
 

 

 

 

 Generalization of the Topological Sum 

 

 

 

 

 

Student：       Ming Chen Xia                           

 

School：    Anshan No.1 Middle School                     

 

Province：         Liaoning                             

 

Teacher：       Ji Hong Zhang                  

 
 

 

 

 

 

 

 

 

 

 

N17

Page - 220



 

 

 

Abstract: 

In topology, a number of theorems have the following form: A, B are two 

subspaces of X. A, B satisfy certain conditions, and then X has a certain 

property. This paper aims to study the general method of dealing with such 

problems. We will generalize the concept of topological sum to achieve this 

goal. 
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Generalization of the Topological Sum 
Note: The regularity axiom and normality axiom in this paper are both 

stronger than the Hausdorff axiom. 

First we show the definition of topological sum in reference 【2】: 

Suppose { } IXα α∈ is a family of disjoint spaces....    We define a topology on the We define a topology on the We define a topology on the We define a topology on the 

setsetsetset

I

X Xα
α∈

= U as follows: X’s subset O is an open set iff Iα∀ ∈ , O Xα∩  is an open set of 

Xα ....SpaceSpaceSpaceSpace X given such a topology is called the topological sum of{ } IXα α∈ ....    

     Easy to see, this definition has the following deficiencies: the family of spaces is 

required to be disjoint, which limits most of its applications; more than one nonempty 

spaces’ sum is not connected. 

We start the generalization with a lemma. 

Lemma 1：：：：{ } IXα α∈  is a family of topological spaces meeting the following 

conditions: 

a. Iα∀ ∈ , only finite Iβ ∈  exist, such that X Xα β∩ ≠ ∅ . 

b. Iα β∀ ∈， , X Xα β∩ is closed in Xα , and the induced topologies 

from Xα and X β  are the same. 

Then there exists a unique topology on the set X
I

Xα
α∈

= U , such that 

a.a.a.a. Iα∀ ∈ , Xα  is a closed subspace of X. 

b.b.b.b. { } IXα α∈  is locally finite. 

Proof：We define a topology on X ：A is a closed set of X iff Iα∀ ∈ , X Aα ∩  is a 

closed set of Xα . Trivial calculation shows it’s really a topology. According to condition (a) and 

(b), a subset of X, called A, is closed iff it can be represented as
I

Aα
α∈
U , in which Aα  is 

closed in Xα . 

Conclusion (a) is obvious. We’ll verify (b): Suppose x Xα∈ , let N  be the union of 

spaces disjoint with Xα , U X N= − , according to condition (a), U has nonempty 
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intersection with only finite spaces in this family. 

The verification of the uniqueness is given as follows：Let Y and Z be the set X with 

two topologies meeting conclusions (a) and (b), clearly :id X Xα α→ is continuous. 

According to conclusion (b), the identical map on X, :id Y Z→  is continuous. 

Similarly
1 :id Z Y− →  is also continuous, so id is a homeomorphism between Y and Z. 

Thus the two topologies are in fact equal.                            █ 

Note 1: Condition (b) can also be found on wikipedia. 

Note 2: The topology we just construct can also be treated as the 

quotient space of{ } IXα α∈ ’s disjoint union (with the topology given by the 

topological sum in the narrow sense). 

As a result, we can easily generalize the topological sum. 

 

Definition 1(Compatibility): A family of spaces { } IXα α∈  meeting the conditions 

(a) and (b) in Lemma 1 is called to be compatible. 

 

Definition 2(Topological Sum):{ } IXα α∈  is a compatible family of spaces,we call 

the set
I

X Xα
α∈

= U  given the topology meeting the conclusions (a) and (b) in 

Lemma 1 the topological sum(or sum for short) of { } IXα α∈ .We write it 

as
I

X Xαα∈
= ⊕ .In particular, when I is finite( {1,2,…………,n} for example））））, we also 

write 1 nX X X= ⊕ ⊕… .The family{ } IXα α∈  is called a topological division of X. 

Obviously, this is the generalization of the concept given earlier. 

 

We first give two basic properties. 

Lemma 2: The sum of a compatible family of finite spaces can be put on brackets 

arbitrarily. Or rather, if
1,2,3{ }i iX = is compatible,

1 2 3 1 2 3( ) ( )X X X X X X⊕ ⊕ = ⊕ ⊕ . 

