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Abstract 

 
The classical problem ‘Mice and the Poison’ is expressed as follows.  
There are 1000 bottles of liquid with one of them poisoned. A mouse will die after one week if 

it takes the poison. Otherwise it will remain living. Can you use only 10 mice to check out which 
bottle contains the poison within one week? 

This essay generalizes the problem, and obtains the following topics and conclusions. 
(1) Time constraints are generalized and Radix Scheme is developed and studied. 
(2) A new restriction is added to the ‘mice’, which also makes the problem more difficult. A 
new method called ‘Chart-Filling’ Method is contrived, and its feasibility demonstration is 
adopted to solve the new problem, which also raises new themes.  
(3) Replacement for ‘the poison’ to ‘two poisons’ leads to a big challenge, which 
‘Coordinates-Grouping’ Scheme is created to tackle. Upper and Lower bounds are obtained, 
and computer programs are employed to work out both exact solutions and appraisal 
solutions. New conjectures are also made due to these efforts. 

 
 
 
 
Key words  mice and the poison; radix; binary; status; coordinate; grouping; combination; 
chart-filling.   
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1. Introduction 

1.1 Original Problem and Background 

  We once read an interesting passage on http://www.matrix67.com/blog/archives/4361, 
which states a curious problem named ’Mice and the Poison’ and several new thoughts in this 
problem. We were attracted by the amazing solution of the problem, and wanted to do some 
new research on it. 
  The original problem ‘Mice and the Poison’ is expressed as follows. There are 1000 bottles of 
liquid with one of them poisoned. A mouse will die after one week if it takes the poison, 
otherwise it will remain alive. Can you use only 10 mice to check out which bottle contains the 
poison within one week? (It can be easily worked out that we can only do one experiment 
according to the time constriction. What is more, to guarantee that a solution is possible, we 
must suppose that several medicines can be taken by one mouse at a time and the poison works 
just as it is the only one the mouse takes) 

The solution given by the website writer uses binary representation. We give a binary number 
to each bottle, namely from 0000000001 to 111110100. The experiment is carried out so that 
the 𝑖th(1 ≤ 𝑖 ≤ 10) mouse takes all medicines whose 𝑖th digit is ‘1’. Finally, if the 𝑖th mouse is 
dead one week later, we can deduce that the 𝑖th digit of the poison’s number is 1, or else it is 0. 
  Hence we can easily tell that the maximum amount of bottles we are able to check by the 
manipulation is the amount of all binary numbers with 10 digits, that is, 1024. Further more, if 
we have 𝑛 mice instead of 10, the maximum number turns out to be 2𝑛.  

This passage raised heated discussion online, and lots of other generalizations are advanced. 
The author himself gave a radix 3 solution to a situation of the time generalization which we will 
consider in the first part of our essay. ‘yh’ and lots of others discussed noticed difficulties of not 
having the discrete hypothesis, which we are to think about as well in the first part. One 
commentator named ‘yac’ displayed a concrete version of the two-poison problem which we 
shall try in the third part of this essay. He claimed it to be an interview question of a company 
named ‘GaoSheng’, and gave the Coordinate Scheme (named by us) of 𝑛 = 10 in addition. In 
fact, this problem also has several different variations, for instance, the problem of ‘IBM Ponder 
This’(May 2011). While our researches rely on concepts such as ‘mice’ and ‘poison’, we will only 
consider the problem itself in the passage.  

Since the only basis of our paper is the question posted on the website, we are not to show 
reference again at the end of the paper. 

1.2 Motivation 

As we have already seen from the previous section, when we have 𝑛 mice instead of 10, the 
maximum number will vary correspondingly. If we change other conditions of it, we probably 
will get some similar results. Therefore, we try changing every concrete number to variable in 
the problem as well as adding new restrictions and new conditions, and get three main results 

N14

Page - 187

http://www.matrix67.com/blog/archives/4361


which we shall state in the following section.  
Firstly, we change those numbers representing time to variables since the writer of the blog 

led us to do so by changing the ‘one week’ to ‘two weeks’.  
Secondly, we notice that in the original problem, each mouse has to be fed with more than 

500 different kinds of medicine all at a time, which in some way is too ideal. So we add a new 
constraint and get an entirely new problem.  

Thirdly, we consider the two-poison problem, which was displayed in the website by yac first.  

1.3 Main Results 

In the Time Generalization part of our essay, we consider the following problem. 
Problem1 There are some bottles of liquid with one of them poisoned. A mouse will die after 

𝑡 weeks if it takes the poison; otherwise it will remain alive. Now we have 𝑛 mice to check out 
which bottle contains the poison in 𝑚 weeks’ time, what is the maximum number of bottles we 
are able to check from?  

Let 𝑎(𝑛,𝑚, 𝑡) denotes the optimal answer, we conclude that 𝑎(𝑛,𝑚, 𝑡) = (𝑚− 𝑡 + 2)𝑛 by 
generalizing the binary solution to radix scheme. While doing this, we notice the core of the 
problem and introduce the discrete hypothesis. In addition, we combine the two time variables 
and get an insight into the radix scheme. 

In the Realistic Restriction part, we add a further constraint to the problem. 
Problem 2 There are some bottles of liquid with one of them poisoned. A mouse will die if it 

takes the poison, otherwise it will remain alive. Now we have 𝑛 mice to check out which bottle 
contains the poison with only one experiment, where each mouse can take at most 𝑟 different 
medicines at a time. What is the maximum number of bottles we are able to deal with this time?  

We create a new manipulation called Chart-Filling Method to convert the problem so that a 
new point of view is worked out. Thus we get the exact expression of the answer. In the process 
of reaching this goal, we get an important concept called ‘status’ of a medicine, which is actually 
a generalization of the binary representation.  

In the Two-Poison part, we will try a somewhat different problem as follows. 
Problem 3 There are plenty of medicines with two of them poisoned. A mouse will die if it 

takes the poison, otherwise it will remain alive. With n mice and one experiment, we can check 
out that some propositions of those medicines are nontoxic. What is the maximum ratio of 
nontoxic proportion we are able to get? 

We consider ‘Coordinates Scheme’ and ‘Grouping Method’, which we shall combine to get our 
‘Coordinates-Grouping Scheme’. Since this Problem 3 is tough to handle, we will consider a 
restricted problem with respect to the idea of Grouping.  

Problem 3* There are some bottles of liquid with two of them poisoned. A mouse will die if it 
takes the poison, otherwise it will remain alive. Now we have n mice to check out which bottle 
contains the poison within one experiment. What is the maximum number of bottles we are 
able to deal with? 

Main content of this part is about this answer, which is donated by 𝑓(𝑛). We get an upper 
bound and several lower bounds. Moreover, lower bounds are studied carefully and coordinates 
are encountered again. As the exact number of general cases cannot be worked out, we have 
two computer programs, one of which is precise but slow, the other being faster but estimative.  
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2 Variations of the Original Problem and Corresponding Researches 

2.1 Time Generalization and Radix Scheme 

2.1.1 Radix Scheme and Discrete Hypothesis 

In this chapter, we consider problem 1 stated in section 1.3. 
Problem 1 There are some bottles of liquid with one of them poisoned. A mouse will die after 

𝑡 week if it takes the poison, otherwise it will remain alive. Now we have 𝑛 mice to check out 
which bottle contains the poison in 𝑚 weeks’ time, what is the maximum number of bottles we 
are able to check from?(Notation 𝑎(𝑛,𝑚, 𝑡) is created to represent the answer) 

The website where the original problem comes from has already pointed out a radix 3 
solution to 𝑎(𝑛, 2,1): Notice that if we give a radix 3 number to each bottle, from 0 to 3𝑛, and 
let 𝑖th mouse (1 ≤ 𝑖 ≤ 𝑛) take all medicines with the 𝑖th digit ‘1’ in the first week and take all 
medicines with the 𝑖th digit ‘2’ in the second week (if it is still alive). If the mouse dies after the 
first week, dies after the second week or remains alive after all experiments, we can deduce 
respectively that the 𝑖th digit of the poison is 1, 2, or 0. As a consequence, the number 
corresponding to the poison can be worked out digit by digit. 

Imitating the manipulation used, we can easily get the general solution when 𝑡 = 1. 
Give a radix 𝑚 + 1 number to each bottle, from 0 to (𝑚 + 1)𝑛 − 1, and let the 𝑖th mouse 

(1 ≤ 𝑖 ≤ 𝑛) take all medicines with the 𝑖th digit 𝑗(1 ≤  𝑗 ≤  𝑚) in the 𝑗th week if it is still alive 
then. If the mouse dies after 𝑗th week, we can deduce that the 𝑖th digit of the poison is 𝑗. 
Specially, if it remains alive finally, that digit is 0. As a consequence, the number corresponding 
to the poison can be worked out digit by digit. Therefore 𝑎(𝑛,𝑚, 1) ≥ (𝑚 + 1)𝑛. 

When 𝑡 > 1, it seems that we can take 𝑡 weeks as one time unit, thus we have 𝑚
𝑡

 units of 

experiment time(not necessarily an integer), and we should get 𝑎(𝑛,𝑚, 𝑡) = 𝑎(𝑛, 𝑚
𝑡

, 1) . 

However, a closer look gives a better scheme: 
Give a radix 𝑚 − 𝑡 + 2 number to each bottle, from 0 to (𝑚 − 𝑡 + 2)𝑛 − 1, and let 𝑖th 

mouse (1 ≤ 𝑖 ≤ 𝑛) take all medicines with the 𝑖th digit 𝑗(1 ≤  𝑗 ≤  𝑚− 𝑡 + 1) in the 𝑗th week if 
it is still alive then. If the mouse dies after (𝑗 + 𝑡)th week, we can deduce that the 𝑖th digit of 
the poison is 𝑗, or it is 0. Thus we can get the number of the poison as all experiments made by 
a mouse can only have at most one ‘die’ answer, so when a mouse dies, the other experiments it 
takes inevitably give ‘alive’ answers. 

According to the previous paragraph, we get a solution which guarantees 𝑎(𝑛,𝑚, 𝑡) ≥
(𝑚 − 𝑡 + 2)𝑛. Comparing the two methods, we can see that the stronger one does not wait 
until the end of an experiment to carry out another experiment with the same mouse.  

It seems perfect that we have already worked out the best solutions. But this astonishing 
manipulation not only illustrates that instinct does not always give the right answer, but 
motivates us to examine the intrinsical structure of the problem as well.  

Carrying this idea back to the original 𝑡 = 1 situation, we find that if we take the one week 
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of delitescence as seven days and 𝑚 weeks of experiment time as 7𝑚 days, we should get an 
even better solution! As the time interval gets smaller and smaller, our function 𝑎 approaches 
infinity easily! This is a terrible disaster, so we must take measures to stop it.  

We examine our convention and add a new restriction that ‘time’ here should be discrete. To 
be precise, one week should be the least time interval. Things get consistent again after this 
hypothesis is added.  

So now we can satisfactorily announce our radix scheme gives 𝑎(𝑛,𝑚, 𝑡) ≥ (𝑚 − 𝑡 + 2)𝑛. 

2.1.2 Proof of Optimality 

Notice that our problem 1 requests the best solution, and we should prove the optimality of 
the scheme in order to really solve this problem.  
Theorem 1  𝑎(𝑛,𝑚, 𝑡) = (𝑚 − 𝑡 + 2)𝑛 
Proof: 

No matter what scheme we adopt, the only data we can get from it is the death time of every 
mouse (A mouse can also survive all experiments, which is considered a special case ‘die after 
infinite time’). As the discrete hypothesis guarantees that a mouse can only die after 𝑡 to 
𝑚 + 1 weeks (𝑚 + 1 stands for infinity), there are only 𝑚 − 𝑡 + 2 possible states for each 
mouse. Thus there are (𝑚 − 𝑡 + 2)𝑛 possible data for us. 

From another point of view, we have 𝑎(𝑛,𝑚, 𝑡) possible states of which medicine being 
poisoned. If this number is bigger than (𝑚 − 𝑡 + 2)𝑛, according to the well-known Pigeon-hole 
Principle, there must be one experiment data corresponding to two possibilities of the poison, in 
which case we fail to examine the poisoned medicine precisely. So 𝑎(𝑛,𝑚, 𝑡) ≤ (𝑚 − 𝑡 + 2)𝑛. 

Combine this inequality with the one we got in the previous section, and we gives proof to 
theorem 1. QED. 

2.1.3 Conclusions and Other Variations 

  According to section 2.1.1 and 2.1.2, problem 1 is solved completely. Long story short, we 
generalized the binary solution given by the author of the website, added a new discrete 
hypothesis to make things consistent, and finally proved the optimality of this solution.  
  Since 𝑚 and 𝑡 appear at the same position in the answer, it is indicated that these two 
variables are related constitutionally. In fact, 𝑚 and 𝑡 do the same job of qualifying how many 
experiments we can make. As all experiments can be made in an arbitrary order and this does 
not affect the result, we can replace 𝑚 and 𝑡 with one variable, the number of experiments. 
This replacement also implies the discrete hypothesis, so it gives us a further insight of the 
problem. 
  Some similar questions can be easily asked and solved. Adding possibilities such as a mouse 
has a risk of dying naturally will do no good since the problem relies on certainty. Now we may 
consider one more similar problem in order to illustrate that mice can be even more powerful. 
  Let 𝑎′(𝑛, 𝑝) be the maximum amount of bottles we are able to check from with 𝑝 
experiments (notice that we have already abandon 𝑚 and 𝑡 to make it clearer) when all 
conditions of problem 1 holds except that a mouse will recover immediately after the poison 
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takes effect.  
  We can at once convert the optimality proof and announce 𝑎′(𝑛, 𝑝) ≤ 2𝑛𝑛 since each mouse 
now has 𝑝 chances of choosing to ‘die’ or not and has 2𝑝 possible situations in all. 
  The corresponding scheme can be made on purpose to satisfy the proof: number each bottle 
with an 𝑛 × 𝑝 matrix whose components are either 1 or 0, and use 𝑎𝑖,𝑗𝑗  to note component 
(𝑗,𝑘) of the 𝑖th matrix. Let mouse 𝑗(1 ≤  𝑗 ≤ 𝑛) take all medicines 𝑖 with 𝑎𝑖,𝑗𝑗 = 1 at the 
𝑘th (1 ≤ 𝑘 ≤ 𝑝) experiment, and the result of experiments gives the poison’s matrix. 

