑥 − 𝑟 spaces.

Now think of an �𝑛 − 1, 𝑟(𝑖−1)−𝑦
𝑛−1

+ 1�-party B, 𝑦 rows of which has 𝑟(𝑖−1)−𝑦
𝑛−1

+ 1

spaces.

B has 𝑦 �𝑟(𝑖−1)−𝑦
𝑛−1

+ 1�+ (𝑛 − 1 − 𝑦) 𝑟(𝑖−1)−𝑦
𝑛−1

= 𝑟(𝑖 − 1) spaces in total.

∵ 𝑖 ≤ 𝑛 − 1 ∴ 𝑟(𝑖−1)−𝑦
𝑛−1

< 𝑟(𝑖−1)
𝑛−1

< 𝑟

Since we have 𝑟(𝑖−1)−𝑦
𝑛−1

∈ 𝑁+, again integers are recognized at both sides,

∴ 𝑟(𝑖−1)−𝑦
𝑛−1

≤ 𝑟 − 1, in other words, 𝑟(𝑖−1)−𝑦
𝑛−1

+ 1 ≤ 𝑟 ……(4)

IV. In this step we will consider a special case in which the party to be divided turns out to
be even smaller than the desired party we are to get by division.

If the amount of spaces B has, 𝑟(𝑖 − 1), is bigger than that of A, 𝑥 − 𝑟, we have
𝑟(𝑖 − 1) > 𝑥 − 𝑟, which gives us 𝑥 < 𝑖𝑖. While 𝑖 ≤ 𝑛 − 1, according to (1), 𝑖(𝑟 − 1) <
𝑛(𝑟 − 1) < 𝑥 < 𝑖𝑖

Thus the original (𝑛, 𝑟)-party can only accommodate 𝑟 − 1 𝑖-statuses, so the problem is
converted to whether we can fill it with 𝑟 − 1 different 𝑖-statuses.

Observe that we can fill a perfect (𝑛, 𝑟 − 1)-party with 𝑟 − 1 𝑖-statuses by adding one
𝑖-status to each ‘column’ so that they can be designed freely and separately. According to (2)

we have �𝑛𝑖 � = �𝑛−1𝑖 � + �𝑛−1𝑖−1� > �𝑛−1𝑖−1� − 1 ≥ 𝑟 − 1 , so these 𝑟 − 1 𝑖 -statuses can be

distinct, which implies an (𝑛, 𝑟)-party which contains a perfect (𝑛, 𝑟 − 1)-party can also be
filled with 𝑟 − 1 distinct 𝑖-statuses. The proof is already finished in this case.

V. This section will illustrate how we are to use division in proving the theorem.
Else we have 𝑟(𝑖 − 1) ≤ 𝑥 − 𝑟, which, according to (4), indicates A and B satisfy the

condition of Lemma 3. As a result, A can be divided to B and another (𝑛 − 1)-party C.

According to (2), 𝑟(𝑖 − 1) ≤ (𝑖 − 1)�𝑛−1𝑖−1�, and 1 ≤ 𝑖 ≤ 𝑛 − 1, so B satisfies the condition of

Theorem 2 when 𝑛 = 𝑘 and 𝑖’ = 𝑖 − 1. Thus this party can be (𝑖 − 1)-filled and there will

N14

Page - 196

not be a single space left because the number of spaces in B is divisible by 𝑖 − 1. Append
these (𝑖 − 1)-statuses with component X1 and we have 𝑟 𝑖-statuses now which fill in X1 and
B perfectly. Assuming party C can be 𝑖-filled, we now have B+X1 and C filled separately. As no
𝑖-status filling C has component X1 while all other 𝑖-statuses have, these 𝑖-statuses are
distinct, which gives a solution finally to 𝑖-fill A. So the only thing we are to prove is C can be
𝑖-filled.

VI. In the final step, we will finish the proof by proving the other part of the division which
we did not consider is also conquerable.

Since 1 ≤ 𝑖 ≤ 𝑛 − 1 , and there are 𝑥 − 𝑟 − 𝑟(𝑖 − 1) = 𝑥 − 𝑖𝑖 spaces in C, perform

Lemma 2 and (3) gives 𝑥 − 𝑖𝑖 ≤ 𝑥 − 𝑖 𝑥
𝑛

= �1 − 𝑖
𝑛
�𝑥 ≤ �1− 𝑖

𝑛
� 𝑖�𝑛𝑖 � = 𝑖�𝑛𝑖 � − 𝑖 𝑖

𝑛
�𝑛𝑖 � =

𝑖�𝑛𝑖 � − 𝑖�𝑛−1𝑖−1� = 𝑖�𝑛−1𝑖 �

Therefore C satisfies Theorem 2 when 𝑛 = 𝑘 and 𝑖’ = 𝑖, which indicates that it can be
𝑖-filled. So Theorem 2 when 𝑛 = 𝑘 + 1 is proved.

 Combining a) and b) gives the proof of Theorem 2. QED.

Theorem 2 guarantees that perfect (𝑛, 𝑟 − ∑ �𝑛−1𝑖−1�
𝑍(𝑛,𝑟)−1
𝑖=1)-party can be 𝑍(𝑛, 𝑟)-filled, which

implies that perfect (𝑛, 𝑟)-party can be filled with all 0,1,…,(𝑍(𝑛, 𝑟) − 1)-statuses (Considering
Lemma 1) and be 𝑍(𝑛, 𝑟)-filled, that is, feasibility of Chart-Filling Method. The proof also
indicates a way of constructing such a scheme by recursion.

2.2.3 Conclusions and Other Variations

 In this chapter we solved problem 2 by proving a stronger proposition as to Chart-Filling
Method we developed specially for this problem. The concept of status can be seen as a
generalization of binary solution to the original problem in chapter 1, which is so important that
it is the core concept of this whole chapter. From this concept we get a closer view of how
schemes are made and how to examine whether they will work properly. This concept will also
be employed in the next few sections.
 Now that problem 2 has been solved, let’s consider what will happen if we do more than one
experiments. If we try it with the idea of generalizing the concept of status, we will reach a new
concept that each digit of the status can have not only 0 and 1 two possible values. However,
this does not throw light on the question since it is too complex. So we try to understand it in
another way, that is, take each experiment as one chart. Thus the generalized problem becomes
a Cube-Filling problem. Generalizing restrictions of the problem as well gives two different
versions of it considering whether a mouse will die after taking the poison: In the death version,
each status has at most one component in one ‘mouse plane’(in contrast to ‘mouse row’ in
problem 2) while in the athanasia version each status is allowed to have one component in each
‘mouse row’ of each experiment.
 The previous generalization can be generalized again if we consider the abstract concept of
𝑛-dimensional-cube-filling without using concrete concepts such as mouse and poison. However,
none of these widen problems can be solved according to skills we developed, as division
method used in proof of Theorem 2 cannot be generalized to more than two dimensions.

N14

Page - 197

2.3 Two-Poison Replacement and Grouping-Coordinate Scheme

2.3.1 Coordinate Scheme

 In this chapter, we will try the ‘two-poison’ problem:
Problem 3 There are plenty bottles of medicine with two of them poisoned. A mouse will die

if it takes the poison, otherwise it will remain alive. With 𝑛 mice and one experiment, we can
check out that some proportion of those medicines is nontoxic. What is the maximum ratio of
nontoxic proportion we are able to get? (The maximum ratio is noted 𝑐(𝑛))
 We are to introduce the ‘Coordinate Scheme’, which was first given by yac using the example
of 𝑛 = 10.
 First of all, divide the ten mice into two groups, and all the bottles into 25 groups evenly (This
is the reason why we assume there are ‘plenty of’ bottles, or we will have to examine the
number’s divisibility by 25). Put these groups of medicines as follow, and let each mouse take all
the medicine of its row/column.

 Mouse 6 Mouse 7* Mouse 8 Mouse 9* Mouse 10

Mouse 1 safe safe safe safe safe
Mouse 2* safe hazard safe hazard safe
Mouse 3 safe safe safe safe safe

Mouse 4* safe hazard safe hazard safe
Mouse 5 safe safe safe safe safe

Provide that mouse 2,4,7,9 die, the medicines they took contain poisons. As a result, the

poisons are in the four ‘hazard’ districts, while they are not located exactly.
 According to this, we can always find at most four districts containing the poisons, therefore

the nontoxic proportion is 25−4
25

= 84%.

 This method can be reinforced a little, and then we have:

 Mouse 6 Mouse 7* Mouse 8 Mouse 9* Mouse 10

Mouse 1 safe safe safe safe safe safe
Mouse 2* safe hazard safe hazard safe safe
Mouse 3 safe safe safe safe safe safe
Mouse 4 safe safe safe safe safe safe
Mouse 5 safe safe safe safe safe safe

 safe hazard safe hazard safe safe

 In this scheme, we leave one row and one column untested. Assuming mouse 2 is the only
unlucky one among the first five mice, we have row 6 a dangerous row also. So we can, again,
always determine at most four districts which are hazarded, therefore the nontoxic proportion is
36−4
36

≈ 88.9%.

N14

Page - 198

 But that is still not the end! If we divide those 10 mice into three groups, namely 3, 3, 4, and
adopt the same manipulation (This time it is three dimensional), we will have a nontoxic

proportion of 4×4×5−8
4×4×5

= 90%. This is because each group will locate two ‘planes’, therefore we

have eight intersected districts instead of four, and in each group we leave out one ‘plane’
untested, which is why there are 4 × 4 × 5 districts in total.
 It can be seen that the more groups we divide our mice into, the more uncertainty we will
have. In general, an 𝑚-dimensional (Each group can be seen as a dimension, in other words,
they are separate coordinates, which is the reason this scheme is named) scheme gives us 2𝑚
hazard districts. So in the case of 𝑛 = 10, this three dimensional scheme gives the best answer.
 Now we can easily conclude a general method out of this, that is to divide 𝑛 mice into 𝑘

groups, namely 𝑎1,𝑎2, … , 𝑎𝑘, and we can determine a nontoxic proportion of 1 − 2𝑘

∏ (𝑎𝑖+1)𝑘
𝑖=1

.

