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Abstract In this paper, we introduce multiscale persistent functions for biomolecu-
lar structure characterization. The essential idea is to combine our multiscale rigidity
functions (MRFs) with persistent homology analysis, so as to construct a series of
multiscale persistent functions, particularly multiscale persistent entropies, for struc-
ture characterization. To clarify the fundamental idea of our method, the multiscale
persistent entropy (MPE) model is discussed in great detail. Mathematically, unlike
the previous persistent entropy (Chintakunta et al. in Pattern Recognit 48(2):391–401,
2015; Merelli et al. in Entropy 17(10):6872–6892, 2015; Rucco et al. in: Proceed-
ings of ECCS 2014, Springer, pp 117–128, 2016), a special resolution parameter is
incorporated into our model. Various scales can be achieved by tuning its value. Phys-
ically, our MPE can be used in conformational entropy evaluation. More specifically,
it is found that our method incorporates in it a natural classification scheme. This
is achieved through a density filtration of an MRF built from angular distributions.
To further validate our model, a systematical comparison with the traditional entropy
evaluation model is done. It is found that our model is able to preserve the intrinsic
topological features of biomolecular data much better than traditional approaches,
particularly for resolutions in the intermediate range. Moreover, by comparing with
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traditional entropies from various grid sizes, bond angle-based methods and a persis-
tent homology-based support vector machine method (Cang et al. in Mol Based Math
Biol 3:140–162, 2015), we find that our MPEmethod gives the best results in terms of
average true positive rate in a classic protein structure classification test. More inter-
estingly, all-alpha and all-beta protein classes can be clearly separated from each other
with zero error only in our model. Finally, a special protein structure index (PSI) is
proposed, for the first time, to describe the “regularity” of protein structures. Basically,
a protein structure is deemed as regular if it has a consistent and orderly configuration.
Our PSI model is tested on a database of 110 proteins; we find that structures with
larger portions of loops and intrinsically disorder regions are always associated with
larger PSI, meaning an irregular configuration, while proteins with larger portions of
secondary structures, i.e., alpha-helix or beta-sheet, have smaller PSI. Essentially, PSI
can be used to describe the “regularity” information in any systems.

Keywords Conformational entropy (CE) · Persistent entropy · Multiscale rigidity
function (MRF) ·Multiscale persistent function (MPF) ·Multiscale persistent entropy
(MPE) · Protein structure · Persistent homology

1 Introduction

In the past decade, persistent homology has been developed as a new multiscale
representation of topological features (Edelsbrunner et al. 2002; Zomorodian and
Carlsson 2005, 2008). As an essential part of topological data analysis, persistent
homology models have undergone particular growth in the area of data analysis and
opened up new opportunities for researchers from mathematics, computer sciences,
computational biology, biomathematics, engineering, etc. Frosini and Landi (1999)
have introduced the basic concepts in terms of size theory in shape recognition. A
general form is further developed by Robins (1999), Edelsbrunner et al. (2002) and
Zomorodian and Carlsson (2005), independently. To further implement and advance
the theory, many efficient softwares, including JavaPlex (Tausz et al. 2011), Perseus
(http://www.sas.upenn.edu/~vnanda/perseus), Dipha (Bauer et al. 2014), Dionysus
(http://www.mrzv.org/software/dionysus), jHoles (Binchi et al. 2014), have been pro-
posed (Bubenik and Kim 2007; Edelsbrunner and Harer 2010; Dey et al. 2008; Dey
and Wang 2013; Mischaikow and Nanda 2013). Visualization methods, including
persistent diagram (Mischaikow and Nanda 2013), persistent barcode (Ghrist 2008),
persistent landscape (Bubenik 2015), have also been proposed. Persistent homology
is deeply rooted in algebraic topology but finds great potential in the simplification
of complex data (Frosini and Landi 1999; Robins 1999; Edelsbrunner et al. 2002;
Zomorodian and Carlsson 2005). Unlike the traditional topological method, persis-
tent homology provides a multiscale topological representation. It is able to measure
the persistence of topological invariants and provide a bridge between geometry and
topology. The essence of persistent homology is its filtration process. By systemat-
ically varying a filtration parameter, a series of topological spaces on various scales
are generated. During a filtration, homology generators will be produced and further
survive or persist for some time. Their lifespans or persistent times give a relative
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geometric measurement of the associated topological properties. Persistent homology
finds great success in topological characterization, identification and analysis. It has
been used in a variety of fields, including shape recognition (Di Fabio and Landi 2011),
network structure (Silva andGhrist 2005;Lee et al.Dec 2012;Horak et al. 2009), image
analysis (Carlsson et al. 2008; Pachauri et al. Oct 2011; Singh et al. 2008; Bendich
et al. 2010; Frosini and Landi 2013), data analysis (Carlsson 2009; Niyogi et al. 2011;
Wang et al. 2011; Rieck et al. 2012; Liu et al. 2012), chaotic dynamics verification
(Mischaikow et al. 1999; Kaczynski et al. 2004), computer vision (Singh et al. 2008)
and computational biology (Kasson et al. 2007; Yao et al. 2009; Gameiro et al. 2013).
Recently, we have introduced persistent homology for structure characterization and
mathematical modeling of fullerene molecules, proteins and other biomolecules (Xia
and Wei 2014; Xia et al. 2015; Wang and Wei 2016). Consistent barcode patterns
are extracted and defined as molecular topological fingerprint, which is used in the
analysis of protein flexibility and protein folding (Xia and Wei 2014). We have also
developed multiresolution and multidimensional persistence (Xia and Wei 2015a, b).