2.2 Realistic Restriction and Chart-Filling Method 

2.2.1 Chart-Filling Method 

Notice that in the original problem, each mouse has to be fed with more than 500 different 
kinds of medicine all at a time according to the radix scheme, which in some way is too ideal. So 
we add a new restriction that each mouse has a limitation with the amount of medicines it takes 
at a time (We will consider only one experiment for the time being to make it easier): 

Problem 2 There are some bottles of liquid with one of them poisoned. A mouse will die if it 
takes the poison, otherwise it will remain alive. Now we have 𝑛 mice to check out which bottle 
contains the poison within only one experiment, where each mouse can take at most 𝑟 
different kinds of medicine at a time.(1 ≤ 𝑟 ≤ 2𝑛−1) . What is the maximum number of bottles 
we are able to deal with this time? (The answer is noted 𝑏(𝑛, 𝑟)) 
  Now that radix scheme can not be used to solve this problem, we must create an entirely new 
method, which is, Chart-Filling Method. To introduce this method, we shall have some new 
concepts leading to a new point of view first. 
  Definition 1 𝑛-troop: a group of 𝑛 mice with each of them able to take 𝑟𝑖(1 ≤ 𝑖 ≤ 𝑛) more 
medicines is called an 𝑛-troop. Specially, a mouse which is already full (cannot take more 
medicines) is still considered a legal member of a troop. 
  In addition, when some more medicines are fed to a troop, 𝑟𝑖 will decrease and we consider 
this add-medicine process same as a troop-decline process. By this means, we will study 
troop-decline process or add-medicine process instead of the original problem. To get a better 
view, we will illustrate a troop by plotting a chart with 𝑛 rows and 𝑟𝑖 columns. 
  Definition 2 Space: If a mouse in a troop can take 𝑟 more medicines, we say it has 𝑟 spaces. 
Spaces of all mice add up to the spaces of the troop. If a medicine is planned to be fed to 𝑥 
mice, we say it takes up 𝑥 spaces. 
  According to this definition, a scheme cannot take up more spaces than the troop really has, 
while we are not sure whether or not a scheme is feasible if it takes up less spaces. In addition, a 
medicine cannot take up more than one space of one mouse, because using the same medicine 
to feed the same mouse for more than one time is of no use. 
  Definition 3 𝑚-status: When we choose a scheme for one medicine, we can deduce the 
result of what will happen if it is poisoned. This ‘result’ can be noted as a binary number called 
the status of the medicine. The method used here is similar to the one used in the first part, that 
is, use 𝑛 digits to represent the 𝑛 mice, and a digit is ‘1’ if the medicine is fed to this mouse, 
otherwise it is ‘0’. If a status contains 𝑚 digits ‘1’ (so it takes up 𝑚 spaces), it is called an 
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𝑚-status. 
We notice that if a medicine is poisoned, status of it stands for the result we will get from the 

experiment, thus status signifies all the information about the corresponding medicine in the 
scheme. To make it clearer, two kinds of medicine can be told apart if and only if their statuses 
are different.  

Now our problem is converted to how to choose the biggest amount of statuses so that each 
one is distinct and they do not take up more spaces than the troop provides. 

We will show manipulation we used in this Chart-Filling Method by considering the following 
example of 𝑏(5,8). 

Since the number of spaces is limited, we tend to choose statuses that take up few spaces first. 
Thus the 0-status(00000) is considered at the beginning. However, there is only one 0-status, 
and we then turn to 1-statuses, 10000, 01000, 00100, 00010, 00001. Filling these statuses into 
the troop, we can get a chart like this: 

Mouse 1 2        

Mouse 2 3        

Mouse 3 4        

Mouse 4 5        

Mouse 5 6        

 
This 5×8 form illustrates the original condition of 𝑏(5,8), and the numbers inside stand for 

the second to the sixth statuses are 10000 to 00001, respectively. (The first is 00000, so it does 
not appear in the form) 

Now think about 2-statuses, it is clear that there are �5
2� of them (and �𝑛𝑚� 𝑚-statuses for 

𝑛-troop in general) and filling in all of them costs us 20 spaces. We still have 45 spaces now, so 
probably we can do it. The form looks like this after the previous step: 

Mouse 1 2 7 8 9 10    

Mouse 2 3 7 11 12 13    

Mouse 3 4 14 8 11 15    

Mouse 4 5 14 16 9 12    

Mouse 5 6 15 16 13 10    

 
3-statuses seem the same, but we encounter a problem now. All 3-statuses will take up 

3 �5
3� = 30 spaces while we have only 15 left. Thus at most 15

3
= 5 3-statuses can be placed. If 

we do this carefully, we may have a form as follows. 
 

Mouse 1 2 7 8 9 10 17 18 19 
Mouse 2 3 7 11 12 13 17 18 20 
Mouse 3 4 14 8 11 15 17 19 21 
Mouse 4 5 14 16 9 12 18 20 21 
Mouse 5 6 15 16 13 10 19 20 21 

 
Before we happily accept the fact that this Char-Filling Method works, let’s see what we will 
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get if we are not careful enough and get stuck with less than five 3-statuses: 
 

Mouse 1 2 7 8 9 10 17 18 19 
Mouse 2 3 7 11 12 13 17 18 20 
Mouse 3 4 14 8 11 15 17 19 20 
Mouse 4 5 14 16 9 12 18 19 20 
Mouse 5 6 15 16 13 10    

 
There are still three spaces but we cannot fill them with a 3-status. As a result, this method 

gives an upper bound but we are not sure whether we have a scheme to reach it.  

The upper bound, in general, is 𝑏(𝑛, 𝑟) ≤ [
𝑛𝑛−𝑆𝑖0−1

𝑖0
] + ∑ �𝑛𝑗�

𝑖0−1
𝑗=0 , where 𝑆𝑖 = ∑ 𝑗 �𝑛𝑗�

𝑖
𝑗=0  and 

𝑖0 is an integer satisfying 𝑆𝑖0−1 < 𝑛𝑛 ≤ 𝑆𝑖0. This formula is an instant result of our method 

since we hope to fill the troop with all 0, 1,…,(𝑖0 − 1)-statuses and some 𝑖0-statuses so that 
there are less than 𝑖0 spaces left(when we just run out of 𝑡-status, 𝑡 spaces left is also 
considered acceptable, but in this case, we tend to consider that we have used all 𝑡-statuses 
and finish with using zero (𝑡 + 1)-status so that 𝑡 + 1 is the actual 𝑖0). Since for every 
possible management, we can convert a 𝑝-status to a 𝑞-status if we have not used all 
𝑞-statuses and 𝑞 < 𝑝, and when all those adjustments are made, the final management will not 
contain more statuses than this method does, thus it gives the best solution if this goal is 
reachable. As a consequence, all we need is to prove the feasibility of Chart-Filling Method. 

2.2.2 Proof of Feasibility 

We need more concepts in order to describe our situation before actually trying to solve the 
problem.  

Definition 4 (𝑛, 𝑟)-party: An (𝑛, 𝑟)-party is an 𝑛-troop where each mouse has either 𝑟 
spaces or 𝑟 − 1 spaces and at least one of them has 𝑟 spaces. Specially, when 𝑟 is omitted, 
we write it as 𝑛-party. Further more, when all mice have 𝑟 spaces, the troop is called a perfect 
(𝑛, 𝑟)-party.  

                                         𝑟 columns 
 

Mouse 1           
Mouse 2     … … …    
Mouse 3           
 …

         …
 

 …
         …
 

Mouse n-3           
Mouse n-2           
Mouse n-1     … … …    
Mouse n           
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We can deduce instantly that an (𝑛, 𝑟)-party has more than 𝑛(𝑟 − 1) and not more than 
𝑛𝑛 spaces. When it has exactly 𝑛𝑛 spaces, it is a perfect (𝑛, 𝑟)-party, in other words, a matrix. 

Definition 5 𝑝-fill: If we have a scheme to fill an 𝑛-troop with 𝑝-statuses so that only less 
than 𝑝 spaces are left clear, we say this 𝑛-troop can be 𝑝-filled. 

Definition 6 𝑍(𝑛, 𝑟): For each pair of (𝑛, 𝑟)(1 ≤ 𝑟 ≤ 2𝑛−1), there exists a number 𝑖 such 

that 𝑆𝑖−1 < 𝑛𝑛 ≤ 𝑆𝑖   (𝑆𝑖 = ∑ 𝑗 �𝑛𝑗�
𝑖
𝑗=0 ). This number is donated by 𝑍(𝑛, 𝑟). (That is the 𝑖0 we 

discussed in the previous section) 
Now the problem of feasibility is converted to a problem of whether a perfect (𝑛, 𝑟)-party 

can be filled with all 0, 1,…,(𝑍(𝑛, 𝑟) − 1)-statuses and then be 𝑍(𝑛, 𝑟)-filled. 
We will give a solution by induction of a stronger proposition. To do so, we need a view of 

what it looks like when a chart is filled with all 𝑝-statuses, which will be described in Lemma 1. 
This lemma will give us a well-known equation, Lemma 2, containing binominal coefficients 
which we shall also use. In addition, our proof will rely on a division which will be proved legal in 
Lemma 3. With all three lemma, we shall use induction to prove the reinforced Theorem 2, 
which implies the feasibility of Chart-Filling Method. So let’s begin our journey now. 

Lemma 1 All 𝑖-statuses for a big enough 𝑛-troop will take up �𝑛−1𝑖−1� spaces of each mouse. 

Proof: 

It can be examined that there are �𝑛−1𝑖−1� 𝑖-statuses containing each row, for one component 

of them must be this row, and the other 𝑖 − 1 components can optionally distribute in the 
other 𝑛 − 1 rows. Since each of them takes up one space of the mouse, altogether the number 

is �𝑛−1𝑖−1�.  

This statement is valid for every mouse. QED. 

Lemma 2 𝑥�𝑛𝑥�= 𝑛�𝑛−1𝑥−1� 

Proof: (In fact, proof of this equation need not use the concepts we created) 
Consider a big enough 𝑛-troop, with all 𝑥-statuses filled in. Let’s try two ways of calculating 

the amount of spaces they take up totally. 

(1)There are �𝑛𝑥� 𝑥-statuses, each of which has 𝑥 components, so these add up to 𝑥�𝑛𝑥� 

(2)As it is in Lemma 1, those statuses take up �𝑛−1𝑥−1� spaces in each row, thus in total they 

take up 𝑛�𝑛−1𝑥−1� spaces. 

Since the two ways must give the same answer, we have 𝑥�𝑛𝑥�=𝑛�𝑛−1𝑥−1�. QED. 

Lemma 3 For every (𝑛, 𝑟)-party and every (𝑛, 𝑠)-party such that 𝑠 ≤ 𝑟 and the former party 
contains not less spaces than the later one, there exists a scheme to divide the former party into 
two 𝑛-parties with one of them the later 𝑛-party. 
Proof: 
  Let the former (𝑛, 𝑟)-party be party A and let A1 be the set of all 𝑥 mice in party A having 𝑟 
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spaces, A2 be the set of all the other 𝑛 − 𝑥 mice in party A having 𝑟 − 1 spaces. Similarly, 
donate the amount of mice in the later party having 𝑠 spaces by 𝑦. 
  If we have 𝑟 > 𝑠, and 𝑥 ≥ 𝑦, we can find 𝑦 mice in A1. Let these 𝑦 mice contribute 𝑠 
spaces each, and the other 𝑛 − 𝑦 mice contribute 𝑠 − 1 spaces, and we have a requested 
(𝑛, 𝑠)-party. After this manipulation, there are still 𝑥 − 𝑦 mice having 𝑟 − 𝑠 + 1 spaces and 
𝑛 − 𝑥 + 𝑦 mice having 𝑟 − 𝑠 spaces left. Thus party A is divided into a requested party and 
another 𝑛-party as well. 
  If 𝑟 > 𝑠 and 𝑥 < 𝑦, we let 𝑦 − 𝑥  mice from A2 and all 𝑥  mice from A1 contribute 𝑠 
spaces each, while the other 𝑛 − 𝑦  mice contribute 𝑠 − 1  spaces, similarly we get the 
requested party and what left is a 𝑛-party also. 
  If 𝑟 = 𝑠, since party A must be bigger than the requested party, we get 𝑥 ≥ 𝑦 directly. Thus 
we can make it using the same manipulation carried out in the situation of 𝑟 > 𝑠, 𝑥 ≥ 𝑦. 
  In one word, no matter what situation we encounter, a means of doing the requested job is 
always guaranteed. QED. 

Theorem 2  An (𝑛, 𝑟)-party which has 𝑥 spaces can be 𝑖-filled if 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑥 ≤ 𝑖�𝑛𝑖 �. 

  The following proof is a little complicated, so we will introduce our idea at the beginning of it. 
The main idea is to use induction. We are to prove ‘𝑛 = 𝑘 + 1’ situation under the assumption 
that ‘𝑛 = 𝑘’ is done. Some points are to be made in advance, namely special cases of 𝑖, and 
some inequalities which will be used(Those inequalities seem useless considering their 
somewhat silly meanings, while they are necessary in the proof since there are so many special 
cases and we will miss some if we are careless in dealing with those inequalities). Then in the 
core step, we will try dividing the original party into three parts, X1, B and C. To make sure it can 
be divided as we wish, conditions are studied and special cases are worked out independently. 
Last but not least, we will fill up B and C separately using ‘𝑛 = 𝑘’ hypothesis and add X1 to the 
scheme of B to finish our proof. 
Proof: 

Perform induction on 𝑛. 
a)When 𝑛 = 1， 

∵ 1 ≤ 𝑖 ≤ 𝑛 = 1  ∴ 𝑖 = 1  

∴ 1 ≤ 𝑥 ≤ 𝑖�𝑛𝑖 � = 1  ∴ 𝑥 = 1 

So we have only one space now, and of course it can be 1-filled.  
b) Assume this proposition holds when 𝑛 = 𝑘 (𝑘 ≥ 1). When 𝑛 = 𝑘 + 1, it can be proved by 

the following six steps: 
I. In this step we consider the special cases of 𝑖 = 1, 𝑛. 
According to Definition 4, we have 𝑛(𝑟 − 1) < 𝑥 ≤ 𝑛𝑛                     ……(1) 

As a result, when 𝑖 = 1, 𝑛(𝑟 − 1) < 𝑥 ≤ 𝑖�𝑛𝑖 � = 𝑛, so 𝑟 = 1.   