To make it optimal, we should have 𝑎𝑖 evenly, which is why we divide 10 mice into 5 and 5
instead of 4 and 6 or other groups. The value of 𝑘 remains arbitrary, while we can determine it
within 𝑛 try (Let 𝑘 vary from 1 to 𝑛), so obtaining the optimal solution will not be very hard.

2.3.2 Grouping Method and Coordinate-Grouping Scheme

 The previous scheme by the website writer is really skillful, while we have a seemingly less
graceful but more general idea. The thought involved is quite easy, that is, to divide all medicines
into several groups, and use some schemes similar to those we used when examining one
poison to determine the exact location of the two poisons. Notice that we said ‘some schemes’
instead of a definite one, which makes it quite mysterious. This is because, for example, in a
simple situation of 𝑛 = 5, we cannot even work out easily whether there exists a manipulation
better than having five mice examine one group each and leave the sixth group untested. This
difficulty raises problem 3*:

 Problem 3* There are some bottles of liquid with two of them poisoned. A mouse will die if it
takes the poison, otherwise it will remain alive. Now we have 𝑛 mice to check out which bottle
contains the poison within one experiment. What is the maximum number of bottles we are
able to deal with? (The answer is noted 𝑓(𝑛))

 In fact, there is still a difference between Grouping Method and problem 3*, as two poisons
can unfortunately be divided to the same group. In this case, if we insist in finding two groups
containing the two poisons, the result can be confusing. The way to mediate this dissension is to
accept a solution locating two groups containing the poisoned group, and try to find one group if
the result is confusing. Further description and feasibility of this measure will be discussed in the
next section.
 Perhaps readers of this section will be impatient since Grouping Method has not yet given an
answer and probably can never fight against the sophisticated Coordinate Scheme. However,
what gives us courage to continue studying the Grouping Method is that this method can be
added into the Coordinate Scheme! Notice that in Coordinate Scheme, we use each group as an
independent coordinate, and in each of these coordinates, we actually set a scheme to
determine the exact two ‘planes’ the poisons are in. Thus if we employ Grouping Method in

N14

Page - 199

each group, Coordinate-Grouping Scheme is now reached!
 In general, this scheme can be written as follows: divide 𝑛 mice into 𝑘 groups, namely

𝑎1, 𝑎2, … ,𝑎𝑘 , and we can determine a nontoxic proportion of 1 − 2𝑘

∏ 𝑓(𝑎𝑖)𝑘
𝑖=1

. Since attrbutes of

𝑓(𝑛) are unknown now, we cannot take for granted that groups should be divided evenly in this
scheme.

2.3.3 New Problem and Compatibility

 In this section, we will work out a route to develop 𝑓(𝑛) as well as to solve the compatibility
problem raised in the previous section(two poisons in one group) between 𝑓(𝑛) and the
original problem.
 Attempts of small scale tell us 𝑓(𝑛) is quite difficult to find. We can deduce 𝑓(𝑛) ≥ 𝑛 + 1
easily by letting each mouse tests one group and leave the last group untested. We can also
claim that 𝑓(𝑛) is monotonically increasing, as one more mouse can test one more group while
the other 𝑛 − 1 mice do the same as checking 𝑓(𝑛 − 1) groups. A trivial upper bound can as
well be reached from 𝑓(𝑛 + 1) ≤ 2𝑓(𝑛), since we can divide the statuses into two groups
considering whether the last digit is 1 and claim that each group has not more than 𝑓(𝑛)
statuses. But further study is difficult, which we shall show in the next three sections. Our aim is
to (1) try giving a nontrivial upper bound and lower bound for 𝑓(𝑛), (2)give some nontrivial
examples of small scale probably by computer.
 As it is very important, we donate the attribute that 𝑓(𝑛) is monotonically increasing by
Lemma 4.
 First of all, we should give some notation in order to describe the problem. It is a good idea to
use the same concept we used in the previous chapter, which is ‘status’. Each group has a ‘status’
which describes how it is fed to mice and what the result will be if it is poison. But now we have
two poisons, therefore we probably will get an integrated result for two groups. Thus we can
define a new calculation between two statuses:

Definition 7 Or/Union: For two status 𝑎 and 𝑏, let ‘𝑎 or 𝑏’ be an 𝑛-digit binary number
whose 𝑖th digit is 1 as long as digit 1 appears at the same digit in one of the two statuses. This is
also called the union of 𝑎 and 𝑏.
 ‘𝑎 or 𝑏’ is actually an informatics concept having the same meaning, besides it is also similar
to the concept of ‘union’ in the theory of set, which leads to a possibility of converting this
problem to other problems.
 Now we can claim that the statement ‘able to determine two poisons’ is same to ‘for all pairs
of status, (𝑎,𝑏), 𝑎 or 𝑏 are distinct’, since a test works if and only if different cases give distinct
results.
 Now let’s focus again on the compatibility problem which concerns two poisons in one group.
If the result differs from every possible answer a two-group union gives, we happily accept the
fact that the two poisons are in the same group. Since we already have all the unions different, it
is apparent that statuses themselves are distinct. Therefore we can determine which group the
two poisons are in. Thus the only problem turns out to be, if we really determine two seemingly

N14

Page - 200

hazard groups, 𝑎 and 𝑏, while the poisons are in fact in one group, 𝑐, can we miss it? Since 𝑎
or 𝑏, 𝑎 or 𝑐 should be distinct if 𝑏 ≠ 𝑐, and we have 𝑎 or 𝑏 = 𝑐 as a condition, 𝑎 or 𝑐 =
𝑎 or (𝑎 or 𝑏)=𝑎 or 𝑏, contradiction. Thus we cannot miss 𝑐. In all, when two poisons are in
one group, we can always find at most two groups containing the hazard group, which solves the
dissension finally.

2.3.4 Qualitative Analysis of 𝒇(𝒏)

We will give an exponential upper bound first by calculating the maximum amount of statuses
possible.

Theorem 3 𝑓(𝑛) ≤ 2
𝑛+1
2

Proof:
 Similar to proof of Theorem 1, we notice that since unions of all pairs of statuses give distinct

answers, there are altogether �𝑓(𝑛)
2 � such answers. The amount must not be more than the

amount of all 𝑛-digit binary numbers, which is 2𝑛. Therefore we have �𝑓(𝑛)
2 � ≤ 2𝑛 , thus

𝑓(𝑛) ≤ 1+√1+2𝑛+3

2
< 1+�1+√2𝑛+3�

2
= 1 + 2

𝑛+1
2 . As both sides are integer, 𝑓(𝑛) ≤ 2

𝑛+1
2 . QED.

 The experience of attempting to get a nontrivial answer reaching 𝑓(𝑛) tells us this upper
bound is very high indeed, and the method we used in proving it has nothing to do with how to
make an example. So this theorem only gives us a border, saying 𝑓(𝑛) cannot raise faster than
exponential function.
 Though this proof of upper bound seems to be not complicated enough to work out a
satisfying answer, we honestly can not improve it significantly since situations can not be easily
assorted and structures can not be recognized. Moreover, we conjecture 𝑓(𝑛) to grow
exponently due to our lower bound and computer generated data (and instinct).
 Attempt of giving a lower bound using similar manipulation proved to be too difficult for us,
but it is possible that we give a nontrivial lower bound by constructing a new example from a
known one, in other words, by recursion.

Theorem 4 𝑓(𝑛 + 2⌈log2(𝑓(𝑛) + 1) ⌉) ≥ 2𝑓(𝑛)
Proof:
 Let 𝑘 be ⌈log2(𝑓(𝑛) + 1) ⌉. Assuming we have an example in the case of 𝑛, which are 𝑓(𝑛)
statuses satisfying the union-distinct condition. Now we will give 2𝑓(𝑛) (𝑛 + 2𝑘)-digit binary
numbers, all unions of which are distinct as well.
 For the first half, add 2𝑘 digits to these 𝑓(𝑛) status, and let the first 𝑘 ones be zero, the
(𝑘 + 1)th to the 2𝑘th be the binary representations of one till 𝑓(𝑛)(the reason why we
choose 𝑘 digits is that this is the least amount to show the binary representation of 𝑓(𝑛)). To
generate the second half, we simply produce the added part by exchanging the first 𝑘 digits
and the last 𝑘 ones produced in the first half.
 An example is showed as follows.

N14

Page - 201

The first six figures are from an example of 𝑛 = 6, and the following eight ones are new digits
we added. Notice that in order to show ‘8’ in binary representation, we need four digits instead
of three even though log2 8 = 3, since zero is not included.

If two statuses are chosen from the same group, we can first use whether the last 𝑘 digits
are zero to determine which group they are in. Then, as we suppose the first 𝑛 digits come
from a proper example of 𝑛, distinctness is guaranteed. If these two statuses are from different
groups, it is even easier since we can tell which one they are by transferring the last 2𝑘 digits to
binary numbers and choose the corresponding status in each group directly.

Therefore the recursion holds, QED.