Lemma 3:{ } IXα α∈ is compatible. ,I J K J K= ∪ ∩ = ∅ , then 

( ) ( )
I J K
X X Xα α αα α α∈ ∈ ∈

⊕ = ⊕ ⊕ ⊕ . 

They are immediate corollaries from the uniqueness in Lemma 1. 

From now on, we always assume that{ } IXα α∈  is a given compatible family of 

topological spaces and
I

X Xαα∈
= ⊕  without special declaration. We always omit the 
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index range (default is I) when it won’t lead to confusion. For example, the former 

formula can be rewritten as X Xα= ⊕ . We point out that our notation is in fact flawed. 

After all the sum depends on the topology on Xα .However, in this paper, they won’t 

cause ambiguity, so we’ll continue using this notation. In addition, we call one 

problem regional, if it involves spaces’ sum. 

 

We’ll use the topological sum in this way: When we’re dealing with a problem 

about a space X, we represent it by the sum of some subspaces, and the properties on 

X can always become stronger on the subspaces. After dealing with them regionally, 

we can translate the result into the properties of the space X. 

To this aim, we’ll study some theorems on the relationship between X and 

{ }Xα . 

1、、、、 Basic concepts 

Lemma 4(Closed set): 

(a) A is closed in X iff A Aα=U , in which α∀ , Aα  is closed in Xα . 

(b) A is closed in X iff α∀ , X Aα ∩  is closed in Xα . 

Lemma 5(Open set): U is open in X iff α∀ , U Xα∩ is open in Xα . 

They are trivial from the topological construction of X. 

Corollary 1: I={1,2}, then 1 2X X−  is open in X. 

Though it can be proved trivially, this corollary shows the importance of the first 

half of condition (b) in Lemma 1, which will become clearer when we are dealing 

with the Hausdorff axiom later. 

Lemma 6(Subspace): Y X⊂ , then { }X Yα ∩  is compatible, ( )Y X Yα= ⊕ ∩ . 

In the next lemma α  and β  don’t have to be taken from the same set of 

indices. 

Lemma 7(Product space):{ }Xα  and { }Yβ are both compatible, then{ }X Yα β×  is 

compatible, ( )X Y X Yα β α β⊕ × = ⊕ ×⊕ . 

These two lemmas are also trivial corollaries of the uniqueness of topological 

sum. 

Lemma 8(Continuous function): :f X Y→ is continuous iff α∀ ,
X

f
α

is 

continuous. 

Note: The case where I={1,2} is known as the pasting lemma. 
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2、、、、 Separation axioms 

Lemma 8: I={1,2}, 1 2x X X∈ − , for any neighborhood U of x in 1X .Let 

1 2( )V U X X= ∩ − , then V is open in X. 

It’s clear from Corollary 1 and Lemma 5. 

Lemma 9: x belongs to only one space in the family { }Xα , called Xα , then there 

exists a neighborhood of x in X, called U, such that β α∀ ≠ ,U X β∩ = ∅ . 

Proof: U X X β
β α≠

= − U .                                                 █ 

 

Theorem 1: X meets iT  axiom iff α∀ , Xα  meets iT .（（（（i=1,2,3）））） 

Proof：Only the proof of sufficiency with i=2 or i=3 is needed. 

Hausdorff axiom: We first consider the case where I is finite. We can assume I={1,2} 

according to Lemma 2. Suppose ,x y X∈ . 

Case 1, neither x and y belongs to  
1 2X X∩  , x and y belong different sets. Lemma 8 gives the 

result. 

Case 2, neither x and y belongs to 1 2X X∩ , x and y belong to the same set, 2X  for example. 

As a subspace of 2X , 2 1X X−  is Hausdorff. According to Corollary 1, the disjoint 

neighborhoods in 2 1X X−  are also open in X. 

Case 3, only one of x,y belongs to 1 2X X∩ , they are from the same space. Suppose 

1 2x X X∈ − , 1 2y X X∈ ∩ .Take disjoint neighborhoods of x and y in 1X , called U and V. We 

may also assume that U is also open in X according to Lemma 8. Let 1( )Z X X V= − − .Z is 

clearly to be a neighborhood of y, which is disjoint with U. 