Therefore the only possibility is that there are 𝑥 mice having one space while the other 
having nothing. Filling in blanks one by one gives the desired solution. 

Similarly, when 𝑖 = 𝑛, the only possibility is that 𝑥 ≤ 𝑛, 𝑟 = 1. If 𝑥 < 𝑛 in this case, 
filling is not needed. If 𝑥 = 𝑛, filling in the only 𝑖-statuses solves the problem. 

So we assume 2 ≤ 𝑖 ≤ 𝑛 − 1 in the next five steps. 
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II. This step is performed to get some important inequalities in order to make it easier when 
we are trying to work out other inequalities in the following steps. 

According to (1) and the conditions of this theorem, we have 𝑛(𝑟 − 1) < 𝑥 ≤ 𝑖�𝑛𝑖 �. 

Use Lemma 2 and we get 𝑛(𝑟 − 1) < 𝑖�𝑛𝑖 � = 𝑛�𝑛−1𝑖−1�     ∴ 𝑟 − 1 < �𝑛−1𝑖−1� 

Since each side of the inequality is integer,  𝑟 ≤ �𝑛−1𝑖−1�.                    ……(2) 

From (1), we have  𝑟 ≥ 𝑥
𝑛

 .
 

                                       
 
……(3) 

III. This step gives one of the parties which we are going to divide our original party into 
since we intend to use division to perform induction. 

Let 𝑟(𝑖 − 1) ≡ 𝑦(𝑚𝑚𝑚 𝑛 − 1)  (1 ≤ 𝑦 ≤ 𝑛 − 1), so  𝑛 − 1|𝑟(𝑖 − 1) − 𝑦 . 
Take out one row of 𝑟 spaces, namely X1, from the original (𝑛, 𝑟)-party, we get an 

(𝑛 − 1)-party A, which has 𝑥 − 𝑟 spaces. 

Now think of an �𝑛 − 1, 𝑟(𝑖−1)−𝑦
𝑛−1

+ 1�-party B, 𝑦 rows of which has 𝑟(𝑖−1)−𝑦
𝑛−1

+ 1
 

spaces.  

B has 𝑦 �𝑟(𝑖−1)−𝑦
𝑛−1

+ 1�+ (𝑛 − 1 − 𝑦) 𝑟(𝑖−1)−𝑦
𝑛−1

= 𝑟(𝑖 − 1) spaces in total. 

∵ 𝑖 ≤ 𝑛 − 1      ∴  𝑟(𝑖−1)−𝑦
𝑛−1

< 𝑟(𝑖−1)
𝑛−1

< 𝑟 

Since we have 𝑟(𝑖−1)−𝑦
𝑛−1

∈ 𝑁+, again integers are recognized at both sides,  

∴  𝑟(𝑖−1)−𝑦
𝑛−1

≤ 𝑟 − 1, in other words,  𝑟(𝑖−1)−𝑦
𝑛−1

+ 1 ≤ 𝑟                   ……(4) 

IV. In this step we will consider a special case in which the party to be divided turns out to 
be even smaller than the desired party we are to get by division. 

If the amount of spaces B has, 𝑟(𝑖 − 1), is bigger than that of A, 𝑥 − 𝑟, we have 
𝑟(𝑖 − 1) > 𝑥 − 𝑟, which gives us 𝑥 < 𝑖𝑖. While 𝑖 ≤ 𝑛 − 1, according to (1), 𝑖(𝑟 − 1) <
𝑛(𝑟 − 1) < 𝑥 < 𝑖𝑖 

Thus the original (𝑛, 𝑟)-party can only accommodate 𝑟 − 1 𝑖-statuses, so the problem is 
converted to whether we can fill it with 𝑟 − 1 different 𝑖-statuses. 

Observe that we can fill a perfect (𝑛, 𝑟 − 1)-party with 𝑟 − 1 𝑖-statuses by adding one 
𝑖-status to each ‘column’ so that they can be designed freely and separately. According to (2) 

we have �𝑛𝑖 � = �𝑛−1𝑖 � + �𝑛−1𝑖−1� > �𝑛−1𝑖−1� − 1 ≥ 𝑟 − 1 , so these 𝑟 − 1  𝑖 -statuses can be 

distinct, which implies an (𝑛, 𝑟)-party which contains a perfect (𝑛, 𝑟 − 1)-party can also be 
filled with 𝑟 − 1 distinct 𝑖-statuses. The proof is already finished in this case. 

V. This section will illustrate how we are to use division in proving the theorem. 
Else we have 𝑟(𝑖 − 1) ≤ 𝑥 − 𝑟, which, according to (4), indicates A and B satisfy the 

condition of Lemma 3. As a result, A can be divided to B and another (𝑛 − 1)-party C. 

According to (2), 𝑟(𝑖 − 1) ≤ (𝑖 − 1)�𝑛−1𝑖−1�, and 1 ≤ 𝑖 ≤ 𝑛 − 1, so B satisfies the condition of 

Theorem 2 when 𝑛 = 𝑘 and 𝑖’ = 𝑖 − 1. Thus this party can be (𝑖 − 1)-filled and there will 
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not be a single space left because the number of spaces in B is divisible by 𝑖 − 1. Append 
these (𝑖 − 1)-statuses with component X1 and we have 𝑟 𝑖-statuses now which fill in X1 and 
B perfectly. Assuming party C can be 𝑖-filled, we now have B+X1 and C filled separately. As no 
𝑖-status filling C has component X1 while all other 𝑖-statuses have, these 𝑖-statuses are 
distinct, which gives a solution finally to 𝑖-fill A. So the only thing we are to prove is C can be 
𝑖-filled. 

VI. In the final step, we will finish the proof by proving the other part of the division which 
we did not consider is also conquerable. 

Since 1 ≤ 𝑖 ≤ 𝑛 − 1 , and there are 𝑥 − 𝑟 − 𝑟(𝑖 − 1) = 𝑥 − 𝑖𝑖  spaces in C, perform 

Lemma 2 and (3) gives 𝑥 − 𝑖𝑖 ≤ 𝑥 − 𝑖 𝑥
𝑛

= �1 − 𝑖
𝑛
�𝑥 ≤ �1− 𝑖

𝑛
� 𝑖�𝑛𝑖 � = 𝑖�𝑛𝑖 � − 𝑖 𝑖

𝑛
�𝑛𝑖 � =

𝑖�𝑛𝑖 � − 𝑖�𝑛−1𝑖−1� = 𝑖�𝑛−1𝑖 � 

Therefore C satisfies Theorem 2 when 𝑛 = 𝑘 and 𝑖’ = 𝑖, which indicates that it can be 
𝑖-filled. So Theorem 2 when 𝑛 = 𝑘 + 1 is proved. 

  Combining a) and b) gives the proof of Theorem 2. QED. 

Theorem 2 guarantees that perfect (𝑛, 𝑟 − ∑ �𝑛−1𝑖−1�
𝑍(𝑛,𝑟)−1
𝑖=1 )-party can be 𝑍(𝑛, 𝑟)-filled, which 

implies that perfect (𝑛, 𝑟)-party can be filled with all 0,1,…,(𝑍(𝑛, 𝑟) − 1)-statuses (Considering 
Lemma 1) and be 𝑍(𝑛, 𝑟)-filled, that is, feasibility of Chart-Filling Method. The proof also 
indicates a way of constructing such a scheme by recursion. 

2.2.3 Conclusions and Other Variations 

  In this chapter we solved problem 2 by proving a stronger proposition as to Chart-Filling 
Method we developed specially for this problem. The concept of status can be seen as a 
generalization of binary solution to the original problem in chapter 1, which is so important that 
it is the core concept of this whole chapter. From this concept we get a closer view of how 
schemes are made and how to examine whether they will work properly. This concept will also 
be employed in the next few sections. 
  Now that problem 2 has been solved, let’s consider what will happen if we do more than one 
experiments. If we try it with the idea of generalizing the concept of status, we will reach a new 
concept that each digit of the status can have not only 0 and 1 two possible values. However, 
this does not throw light on the question since it is too complex. So we try to understand it in 
another way, that is, take each experiment as one chart. Thus the generalized problem becomes 
a Cube-Filling problem. Generalizing restrictions of the problem as well gives two different 
versions of it considering whether a mouse will die after taking the poison: In the death version, 
each status has at most one component in one ‘mouse plane’(in contrast to ‘mouse row’ in 
problem 2) while in the athanasia version each status is allowed to have one component in each 
‘mouse row’ of each experiment. 
  The previous generalization can be generalized again if we consider the abstract concept of 
𝑛-dimensional-cube-filling without using concrete concepts such as mouse and poison. However, 
none of these widen problems can be solved according to skills we developed, as division 
method used in proof of Theorem 2 cannot be generalized to more than two dimensions. 
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2.3 Two-Poison Replacement and Grouping-Coordinate Scheme 

2.3.1 Coordinate Scheme 

  In this chapter, we will try the ‘two-poison’ problem: 
Problem 3 There are plenty bottles of medicine with two of them poisoned. A mouse will die 

if it takes the poison, otherwise it will remain alive. With 𝑛 mice and one experiment, we can 
check out that some proportion of those medicines is nontoxic. What is the maximum ratio of 
nontoxic proportion we are able to get? (The maximum ratio is noted 𝑐(𝑛)) 
  We are to introduce the ‘Coordinate Scheme’, which was first given by yac using the example 
of 𝑛 = 10.   
  First of all, divide the ten mice into two groups, and all the bottles into 25 groups evenly (This 
is the reason why we assume there are ‘plenty of’ bottles, or we will have to examine the 
number’s divisibility by 25). Put these groups of medicines as follow, and let each mouse take all 
the medicine of its row/column. 
 

 Mouse 6 Mouse 7* Mouse 8 Mouse 9* Mouse 10 

Mouse 1 safe safe safe safe safe 
Mouse 2* safe hazard safe hazard safe 
Mouse 3 safe safe safe safe safe 

Mouse 4* safe hazard safe hazard safe 
Mouse 5 safe safe safe safe safe 

   
Provide that mouse 2,4,7,9 die, the medicines they took contain poisons. As a result, the 

poisons are in the four ‘hazard’ districts, while they are not located exactly. 
  According to this, we can always find at most four districts containing the poisons, therefore 

the nontoxic proportion is 25−4
25

= 84%. 

  This method can be reinforced a little, and then we have: 
 

 Mouse 6 Mouse 7* Mouse 8 Mouse 9* Mouse 10  

Mouse 1 safe safe safe safe safe safe 
Mouse 2* safe hazard safe hazard safe safe 
Mouse 3 safe safe safe safe safe safe 
Mouse 4 safe safe safe safe safe safe 
Mouse 5 safe safe safe safe safe safe 

 safe hazard safe hazard safe safe 

  
 In this scheme, we leave one row and one column untested. Assuming mouse 2 is the only 
unlucky one among the first five mice, we have row 6 a dangerous row also. So we can, again, 
always determine at most four districts which are hazarded, therefore the nontoxic proportion is 
36−4
36

≈ 88.9%. 

N14

Page - 198



  But that is still not the end! If we divide those 10 mice into three groups, namely 3, 3, 4, and 
adopt the same manipulation (This time it is three dimensional), we will have a nontoxic 

proportion of 4×4×5−8
4×4×5

= 90%. This is because each group will locate two ‘planes’, therefore we 

have eight intersected districts instead of four, and in each group we leave out one ‘plane’ 
untested, which is why there are 4 × 4 × 5 districts in total. 
  It can be seen that the more groups we divide our mice into, the more uncertainty we will 
have. In general, an 𝑚-dimensional (Each group can be seen as a dimension, in other words, 
they are separate coordinates, which is the reason this scheme is named) scheme gives us 2𝑚 
hazard districts. So in the case of 𝑛 = 10, this three dimensional scheme gives the best answer. 
  Now we can easily conclude a general method out of this, that is to divide 𝑛 mice into 𝑘 

groups, namely 𝑎1,𝑎2, … , 𝑎𝑘, and we can determine a nontoxic proportion of 1 − 2𝑘

∏ (𝑎𝑖+1)𝑘
𝑖=1

.  

To make it optimal, we should have 𝑎𝑖  evenly, which is why we divide 10 mice into 5 and 5 
instead of 4 and 6 or other groups. The value of 𝑘 remains arbitrary, while we can determine it 
within 𝑛 try (Let 𝑘 vary from 1 to 𝑛), so obtaining the optimal solution will not be very hard. 