Now let’s get a closed form of lower bound from Theorem 4.
Because logarithm and ceiling function are used, we shall first generate a better recursive

form to make it easier to deal with. For every 𝑥 ∈ [1, +∞), let
𝑓(𝑥) = (⌊𝑥⌋+ 1− 𝑥)𝑓(⌊𝑥⌋) + (𝑥 − ⌊𝑥⌋)𝑓(⌊𝑥⌋+ 1)

which is the function we get connecting adjacent discrete points. Observe that
𝑙𝑙𝑙2(𝑝 + 1) ≤ 𝑙𝑙𝑙2 𝑝 + 1 (𝑝 ≥ 1)

We can get
⌈2 𝑙𝑙𝑙2(𝑝 + 1)⌉ ≤ 2 𝑙𝑙𝑙2(𝑝 + 1) + 2 ≤ 2 (𝑙𝑙𝑙2 𝑝 + 1) + 2 = 2 𝑙𝑙𝑙2 𝑝 + 4 (𝑝 ≥ 1),

Therefore, with the help of Lemma 4, which will be cited every now and then without claiming
in this chapter, we have

𝑓(𝑥 + 2 𝑙𝑙𝑙2 𝑓(𝑥) + 4) ≥ 𝑓(𝑥 + ⌈2 𝑙𝑙𝑙2(𝑓(𝑥) + 1)⌉)
 ≥ 𝑓(𝑛 + ⌈2 𝑙𝑙𝑙2(𝑓(𝑛) + 1)⌉)

 ≥ 2𝑓(𝑛)
 > 2𝑓(𝑥 − 1) (𝑥 ≥ 2,𝑛 = ⌊𝑥⌋)

Thus, 2𝑓(𝑥) < 𝑓(𝑥 + 1 + 2𝑙𝑙𝑙2𝑓(𝑥 + 1) + 4) ≤ 𝑓(𝑥 + 1 + 2(𝑙𝑙𝑙2𝑓(𝑥) + 1) + 4) = 𝑓(𝑥 +
2𝑙𝑙𝑙2𝑓(𝑥) + 7)(𝑥 ≥ 1), because 𝑓(𝑥 + 1) ≤ 2𝑓(𝑥) considering the last digit separately. The
inequality has been adjusted for real number now.

Let 𝑔(𝑥) = 𝑙𝑙𝑙2𝑓(𝑥), then we have 2𝑔(𝑥)+1 < 2𝑔(𝑥+2𝑔(𝑥)+7)(𝑥 ≥ 1), so 𝑔(𝑥) + 1 < 𝑔(𝑥 +

2𝑔(𝑥) + 7).
We can prove the following theorem, which leads to a lower bound of traditional form with

the help of function 𝑔.

Group1 Group2
000000 0000 0001 000000 0001 0000
000011 0000 0010 000011 0010 0000
010101 0000 0011 001100 0011 0000
001100 0000 0100 010101 0100 0000
011010 0000 0101 011010 0101 0000
100110 0000 0110 100110 0110 0000
101001 0000 0111 101001 0111 0000
110000 0000 1000 110000 1000 0000

N14

Page - 202

Theorem 5 𝑓(𝑥) > 2√𝑥+3−4

Proof:
Let {𝑎𝑛}:𝑎1 = 1,𝑎𝑛+1 = 𝑎𝑛 + 2𝑛 + 7, we will prove by induction that 𝑔(𝑎𝑛) ≥ 𝑛.
(1) 𝑔(𝑎1) = 𝑔(1) = 𝑙𝑙𝑙2𝑓(1) = 1(𝑓(1) = 2 is quite obvious), so 𝑛 = 1 holds.
(2) Assuming 𝑔(𝑎𝑛) ≥ 𝑛 when 𝑛 = 𝑘,

when 𝑛 = 𝑘 + 1 , we have 𝑔(𝑎𝑘+1) = 𝑔(𝑎𝑘 + 2𝑘 + 7) ≥ 𝑔(𝑥 + 2𝑘 + 7) = 𝑔(𝑥 +
2𝑔(𝑥) + 7) > 𝑔(𝑥) + 1 = 𝑘 + 1,
where 𝑔−1(𝑘) = 𝑥 ≤ 𝑎𝑘 because Lemma 4 guarantees that 𝑔(𝑥) = 𝑙𝑙𝑙2𝑓(𝑥) has
inversion, and 𝑔−1(𝑘) exists because 𝑓(𝑥) for real number is continuous, which can be
easily noticed considering the manipulation used.

Combining (1) and (2) gives 𝑔(𝑎𝑛) ≥ 𝑛
∵ 𝑎𝑛 = 𝑎𝑛−1 + 2(𝑛 − 1) + 7 = 𝑎𝑛−2 + 2(𝑛 − 2) + 7 + 2(𝑛 − 1) + 7 = ⋯ = 𝑎1 + 7(𝑛 −

1) + 2(𝑛 − 1 + 𝑛 − 2 + ⋯+ 1) = 𝑛2 + 6𝑛 + 6,
∴ 𝑓(𝑛2 + 6𝑛 + 6) ≥ 2𝑛.
Let 𝑛2 + 6𝑛 + 6 ≤ 𝑥 < (𝑛 + 1)2 + 6(𝑛 + 1) + 6,

∴ 𝑓(𝑥) ≥ 2�√𝑥+3−3� > 2√𝑥+3−4, QED.

In fact, the initialization (where our recursion starts) can be updated with the data we will get
from computer programs in section 2.3.5, and this can improve the lower bound somewhat.

2.3.5 Further Study of Lower Bounds

Still, the lower bound we worked out can be improved, since we can do some further
refinements on the way we generate new examples from 𝑓(𝑛) given statuses of 𝑛 digits.

Our first thought on it is to use definite amount of digits to label some ‘groups’. For instance,
‘10’ and ‘01’ can be added to two groups so that we can easily recognize whether the statuses
for an union are from the same group (If not, these two digits will be ‘11’). And if they are,
apparently we can see which group they are from as well.

If two statuses are from the same group, then the problem is already solved due to our
heritage, else, as we think it will not be hard to work out what the two statuses (first 𝑛 digits)
are from their union (further study of this will be discussed after several paragraphs), the only
problem is to see if these two are A from Group 1 and B from Group 2, or A from Group 2 and B
from Group 1. This is not very difficult since the scheme below will help:

Group 1: A0, B1, C0
Group 2: A0, B0, C1

In this scheme (Assuming now we are sure these two statuses are not from the same group),
not only A and B can be parted according to groups, but B and C, C and A can be parted as well.
Observing that it can also be used to three groups instead of three statuses only, we can add
more digits using the same method to distinguish more pairs, for different digits are
independent. The example of 9 statuses using 2 digits is showed below:

Group 1: A00, B01, C00, D10, E11, F10, G00, H01, I00
Group 2: A00, B00, C01, D00, E00, F01, G10, H10, I11

In this example, If the two statuses are from different sections of (ABC), (DEF) and (GHI), they

N14

Page - 203

can be distinguished with the first digit considering a group as one thing([Group1 (ABC) or
Group2(DEF)] is different from [Group2(ABC) or Group1(DEF)] by the last but one digit, ‘or’ here
means union), else they are from the same group, say, (ABC), and can be parted with the second
digit. Consequently, 𝑛 digits can be used to part 3𝑛 statuses using the same manipulation
somewhat similar to radix 3 representation.

Generally, this method can be carried out as follows. 3𝑛 statuses can be numbered by radix 3
representation. Then we write those statuses twice in two groups. In the first group, we add ‘01’
to it and then the radix 3 representation with ‘2’ written ‘0’ to get our Group 1(When n=2, it
gives exactly the preceding example. For instance, number for C should be (02)3 but as ‘2’ is
written ‘0’, it is ‘00’ actually). Statuses in the other group is produced similarly, we add ‘10’ to it
and the radix 3 representation where ‘1’ is written ‘0’ and ‘2’ is written ‘1’.

Now we are nearly finished with one last problem. Considering there are some situations
where 𝑎 or 𝑎 = 𝑎 or 𝑏, we can not always tell from their union what the two statuses exactly
are since they can be the same status from two groups. Hence our scheme requires statuses’
unions being different from statuses themselves. This can also be satisfied by adding another
digit. Define 𝑎 or 𝑏=𝑎 as 𝑎 ‘includes’ 𝑏, then we can divide all statuses into two groups,
A={𝑥|𝑥 is not contained by any other statuses in our scheme} and B={𝑥|there exists at least one
status in our statuses that contains 𝑥}. Inclusion will not exist in B since if 𝑎 contains 𝑏, 𝑏
contains 𝑐 and 𝑏, 𝑐 belongs to B, we have 𝑎 or 𝑐 = 𝑎 = 𝑎 or 𝑏 , contradiction. As A’s
definition also forbids inclusion’s existence, we can add a digit ‘0’ to all statuses in A and a digit
‘1’ to all statuses in B to make inclusion extinct, for statuses in A cannot contain statuses in B any
longer due to the added digit. Now that unions and statuses are all distinct, we can tell exactly
what two statuses are by looking only at their union. This can also be a solution to the ‘two
poisons in one group’ problem if we want the most precise location and are willing to pay one
more mouse for it.

We have altogether used 1 digit to annihilate inclusion, 2 digits to distinguish groups and
⌈𝑙𝑙𝑙3𝑓(𝑛)⌉ digits to recognize status in distinct groups. Thus 𝑓(𝑛 + 3 + ⌈𝑙𝑙𝑙3𝑓(𝑛)⌉) ≥ 2𝑓(𝑛).

Using the same method in obtaining Theorem 5 from Theorem 4, we have a similar answer

which acts like 3.4√𝑥 but looks more frightening. The main steps are as follows.

We generalize this inequality to real number and get
𝑓(𝑥 + 4 + 𝑙𝑙𝑙3𝑓(𝑥)) ≥ 2𝑓(𝑥 − 1).