Case 4, both x and y belong to 1 2X X∩ .Take the disjoint neighborhoods of x,y in iX , called 

iU , iV （i=1,2）.Define 

1 1 2 2( ) ( )U X X U X U= − − ∪ −
  1 1 2 2( ) ( )V X X V X V= − − ∪ −

 

Then 1 1 2 1 2 2 2 1( ( )) ( ) ( ( ))U U X X U U U X X= ∩ − ∪ ∩ ∪ ∩ − , 

1 1 2 1 2 2 2 1( ( )) ( ) ( ( ))V V X X V V V X X= ∩ − ∪ ∩ ∪ ∩ −
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We assert that U and V are disjoint. Suppose z V∈ , then 

a. 1 1 2( )z V X X∈ ∩ − . Since 1 1U V∩ = ∅ , 1 2 2 1( ) ( )X X X X− ∩ − = ∅ , so z U∉ . 

b. 2 2 1( )z V X X∈ ∩ − , the proof is similar. 

c. 1 2z V V∈ ∩ , It holds since 1 1U V∩ = ∅ , 2 2U V∩ = ∅ . 

Hence U V∩ = ∅ .X is then Hausdorff. 

The proof for the general case goes as follows. Suppose ,x y X∈ , we take their 

neighborhoods which only intersect with finite Xα .The discuss of finite index case, 

Lemma 3 and Lemma 9 give the result. 

   Regularity axiom: Suppose x X∈ , V is a neighborhood of x. Take a neighborhood W of x, 

which intersects only finite Xα , 1, nX X…,  for example. If ix X∈ ,take a neighborhood of x, 

called iU  in iX ,which fits i iU V X⊂ ∩ ,otherwise take iU = ∅ .Let 

1

( )
n

i i

i

U W X U
=

= − −U ,and then U is a neighborhood of x and U V⊂ .Considering with the 1T  

part in this theorem, the result is got.                                 ████ 

We can see that topological sum has a very good performance on 1T  axiom, 

Hausdorff axiom and regularity axiom. In the case of normal axiom, however, it 

seems to be more complicated, and I cannot give the necessary and sufficient 

conditions of it, but some sufficient ones with some kind of compact conditions will 

be obtained easily later. 

3、、、、 Covering properties 

We’ll deduce some nontrivial theorems in this section. As a result, we can get a 

method to study the properties of paracompact and locally compact spaces. 

Theorem 2: X is a paracompact and locally compact space iff X has a topological 

division X Xα= ⊕ , such that α∀ , Xα is compact. 

Proof: 

Sufficiency: Suppose that every Xα  is compact and { } KAβ β∈  is an open covering of 

X. Then for any given α ,{ } KA Xβ α β∈∩  is an open covering of Xα .We may take 

finite of them to cover Xα ,written as 1, mA A
αα α…, .Suppose spaces intersecting with 

Xα  in { }Xα  are 1, nX X…, .We may require that 1, mA A
αα α…,  also only intersect 

with 1, nX X…, (Otherwise, let iAα  minis extra Xα ).Repeat this for any Iα ∈ ,and 
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we will get a family of iAα .Suppose x X∈ ,U is a neighborhood of X that only 

intersects 1, nX X…, .Clearly U only intersects finite iAα .So the family of iAα  is 

locally finite, thus X is paracompact. Clearly U  is compact, hence X  is also 

locally compact. 

Necessity: For any x X∈ ,take a neighborhood xU  with xU  compact, then{ }x x XU ∈  

is an open covering of X .We may take its locally finite open refinement{ } JAβ β∈ .We 

assert 
J

X Aβ
β∈

= ⊕ .Clearly,{ } JAβ β∈  is compatible since the locally finite property of 

{ } JAβ β∈  implies that of { } JAβ β∈ . Aβ  is apparently closed in X. The uniqueness of 

topological sum implies the result.                                     █ 

 

Definition 3: Space X is called to be locally Lindelöf, if x X∀ ∈ , there exists a 

neighborhood U, such that U  is Lindelöf. 

Theorem 3: X is a paracompact and locally Lindelöf space iff X has a topological 

division X Xα= ⊕ , such that α∀ , Xα is Lindelöf. 

The proof is just trivial modification of Theorem 2. 

Theorem 4: X is a paracompact Hausdorff space iff every Xα  is paracompact 

and Hausdorff. 

Proof: Necessity is clear. 

Sufficiency: Suppose { } JUβ β∈  is an open covering of X, then for any given 

α ,{ } JX Uα β β∈∩  is an open covering of Xα . Let { } KAαγ γ∈  be a locally finite closed 

refinement which covers Xα (Michael’s Theorem).Repeat this for every α .We assert 

,{ } I KAαγ α γ∈ ∈  is a locally finite closed refinement of { } JUβ β∈ . 