2.3.2 Grouping Method and Coordinate-Grouping Scheme 

  The previous scheme by the website writer is really skillful, while we have a seemingly less 
graceful but more general idea. The thought involved is quite easy, that is, to divide all medicines 
into several groups, and use some schemes similar to those we used when examining one 
poison to determine the exact location of the two poisons. Notice that we said ‘some schemes’ 
instead of a definite one, which makes it quite mysterious. This is because, for example, in a 
simple situation of 𝑛 = 5, we cannot even work out easily whether there exists a manipulation 
better than having five mice examine one group each and leave the sixth group untested. This 
difficulty raises problem 3*: 

 Problem 3* There are some bottles of liquid with two of them poisoned. A mouse will die if it 
takes the poison, otherwise it will remain alive. Now we have 𝑛 mice to check out which bottle 
contains the poison within one experiment. What is the maximum number of bottles we are 
able to deal with? (The answer is noted 𝑓(𝑛)) 

 
  In fact, there is still a difference between Grouping Method and problem 3*, as two poisons 
can unfortunately be divided to the same group. In this case, if we insist in finding two groups 
containing the two poisons, the result can be confusing. The way to mediate this dissension is to 
accept a solution locating two groups containing the poisoned group, and try to find one group if 
the result is confusing. Further description and feasibility of this measure will be discussed in the 
next section. 
  Perhaps readers of this section will be impatient since Grouping Method has not yet given an 
answer and probably can never fight against the sophisticated Coordinate Scheme. However, 
what gives us courage to continue studying the Grouping Method is that this method can be 
added into the Coordinate Scheme! Notice that in Coordinate Scheme, we use each group as an 
independent coordinate, and in each of these coordinates, we actually set a scheme to 
determine the exact two ‘planes’ the poisons are in. Thus if we employ Grouping Method in 

N14

Page - 199



each group, Coordinate-Grouping Scheme is now reached! 
  In general, this scheme can be written as follows: divide 𝑛 mice into 𝑘 groups, namely 

𝑎1, 𝑎2, … ,𝑎𝑘 , and we can determine a nontoxic proportion of 1 − 2𝑘

∏ 𝑓(𝑎𝑖)𝑘
𝑖=1

. Since attrbutes of 

𝑓(𝑛) are unknown now, we cannot take for granted that groups should be divided evenly in this 
scheme. 
 

2.3.3 New Problem and Compatibility 

  In this section, we will work out a route to develop 𝑓(𝑛) as well as to solve the compatibility 
problem raised in the previous section(two poisons in one group) between 𝑓(𝑛) and the 
original problem. 
  Attempts of small scale tell us 𝑓(𝑛) is quite difficult to find. We can deduce 𝑓(𝑛) ≥ 𝑛 + 1 
easily by letting each mouse tests one group and leave the last group untested. We can also 
claim that 𝑓(𝑛) is monotonically increasing, as one more mouse can test one more group while 
the other 𝑛 − 1 mice do the same as checking 𝑓(𝑛 − 1) groups. A trivial upper bound can as 
well be reached from 𝑓(𝑛 + 1) ≤ 2𝑓(𝑛), since we can divide the statuses into two groups 
considering whether the last digit is 1 and claim that each group has not more than 𝑓(𝑛) 
statuses. But further study is difficult, which we shall show in the next three sections. Our aim is 
to (1) try giving a nontrivial upper bound and lower bound for 𝑓(𝑛), (2)give some nontrivial 
examples of small scale probably by computer. 
  As it is very important, we donate the attribute that 𝑓(𝑛) is monotonically increasing by 
Lemma 4. 
  First of all, we should give some notation in order to describe the problem. It is a good idea to 
use the same concept we used in the previous chapter, which is ‘status’. Each group has a ‘status’ 
which describes how it is fed to mice and what the result will be if it is poison. But now we have 
two poisons, therefore we probably will get an integrated result for two groups. Thus we can 
define a new calculation between two statuses: 
 
Definition 7 Or/Union: For two status 𝑎 and 𝑏, let ‘𝑎 or 𝑏’ be an 𝑛-digit binary number 
whose 𝑖th digit is 1 as long as digit 1 appears at the same digit in one of the two statuses. This is 
also called the union of 𝑎 and 𝑏. 
  ‘𝑎 or 𝑏’ is actually an informatics concept having the same meaning, besides it is also similar 
to the concept of ‘union’ in the theory of set, which leads to a possibility of converting this 
problem to other problems. 
  Now we can claim that the statement ‘able to determine two poisons’ is same to ‘for all pairs 
of status, (𝑎,𝑏), 𝑎 or 𝑏 are distinct’, since a test works if and only if different cases give distinct 
results. 
  Now let’s focus again on the compatibility problem which concerns two poisons in one group. 
If the result differs from every possible answer a two-group union gives, we happily accept the 
fact that the two poisons are in the same group. Since we already have all the unions different, it 
is apparent that statuses themselves are distinct. Therefore we can determine which group the 
two poisons are in. Thus the only problem turns out to be, if we really determine two seemingly 
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hazard groups, 𝑎 and 𝑏, while the poisons are in fact in one group, 𝑐, can we miss it? Since 𝑎 
or 𝑏, 𝑎 or 𝑐 should be distinct if 𝑏 ≠ 𝑐, and we have 𝑎 or 𝑏 = 𝑐 as a condition, 𝑎 or 𝑐 = 
𝑎 or (𝑎 or 𝑏)=𝑎 or 𝑏, contradiction. Thus we cannot miss 𝑐. In all, when two poisons are in 
one group, we can always find at most two groups containing the hazard group, which solves the 
dissension finally. 
 

2.3.4 Qualitative Analysis of 𝒇(𝒏) 

We will give an exponential upper bound first by calculating the maximum amount of statuses 
possible. 

Theorem 3 𝑓(𝑛) ≤ 2
𝑛+1
2  

Proof: 
  Similar to proof of Theorem 1, we notice that since unions of all pairs of statuses give distinct 

answers, there are altogether �𝑓(𝑛)
2 � such answers. The amount must not be more than the 

amount of all 𝑛-digit binary numbers, which is 2𝑛. Therefore we have �𝑓(𝑛)
2 � ≤ 2𝑛 , thus 

𝑓(𝑛) ≤ 1+√1+2𝑛+3

2
< 1+�1+√2𝑛+3�

2
= 1 + 2

𝑛+1
2 . As both sides are integer, 𝑓(𝑛) ≤ 2

𝑛+1
2 . QED. 

  The experience of attempting to get a nontrivial answer reaching 𝑓(𝑛) tells us this upper 
bound is very high indeed, and the method we used in proving it has nothing to do with how to 
make an example. So this theorem only gives us a border, saying 𝑓(𝑛) cannot raise faster than 
exponential function. 
  Though this proof of upper bound seems to be not complicated enough to work out a 
satisfying answer, we honestly can not improve it significantly since situations can not be easily 
assorted and structures can not be recognized. Moreover, we conjecture 𝑓(𝑛)  to grow 
exponently due to our lower bound and computer generated data (and instinct). 
  Attempt of giving a lower bound using similar manipulation proved to be too difficult for us, 
but it is possible that we give a nontrivial lower bound by constructing a new example from a 
known one, in other words, by recursion. 
 
Theorem 4 𝑓(𝑛 + 2⌈log2(𝑓(𝑛) + 1) ⌉) ≥ 2𝑓(𝑛) 
Proof: 
  Let 𝑘 be ⌈log2(𝑓(𝑛) + 1) ⌉. Assuming we have an example in the case of 𝑛, which are 𝑓(𝑛) 
statuses satisfying the union-distinct condition. Now we will give 2𝑓(𝑛) (𝑛 + 2𝑘)-digit binary 
numbers, all unions of which are distinct as well.  
  For the first half, add 2𝑘 digits to these 𝑓(𝑛) status, and let the first 𝑘 ones be zero, the 
(𝑘 + 1)th to the 2𝑘th be the binary representations of one till 𝑓(𝑛)(the reason why we 
choose 𝑘 digits is that this is the least amount to show the binary representation of 𝑓(𝑛)). To 
generate the second half, we simply produce the added part by exchanging the first 𝑘 digits 
and the last 𝑘 ones produced in the first half. 
  An example is showed as follows. 
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The first six figures are from an example of 𝑛 = 6, and the following eight ones are new digits 
we added. Notice that in order to show ‘8’ in binary representation, we need four digits instead 
of three even though log2 8 = 3, since zero is not included. 

If two statuses are chosen from the same group, we can first use whether the last 𝑘 digits 
are zero to determine which group they are in. Then, as we suppose the first 𝑛 digits come 
from a proper example of 𝑛, distinctness is guaranteed. If these two statuses are from different 
groups, it is even easier since we can tell which one they are by transferring the last 2𝑘 digits to 
binary numbers and choose the corresponding status in each group directly. 

Therefore the recursion holds, QED. 
 
Now let’s get a closed form of lower bound from Theorem 4. 
Because logarithm and ceiling function are used, we shall first generate a better recursive 

form to make it easier to deal with. For every 𝑥 ∈ [1, +∞), let  
𝑓(𝑥) = (⌊𝑥⌋+ 1− 𝑥)𝑓(⌊𝑥⌋) + (𝑥 − ⌊𝑥⌋)𝑓(⌊𝑥⌋+ 1) 

which is the function we get connecting adjacent discrete points. Observe that 
𝑙𝑙𝑙2(𝑝 + 1) ≤ 𝑙𝑙𝑙2 𝑝 + 1  (𝑝 ≥ 1) 

We can get  
⌈2 𝑙𝑙𝑙2(𝑝 + 1)⌉ ≤ 2 𝑙𝑙𝑙2(𝑝 + 1) + 2 ≤ 2 (𝑙𝑙𝑙2 𝑝 + 1) + 2 = 2 𝑙𝑙𝑙2 𝑝 + 4   (𝑝 ≥ 1),  

Therefore, with the help of Lemma 4, which will be cited every now and then without claiming 
in this chapter, we have 

𝑓(𝑥 + 2 𝑙𝑙𝑙2 𝑓(𝑥) + 4) ≥ 𝑓(𝑥 + ⌈2 𝑙𝑙𝑙2(𝑓(𝑥) + 1)⌉) 
                                   ≥ 𝑓(𝑛 + ⌈2 𝑙𝑙𝑙2(𝑓(𝑛) + 1)⌉) 

                                     ≥ 2𝑓(𝑛)  
                                     > 2𝑓(𝑥 − 1)       (𝑥 ≥ 2,𝑛 = ⌊𝑥⌋)  

Thus, 2𝑓(𝑥) < 𝑓(𝑥 + 1 + 2𝑙𝑙𝑙2𝑓(𝑥 + 1) + 4) ≤  𝑓(𝑥 + 1 + 2(𝑙𝑙𝑙2𝑓(𝑥) + 1) + 4) = 𝑓(𝑥 +
2𝑙𝑙𝑙2𝑓(𝑥) + 7)(𝑥 ≥ 1), because 𝑓(𝑥 + 1) ≤ 2𝑓(𝑥) considering the last digit separately. The 
inequality has been adjusted for real number now. 

Let 𝑔(𝑥) = 𝑙𝑙𝑙2𝑓(𝑥), then we have 2𝑔(𝑥)+1 < 2𝑔(𝑥+2𝑔(𝑥)+7)(𝑥 ≥ 1), so 𝑔(𝑥) + 1 < 𝑔(𝑥 +

2𝑔(𝑥) + 7). 
We can prove the following theorem, which leads to a lower bound of traditional form with 

the help of function 𝑔. 
 

Group1 Group2 
000000 0000 0001 000000 0001 0000 
000011 0000 0010 000011 0010 0000 
010101 0000 0011 001100 0011 0000 
001100 0000 0100 010101 0100 0000 
011010 0000 0101 011010 0101 0000 
100110 0000 0110 100110 0110 0000 
101001 0000 0111 101001 0111 0000 
110000 0000 1000 110000 1000 0000 
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Theorem 5  𝑓(𝑥) > 2√𝑥+3−4 

Proof: 
Let {𝑎𝑛}:𝑎1 = 1,𝑎𝑛+1 = 𝑎𝑛 + 2𝑛 + 7, we will prove by induction that 𝑔(𝑎𝑛) ≥ 𝑛. 
(1) 𝑔(𝑎1) = 𝑔(1) = 𝑙𝑙𝑙2𝑓(1) = 1(𝑓(1) = 2 is quite obvious), so 𝑛 = 1 holds. 
(2) Assuming 𝑔(𝑎𝑛) ≥ 𝑛 when 𝑛 = 𝑘,  

when 𝑛 = 𝑘 + 1 , we have 𝑔(𝑎𝑘+1) = 𝑔(𝑎𝑘 + 2𝑘 + 7) ≥ 𝑔(𝑥 + 2𝑘 + 7)  = 𝑔(𝑥 +
2𝑔(𝑥) + 7) > 𝑔(𝑥) + 1 = 𝑘 + 1, 
where 𝑔−1(𝑘) = 𝑥 ≤ 𝑎𝑘  because Lemma 4 guarantees that 𝑔(𝑥) = 𝑙𝑙𝑙2𝑓(𝑥)  has 
inversion, and 𝑔−1(𝑘) exists because 𝑓(𝑥) for real number is continuous, which can be 
easily noticed considering the manipulation used. 

Combining (1) and (2) gives 𝑔(𝑎𝑛) ≥ 𝑛 
∵ 𝑎𝑛 = 𝑎𝑛−1 + 2(𝑛 − 1) + 7 = 𝑎𝑛−2 + 2(𝑛 − 2) + 7 + 2(𝑛 − 1) + 7 = ⋯ =  𝑎1 + 7(𝑛 −

1) + 2(𝑛 − 1 + 𝑛 − 2 + ⋯+ 1) = 𝑛2 + 6𝑛 + 6,  
∴ 𝑓(𝑛2 + 6𝑛 + 6) ≥ 2𝑛.  
Let 𝑛2 + 6𝑛 + 6 ≤ 𝑥 < (𝑛 + 1)2 + 6(𝑛 + 1) + 6,  

∴ 𝑓(𝑥) ≥ 2�√𝑥+3−3� > 2√𝑥+3−4, QED. 

In fact, the initialization (where our recursion starts) can be updated with the data we will get 
from computer programs in section 2.3.5, and this can improve the lower bound somewhat. 

2.3.5 Further Study of Lower Bounds 

Still, the lower bound we worked out can be improved, since we can do some further 
refinements on the way we generate new examples from 𝑓(𝑛) given statuses of 𝑛 digits.  

Our first thought on it is to use definite amount of digits to label some ‘groups’. For instance, 
‘10’ and ‘01’ can be added to two groups so that we can easily recognize whether the statuses 
for an union are from the same group (If not, these two digits will be ‘11’). And if they are, 
apparently we can see which group they are from as well.  