Let 𝑡 = 𝑥 − 1 and we have
𝑓(𝑡 + 5 + 𝑙𝑙𝑙32 + 𝑙𝑙𝑙3𝑓(𝑡)) ≥ 2𝑓(𝑡) since 𝑓(𝑥 + 1) ≤ 2𝑓(𝑥).

Let 𝑔(𝑡) = 𝑙𝑙𝑙3𝑓(𝑡) and we can deduce that
𝑔(𝑡 + 5 + 𝑙𝑙𝑙32 + 𝑔(𝑡)) ≥ 𝑙𝑙𝑙32 + 𝑔(𝑡).

Let {𝑎𝑛}:𝑎1 = 1,𝑎𝑛+1 = 𝑎𝑛 + 5 + (𝑛 + 1)𝑙𝑙𝑙32 and perform induction using the function
inequality, we can get 𝑔(𝑎𝑛) ≥ 𝑛𝑙𝑙𝑙32.

Convert it back to 𝑓(𝑛) gives an answer similar to the one we got in the previous section but

much more complex. For convenience, we take it as 𝑓(𝑥) ≥ 3√1.26𝑥+34.1−5.95.

Cite 𝑓(20) ≥ 220 (Computer generated in section 2.3.5) and let 𝑎1 = 20 to improve it (this
requires 𝑥 to be big enough, but because we are considering a tendency, a restriction such as

𝑥 > 20 is not big deal), we have 𝑓(𝑥) ≥ 3√1.26𝑥+79.25−5.95, which is the strongest answer we

N14

Page - 204

are able to get now. The exact form of it is 𝑓(𝑥) ≥ 3√4𝑎𝑎+𝑏2−4𝑎𝑎−5−3𝑎 , where 𝑎 = 𝑙𝑙𝑙32
2

,

𝑏 = 𝑎 + 5 + 𝑙𝑙𝑙3110, and 𝑐 = 15 − 2𝑎 − 𝑙𝑙𝑙3110.
Further generalization can also be thought of by making more groups than two. If we have 𝑚

groups, there will be 𝑚 digits used to distinguish which group or which two groups the statuses
are from through their union. To avoid inclusion, we still need only 1 digit. Now we have the
group numbers and first 𝑛 digits of the two statuses, so we only need to tell apart what looks
like Aa, Bb and Ab, Ba.

In fact, we have a way of requiring ⌈𝑙𝑙𝑙3𝑓(𝑛)⌉⌈𝑙𝑙𝑙2𝑚⌉ more digits to do it. ⌈𝑙𝑙𝑙3𝑓(𝑛)⌉
digits are considered a ‘squad’ as it is in the previous scheme, and different squads are used to

compare different pairs of groups. With the first squad, we are to compare Group 1 to �𝑚
2
� with

Group �𝑚
2
� + 1 to 𝑚 by giving the same squad we used in Group 1 in the previous scheme to

the first half and that of Group 2 to the second half so that if the two statuses come from
different halves, we can tell what they are exactly. Similarly, ‘Group 1 notation’ is adopted in the

second squad of Group 1 to �𝑚
4
� and Group �𝑚

2
� + 1 to �3𝑚

4
� while those of the others are

‘Group 2 notation’, and the two statuses can be settled if their group numbers are from different
groups in this manner, and so forth. The only main difference between this manipulation and the
scheme we discussed previously in this section is that it uses radix 2 representation and is more
confusing. Thus ⌈𝑙𝑙𝑙2𝑚⌉ squads are needed as they are independent. An example of 4 groups
and 3 statuses is showed below.

Group 1: A*100000, B*100011, C*100000
Group 2: A*010000, B*010010, C*010001
Group 3: A*001000, B*010001, C*010010
Group 4: A*000100, B*000100, C*000111

In this example, ‘*’ means the digit for inclusion and the 4 digits after it is representation of
groups. The next digit acts as the first squad with which we can compare Group 1,2 with Group
3,4 and the last digit represents the second squad.

But look at the 𝑚 digits for groups closely, we find it not necessary. The aim of these digits is
only to tell which two groups the two statuses belong to, and we need only 𝑚 + 1 digits to
deal with 𝑓(𝑚) groups (The extra ‘1’ is for avoiding inclusion).

Conclusion for all above is that besides the 𝑛 digits our original 𝑓(𝑛) statuses require, we
need 1 more digit to avoid inclusion, 𝑚 + 1 digits to build 𝑓(𝑚) groups (Look out! Not only
𝑚 groups now!), and ⌈𝑙𝑙𝑙3𝑓(𝑛)⌉⌈𝑙𝑙𝑙2𝑓(𝑚)⌉ digits to tell the exact answer. Thus we have
𝑓(𝑚 + 𝑛 + 2 + ⌈𝑙𝑙𝑙3𝑓(𝑛)⌉⌈𝑙𝑙𝑙2𝑓(𝑚)⌉) ≥ 𝑓(𝑚)𝑓(𝑛) . Take a step backward and let both
logarithms have the same basis 2, and we have 𝑚 and 𝑛 of the same status (not ‘status’ in our
concept). Comparing it with Coordinate-Grouping Scheme, we have 𝑚 and 𝑛 two
independent coordinates. Hence the result can be taken as getting the exact location by refining
Coordinate-Grouping Scheme. So now even the scheme with uncertainty is also connected with
lower bound of 𝑓(𝑛).

Thus still more coordinates can be added. When adding a new coordinate, we take the former

N14

Page - 205

ones as a whole, and similarly we need 𝑚𝑖 more digits for group label, 1 more digit for

inclusion, and 𝑙𝑙𝑙3(∏ 𝑓�𝑚𝑗�)𝑖−1
𝑗=1 𝑙𝑙𝑙2𝑓(𝑚𝑖) digits more to avoid uncertainty as

𝑙𝑙𝑙3 ∏ 𝑓�𝑚𝑗�𝑖−1
𝑗=1 digits are considered one squad to compare two groups of ‘hyper planes’ now.

Hence, we have

𝑓[�𝑚𝑖

𝑝

𝑖=1

+ 𝑝 + � 𝑙𝑙𝑙3𝑓(𝑚𝑖)𝑙𝑙𝑙2𝑓(𝑚𝑗)
1≤𝑖<𝑗≤𝑝

] ≥�𝑓(𝑚𝑖)
𝑝

𝑖=1

This is the general situation of our lower bounds. From it, an ocean of stronger lower bounds
can be made out in theory. We can also use something like 𝑛 groups instead of concrete

numbers. However, we still cannot break the limitation of the lower bound acting like 𝑎√𝑥

while the upper bound grows exponently, because there are multiplications of logarithms in this
inequality, and a lower bound exists only when degrees of both sides are the same.

 This graph shows the upper bound
and the two lower bounds we got in
this section. Now we have achieved
the goal of finding nontrival upper
bounds and lower bounds. However,
the upper bound still grows much
faster as it rises exponently, which
means space for improvement is still
huge.

2.3.6 Quantitative Computation of 𝒇(𝒏)

 This section is aimed at finding a method to compute 𝑓(𝑛). The problem is so complicated
that we can only get the precise value of 𝑓(𝑛) for very small 𝑛 , and have to use an
approximate algorithm to achieve a relatively good result. In the programs, we treat statuses as
binary numbers and store each status as an integer. Bitwise operation 'or' is used to calculate
the union of two statuses.
 For small 𝑛, we can use a brute-force method, backtracking algorithm. In each step, we start
with an existing scheme and try adding statuses to it. The process is as follows: the program
enumerates all the 𝑛-digit 0-1 strings as the new status, and tests if the scheme remains valid
after adding this status. If so, the program adds this status to the scheme and goes on trying to
add more. If no status can be added, the program deletes the status that is added last and
backtracks. We start from an empty scheme, and when the program terminates, it has traversed

y

𝑦 = 2
𝑛+1
2

𝑦 = 3√1.26𝑥+79.25−5.95

𝑦 = 3√1.26𝑥+34.1−5.95

x

N14

Page - 206

all possible schemes. Then we pick the one that contains the most statuses as the result. The
complexity would be O(2𝑛𝑛 × 𝑙), where 𝑙 stands for the upper bound of the answer.
 After a little bit of thinking, we find an obvious optimization. We can express each scheme as
a 0/1 matrix, with each row corresponding to a status, and each column corresponding to a
mouse. And the problem changes to, given the number of columns in a matrix, 𝑛, and construct
as much rows as possible, under the restriction that the 'union' of each pair of rows must be
different. Then, it is easy to discover that changing the order of the rows arbitrarily won't affect
the validity of the matrix. So each matrix can be represented by it is 'standard form', where the
rows in the matrix are sorted according to their lexicographic order, i.e. ascending order if we
treat them as binary numbers. Thus, all we have to do is to find all 'standard matrices'. In the
program, we guarantee that every time we try to add a status, its lexicographic order must be
after all the statuses in the existing scheme. Each standard matrix stands for 𝑙! matrices, where

𝑙 is the height of the matrix. So, now the complexity would be 𝑂(2
𝑛𝑛×𝑙
𝑙!

).