Although persistent homology has great potential for big data analysis, compu-
tationally it becomes unaffordable when data size gets very large. Various different
definitions of complexes, including Alpha complex (Edelsbrunner and Mucke 1994)
and witness complex (Carlsson 2014), are proposed to solve the problem. More
recently, we have introduced a multiresolution/multiscale persistent homology (MPH)
model by matching the resolution with the scale of interest so as to represent large-
scale datasets with appropriate resolution. In this model, multiscale rigidity functions
(MRFs) are employed to transform a point cloud data into various density maps in
different resolutions. TheMRF is derived from our flexibility and rigidity index (FRI),
which is used tomodel the biomolecular flexibility (Xia et al. 2013; Opron et al. 2014).
Our MRF has incorporated in it a special resolution/scale parameter; by appropriately
tuning its value, we are able to focus the topological lens on the scale of interest.
Our MPH model is validated by different types of point cloud data. It has been suc-
cessfully used in the study of topological properties of a virus capsid with about
30,000 atoms, which would otherwise be inaccessible to common persistent homol-
ogy models. More interestingly, by using density filtration, our MPH incorporates in
it a clustering scheme. To be more specific, when we transform a point cloud data into
a density map, regions with more points will have higher densities and will persist
longer during the density filtration. In this way, the number together with the lengths
of the β0 barcodes provides a classification of the data. This lays the foundation for a
more quantitative analysis by persistent functions.

In this paper, we propose a series of multiscale persistent functions for the quan-
titative analysis of MPH. We illustrate our idea with a multiscale persistent entropy
(MPE) model. Persistent entropy (Chintakunta et al. 2015; Merelli et al. 2015; Rucco
et al. 2016, 2017) is a new concept proposed recently. It has been used to find the
“minimal” barcodes (Chintakunta et al. 2015), characterize complex systems (Merelli
et al. 2015), study idiotypic immune networks (Rucco et al. 2016) and compare noisy
signals (Rucco et al. 2017). The definition of persistent entropy is very natural. Simply
speaking, each bar in the barcodes can be viewed as a certain “state,” and its barlength
represents the relative probability of this “state.” In this way, persistent entropy is
defined by using the Shannon entropy formula. Even though it is a very simple for-
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mula, persistent entropy, based on the essential topological information, has a great
promise to quantitatively characterize disorder of system or data. It is worth men-
tioning that persistent entropy is different from topological entropy (Bowen 1973),
which is a topological invariant for dynamical systems. Unlike the previous persistent
entropy model, our MPE incorporates in it a resolution/scale parameter. By turning
this special parameter, we are able to evaluate the persistent entropy on any scale
we interested. The essential idea of our MPE is to define the entropy from our MPH
model. Since MPH is essentially a multiscale representation, which is based on MRF,
our MPE model can characterize the disorder of the biomolecular data from various
scales. To demonstrate the potential of ourMPE,we consider the problemof evaluation
of biomolecular conformational energy (CE).