If two statuses are from the same group, then the problem is already solved due to our 
heritage, else, as we think it will not be hard to work out what the two statuses (first 𝑛 digits) 
are from their union (further study of this will be discussed after several paragraphs), the only 
problem is to see if these two are A from Group 1 and B from Group 2, or A from Group 2 and B 
from Group 1. This is not very difficult since the scheme below will help: 

Group 1:  A0, B1, C0 
Group 2:  A0, B0, C1 

In this scheme (Assuming now we are sure these two statuses are not from the same group), 
not only A and B can be parted according to groups, but B and C, C and A can be parted as well. 
Observing that it can also be used to three groups instead of three statuses only, we can add 
more digits using the same method to distinguish more pairs, for different digits are 
independent. The example of 9 statuses using 2 digits is showed below: 

Group 1:  A00, B01, C00, D10, E11, F10, G00, H01, I00 
Group 2:  A00, B00, C01, D00, E00, F01, G10, H10, I11 

In this example, If the two statuses are from different sections of (ABC), (DEF) and (GHI), they 
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can be distinguished with the first digit considering a group as one thing([Group1 (ABC) or 
Group2(DEF)] is different from [Group2(ABC) or Group1(DEF)] by the last but one digit, ‘or’ here 
means union), else they are from the same group, say, (ABC), and can be parted with the second 
digit. Consequently, 𝑛 digits can be used to part 3𝑛 statuses using the same manipulation 
somewhat similar to radix 3 representation. 

Generally, this method can be carried out as follows. 3𝑛 statuses can be numbered by radix 3 
representation. Then we write those statuses twice in two groups. In the first group, we add ‘01’ 
to it and then the radix 3 representation with ‘2’ written ‘0’ to get our Group 1(When n=2, it 
gives exactly the preceding example. For instance, number for C should be (02)3 but as ‘2’ is 
written ‘0’, it is ‘00’ actually). Statuses in the other group is produced similarly, we add ‘10’ to it 
and the radix 3 representation where ‘1’ is written ‘0’ and ‘2’ is written ‘1’. 

Now we are nearly finished with one last problem. Considering there are some situations 
where 𝑎 or 𝑎 = 𝑎 or 𝑏, we can not always tell from their union what the two statuses exactly 
are since they can be the same status from two groups. Hence our scheme requires statuses’ 
unions being different from statuses themselves. This can also be satisfied by adding another 
digit. Define 𝑎 or 𝑏=𝑎 as 𝑎 ‘includes’ 𝑏, then we can divide all statuses into two groups, 
A={𝑥|𝑥 is not contained by any other statuses in our scheme} and B={𝑥|there exists at least one 
status in our statuses that contains 𝑥}. Inclusion will not exist in B since if 𝑎 contains 𝑏, 𝑏 
contains 𝑐  and 𝑏, 𝑐  belongs to B, we have 𝑎  or 𝑐 = 𝑎 = 𝑎  or 𝑏 , contradiction. As A’s 
definition also forbids inclusion’s existence, we can add a digit ‘0’ to all statuses in A and a digit 
‘1’ to all statuses in B to make inclusion extinct, for statuses in A cannot contain statuses in B any 
longer due to the added digit. Now that unions and statuses are all distinct, we can tell exactly 
what two statuses are by looking only at their union. This can also be a solution to the ‘two 
poisons in one group’ problem if we want the most precise location and are willing to pay one 
more mouse for it. 

We have altogether used 1 digit to annihilate inclusion, 2 digits to distinguish groups and 
⌈𝑙𝑙𝑙3𝑓(𝑛)⌉ digits to recognize status in distinct groups. Thus 𝑓(𝑛 + 3 + ⌈𝑙𝑙𝑙3𝑓(𝑛)⌉) ≥ 2𝑓(𝑛).  

Using the same method in obtaining Theorem 5 from Theorem 4, we have a similar answer 

which acts like 3.4√𝑥 but looks more frightening. The main steps are as follows.  

We generalize this inequality to real number and get  
𝑓(𝑥 + 4 + 𝑙𝑙𝑙3𝑓(𝑥)) ≥ 2𝑓(𝑥 − 1). 

Let 𝑡 = 𝑥 − 1 and we have  
𝑓(𝑡 + 5 + 𝑙𝑙𝑙32 + 𝑙𝑙𝑙3𝑓(𝑡)) ≥ 2𝑓(𝑡) since 𝑓(𝑥 + 1) ≤ 2𝑓(𝑥). 

Let 𝑔(𝑡) = 𝑙𝑙𝑙3𝑓(𝑡) and we can deduce that  
𝑔(𝑡 + 5 + 𝑙𝑙𝑙32 + 𝑔(𝑡)) ≥ 𝑙𝑙𝑙32 + 𝑔(𝑡). 

Let {𝑎𝑛}:𝑎1 = 1,𝑎𝑛+1 = 𝑎𝑛 + 5 + (𝑛 + 1)𝑙𝑙𝑙32 and perform induction using the function 
inequality, we can get 𝑔(𝑎𝑛) ≥ 𝑛𝑙𝑙𝑙32.  

Convert it back to 𝑓(𝑛) gives an answer similar to the one we got in the previous section but 

much more complex. For convenience, we take it as 𝑓(𝑥) ≥ 3√1.26𝑥+34.1−5.95.  

Cite 𝑓(20) ≥ 220 (Computer generated in section 2.3.5) and let 𝑎1 = 20 to improve it (this 
requires 𝑥 to be big enough, but because we are considering a tendency, a restriction such as 

𝑥 > 20 is not big deal), we have 𝑓(𝑥) ≥ 3√1.26𝑥+79.25−5.95, which is the strongest answer we 

N14

Page - 204



are able to get now. The exact form of it is 𝑓(𝑥) ≥ 3√4𝑎𝑎+𝑏2−4𝑎𝑎−5−3𝑎 , where  𝑎 = 𝑙𝑙𝑙32
2

, 

𝑏 = 𝑎 + 5 + 𝑙𝑙𝑙3110, and 𝑐 = 15 − 2𝑎 − 𝑙𝑙𝑙3110.  
Further generalization can also be thought of by making more groups than two. If we have 𝑚 

groups, there will be 𝑚 digits used to distinguish which group or which two groups the statuses 
are from through their union. To avoid inclusion, we still need only 1 digit. Now we have the 
group numbers and first 𝑛 digits of the two statuses, so we only need to tell apart what looks 
like Aa, Bb and Ab, Ba.  

In fact, we have a way of requiring ⌈𝑙𝑙𝑙3𝑓(𝑛)⌉⌈𝑙𝑙𝑙2𝑚⌉ more digits to do it. ⌈𝑙𝑙𝑙3𝑓(𝑛)⌉ 
digits are considered a ‘squad’ as it is in the previous scheme, and different squads are used to 

compare different pairs of groups. With the first squad, we are to compare Group 1 to �𝑚
2
� with 

Group �𝑚
2
� + 1 to 𝑚 by giving the same squad we used in Group 1 in the previous scheme to 

the first half and that of Group 2 to the second half so that if the two statuses come from 
different halves, we can tell what they are exactly. Similarly, ‘Group 1 notation’ is adopted in the 

second squad of Group 1 to �𝑚
4
� and Group �𝑚

2
� + 1 to �3𝑚

4
� while those of the others are 

‘Group 2 notation’, and the two statuses can be settled if their group numbers are from different 
groups in this manner, and so forth. The only main difference between this manipulation and the 
scheme we discussed previously in this section is that it uses radix 2 representation and is more 
confusing. Thus ⌈𝑙𝑙𝑙2𝑚⌉ squads are needed as they are independent. An example of 4 groups 
and 3 statuses is showed below. 

Group 1:  A*100000,  B*100011,  C*100000 
Group 2:  A*010000,  B*010010,  C*010001 
Group 3:  A*001000,  B*010001,  C*010010 
Group 4:  A*000100,  B*000100,  C*000111 
 

In this example, ‘*’ means the digit for inclusion and the 4 digits after it is representation of 
groups. The next digit acts as the first squad with which we can compare Group 1,2 with Group 
3,4 and the last digit represents the second squad. 

But look at the 𝑚 digits for groups closely, we find it not necessary. The aim of these digits is 
only to tell which two groups the two statuses belong to, and we need only 𝑚 + 1 digits to 
deal with 𝑓(𝑚) groups (The extra ‘1’ is for avoiding inclusion). 

Conclusion for all above is that besides the 𝑛 digits our original 𝑓(𝑛) statuses require, we 
need 1 more digit to avoid inclusion, 𝑚 + 1 digits to build 𝑓(𝑚) groups (Look out! Not only 
𝑚 groups now!), and ⌈𝑙𝑙𝑙3𝑓(𝑛)⌉⌈𝑙𝑙𝑙2𝑓(𝑚)⌉ digits to tell the exact answer. Thus we have 
𝑓(𝑚 + 𝑛 + 2 + ⌈𝑙𝑙𝑙3𝑓(𝑛)⌉⌈𝑙𝑙𝑙2𝑓(𝑚)⌉) ≥ 𝑓(𝑚)𝑓(𝑛) . Take a step backward and let both 
logarithms have the same basis 2, and we have 𝑚 and 𝑛 of the same status (not ‘status’ in our 
concept). Comparing it with Coordinate-Grouping Scheme, we have 𝑚  and 𝑛  two 
independent coordinates. Hence the result can be taken as getting the exact location by refining 
Coordinate-Grouping Scheme. So now even the scheme with uncertainty is also connected with 
lower bound of 𝑓(𝑛). 

Thus still more coordinates can be added. When adding a new coordinate, we take the former 
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ones as a whole, and similarly we need 𝑚𝑖  more digits for group label, 1 more digit for 

inclusion, and 𝑙𝑙𝑙3(∏ 𝑓�𝑚𝑗�)𝑖−1
𝑗=1 𝑙𝑙𝑙2𝑓(𝑚𝑖)  digits more to avoid uncertainty as 

𝑙𝑙𝑙3 ∏ 𝑓�𝑚𝑗�𝑖−1
𝑗=1  digits are considered one squad to compare two groups of ‘hyper planes’ now. 

Hence, we have 

𝑓[�𝑚𝑖

𝑝

𝑖=1

+ 𝑝 + � 𝑙𝑙𝑙3𝑓(𝑚𝑖)𝑙𝑙𝑙2𝑓(𝑚𝑗)
1≤𝑖<𝑗≤𝑝

] ≥�𝑓(𝑚𝑖)
𝑝

𝑖=1

 

This is the general situation of our lower bounds. From it, an ocean of stronger lower bounds 
can be made out in theory. We can also use something like 𝑛 groups instead of concrete 

numbers. However, we still cannot break the limitation of the lower bound acting like 𝑎√𝑥 

while the upper bound grows exponently, because there are multiplications of logarithms in this 
inequality, and a lower bound exists only when degrees of both sides are the same.  
 

 
  This graph shows the upper bound 
and the two lower bounds we got in 
this section. Now we have achieved 
the goal of finding nontrival upper 
bounds and lower bounds. However, 
the upper bound still grows much 
faster as it rises exponently, which 
means space for improvement is still 
huge. 

 
 
 

 

2.3.6 Quantitative Computation of 𝒇(𝒏)  

  This section is aimed at finding a method to compute 𝑓(𝑛). The problem is so complicated 
that we can only get the precise value of 𝑓(𝑛) for very small 𝑛 , and have to use an 
approximate algorithm to achieve a relatively good result. In the programs, we treat statuses as 
binary numbers and store each status as an integer. Bitwise operation 'or' is used to calculate 
the union of two statuses.  
  For small 𝑛, we can use a brute-force method, backtracking algorithm. In each step, we start 
with an existing scheme and try adding statuses to it. The process is as follows: the program 
enumerates all the 𝑛-digit 0-1 strings as the new status, and tests if the scheme remains valid 
after adding this status. If so, the program adds this status to the scheme and goes on trying to 
add more. If no status can be added, the program deletes the status that is added last and 
backtracks. We start from an empty scheme, and when the program terminates, it has traversed 

y 

𝑦 = 2
𝑛+1
2  

𝑦 = 3√1.26𝑥+79.25−5.95 

𝑦 = 3√1.26𝑥+34.1−5.95 

x 
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all possible schemes. Then we pick the one that contains the most statuses as the result. The 
complexity would be O(2𝑛𝑛 × 𝑙), where 𝑙 stands for the upper bound of the answer. 
  After a little bit of thinking, we find an obvious optimization. We can express each scheme as 
a 0/1 matrix, with each row corresponding to a status, and each column corresponding to a 
mouse. And the problem changes to, given the number of columns in a matrix, 𝑛, and construct 
as much rows as possible, under the restriction that the 'union' of each pair of rows must be 
different. Then, it is easy to discover that changing the order of the rows arbitrarily won't affect 
the validity of the matrix. So each matrix can be represented by it is 'standard form', where the 
rows in the matrix are sorted according to their lexicographic order, i.e. ascending order if we 
treat them as binary numbers. Thus, all we have to do is to find all 'standard matrices'. In the 
program, we guarantee that every time we try to add a status, its lexicographic order must be 
after all the statuses in the existing scheme. Each standard matrix stands for 𝑙! matrices, where 

𝑙 is the height of the matrix. So, now the complexity would be 𝑂(2
𝑛𝑛×𝑙
𝑙!

). 

  The program did all the work from 𝑛 = 1 to 𝑛 = 6 in roughly 1 second, while it used 62 
seconds for 𝑛 = 7. We tried 𝑛 = 8, but for a whole day the program gave no result. (Those 
times are observed on a computer whose performance parameters are showed in Appendix III) 
It still needs optimization.  
  Apparently, columns in the matrix can also be sorted as rows can. While surprisingly, the rows 
and columns can be 'co-sorted', that is, we can rearrange the rows and columns of the matrix to 
obtain a 'uniform matrix', where both the rows and the columns are sorted according to their 
lexicographic order. In fact, we can accomplish this by performing these two operations 
alternatively: 
  a. sort the rows according to their lexicographic order if they are not already sorted 
  b. sort the columns according to their lexicographic order if they are not already sorted 
  When the process stops, we achieve our 'uniform matrix': The lexicographic order of the first 
row and the first column cannot get bigger after each operation, so they can only decrease and 
then remain unchanged after a certain time. After that time, the lexicographic order of the 
second row and the second column cannot get bigger, and so forth. After finite operations, the 
whole matrix is stable, and uniform matrix is obtained. 