 The program did all the work from 𝑛 = 1 to 𝑛 = 6 in roughly 1 second, while it used 62
seconds for 𝑛 = 7. We tried 𝑛 = 8, but for a whole day the program gave no result. (Those
times are observed on a computer whose performance parameters are showed in Appendix III)
It still needs optimization.
 Apparently, columns in the matrix can also be sorted as rows can. While surprisingly, the rows
and columns can be 'co-sorted', that is, we can rearrange the rows and columns of the matrix to
obtain a 'uniform matrix', where both the rows and the columns are sorted according to their
lexicographic order. In fact, we can accomplish this by performing these two operations
alternatively:
 a. sort the rows according to their lexicographic order if they are not already sorted
 b. sort the columns according to their lexicographic order if they are not already sorted
 When the process stops, we achieve our 'uniform matrix': The lexicographic order of the first
row and the first column cannot get bigger after each operation, so they can only decrease and
then remain unchanged after a certain time. After that time, the lexicographic order of the
second row and the second column cannot get bigger, and so forth. After finite operations, the
whole matrix is stable, and uniform matrix is obtained.

 After introducing this optimization, we reduce the complexity to O(2
𝑛𝑛×𝑙
𝑛!×𝑙!

). Things get better,

𝑛 = 7 is done within a second, and the program worked out 𝑓(8) = 13 in 1474 seconds. But
for bigger 𝑛, it is still too ineffective. Since we have almost reduced the matrices that are
needed to concern to minimal amount, 𝑛 = 8 would be the limit for such algorithms. The
results so far are:

 Another approach is approximate algorithm. Instead of enumerating all possible schemes,
now we add statuses randomly under certain rules to construct schemes. The process is as
follows: as before, we start with an empty scheme. Now for each step, we choose one status
randomly from all valid statuses and add it to the scheme. If there is no status available, choose

𝒏 1 2 3 4 5 6 7 8
𝒇(𝒏) 2 3 4 5 6 8 10 13

N14

Page - 207

several statuses randomly from the scheme and delete them. To avoid being trapped in a bad
solution, there is a counter, if the solution has not been improved for an amount of time, the
process will be aborted and the program will restart from empty scheme. Besides, noticing that
a status having too many '1' in it is unlikely to be part of the optimal solution, we limit the
amount of '1' in a status.
 We achieved the following results:

This program works well so far, but we can never be sure whether we have the the optimal

answer or how much time we are expected to spend to get a good enough answer.
Some details in the implementation and the source code can be found in the appendix. More

data of the programs such as time data of the random program are also available.

2.3.7 Informatics method and upper bound for 𝒄(𝒏)

 After this long journey of research on 𝑓(𝑛), we should come back to 𝑐(𝑛) in respect for our
original problem. What we did can be seen as schemes of this problem, while we want a limit for
such manipulations as well. Therefore in this section, we will focus on the upper bound of 𝑐(𝑛).
 Due to our using descriptions such as ‘big enough’, estimation of 𝑐(𝑛) becomes quite tough
as finite methods can not be performed easily. Thus we employ entropy method in informatics
to solve this problem.
 Assuming that we know nothing about which bottle contains the poison, which mouse will die
or whatever connection between any of these events, all of these pieces of information are
considered as independent random variables. Therefore we can assume that each bottle has

𝑝 = 2
𝑥
 possibility of being poisoned, and the possibility for whether or not a mouse will die after

the experiment is supposed 1
2

. As a consequence, informatic entropy for each bottle is

𝐸1 = −𝑝 𝑙𝑙𝑙2 𝑝 − (1− 𝑝) 𝑙𝑙𝑙2(1 − 𝑝) bit, the same thing for each mouse is 1 bit because mice
here are considered typical dichotomous variables.
 Assuming there are altogether 𝑥 bottles, after the experiment 𝑥[1 − 𝑐(𝑛)] bottles of them

𝒏 9 10 11 12 13 14 15 16 17 18 19 20
result 17 22 31 46 54 67 83 100 119 138 175 220

𝑛

N14

Page - 208

are confirmed safe while others are assumed totally unknown, we have 𝑥′ = [1− 𝑐(𝑛)]𝑥,

𝑝′ = 2
𝑥′

 and 𝐸1′ = −𝑝′ 𝑙𝑙𝑙2 𝑝′ − (1− 𝑝′) 𝑙𝑙𝑙2(1− 𝑝′). Informatic entropy for all medicines

reduces from 𝐸 = 𝑥𝐸1 to 𝐸′ = 𝑥′𝐸1′ = 2 𝑙𝑙𝑙2
[1−𝑐(𝑛)]𝑥

2
+ {[1− 𝑐(𝑛)]𝑥 − 2} 𝑙𝑙𝑙2

[1−𝑐(𝑛)]𝑥
[1−𝑐(𝑛)]𝑥−2

.

As the 𝐸 − 𝐸′ bit information is given by 𝑛 mice, 𝑛 ≥ 𝐸 − 𝐸′. Since 𝑥 is very big, we now

consider 𝑥
𝑥−2

 and [1−𝑐(𝑛)]𝑥
[1−𝑐(𝑛)]𝑥−2

 to be 1, and a new inequality is obtained, 2 𝑙𝑙𝑙2[1− 𝑐(𝑛)] ≤ 𝑛.

Hence 𝑐(𝑛) ≤ 1 − 2−
𝑛
2 .

 If we suppose Grouping Method will reach this upper bound, we can get 𝑓(𝑛) = 2
𝑛+2
2 , which

is very similar to the upper bound. This indicates if 𝑓(𝑛) grows exponently, Grouping Method
will be a quite good manipulation in trying to solve this problem.

2.3.8 Summarization

 In this chapter, we first raised problem 3, and introduced two methods, Grouping Method and
Coordinate Scheme. Then we combine these two methods and get the Coordinate-Grouping
Scheme. The more concrete problem3* is then raised and we tried to estimate an important
function 𝑓(𝑛) in order to study it. Finally we come back to problem 3 and gave further
estimation to end the research.
 The main part of this chapter is about 𝑓(𝑛). As we can see easily, there are lots of problems
left, such as the true growth rate of 𝑓(𝑛). This function can also be generalized to, for instance,
𝑓(𝑛,𝑚,𝑘, 𝑝), which means the maximum amount of bottles we are able to examine when we
have 𝑛 mice, 𝑚 experiments, 𝑘 poisons among all medicines, and will be satisfied with 𝑝
bottles of them confirmed safe.
 Comparing Grouping Method with Coordinate Scheme again will show some surprising facts.
If we take the estimated answer by the random program as true value, Grouping Method gives

𝑐(10) ≥ 𝑓(10)−2
𝑓(10)

≈ 90.9% , which is a little higher in contrast to 90%, the best solution given by

more than one dimensional Coordinate-Grouping Schemes. We can also see that if 𝑓(𝑛) grows
exponently, Grouping Method divides bottles into 𝑓(𝑛) groups and leaves only two of them
hazard, while independent coordinates divides the same amount of groups since 𝑝𝑎 × 𝑝𝑏 =
𝑝𝑎+𝑏(divide 𝑎 + 𝑏 mice into 𝑎 and 𝑏 two parts and let 𝑓(𝑛) = 𝑝𝑛), but leaves more hazard
groups. Hence surprisingly coordinate thought is of no use then.
 Function 𝑐(𝑛) is really too arbitrary to have a certain value, and estimation made in the
previous section also ignored too much complexity. All of them need improvements somehow.

N14

Page - 209

3. Conclusion

 After all those three generalizations, our long journey comes to a temporary end. As a review,
we began with the easiest problem 1 and had an insight into the Radix Scheme by changing one
number to variable at a time. This problem was solved completely after proving Theorem 1. A
restriction was added to reach problem 2, and a new solution, Chart-Filling Method was created.
This was also settled as a result of Theorem 2 after a long proving trip, after which we raised
some further problems by turning to 𝑛 dimensions. Moreover, we considered the seemingly
easy problem 3, compared and combined two schemes, Grouping Method and Coordinate
Scheme, to give a not very satisfying answer. The more concrete problem 3* was raised
accordingly, and different functions were studied. Finally, that series of problems was ended
with some nontrivial theorems and arithmetics as well as a lot more conjectures.

Notice that the concept of ‘status’ is considered a thread of the whole passage, and our study
can also be taken as studies of this concept. In the first part, our scheme considered all statuses
available as well as developed further notation using radix representation. In the second part, a
function of status, namely the amount of digit 1 in a status, was considered and a statistic
accordingly was studied to show the structure of a set of statuses instead of all. Finally we
introduced a calculation (union) of statuses, which raised other problems discussed in the third
part. Therefore the three topics are related by means of ‘status’.
 Though these problems appear to be only puzzles, they are of importance in some other
areas. For instance, if we change the rule of ‘or’ to ‘xor’ in our programs of 𝑓(𝑛), we will reach
something related to linear block codes which can correct two digits.

It is quite amazing that we have thought so much from such a simple ‘mice and the poison’
problem. In fact, there is a big fortune hidden behind uncomplicated facts waiting to be
discovered. We not only obtained knowledge and skills but also experienced the charisma of
math and enjoyment in researching after this wonderful peregrinate of mathematics.

Acknowledgement

We would like to thank the Yau High School Mathematics Awards Association and North East
Yucai School first, for they give us such a wonderful opportunity of attending this great
competition.

Our gratitude also goes to all our teachers, from whose devoted teaching and enlightening
lectures we have benefited a lot and academically prepared for the thesis.

We feel grateful as well to our beloved parents who have always been supporting and
encouraging us greatly without a word of complaint.

N14

Page - 210

Appendix I Source Code of Search Algorithm in C++

Input 𝑛 first and this program will give 𝑓(𝑛) and one corresponding solution in ‘result.txt’.