Suppose x X∈ ,take a neighborhood U which only intersects finite Xα ,noted 

as 1, nX X…, .Take a neighborhood of  x in iX , called iU , which only intersects 

finite iAγ .Let 
1

( )
n

i i

i

W U X U
=

= − −U ,and then W only intersect finite iAγ .      █ 

Corollary 2: X is a locally Lindelöf paracompact Hausdorff space iff there exists 
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a topological division X Xα= ⊕ , such that every Xα  is a regular Lindelöf 

space. 

Theorem 5：：：：X is locally compact iff every Xα  is locally compact. 

Proof: Necessity is clear. 

Sufficiency: Suppose x X∈ ,take its neighborhood U which only intersects 

finite Xα ,noted as 1, nX X…, .Take a neighborhood of x in iX ,called iU ,such that 

iU  is compact. Let 
1

( )
n

i i

i

W U X U
=

= − −U , and then W is a neighborhood of x with a 

compact closure.                                             █ 

 

It’s clear that though the normality axiom may not keep very well under the 

topological sum, it can be kept if it’s strengthen into the paracompact Hausdorff 

condition. 

4、、、、 Metric properties 

We’ll use a lemma from reference【1】,which originally said: 

Let X be a compact Hausdorff space that is the union of the closed 

subspaces 1 2,X X .If 1 2,X X  are metrizable, X is metrizable. 

We adapt it into the following form. 

Lemma 10: 1 2{ , }X X  is a compatible family of metrizable compact spaces, and 

then 1 2X X X= ⊕  is metrizable. 

Theorem 6: X is a metrizable and locally compact space iff every Xα  is 

metrizable and locally compact. 

Proof: Necessity is clear. 

Sufficiency: According to Smirnov’s theorem, every Xα  is a paracompact Hausdorff 

space, thus X is also one. We only need to prove that X is locally metrizable. 

First we consider the finite case, we may suppose I={1,2}.Let 1X  and 2X  both be 

locally metrizable and locally compact spaces. Suppose 1 2x X X∈ ∪ , take a 

neighborhood of x in iX ,called iU ,with iU  compact and metrizable (If it doesn’t 

exist, we take it to be the empty set),then 1 2 1 2U U U U∪ = ⊕ is metrizable(Lemma 

10).Let 1 1 2 2( ) ( )W X X U X U= − − ∪ − ,clearly W is a neighborhood of x and 

N17

Page - 228



 

1 2W U U⊂ ∪ .Thus W is metrizable, and X is locally metrizable. 

The general case can be proved just as that in Theorem 1.                █ 

 

We will end this paper with the application of our method in studying a kind of 

spaces. 

Definition 4: X is called to be half-compact, if X is a paracompact and locally 

compact space. 

These are some definitions that may not be well-known: A map is called to be 

perfect if it’s a continuous closed surjection and the preimage of a single point set is 

compact. A map is called to be keeping the locally finite property of closed sets 

family(KLC for short in this paper),if the image of any locally finite closed sets 

family is locally finite. A space X is called to be compactly generated if A is open iff 

for any compact subspace C in X, A C∩ is open in C. 

Theorem 7: 

a,A space X is half-compact iff it has a topological division X Xα= ⊕ ,such that 

every Xα  is compact. 

b, :f X Y→  is perfect and X is a half-compact Hausdorff space, then Y is also 

half-compact and Hausdorff. 

c,X is a compactly generated space iff X is a quotient space of a half-compact 

space. 

Note:(c) can also be found in reference【【【【2】】】】,in which it’s claimed to be 

Gale’s work. 

Proof:(a)It’s just Theorem 2. 

(b)Clearly perfect map keeps the compact property of a space.(In fact, a surjective  and 

continuous map is OK.) 

When X is half-compact, let X Xα= ⊕  with every Xα  compact.A perfect map fits 

the KLC condition
【2】

,so the image family is also locally finite. It’s easy to 

prove the compatibility from their compact property. Also a perfect map keeps 

the Hausdorff property. 

(c)The sufficiency is trivial. 

Necessity: X is clearly homeomorphous with the quotient space of the disjoint union of X’s 

compact spaces.                                            █ 

 

This theorem just shows how we can use the topological sum. 

 

Reference： 

【1】J.R.Munkres,Topology 

【2】Shou Lin,the topologies on metric spaces and function spaces. 
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