  After introducing this optimization, we reduce the complexity to O(2
𝑛𝑛×𝑙
𝑛!×𝑙!

). Things get better, 

𝑛 = 7 is done within a second, and the program worked out 𝑓(8) = 13 in 1474 seconds. But 
for bigger 𝑛, it is still too ineffective. Since we have almost reduced the matrices that are 
needed to concern to minimal amount, 𝑛 = 8 would be the limit for such algorithms. The 
results so far are: 
 
 
 
  

 Another approach is approximate algorithm. Instead of enumerating all possible schemes, 
now we add statuses randomly under certain rules to construct schemes. The process is as 
follows: as before, we start with an empty scheme. Now for each step, we choose one status 
randomly from all valid statuses and add it to the scheme. If there is no status available, choose 

𝒏 1 2 3 4 5 6 7 8 
𝒇(𝒏) 2 3 4 5 6 8 10 13 
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several statuses randomly from the scheme and delete them. To avoid being trapped in a bad 
solution, there is a counter, if the solution has not been improved for an amount of time, the 
process will be aborted and the program will restart from empty scheme. Besides, noticing that 
a status having too many '1' in it is unlikely to be part of the optimal solution, we limit the 
amount of '1' in a status. 
  We achieved the following results: 
 

   
This program works well so far, but we can never be sure whether we have the the optimal 

answer or how much time we are expected to spend to get a good enough answer. 
Some details in the implementation and the source code can be found in the appendix. More 

data of the programs such as time data of the random program are also available. 
 

 
 
 
 
 
 
 
 
 

2.3.7 Informatics method and upper bound for 𝒄(𝒏) 

  After this long journey of research on 𝑓(𝑛), we should come back to 𝑐(𝑛) in respect for our 
original problem. What we did can be seen as schemes of this problem, while we want a limit for 
such manipulations as well. Therefore in this section, we will focus on the upper bound of 𝑐(𝑛). 
  Due to our using descriptions such as ‘big enough’, estimation of 𝑐(𝑛) becomes quite tough 
as finite methods can not be performed easily. Thus we employ entropy method in informatics 
to solve this problem. 
  Assuming that we know nothing about which bottle contains the poison, which mouse will die 
or whatever connection between any of these events, all of these pieces of information are 
considered as independent random variables. Therefore we can assume that each bottle has 

𝑝 = 2
𝑥
 possibility of being poisoned, and the possibility for whether or not a mouse will die after 

the experiment is supposed 1
2

. As a consequence, informatic entropy for each bottle is 

𝐸1 = −𝑝 𝑙𝑙𝑙2 𝑝 − (1− 𝑝) 𝑙𝑙𝑙2(1 − 𝑝) bit, the same thing for each mouse is 1 bit because mice 
here are considered typical dichotomous variables.  
  Assuming there are altogether 𝑥 bottles, after the experiment 𝑥[1 − 𝑐(𝑛)] bottles of them 

𝒏 9 10 11 12 13 14 15 16 17 18 19 20 
result 17 22 31 46 54 67 83 100 119 138 175 220 

𝑛 
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are confirmed safe while others are assumed totally unknown, we have 𝑥′ = [1− 𝑐(𝑛)]𝑥, 

𝑝′ = 2
𝑥′

 and 𝐸1′ = −𝑝′ 𝑙𝑙𝑙2 𝑝′ − (1− 𝑝′) 𝑙𝑙𝑙2(1− 𝑝′). Informatic entropy for all medicines 

reduces from 𝐸 = 𝑥𝐸1  to 𝐸′ = 𝑥′𝐸1′ = 2 𝑙𝑙𝑙2
[1−𝑐(𝑛)]𝑥

2
+ {[1− 𝑐(𝑛)]𝑥 − 2} 𝑙𝑙𝑙2

[1−𝑐(𝑛)]𝑥
[1−𝑐(𝑛)]𝑥−2

. 

As the 𝐸 − 𝐸′  bit information is given by 𝑛 mice, 𝑛 ≥ 𝐸 − 𝐸′. Since 𝑥 is very big, we now 

consider 𝑥
𝑥−2

 and [1−𝑐(𝑛)]𝑥
[1−𝑐(𝑛)]𝑥−2

 to be 1, and a new inequality is obtained, 2 𝑙𝑙𝑙2[1− 𝑐(𝑛)] ≤ 𝑛.  

Hence 𝑐(𝑛) ≤ 1 − 2−
𝑛
2   . 

  If we suppose Grouping Method will reach this upper bound, we can get 𝑓(𝑛) = 2
𝑛+2
2 , which 

is very similar to the upper bound. This indicates if 𝑓(𝑛) grows exponently, Grouping Method 
will be a quite good manipulation in trying to solve this problem. 

2.3.8 Summarization 

  In this chapter, we first raised problem 3, and introduced two methods, Grouping Method and 
Coordinate Scheme. Then we combine these two methods and get the Coordinate-Grouping 
Scheme. The more concrete problem3* is then raised and we tried to estimate an important 
function 𝑓(𝑛) in order to study it. Finally we come back to problem 3 and gave further 
estimation to end the research. 
  The main part of this chapter is about 𝑓(𝑛). As we can see easily, there are lots of problems 
left, such as the true growth rate of 𝑓(𝑛). This function can also be generalized to, for instance, 
𝑓(𝑛,𝑚,𝑘, 𝑝), which means the maximum amount of bottles we are able to examine when we 
have 𝑛 mice, 𝑚 experiments, 𝑘 poisons among all medicines, and will be satisfied with 𝑝 
bottles of them confirmed safe.  
  Comparing Grouping Method with Coordinate Scheme again will show some surprising facts. 
If we take the estimated answer by the random program as true value, Grouping Method gives 

𝑐(10) ≥ 𝑓(10)−2
𝑓(10)

≈ 90.9% , which is a little higher in contrast to 90%, the best solution given by 

more than one dimensional Coordinate-Grouping Schemes. We can also see that if 𝑓(𝑛) grows 
exponently, Grouping Method divides bottles into 𝑓(𝑛)  groups and leaves only two of them 
hazard, while independent coordinates divides the same amount of groups since 𝑝𝑎 × 𝑝𝑏 =
𝑝𝑎+𝑏(divide 𝑎 + 𝑏 mice into 𝑎 and 𝑏 two parts and let 𝑓(𝑛) = 𝑝𝑛  ), but leaves more hazard 
groups. Hence surprisingly coordinate thought is of no use then. 
  Function 𝑐(𝑛) is really too arbitrary to have a certain value, and estimation made in the 
previous section also ignored too much complexity. All of them need improvements somehow. 
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3. Conclusion 

  After all those three generalizations, our long journey comes to a temporary end. As a review, 
we began with the easiest problem 1 and had an insight into the Radix Scheme by changing one 
number to variable at a time. This problem was solved completely after proving Theorem 1. A 
restriction was added to reach problem 2, and a new solution, Chart-Filling Method was created. 
This was also settled as a result of Theorem 2 after a long proving trip, after which we raised 
some further problems by turning to 𝑛 dimensions. Moreover, we considered the seemingly 
easy problem 3, compared and combined two schemes, Grouping Method and Coordinate 
Scheme, to give a not very satisfying answer. The more concrete problem 3* was raised 
accordingly, and different functions were studied. Finally, that series of problems was ended 
with some nontrivial theorems and arithmetics as well as a lot more conjectures.  

Notice that the concept of ‘status’ is considered a thread of the whole passage, and our study 
can also be taken as studies of this concept. In the first part, our scheme considered all statuses 
available as well as developed further notation using radix representation. In the second part, a 
function of status, namely the amount of digit 1 in a status, was considered and a statistic 
accordingly was studied to show the structure of a set of statuses instead of all. Finally we 
introduced a calculation (union) of statuses, which raised other problems discussed in the third 
part. Therefore the three topics are related by means of ‘status’. 
  Though these problems appear to be only puzzles, they are of importance in some other 
areas. For instance, if we change the rule of ‘or’ to ‘xor’ in our programs of 𝑓(𝑛), we will reach 
something related to linear block codes which can correct two digits. 

It is quite amazing that we have thought so much from such a simple ‘mice and the poison’ 
problem. In fact, there is a big fortune hidden behind uncomplicated facts waiting to be 
discovered. We not only obtained knowledge and skills but also experienced the charisma of 
math and enjoyment in researching after this wonderful peregrinate of mathematics. 
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Appendix I Source Code of Search Algorithm in C++ 

Input 𝑛 first and this program will give 𝑓(𝑛) and one corresponding solution in ‘result.txt’. 
 
#include <iostream> 
#include <fstream> 
 
using namespace std; 
 
ifstream fin; 
ofstream fout,flog;                 // 'f': flag array, f[i] is true if i is 
bool f[1048576];                    // the bitwise or of some d[j] and d[k] 
int d[1000],n,ans;                  // 'd': the current scheme 
 
void print(){                       // output the current solution to file 
  int i,j; 
  fout.open("result.txt"); 
  fout << n << ' ' << ans << endl; 
  for (i=0;i<ans;i++){ 
    for (j=n-1;j>=0;j--) 
      fout << (d[i]>>j)%2; 
    fout << endl; 
  } 
  fout.close(); 
} 
 
int add(int x,int z){               // decides if status x can be added 
  int i;                            // and add it if so 
  for (i=0;i<z;i++) 
    if (f[x|d[i]]) 
      return i; 
    else 
      f[x|d[i]]=true; 
  return z; 
} 
 
void remove(int x,int p){           // deletes status x 
  for (p--;p>=0;p--) 
    f[x|d[p]]=false; 
} 
 
void search(int k,int lim,int mask){ 
                                    // 'k' is the current depth 
                                    // 'lim' is for maintaining the lexicographic 
                                    // order of rows and 'mask' for columns 
  int i,j,t; 
  if (k>ans){ 
    ans=k; 
    print(); 
  } 
  for (i=lim;i<1<<n;i++) 
    if ((((i | ~ (i >> 1)) | mask) & ((1 << (n-1))-1)) == ((1 << (n-1))-1)){ 
                                    // a complex bitwise operation 
      t=add(i,k);                   // try and add 
      if (t==k){ 
        d[k]=i; 
        search(k+1,i+1,mask | i ^ (i >> 1)); 
                                    // recursive call 
      } 
      remove(i,t);                  // delete 
    } 
} 
 
int main(){ 
  cin >> n; 
  ans=0; 
  search(0,0,0); 
  return 0; 
} 
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Appendix II Source Code of Random Construction in Free Pascal 

  This program should also have been in C++, but we are not quite familiar with the random 
number generator in it, so we use Free Pascal instead. 
  Parameters, namely n, tle, dl, bk, and zz, should be inputted in advance in ‘config.txt’, and the 
results are given in a file called ‘result.txt’. 

tle: the standard time which we uses for deciding whether we are in trouble and should give 
up the existing scheme 
  dl: the maximum amount of 1’s in one status 
  bk: how many statuses will be deleted at a time 
  zz: total times the program will run 

The names for them are the same with those in our program. 
 
var 
  f,f2:array[0..4194304]of boolean; 
  q:array[1..4194304]of longint;                    // store numbers that contains less '1' 
  d:array[1..10000]of longint; 
  n,i,j,t,z,h,ans,mt,ct,fc,s,bk,dl,zz,zt,tle:longint; 
  fi,fo:text; 
 
function count1(x:longint):longint;     // count the number of '1's in binary representation of x 
  begin 
    x:=(x and $55555555)+((x shr 1) and $55555555); 
    x:=(x and $33333333)+((x shr 2) and $33333333); 
    x:=(x and $0F0F0F0F)+((x shr 4) and $0F0F0F0F); 
    x:=(x and $00FF00FF)+((x shr 8) and $00FF00FF); 
    x:=(x and $0000FFFF)+(x shr 16); 
    exit(x); 
  end; 
 
function check(m:longint):boolean;                   // decides if status m can be added 
  var 
    i,j:longint; 
  begin 
    for i:=1 to z do begin 
      if f[m or d[i]] then begin 
        for j:=1 to i-1 do 
          f[m or d[j]]:=false; 
        exit(false); 
      end 
      else f[m or d[i]]:=true; 
    end; 
    for i:=1 to z do 
      f[m or d[i]]:=false; 
    exit(true); 
  end; 
 
procedure add(m:longint);                                // adds m 
  var 
    i:longint; 
  begin 
    for i:=1 to z do 
      f[m or d[i]]:=true; 
    inc(z); 
    d[z]:=m; 
  end; 
 
procedure delete(p:longint);                             // deletes m 
  var 
    i:longint; 
  begin 
    t:=d[p]; 
    d[p]:=d[z]; 
    d[z]:=t; 
    for i:=1 to z-1 do 
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      f[d[z] or d[i]]:=false; 
    dec(z); 
  end; 
 
begin 
  randomize; 
  assign(fi,'config.txt'); 
  reset(fi); 
  readln(fi,n); 
  readln(fi,tle);        // tle: the predetermined upper limit for timer 
  readln(fi,dl);        // dl: limit of number of '1's 
  readln(fi,bk);       // bk: how many statuses will be deleted at a time 
  readln(fi,zz);       // zz: total times the program will run 
  close(fi); 
  ans:=0; 
  s:=0; 
  for i:=0 to (1 shl n)-1 do 
    if count1(i)<=dl then begin 
      inc(s); 
      q[s]:=i; 
    end; 
  for zt:=1 to zz do begin 
    fillchar(f,1 shl n,0); 
    fillchar(f2,1 shl n,0); 
    z:=0; 
    mt:=0; 
    fc:=0; 
    while true do begin 
      ct:=0; 
      for i:=1 to s do                                   // pick a random one to add 
        if not f2[q[i]] then if check(q[i]) then begin 
          inc(ct); 
          if random(ct)=0 then h:=q[i]; 
        end 
        else f2[q[i]]:=true; 
      if ct=0 then begin                                 // failed to add, delete 
        for j:=1 to bk do 
          if z<>0 then delete(1+random(z)); 
        fillchar(f2,1 shl n,0); 
      end 
      else add(h); 
      if z>mt then begin                             // solution improved, reset timer 
        mt:=z; 
        fc:=0; 
      end 
      else begin                                         // set timer 
        inc(fc); 
        if fc>=tle then break;                           // time out! 
      end; 
    end; 
    if z>ans then begin                                  // output 
      ans:=z; 
      assign(fo,'result.txt'); 
      rewrite(fo); 
      writeln(fo,n,' ',z); 
      for i:=1 to z do begin 
        for j:=0 to n-1 do 
          if odd(d[i] shr j) then write(fo,1) 
          else write(fo,0); 
        writeln(fo); 
      end; 
      close(fo); 
    end; 
  end; 
end. 
  