#include <iostream>
#include <fstream>

using namespace std;

ifstream fin;
ofstream fout,flog; // 'f': flag array, f[i] is true if i is
bool f[1048576]; // the bitwise or of some d[j] and d[k]
int d[1000],n,ans; // 'd': the current scheme

void print(){ // output the current solution to file
 int i,j;
 fout.open("result.txt");
 fout << n << ' ' << ans << endl;
 for (i=0;i<ans;i++){
 for (j=n-1;j>=0;j--)
 fout << (d[i]>>j)%2;
 fout << endl;
 }
 fout.close();
}

int add(int x,int z){ // decides if status x can be added
 int i; // and add it if so
 for (i=0;i<z;i++)
 if (f[x|d[i]])
 return i;
 else
 f[x|d[i]]=true;
 return z;
}

void remove(int x,int p){ // deletes status x
 for (p--;p>=0;p--)
 f[x|d[p]]=false;
}

void search(int k,int lim,int mask){
 // 'k' is the current depth
 // 'lim' is for maintaining the lexicographic
 // order of rows and 'mask' for columns
 int i,j,t;
 if (k>ans){
 ans=k;
 print();
 }
 for (i=lim;i<1<<n;i++)
 if ((((i | ~ (i >> 1)) | mask) & ((1 << (n-1))-1)) == ((1 << (n-1))-1)){
 // a complex bitwise operation
 t=add(i,k); // try and add
 if (t==k){
 d[k]=i;
 search(k+1,i+1,mask | i ^ (i >> 1));
 // recursive call
 }
 remove(i,t); // delete
 }
}

int main(){
 cin >> n;
 ans=0;
 search(0,0,0);
 return 0;
}

N14

Page - 211

Appendix II Source Code of Random Construction in Free Pascal

 This program should also have been in C++, but we are not quite familiar with the random
number generator in it, so we use Free Pascal instead.
 Parameters, namely n, tle, dl, bk, and zz, should be inputted in advance in ‘config.txt’, and the
results are given in a file called ‘result.txt’.

tle: the standard time which we uses for deciding whether we are in trouble and should give
up the existing scheme
 dl: the maximum amount of 1’s in one status
 bk: how many statuses will be deleted at a time
 zz: total times the program will run

The names for them are the same with those in our program.

var
 f,f2:array[0..4194304]of boolean;
 q:array[1..4194304]of longint; // store numbers that contains less '1'
 d:array[1..10000]of longint;
 n,i,j,t,z,h,ans,mt,ct,fc,s,bk,dl,zz,zt,tle:longint;
 fi,fo:text;

function count1(x:longint):longint; // count the number of '1's in binary representation of x
 begin
 x:=(x and $55555555)+((x shr 1) and $55555555);
 x:=(x and $33333333)+((x shr 2) and $33333333);
 x:=(x and $0F0F0F0F)+((x shr 4) and $0F0F0F0F);
 x:=(x and $00FF00FF)+((x shr 8) and $00FF00FF);
 x:=(x and $0000FFFF)+(x shr 16);
 exit(x);
 end;

function check(m:longint):boolean; // decides if status m can be added
 var
 i,j:longint;
 begin
 for i:=1 to z do begin
 if f[m or d[i]] then begin
 for j:=1 to i-1 do
 f[m or d[j]]:=false;
 exit(false);
 end
 else f[m or d[i]]:=true;
 end;
 for i:=1 to z do
 f[m or d[i]]:=false;
 exit(true);
 end;

procedure add(m:longint); // adds m
 var
 i:longint;
 begin
 for i:=1 to z do
 f[m or d[i]]:=true;
 inc(z);
 d[z]:=m;
 end;

procedure delete(p:longint); // deletes m
 var
 i:longint;
 begin
 t:=d[p];
 d[p]:=d[z];
 d[z]:=t;
 for i:=1 to z-1 do

N14

Page - 212

 f[d[z] or d[i]]:=false;
 dec(z);
 end;

begin
 randomize;
 assign(fi,'config.txt');
 reset(fi);
 readln(fi,n);
 readln(fi,tle); // tle: the predetermined upper limit for timer
 readln(fi,dl); // dl: limit of number of '1's
 readln(fi,bk); // bk: how many statuses will be deleted at a time
 readln(fi,zz); // zz: total times the program will run
 close(fi);
 ans:=0;
 s:=0;
 for i:=0 to (1 shl n)-1 do
 if count1(i)<=dl then begin
 inc(s);
 q[s]:=i;
 end;
 for zt:=1 to zz do begin
 fillchar(f,1 shl n,0);
 fillchar(f2,1 shl n,0);
 z:=0;
 mt:=0;
 fc:=0;
 while true do begin
 ct:=0;
 for i:=1 to s do // pick a random one to add
 if not f2[q[i]] then if check(q[i]) then begin
 inc(ct);
 if random(ct)=0 then h:=q[i];
 end
 else f2[q[i]]:=true;
 if ct=0 then begin // failed to add, delete
 for j:=1 to bk do
 if z<>0 then delete(1+random(z));
 fillchar(f2,1 shl n,0);
 end
 else add(h);
 if z>mt then begin // solution improved, reset timer
 mt:=z;
 fc:=0;
 end
 else begin // set timer
 inc(fc);
 if fc>=tle then break; // time out!
 end;
 end;
 if z>ans then begin // output
 ans:=z;
 assign(fo,'result.txt');
 rewrite(fo);
 writeln(fo,n,' ',z);
 for i:=1 to z do begin
 for j:=0 to n-1 do
 if odd(d[i] shr j) then write(fo,1)
 else write(fo,0);
 writeln(fo);
 end;
 close(fo);
 end;
 end;
end.

N14

Page - 213

Appendix III Time data for Random Program

Computer environment (The same computer is used to achieve results in the search program):
AMD Phenom 8750 2.41GHz
1.00GB RAM
Microsoft Windows XP SP3

 For this program, the longer you run, the larger chance there is for you to get a better result.
Also, the process is random, so it is meaningless to talk about total run time or the answer
produced by a specific run. Therefore we'll present the data of the average answer given by the
program and average time used for each run in order to show the average ability of our
program.

tle: the standard time which we uses for deciding whether we are in trouble and should give
up the existing scheme
 dl: the maximum amount of 1’s in one status
 bk here is fixed at 3, so it is omitted.

n=11

tle dl ans time(s)

100

11 20.42 0.0135
5 20.62 0.0062
4 22.17 0.0038

200

11 20.66 0.0231
5 20.8 0.0109
4 22.5 0.0066

500

11 21 0.0495
5 21.04 0.024
4 23.21 0.0149

1000

11 21.17 0.0908
5 21.21 0.0459
4 23.57 0.0285

2000

11 21.2 0.1754
5 21.18 0.0885
4 23.73 0.0543

n=9

tle dl ans time(s)

100

9 11.09 0.00269

4 11.48 0.00131

3 11.98 0.00081

200

9 11.18 0.00466

4 11.46 0.00235

3 11.97 0.00148

500

9 11.27 0.00995

4 11.47 0.00524

3 12.14 0.00334

1000

9 11.34 0.01808

4 11.56 0.00983

3 12.25 0.00622

2000

9 11.46 0.03451

4 11.67 0.01955

3 12.32 0.0112

n=10

tle dl ans time(s)

100

10 15.09 0.00577

5 15.17 0.00348

4 15.96 0.00217

200

10 15.23 0.00993

5 15.27 0.00615

4 15.99 0.00372

500

10 15.41 0.02105

5 15.49 0.01372

4 16.1 0.00835

1000

10 15.59 0.03905

5 15.6 0.02541

4 16.18 0.01597

2000

10 15.66 0.07362

5 15.76 0.04844

4 16.22 0.02938

N14

Page - 214

n=12

tle dl ans time(s)

100

12 26.64 0.0319
6 26.59 0.0183
4 30.59 0.0069

200

12 27.3 0.0548
6 27.25 0.0334
4 32.6 0.0126

500

12 28.12 0.12
6 28.1 0.0744
4 35.55 0.0285

1000

12 28.98 0.2265
6 28.68 0.1375
4 37.32 0.0502

2000

12 30.05 0.4421
6 30.01 0.2739
4 38.75 0.0872

n=13

tle dl ans time(s)

100

13 34.07 0.0739
6 34.68 0.0347
4 41.18 0.0126

200

13 35.21 0.1302
6 35.3 0.0596
4 44 0.0227

500

13 35.87 0.2762
6 35.95 0.1313
4 46.45 0.0433

1000

13 36.38 0.4934
6 36.28 0.2349
4 47.01 0.0703

2000

13 36.59 0.9179
6 36.5 0.4312
4 47.29 0.119

n=14

tle dl ans time(s)

200

7 45.41 0.1884

4 56.72 0.0368

500
7 46.54 0.4113

4 58.94 0.0685

1000
7 46.86 0.7305

4 59.58 0.1054

2000
7 46.9 1.302

4 59.73 0.1774

n=15
tle dl ans time(s)

 200
7 58.41 0.374

4 71.03 0.0584

500
7 59.98 0.8206

4 73.31 0.1035

1000
7 60.71 1.4462

4 73.98 0.1668

2000
7 60.86 2.5917

4 74.54 0.2725

n=16
tle dl ans time(s)

 500
8 76.28 2.614

4 89.72 0.168

1000
8 77.83 4.545

4 90.51 0.26

2000
8 78.36 8.196

4 91.22 0.427

n=17
tle dl ans time(s)

 500
8 97.72 5.874

4 108.48 0.261

1000
8 98.79 9.73

4 109.88 0.408

2000
8 100.59 18.097

4 110.59 0.664

n=18
tle dl ans time(s)

 1000
9 125.77 34.95

4 131.34 0.65

2000
9 128.07 62.54

4 132 0.955

n=19
tle dl ans time(s)

 1000
9 158.8 77.45

6 167.72 9.28

2000
9 161.9 156.73

6 168.3 15.272

n=20
tle dl ans time(s)