N14

Page - 213



Appendix III Time data for Random Program 

Computer environment (The same computer is used to achieve results in the search program): 
AMD Phenom 8750 2.41GHz 
1.00GB RAM 
Microsoft Windows XP SP3 

  For this program, the longer you run, the larger chance there is for you to get a better result. 
Also, the process is random, so it is meaningless to talk about total run time or the answer 
produced by a specific run. Therefore we'll present the data of the average answer given by the 
program and average time used for each run in order to show the average ability of our 
program.  

tle: the standard time which we uses for deciding whether we are in trouble and should give 
up the existing scheme 
  dl: the maximum amount of 1’s in one status 
  bk here is fixed at 3, so it is omitted. 
 
 
 
 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

n=11 

tle dl ans time(s)

 
100 

11 20.42 0.0135 
5 20.62 0.0062 
4 22.17 0.0038 

200 

11 20.66 0.0231 
5 20.8 0.0109 
4 22.5 0.0066 

500 

11 21 0.0495 
5 21.04 0.024 
4 23.21 0.0149 

1000 

11 21.17 0.0908 
5 21.21 0.0459 
4 23.57 0.0285 

2000 

11 21.2 0.1754 
5 21.18 0.0885 
4 23.73 0.0543 

n=9 

tle dl ans time(s)

 
100 

9 11.09 0.00269 

4 11.48 0.00131 

3 11.98 0.00081 

200 

9 11.18 0.00466 

4 11.46 0.00235 

3 11.97 0.00148 

500 

9 11.27 0.00995 

4 11.47 0.00524 

3 12.14 0.00334 

1000 

9 11.34 0.01808 

4 11.56 0.00983 

3 12.25 0.00622 

2000 

9 11.46 0.03451 

4 11.67 0.01955 

3 12.32 0.0112 

n=10 

tle dl ans time(s)

 
100 

10 15.09 0.00577 

5 15.17 0.00348 

4 15.96 0.00217 

200 

10 15.23 0.00993 

5 15.27 0.00615 

4 15.99 0.00372 

500 

10 15.41 0.02105 

5 15.49 0.01372 

4 16.1 0.00835 

1000 

10 15.59 0.03905 

5 15.6 0.02541 

4 16.18 0.01597 

2000 

10 15.66 0.07362 

5 15.76 0.04844 

4 16.22 0.02938 
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n=12 

tle dl ans time(s)

 
100 

12 26.64 0.0319 
6 26.59 0.0183 
4 30.59 0.0069 

200 

12 27.3 0.0548 
6 27.25 0.0334 
4 32.6 0.0126 

500 

12 28.12 0.12 
6 28.1 0.0744 
4 35.55 0.0285 

1000 

12 28.98 0.2265 
6 28.68 0.1375 
4 37.32 0.0502 

2000 

12 30.05 0.4421 
6 30.01 0.2739 
4 38.75 0.0872 

n=13 

tle dl ans time(s)

 
100 

13 34.07 0.0739 
6 34.68 0.0347 
4 41.18 0.0126 

200 

13 35.21 0.1302 
6 35.3 0.0596 
4 44 0.0227 

500 

13 35.87 0.2762 
6 35.95 0.1313 
4 46.45 0.0433 

1000 

13 36.38 0.4934 
6 36.28 0.2349 
4 47.01 0.0703 

2000 

13 36.59 0.9179 
6 36.5 0.4312 
4 47.29 0.119 

n=14 

tle dl ans time(s)

 
200 

7 45.41 0.1884 

4 56.72 0.0368 

500 
7 46.54 0.4113 

4 58.94 0.0685 

1000 
7 46.86 0.7305 

4 59.58 0.1054 

2000 
7 46.9 1.302 

4 59.73 0.1774 

n=15 
tle dl ans time(s)

 200 
7 58.41 0.374 

4 71.03 0.0584 

500 
7 59.98 0.8206 

4 73.31 0.1035 

1000 
7 60.71 1.4462 

4 73.98 0.1668 

2000 
7 60.86 2.5917 

4 74.54 0.2725 

n=16 
tle dl ans time(s)

 500 
8 76.28 2.614 

4 89.72 0.168 

1000 
8 77.83 4.545 

4 90.51 0.26 

2000 
8 78.36 8.196 

4 91.22 0.427 

n=17 
tle dl ans time(s)

 500 
8 97.72 5.874 

4 108.48 0.261 

1000 
8 98.79 9.73 

4 109.88 0.408 

2000 
8 100.59 18.097 

4 110.59 0.664 

n=18 
tle dl ans time(s)

 1000 
9 125.77 34.95 

4 131.34 0.65 

2000 
9 128.07 62.54 

4 132 0.955 

n=19 
tle dl ans time(s)

 1000 
9 158.8 77.45 

6 167.72 9.28 

2000 
9 161.9 156.73 

6 168.3 15.272 

n=20 
tle dl ans time(s)

 1000 
10 198.6 250.42 

7 210.9 39.06 

2000 
10 204.6 462.32 

7 213.4 67.69 
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Appendix IV Corresponding Solutions for Quantitative Analysis of 𝒇(𝒏)  

 
 
n =1 

2 
 

0 
 
1 

   
 
 

n =2 
3 

 
00 

 
01 

 
10 

  
 
 

n =3 
4 

 
000 

 
001 

 
010 

 
100 

 
 
 

n =4 
5 

 
0000 

 
0001 

 
0010 

 
0100 

 
1000 

 
 

n =5 
6 

00000 
10000 

00001 00010 00100 01000 
 
 

n =6 
8 

000000 
000011 

001100 
010101 

011010 
100110 

101001 
 
 

110000 

n =7 
10 

0000000 
0000011 

0000101 
0001001 

0010010 
0100100 

0111000 
1001000 

1010100 
1100010 

 
 

n =8 
13 

00000000 
00000011 
00001100 

00010101 
00100110 
00111000 

01001001 
01010010 
01100000 

10001010 
10010000 

 
 

11000100 
10100001 

 
n =9 
17 

100000011 
011000110 
000110011 
000101001 

101010010 
000010101 
010010000 
000001100 

100011000 
001100000 
011011000 

 
 

010110100 
101000100 
011000001 

 

110100000 
000000010 
010101010 

 
n =10 

 
22 

0001000111 
1010010100 
0100001110 
1101000100 
0010011010 

1010000001 
0010001101 
0000100101 
0100100010 
0000001000 

1000000010 
0100000001 
1001100000 
0010100110 

 
 

0001000100 
1001001001 
0010110000 
0100010000 

0101101000 
1001010010 
1000111000 
0111000010 

 

 
n =11 

 
31 

11010001000 
11001000001 
00001001101 
11000110000 
01000010110 
10010010001 
01101000010 

 

10101001000 
01100000101 
00000110101 
00011001010 
10110000100 
10000101100 

10001100010 
00010101001 
00100011100 
00001010011 
01100101000 
00000100000 

01001011000 
10100010010 
01110010000 
00100001011 
10000000111 
01010000011 

00000111010 
00111100000 
01001100100 
10100100001 
00010100110 
00011010100 

 

 
 

n =12 
 

46 

000000111010 
000101100100 
000100101001 
100000100110 
100110000100 
001110001000 
010001000101 
000001001110 
110100001000 
101000011000 

000011001001 
000101011000 
000111000010 
100100010010 
010110000001 
110000000011 
000010011100 
011000001010 
111000000100 

001000110100 
100010001010 
101001000010 
100101000001 
100000110001 
010000011001 
000001100011 
000010100101 
010100100010 

 
 

010010000110 
001011000100 
001010100010 
101100100000 
011000100001 
000000010000 
101010000001 
001001101000 
100001010100 

000110110000 
011010010000 
001001010001 
100000001101 
010000101100 
011101000000 
010001010010 
000010010011 
010100010100 

 
 

n =13 
 

54 

1000000100011 
1000110000001 
1000100101000 
1110000000001 
0100000101010 
0011010100000 
0001011000100 
0000110001100 
0010100000011 
0000101001010 
1000010011000 

1010100000100 
0001000001110 
0001000111000 
1001101000000 
0101000100001 
0100011000001 
0011100001000 
0110000011000 
0100100001001 
0110010000100 
0010010001010 

0011000000101 
0000100010110 
0001010000011 
1100000001100 
1000001010100 
1001000100100 
0000011101000 
0000010010101 
0001100100010 
0000000000100 
1001000001001 

0000101000101 
0100000110100 
0001100010001 
0010000110001 
0101001001000 
0000010110010 
0000001011001 
1100001000010 
0101010010000 
1100100010000 
0101100000100 

 

0010000100110 
0100110000010 
0010001010010 
0010110010000 
0100000000111 
1001000010010 
1100010100000 
0000101110000 
1000010000110 
0110100100000 
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n =14 
 

67 

10000000010101 
00100001010001 
00101000001010 
10000000001011 
00001110000010 
11010010000000 
00001010010100 
01000000000111 
01000101001000 
00010000101001 
10000001100001 
00100101000010 
10000010010010 
00010110001000 

10000000111000 
01000001100100 
00000010000000 
00001000010011 
00000001010110 
01001100000001 
00000000101110 
00001100100100 
10110000001000 
00010100000011 
00000011101000 
00000111010000 
01001001000010 
00001100011000 

00110001100000 
00011001001000 
10001000100010 
01000100100010 
10010100100000 
00100100001001 
00000110000101 
10101000010000 
10000010100100 
00010011000100 
11100000100000 
10011000000001 
01000000011100 

 
 

00011000000110 
00100000110100 
00000011000011 
00000001001101 
00011000110000 
00100110100000 
10100010000001 
01001000101000 
01010001000001 
11001000000100 
10001101000000 
10100000000110 
00101001000100 

00010000011010 
00100010011000 
01010100010000 
01000010001010 
01100011000000 
10010001010000 
01111000000000 
01000010110000 
00101000100001 
00110000000101 
00010010100010 
10000100001100 
01100100000100 

 
 

n = 
15 
 

83 

100010011000000 
100000101000010 
010010001000010 
000100000000111 
100100001001000 
010001000000101 
001000000011010 
000110001000001 
000101001000010 
001010001000100 
010000010100010 
000000001100011 
100000010100100 
011011000000000 
000101010000100 
000010000001101 
001100100000100 

000110000100100 
100100000110000 
011000000000011 
000011000000110 
100001100000100 
000000011101000 
001100010000001 
001001101000000 
000010001011000 
010001001100000 
000100101100000 
000100000101010 
001001000100010 
001000000100101 
000000100001110 
000011100010000 
000001010001010 

010010010010000 
000001100000011 
000010110001000 
100100010000010 
100001000100001 
110000000010100 
000000100110010 
000100000011100 
110001000000010 
110000010000001 
001000011000010 
000000000100000 
101000010010000 
010000101000001 
011100000100000 
000000010011001 
100010100000001 

000010010000011 
001010000010001 
101000000001100 
000001010110000 
100000100011000 
010100000001001 
000000001110100 
100010000100010 
100001001010000 
000000110100001 
000101100001000 
000001001001001 
010100001000100 
010000000110001 
000000111000100 
101000100100000 

000011000101000 
011000001001000 
101000001000001 
010010100000100 
011000110000000 
100000000001011 
001010010100000 
000110100000010 
010001000011000 
001101000010000 
000100110010000 
010100000010010 
000000010010110 
110110000000000 
110000000101000 
001110000001000 

 
 
 
 

n =16 
 

100 

0010000000111000 
0000011000110000 
0001010010000010 
0000011001001000 
0000100101100000 
1001010000000001 
0100110000100000 
1010010000010000 
1100010000001000 
1100000000100001 
0001100110000000 
0111000000000010 
0010100100010000 
0001010001100000 
0000000010010011 
1000001110000000 
0000110100001000 
1001000100000100 
0101000000110000 
0000101010001000 

0010100001000010 
0100001100000100 
0010001000001001 
0001011100000000 
0110010000000100 
0011110000000000 
0000001000100011 
1000001000010100 
0001000001000011 
1000010000100010 
0100100100000010 
1001000000010010 
1100000001000010 
0010010010001000 
0100100001001000 
0010000001001100 
1001001000100000 
1000010011000000 
0000001011000010 
0001000011001000 

0101001000001000 
0010010100000010 
1001100001000000 
0000001100101000 
0000101100000001 
1100101000000000 
0001000010000101 
0100010110000000 
0000000100000000 
1110000100000000 
1000000100000011 
0001000100100001 
1010001001000000 
0110100010000000 
0011001000000100 
0100000010010100 
0000000110100010 
0000000100011100 
0001010000011000 
0100000000100110 

0000001101010000 
0010000000100101 
0110001000010000 
1000000010001100 
0001100000101000 
0100010001000001 
1000100000000110 
0100001010000001 
0010000001010001 
1010100000001000 
1000000001011000 
0100000100001001 
0000010010100001 
0000000011110000 
0101000101000000 
0001101000000010 
0001000001010100 
0000001001100100 
0010101000100000 
0010000110000001 

 

0100000010101000 
0100010000010010 
0001000100001010 
0000011000000110 
1000100010100000 
1000000100110000 
0110000001100000 
0000110010010000 
0000000101000110 
0000000000001111 
1000001000001010 
1011000010000000 
0000100000011010 
0000010100010001 
0000100001000101 
0000100000110100 
0010000010000110 
0101100000000001 
0001001010010000 
1000100000010001 

 
 
 
 
 

n =17 
 

119 

01000011001000000 
00100100100000001 
00000001010100010 
00001010010000010 
00110000001000001 
01000000101010000 
00001000001001100 
00000011010010000 
00001010100100000 
01010001000000001 
11010000000000010 
00000000010101100 
00010100000011000 
01000110000000010 
01000000000101001 
00010000100001100 
10000001100000001 
00000101101000000 
00000100010110000 
01001000000010010 
01010010000001000 
01010100001000000 
00000100001010100 
00010100010000100 

00101001010000000 
10010000010000001 
10110000000001000 
00000011000101000 
00000010100010010 
00000010010001001 
00000000111000100 
11000000001000001 
00100010000001010 
00000001001000011 
00000000010010011 
00000100000100110 
00100001000110000 
10001011000000000 
00010000100010001 
10000100000000011 
10000000000011010 
01000000100000011 
01100000001100000 
00001110000001000 
00010000001101000 
00100101000000100 
00000010000100011 
00010000001000110 

00000001000011100 
00111000000100000 
00001000010010100 
00000001000100101 
00000010000010101 
00010110000000001 
01000000000001110 
00010010101000000 
01000000000110100 
00101010000000100 
00011000000000101 
01100010010000000 
00100000010100001 
10000000000001101 
01001001000100000 
00101000000000011 
00001000011000001 
11000100000000100 
10000000011100000 
00001100110000000 
01000100100001000 
10000000101001000 
00010000000110010 
10001100000010000 

00100110000010000 
11000000010001000 
11000010000010000 
10100010000100000 
10000000100110000 
10000010001000100 
00001000001110000 
00010010010100000 
00000100001001010 
00000100001100001 
00001000000000000 
01100001000000010 
00000110011000000 
10011000100000000 
01101100000000000 
00000101000010001 
01001010000000001 
01000100010000001 
00110011000000000 
10000110100000000 
01000000110100000 
00100100000101000 
01010000010010000 
00011000010001000 

00101000101000000 
10001000000100010 
00001001100010000 
00010101000000010 
00110000010000010 
00100001100001000 
00010001001010000 
01110000000000100 
10000101000100000 
10100000010000100 
00001000100001010 
10100000001000010 
00000011100000100 
00100000100100010 
00100000000010110 
00000010001011000 
01000001010000100 
00001000000011001 
00001001000000110 
10010001000000100 
10100000000010001 
00010100100100000 
00000000110011000 
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n =18 
 

126 

 
 

000101010001110101 
010000101100100110 
100001101100000101 
000100011000010010 
000110000001101110 
101110100011100000 
101000110001101000 
000011100000100101 
010101000101000110 
000100110011000010 
000001000001000111 
100111000000100011 

 
000000101010000011 
010010100100011000 
100110010000011000 
000001101000010000 
111001001000000011 
010110000110000000 
100010010010000110 

 
000000000100000000 
100010101010010010 
001100000000011101 
011000100010000111 
101001000110001010 
010000001010011110 
100101000010000000 

 
 

000000110100111100 
000101110001011000 
011001001000111000 
110001100001000000 
100001010001101100 
010011001001001001 
100000110100010001 
101100001100110001 
100001100010100100 
000011000101110000 
011001000011100001 
100000000111001100 

 
000001011101010001 
001101100010100001 
010000010001111010 
101001010000000101 
000100001011001110 
100001010100000010 
000010000010011100 

 
110001010010001000 
010000001000001000 
101010100110001000 
010001110000000110 
100001001001011010 
001011000000011010 

 
 
 

 
 

000000101011101000 
001001000100100110 
101000001011010100 
000110011100000001 
011111010000000100 
000001110010001001 
011010010000001110 
100110010001100001 
001001011100001100 
011101000001001000 
010010011001010100 
000101000110001101 

 
001100001101000001 
001000010010100100 
011000100011011010 
110001010100110001 
001111001000000110 
001011111000000000 
000010010000000101 

 
001100101000001010 
111100001011000000 
010010001100010001 
001010001010010001 
101000100000110110 
001000000011001011 

 

 
 

111010000101001001 
100010111000100000 
010000010111001001 
000111000110100010 
111100010000100010 
100111000100000100 
100010110001000011 
011001011010010000 
000001101000101110 
011100101010110000 
000110000000110111 
000100001100101000 

 
000001111111000000 
001111110110000000 
010000011110000100 
110101000000101100 
100010111101001000 
110100001010001100 
010000010100101101 

 
001000010001010000 
000000100111100011 
000011010010010010 
000100010101001100 
010100101000000001 
000010100100101011 

 
 

000011010000101000 
101010001000101100 
100000011110110000 
000000000100011011 
011010100001000000 
001010100100010101 
110000000001010101 
010010010011110000 
011110000000101001 
001000001001110101 
100010001111000010 
001000000110110010 

 
101100010100010100 
010110100000001010 
100000001010001001 
010000010010000011 
001100110100000011 
000010100101000110 
011010010100100000 

 
000011001001100010 
000100100110010100 
100100100000110001 
010100000000110000 
100000001000110111 
110000100100101000 

 

 
 
 
 

n =19 
 

175 

 
 
 

0110001000000001100 
0010100011010000001 
0101101000010010000 
1000100011100000010 
1000000000110100001 
0000100101001001001 
0010001000111000100 
0100101100000000010 

 
1010010001000000010 
1000100010100000101 
1000000110001010100 
0100001100000100100 
0110000110100000001 
0100101010100000000 

 
1010001001100010000 
1100000100110000100 
0101010010000010001 
0001000000110001010 
0000001110000011000 
0000101100000010001 

 
1010111000000001000 
0110000000001010001 
1000000101100000110 
1000001110000100000 
0011000010011000010 
0000110000100100100 
0100011001110000000 
0100100010010000011 
0100000000100010110 

 
0000000010000101110 
1011000100000100000 
0010001001010100010 
0001001100001001100 
1001000001000001100 
0000011100100001010 

 
 

 
 
 

0000100001000100011 
0001000011100000100 
0001001010000001010 
0000110100010000110 
0011110000001000000 
0011000001000110001 
0000001010001000011 
1001000100010011000 

 
0000001000101110001 
0010000010011011000 
1110000111000000000 
0001001000101000010 
0000000010100011101 
0000010000000111010 

 
0100000011010011000 
0001010000100010100 
0011100000000001110 
0000010001101010010 
0100000010001010010 
0001000100000101011 

 
1000010101000011000 
0110000001000100101 
1001101000000101000 
0000001011010000100 
0000000111100010001 
0000001100011110000 
0000101010000110100 
0000000110111000000 
0101101000000000101 

 
0001100110100100000 
1010100001010010000 
0110010100000001000 
0011000000101000101 
0100011010000000110 
1000000000001011101 

 
 

 
 
 

0100000000011100010 
0000110010001001010 
0010100000001100100 
0100000111000100001 
0000100001100110000 
0101000010110100000 
1001100000010100010 
0000001001000011011 

 
0100000000010001101 
0100000000010110001 
0000101101100000100 
1010000001110001000 
1000010101010100000 
0011100101000000100 

 
0000000101001100101 
0001001010001110000 
0101000100001000001 
1000110000001000110 
0001010110001100000 
0000010010110001100 

 
1100001010010000000 
1001011100100000000 
0001100010010000100 
0000001101001000110 
0000011100010001001 
1100000100000110010 
1000010010010100010 
1101001001000100000 
0000000000000001000 

 
1010000000011000000 
0010010100000010101 
1110100000100000000 
0000010010101100010 
1001000010100010000 
1011010000100001000 

 
 
 

 
 
 

1001101100001000000 
0000010100000000011 
1000010011000000001 
1111010000000000100 
0010001001001000101 
0000001000110100110 
1100001000100001010 
0100010000101001001 

 
0100000001111000100 
0101000000000100110 
0000100100100010010 
0011000011000010010 
1000000010010010110 
1000010000110010000 

 
0000001101110010000 
0110100010000001010 
0001100010001000001 
1100001000001000100 
0000100001011000010 
0001110001100000010 

 
1110001000000000011 
0100010001000001110 
0010010011001000100 
0010101000001010010 
0000010000000101101 
0001000001010100101 
0010011110010000000 
0000111001000010000 
1010011000100000001 

 
1001000000000010011 
1000011000000010101 
0100000101000000000 
0001011000011000000 
1101000000001010000 
0100110000001101000 

 

 
 
 

0000101001010001000 
0101001011001000000 
1000100111010000000 
0001000101010000011 
1101100000000001001 
0000000011011100000 
1000100000001110000 
0010000000100100111 

 
0010001010100100010 
0011011001000000000 
0010000001000011100 
0100110010011000000 
0101011000000011000 
0000010001011000001 

 
1100010010000101000 
0010111000000100010 
0010100000111001000 
1000000001001101000 
1110000000010100100 
0100010100100100001 

 
0110011000010000010 
1100110000000010010 
0011000000110010001 
1000000000011011010 
0000111000010100001 
0111000001100001000 
0100100100001011000 
0000010100101000101 
0000001001100101000 

 
0000101000001101001 
0110100010000010100 
0001100011000101000 
0010000100001001010 
1100110000001000001 
1000001100010000101 
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n =20 
 
 
 

220 
 
 

 
 
01000100000010110001 
10100110100000000011 
00010100111000100100 
00011010110000000010 
00100010000110001101 
00100001100100000101 
00000011000110000110 
11100101001000000000 
01010000110101100000 
00000011000001010101 
00000110011000010100 
10000001101101000001 
 
00010000100101010110 
10000010101011010000 
00000011100010110010 
01000000111010010010 
00100001010000010110 
10000110010011000000 
00000001111000010001 
00110100001001000001 
00110100010000000101 
00101010010101000000 
 
01100010000010100100 
00110001000101000000 
11101001000010010000 
10011101000000010010 
01000000001001000101 
00001101001001101000 
00010110000000110011 
01011010010000001001 
11000010001010000010 
10000000010110010011 
01000001000011010010 
 
10000000101000011011 
00000011111000001010 
10100001000001011100 
10110000100011000000 
01000000011000100011 
00010101100100000010 
10100000010110101000 
01011001001000000100 
00000100011110000110 
00000101010110000000 
01100110010100000001 
 
 

 
 
01001000011111000000 
01101000001000110000 
11100000110000000100 
00001001000011011000 
00001100100101001001 
01000010101000100110 
00010000011100001101 
10010111100000000000 
00001000010110011000 
00101000010010000101 
10000010110100000000 
10101000010001100100 
 
01101110000000000010 
10110100110100000000 
00010110000101000011 
00000111000101100001 
01100001000100111000 
11001100010100000010 
01010001100000110000 
00001001010100110100 
10001111000010100000 
10010000011000110000 
 
11000101000001000110 
10100010011000000001 
11000100101000100000 
11100000001000101001 
00100000001010110011 
10011110001000000000 
10001001001100010010 
00110001010010100000 
11000000000000010000 
00010001000011100001 
00011000001110110000 
 
00001100000011100101 
00000000000001000000 
10010010000010000011 
10000000010010110100 
00100010100001000110 
11010000000101000001 
10001000000101010101 
10001000100100100000 
00100101011000000011 
01100000000110000011 
11000100011000001100 
 
 

 
 
01000100100011001100 
11110010010000000010 
11010100010110000000 
01011000101100001000 
01100011000000001100 
10001001000010001110 
00100100001010101000 
01100000010001101010 
10010010000010101000 
01101000001010001100 
10010100101010000010 
10100100000000110010 
 
00011011000100001010 
00100010000100010001 
01111001000000000001 
01011101100001000000 
01000100000000101110 
01001110000110010000 
00000000000000001101 
00001101100010000100 
01000001011010001000 
00100100101000010100 
 
01010010100000011000 
00100000001111010100 
00010000100010010001 
00010000000101101110 
01110100000001010000 
01000110100000000101 
11000011000011000100 
00010011101001000000 
00011100010001001000 
00110000100110100000 
00000000110011110000 
 
00000100110010001000 
00100010001011000011 
00101011000000100011 
00101011001000010100 
10000000100110011000 
01000100001111010000 
00100101000000100100 
01010000100010100100 
01110000100000001101 
00000010011001101001 
00001000001010001011 

 
 
10010001000000011001 
10000100000100111001 
10010000010000011110 
00101001011001000000 
00001010100010001000 
00011100101000010001 
01000010010100110000 
00011001100000101001 
00000000110110100011 
00001001110011000010 
00000001001100110101 
10100001011100001000 
 
00000001000100101010 
01001010111000000100 
10010101000100000100 
01010010001100101000 
00100111000000011000 
00010001010100000001 
10110000000001001011 
10001101011000000000 
00000000001011100110 
10000001010001100010 
 
00001100000100100100 
00100110000100010110 
10100001000010100101 
11000001000100001001 
00010100001000100010 
10000001001010010001 
11001000011010100000 
00000110010100101010 
01110000000011001000 
00010010110001100100 
10000110000001001001 
 
10100010101000001100 
01100000101100000010 
10010011000100100000 
00000100100001011010 
00010000010011000111 
10101000100010000010 
00010011001000001011 
00101000000001010011 
00010100010010010010 
00010010001001011000 
00100100000111100100 
 

 
 
01000000110100010101 
00110000000000101100 
00110000000010000110 
01001010000001101000 
10001000001000000100 
00101100100001100000 
10110010000000110100 
00001100000011000010 
01001001100101010000 
00100000010001011000 
00100101000011001001 
10001011100000000101 
 
11000000100001100010 
00011010010010000100 
00110000111000001010 
10000010000101001100 
10110001001000000010 
00000010011101010010 
00000010000000111010 
00010000011011010001 
00011100000000111100 
00001000000110101001 
 
01101000100000011000 
00001010001010100101 
10001011010000001000 
01010101010000100000 
11100011100100000000 
01001000100100000111 
10100000001001110000 
01010000000000010111 
01001101001000001001 
01001010001100000010 
00101010000010011010 
 
11001000010100000101 
00101100010000001110 
00001000100000110110 
01000001010000011101 
01100001100001010001 
11111100000000100000 
00100000110000101001 
10010000100001101001 
01000010010010010101 
10010100000001110100 
00011010100101000001 
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