 1000
10 198.6 250.42

7 210.9 39.06

2000
10 204.6 462.32

7 213.4 67.69

N14

Page - 215

Appendix IV Corresponding Solutions for Quantitative Analysis of 𝒇(𝒏)

n =1

2

0

1

n =2
3

00

01

10

n =3
4

000

001

010

100

n =4
5

0000

0001

0010

0100

1000

n =5
6

00000
10000

00001 00010 00100 01000

n =6
8

000000
000011

001100
010101

011010
100110

101001

110000

n =7
10

0000000
0000011

0000101
0001001

0010010
0100100

0111000
1001000

1010100
1100010

n =8
13

00000000
00000011
00001100

00010101
00100110
00111000

01001001
01010010
01100000

10001010
10010000

11000100
10100001

n =9
17

100000011
011000110
000110011
000101001

101010010
000010101
010010000
000001100

100011000
001100000
011011000

010110100
101000100
011000001

110100000
000000010
010101010

n =10

22

0001000111
1010010100
0100001110
1101000100
0010011010

1010000001
0010001101
0000100101
0100100010
0000001000

1000000010
0100000001
1001100000
0010100110

0001000100
1001001001
0010110000
0100010000

0101101000
1001010010
1000111000
0111000010

n =11

31

11010001000
11001000001
00001001101
11000110000
01000010110
10010010001
01101000010

10101001000
01100000101
00000110101
00011001010
10110000100
10000101100

10001100010
00010101001
00100011100
00001010011
01100101000
00000100000

01001011000
10100010010
01110010000
00100001011
10000000111
01010000011

00000111010
00111100000
01001100100
10100100001
00010100110
00011010100

n =12

46

000000111010
000101100100
000100101001
100000100110
100110000100
001110001000
010001000101
000001001110
110100001000
101000011000

000011001001
000101011000
000111000010
100100010010
010110000001
110000000011
000010011100
011000001010
111000000100

001000110100
100010001010
101001000010
100101000001
100000110001
010000011001
000001100011
000010100101
010100100010

010010000110
001011000100
001010100010
101100100000
011000100001
000000010000
101010000001
001001101000
100001010100

000110110000
011010010000
001001010001
100000001101
010000101100
011101000000
010001010010
000010010011
010100010100

n =13

54

1000000100011
1000110000001
1000100101000
1110000000001
0100000101010
0011010100000
0001011000100
0000110001100
0010100000011
0000101001010
1000010011000

1010100000100
0001000001110
0001000111000
1001101000000
0101000100001
0100011000001
0011100001000
0110000011000
0100100001001
0110010000100
0010010001010

0011000000101
0000100010110
0001010000011
1100000001100
1000001010100
1001000100100
0000011101000
0000010010101
0001100100010
0000000000100
1001000001001

0000101000101
0100000110100
0001100010001
0010000110001
0101001001000
0000010110010
0000001011001
1100001000010
0101010010000
1100100010000
0101100000100

0010000100110
0100110000010
0010001010010
0010110010000
0100000000111
1001000010010
1100010100000
0000101110000
1000010000110
0110100100000

N14

Page - 216

n =14

67

10000000010101
00100001010001
00101000001010
10000000001011
00001110000010
11010010000000
00001010010100
01000000000111
01000101001000
00010000101001
10000001100001
00100101000010
10000010010010
00010110001000

10000000111000
01000001100100
00000010000000
00001000010011
00000001010110
01001100000001
00000000101110
00001100100100
10110000001000
00010100000011
00000011101000
00000111010000
01001001000010
00001100011000

00110001100000
00011001001000
10001000100010
01000100100010
10010100100000
00100100001001
00000110000101
10101000010000
10000010100100
00010011000100
11100000100000
10011000000001
01000000011100

00011000000110
00100000110100
00000011000011
00000001001101
00011000110000
00100110100000
10100010000001
01001000101000
01010001000001
11001000000100
10001101000000
10100000000110
00101001000100

00010000011010
00100010011000
01010100010000
01000010001010
01100011000000
10010001010000
01111000000000
01000010110000
00101000100001
00110000000101
00010010100010
10000100001100
01100100000100

n =
15

83

100010011000000
100000101000010
010010001000010
000100000000111
100100001001000
010001000000101
001000000011010
000110001000001
000101001000010
001010001000100
010000010100010
000000001100011
100000010100100
011011000000000
000101010000100
000010000001101
001100100000100

000110000100100
100100000110000
011000000000011
000011000000110
100001100000100
000000011101000
001100010000001
001001101000000
000010001011000
010001001100000
000100101100000
000100000101010
001001000100010
001000000100101
000000100001110
000011100010000
000001010001010

010010010010000
000001100000011
000010110001000
100100010000010
100001000100001
110000000010100
000000100110010
000100000011100
110001000000010
110000010000001
001000011000010
000000000100000
101000010010000
010000101000001
011100000100000
000000010011001
100010100000001

000010010000011
001010000010001
101000000001100
000001010110000
100000100011000
010100000001001
000000001110100
100010000100010
100001001010000
000000110100001
000101100001000
000001001001001
010100001000100
010000000110001
000000111000100
101000100100000

000011000101000
011000001001000
101000001000001
010010100000100
011000110000000
100000000001011
001010010100000
000110100000010
010001000011000
001101000010000
000100110010000
010100000010010
000000010010110
110110000000000
110000000101000
001110000001000

n =16

100

0010000000111000
0000011000110000
0001010010000010
0000011001001000
0000100101100000
1001010000000001
0100110000100000
1010010000010000
1100010000001000
1100000000100001
0001100110000000
0111000000000010
0010100100010000
0001010001100000
0000000010010011
1000001110000000
0000110100001000
1001000100000100
0101000000110000
0000101010001000

0010100001000010
0100001100000100
0010001000001001
0001011100000000
0110010000000100
0011110000000000
0000001000100011
1000001000010100
0001000001000011
1000010000100010
0100100100000010
1001000000010010
1100000001000010
0010010010001000
0100100001001000
0010000001001100
1001001000100000
1000010011000000
0000001011000010
0001000011001000

0101001000001000
0010010100000010
1001100001000000
0000001100101000
0000101100000001
1100101000000000
0001000010000101
0100010110000000
0000000100000000
1110000100000000
1000000100000011
0001000100100001
1010001001000000
0110100010000000
0011001000000100
0100000010010100
0000000110100010
0000000100011100
0001010000011000
0100000000100110

0000001101010000
0010000000100101
0110001000010000
1000000010001100
0001100000101000
0100010001000001
1000100000000110
0100001010000001
0010000001010001
1010100000001000
1000000001011000
0100000100001001
0000010010100001
0000000011110000
0101000101000000
0001101000000010
0001000001010100
0000001001100100
0010101000100000
0010000110000001

0100000010101000
0100010000010010
0001000100001010
0000011000000110
1000100010100000
1000000100110000
0110000001100000
0000110010010000
0000000101000110
0000000000001111
1000001000001010
1011000010000000
0000100000011010
0000010100010001
0000100001000101
0000100000110100
0010000010000110
0101100000000001
0001001010010000
1000100000010001

n =17

119

01000011001000000
00100100100000001
00000001010100010
00001010010000010
00110000001000001
01000000101010000
00001000001001100
00000011010010000
00001010100100000
01010001000000001
11010000000000010
00000000010101100
00010100000011000
01000110000000010
01000000000101001
00010000100001100
10000001100000001
00000101101000000
00000100010110000
01001000000010010
01010010000001000
01010100001000000
00000100001010100
00010100010000100

00101001010000000
10010000010000001
10110000000001000
00000011000101000
00000010100010010
00000010010001001
00000000111000100
11000000001000001
00100010000001010
00000001001000011
00000000010010011
00000100000100110
00100001000110000
10001011000000000
00010000100010001
10000100000000011
10000000000011010
01000000100000011
01100000001100000
00001110000001000
00010000001101000
00100101000000100
00000010000100011
00010000001000110

00000001000011100
00111000000100000
00001000010010100
00000001000100101
00000010000010101
00010110000000001
01000000000001110
00010010101000000
01000000000110100
00101010000000100
00011000000000101
01100010010000000
00100000010100001
10000000000001101
01001001000100000
00101000000000011
00001000011000001
11000100000000100
10000000011100000
00001100110000000
01000100100001000
10000000101001000
00010000000110010
10001100000010000

00100110000010000
11000000010001000
11000010000010000
10100010000100000
10000000100110000
10000010001000100
00001000001110000
00010010010100000
00000100001001010
00000100001100001
00001000000000000
01100001000000010
00000110011000000
10011000100000000
01101100000000000
00000101000010001
01001010000000001
01000100010000001
00110011000000000
10000110100000000
01000000110100000
00100100000101000
01010000010010000
00011000010001000

00101000101000000
10001000000100010
00001001100010000
00010101000000010
00110000010000010
00100001100001000
00010001001010000
01110000000000100
10000101000100000
10100000010000100
00001000100001010
10100000001000010
00000011100000100
00100000100100010
00100000000010110
00000010001011000
01000001010000100
00001000000011001
00001001000000110
10010001000000100
10100000000010001
00010100100100000
00000000110011000

N14

Page - 217

n =18

126

000101010001110101
010000101100100110
100001101100000101
000100011000010010
000110000001101110
101110100011100000
101000110001101000
000011100000100101
010101000101000110
000100110011000010
000001000001000111
100111000000100011

000000101010000011
010010100100011000
100110010000011000
000001101000010000
111001001000000011
010110000110000000
100010010010000110

000000000100000000
100010101010010010
001100000000011101
011000100010000111
101001000110001010
010000001010011110
100101000010000000

000000110100111100
000101110001011000
011001001000111000
110001100001000000
100001010001101100
010011001001001001
100000110100010001
101100001100110001
100001100010100100
000011000101110000
011001000011100001
100000000111001100

000001011101010001
001101100010100001
010000010001111010
101001010000000101
000100001011001110
100001010100000010
000010000010011100

110001010010001000
010000001000001000
101010100110001000
010001110000000110
100001001001011010
001011000000011010

000000101011101000
001001000100100110
101000001011010100
000110011100000001
011111010000000100
000001110010001001
011010010000001110
100110010001100001
001001011100001100
011101000001001000
010010011001010100
000101000110001101

001100001101000001
001000010010100100
011000100011011010
110001010100110001
001111001000000110
001011111000000000
000010010000000101

001100101000001010
111100001011000000
010010001100010001
001010001010010001
101000100000110110
001000000011001011

111010000101001001
100010111000100000
010000010111001001
000111000110100010
111100010000100010
100111000100000100
100010110001000011
011001011010010000
000001101000101110
011100101010110000
000110000000110111
000100001100101000

000001111111000000
001111110110000000
010000011110000100
110101000000101100
100010111101001000
110100001010001100
010000010100101101

001000010001010000
000000100111100011
000011010010010010
000100010101001100
010100101000000001
000010100100101011

000011010000101000
101010001000101100
100000011110110000
000000000100011011
011010100001000000
001010100100010101
110000000001010101
010010010011110000
011110000000101001
001000001001110101
100010001111000010
001000000110110010

101100010100010100
010110100000001010
100000001010001001
010000010010000011
001100110100000011
000010100101000110
011010010100100000

000011001001100010
000100100110010100
100100100000110001
010100000000110000
100000001000110111
110000100100101000

n =19

175

0110001000000001100
0010100011010000001
0101101000010010000
1000100011100000010
1000000000110100001
0000100101001001001
0010001000111000100
0100101100000000010

1010010001000000010
1000100010100000101
1000000110001010100
0100001100000100100
0110000110100000001
0100101010100000000

1010001001100010000
1100000100110000100
0101010010000010001
0001000000110001010
0000001110000011000
0000101100000010001

1010111000000001000
0110000000001010001
1000000101100000110
1000001110000100000
0011000010011000010
0000110000100100100
0100011001110000000
0100100010010000011
0100000000100010110

0000000010000101110
1011000100000100000
0010001001010100010
0001001100001001100
1001000001000001100
0000011100100001010

0000100001000100011
0001000011100000100
0001001010000001010
0000110100010000110
0011110000001000000
0011000001000110001
0000001010001000011
1001000100010011000

0000001000101110001
0010000010011011000
1110000111000000000
0001001000101000010
0000000010100011101
0000010000000111010

0100000011010011000
0001010000100010100
0011100000000001110
0000010001101010010
0100000010001010010
0001000100000101011

1000010101000011000
0110000001000100101
1001101000000101000
0000001011010000100
0000000111100010001
0000001100011110000
0000101010000110100
0000000110111000000
0101101000000000101

0001100110100100000
1010100001010010000
0110010100000001000
0011000000101000101
0100011010000000110
1000000000001011101

0100000000011100010
0000110010001001010
0010100000001100100
0100000111000100001
0000100001100110000
0101000010110100000
1001100000010100010
0000001001000011011

0100000000010001101
0100000000010110001
0000101101100000100
1010000001110001000
1000010101010100000
0011100101000000100

0000000101001100101
0001001010001110000
0101000100001000001
1000110000001000110
0001010110001100000
0000010010110001100

1100001010010000000
1001011100100000000
0001100010010000100
0000001101001000110
0000011100010001001
1100000100000110010
1000010010010100010
1101001001000100000
0000000000000001000

1010000000011000000
0010010100000010101
1110100000100000000
0000010010101100010
1001000010100010000
1011010000100001000

1001101100001000000
0000010100000000011
1000010011000000001
1111010000000000100
0010001001001000101
0000001000110100110
1100001000100001010
0100010000101001001

0100000001111000100
0101000000000100110
0000100100100010010
0011000011000010010
1000000010010010110
1000010000110010000

0000001101110010000
0110100010000001010
0001100010001000001
1100001000001000100
0000100001011000010
0001110001100000010

1110001000000000011
0100010001000001110
0010010011001000100
0010101000001010010
0000010000000101101
0001000001010100101
0010011110010000000
0000111001000010000
1010011000100000001

1001000000000010011
1000011000000010101
0100000101000000000
0001011000011000000
1101000000001010000
0100110000001101000

0000101001010001000
0101001011001000000
1000100111010000000
0001000101010000011
1101100000000001001
0000000011011100000
1000100000001110000
0010000000100100111

0010001010100100010
0011011001000000000
0010000001000011100
0100110010011000000
0101011000000011000
0000010001011000001

1100010010000101000
0010111000000100010
0010100000111001000
1000000001001101000
1110000000010100100
0100010100100100001

0110011000010000010
1100110000000010010
0011000000110010001
1000000000011011010
0000111000010100001
0111000001100001000
0100100100001011000
0000010100101000101
0000001001100101000

0000101000001101001
0110100010000010100
0001100011000101000
0010000100001001010
1100110000001000001
1000001100010000101

N14

Page - 218

n =20

220

01000100000010110001
10100110100000000011
00010100111000100100
00011010110000000010
00100010000110001101
00100001100100000101
00000011000110000110
11100101001000000000
01010000110101100000
00000011000001010101
00000110011000010100
10000001101101000001

00010000100101010110
10000010101011010000
00000011100010110010
01000000111010010010
00100001010000010110
10000110010011000000
00000001111000010001
00110100001001000001
00110100010000000101
00101010010101000000

01100010000010100100
00110001000101000000
11101001000010010000
10011101000000010010
01000000001001000101
00001101001001101000
00010110000000110011
01011010010000001001
11000010001010000010
10000000010110010011
01000001000011010010

10000000101000011011
00000011111000001010
10100001000001011100
10110000100011000000
01000000011000100011
00010101100100000010
10100000010110101000
01011001001000000100
00000100011110000110
00000101010110000000
01100110010100000001

01001000011111000000
01101000001000110000
11100000110000000100
00001001000011011000
00001100100101001001
01000010101000100110
00010000011100001101
10010111100000000000
00001000010110011000
00101000010010000101
10000010110100000000
10101000010001100100

01101110000000000010
10110100110100000000
00010110000101000011
00000111000101100001
01100001000100111000
11001100010100000010
01010001100000110000
00001001010100110100
10001111000010100000
10010000011000110000

11000101000001000110
10100010011000000001
11000100101000100000
11100000001000101001
00100000001010110011
10011110001000000000
10001001001100010010
00110001010010100000
11000000000000010000
00010001000011100001
00011000001110110000

00001100000011100101
00000000000001000000
10010010000010000011
10000000010010110100
00100010100001000110
11010000000101000001
10001000000101010101
10001000100100100000
00100101011000000011
01100000000110000011
11000100011000001100

01000100100011001100
11110010010000000010
11010100010110000000
01011000101100001000
01100011000000001100
10001001000010001110
00100100001010101000
01100000010001101010
10010010000010101000
01101000001010001100
10010100101010000010
10100100000000110010

00011011000100001010
00100010000100010001
01111001000000000001
01011101100001000000
01000100000000101110
01001110000110010000
00000000000000001101
00001101100010000100
01000001011010001000
00100100101000010100

01010010100000011000
00100000001111010100
00010000100010010001
00010000000101101110
01110100000001010000
01000110100000000101
11000011000011000100
00010011101001000000
00011100010001001000
00110000100110100000
00000000110011110000

00000100110010001000
00100010001011000011
00101011000000100011
00101011001000010100
10000000100110011000
01000100001111010000
00100101000000100100
01010000100010100100
01110000100000001101
00000010011001101001
00001000001010001011

10010001000000011001
10000100000100111001
10010000010000011110
00101001011001000000
00001010100010001000
00011100101000010001
01000010010100110000
00011001100000101001
00000000110110100011
00001001110011000010
00000001001100110101
10100001011100001000

00000001000100101010
01001010111000000100
10010101000100000100
01010010001100101000
00100111000000011000
00010001010100000001
10110000000001001011
10001101011000000000
00000000001011100110
10000001010001100010

00001100000100100100
00100110000100010110
10100001000010100101
11000001000100001001
00010100001000100010
10000001001010010001
11001000011010100000
00000110010100101010
01110000000011001000
00010010110001100100
10000110000001001001

10100010101000001100
01100000101100000010
10010011000100100000
00000100100001011010
00010000010011000111
10101000100010000010
00010011001000001011
00101000000001010011
00010100010010010010
00010010001001011000
00100100000111100100

01000000110100010101
00110000000000101100
00110000000010000110
01001010000001101000
10001000001000000100
00101100100001100000
10110010000000110100
00001100000011000010
01001001100101010000
00100000010001011000
00100101000011001001
10001011100000000101

11000000100001100010
00011010010010000100
00110000111000001010
10000010000101001100
10110001001000000010
00000010011101010010
00000010000000111010
00010000011011010001
00011100000000111100
00001000000110101001

01101000100000011000
00001010001010100101
10001011010000001000
01010101010000100000
11100011100100000000
01001000100100000111
10100000001001110000
01010000000000010111
01001101001000001001
01001010001100000010
00101010000010011010

11001000010100000101
00101100010000001110
00001000100000110110
01000001010000011101
01100001100001010001
11111100000000100000
00100000110000101001
10010000100001101001
01000010010010010101
10010100000001110100
00011010100101000001

N14

Page - 219