The computational estimation of conformational energy is a long-standing prob-
lem and challenge in computational chemistry (Baron et al. 2009). Characterization
of biomolecular conformations by some structural parameters has been proposed to
estimate CE (Trbovic et al. 2008). Particularly, backbone dihedral angles and side
chain rotamers are structural measurements that are widely used for protein CE eval-
uation. By the assumption that amino acid distributions in native states of proteins
are comparable to that found in denatured states, Stites and Pranata (1995) propose a
way to evaluate the relative CEs for different amino acids. They analyze the preferred
distribution of amino acid residues by systematically studying about 12,000 residues
from 61 non-homologous and high-resolution protein crystal structures. Ramachan-
dran plots for various amino acid residues are obtained, and CEs are evaluated through
the discretization of angle distributions with an uniform grid. The dihedral angle- and
side chain rotamer-based parameterization has been widely used in biomolecular CE
estimation (Doig and Sternberg 1995; Brady and Sharp 1997; Zhong et al. 2006; Zhang
et al. 2008; Baruah et al. 2015).

The dihedral angle-based entropy evaluation method usually involves a discretiza-
tion of angle distributions. It is found that the entropy calculated in this way is sensitive
to the grid size (Stites and Pranata 1995; Trbovic et al. 2008). It is true that when the
grid is very fine, angles with very similar values can still be classified into different
categories. In contrast, when the grid is very coarse, even angles with huge different
values tend to be classified into a same category. Therefore, dramatically different
entropy values can be obtained from the same data under different discretizations.
However, it has also been pointed out that correlation coefficients between entropies
computed from different meshes are very high, suggesting that mesh-related bias does
not systematically alter relative entropy values (Stites and Pranata 1995; Trbovic et al.
2008). But this consistence is highly related to the studied systems. For example, if
the same type of amino acid is considered, their angles are highly concentrated in a
particular area thus a more consistent entropy values. While if various types and num-
bers of amino acids are considered simultaneously, their angles will scatter around
and inconsistent entropy values will be found. Researchers have realized that a lack
of a robust classification poses challenge to a rigorous estimation of the entropies.
Recently, a K-mean clustering method is proposed to deliver an optimized discrete
k-state classification model (Zhang et al. 2008). In this method, the distribution of
torsional angles is naturally classified into k clusters with irregular boundaries. In this
way, it achieves an optimized classification and a high Silhouette value, indicating
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very good quality of clustering, is obtained. Motivated by its success, we proposed a
new way of CE evaluation by our MPE model.

To validate ourMPEmodel, we have systematically compared it with the traditional
model in various grid sizes. It has been found that similar results can be obtained in two
extreme situations, i.e., when both grid spacing and resolution value are very small or
very large. This corresponds with its physical implication very well. When a minimal
grid spacing or resolution value is used, both entropies show log linear dependence
on the total number of points in the angular plot. When a maximal grid spacing or
resolution value is used, both entropies reduce to zero as all angular points are classified
into one cluster. Further, in the middle range, where traditional entropy is usually
evaluated, different results, however, are obtained. This means our MPEmodel differs
from the traditional ones. To further explore the advantage and limitation of ourmodel,
we study a classic protein structure classification problem. In general, proteins can be
classified into three categories, i.e., all-alpha (AA) proteins, all-beta (AB) proteins and
mixed-alpha-and-beta (MAB) proteins. By comparing with traditional entropies from
various grid sizes, bond angle-basedmethods and a persistent homology-based support
vector machine method (Cang et al. 2015), we find that ourMPEmethod gives the best
results in terms of average true positive rate (TPR). More interestingly, with suitable
threshold values, AA and AB protein classes have dramatically different MPE values
and can be clearly separated from each other only by our model. Further, based on our
MPE, a protein structure index (PSI) is proposed to describe the “regularity” of protein
structures. The essential idea of PSI is to evaluate disorder in the angle distributions.
Simply speaking, for a highly “regular” structure element like alpha-helix, its dihedral
and bond angles are very consistent and thus contribute very little to the total entropy.
Loops and intrinsically disorder regions are extremely “irregular” in terms of dihedral
and bond angles and tend to contribute a large weight in the total entropy. In this way,
PSI is able to provide a new way of structure regularity characterization. Essentially,
PSI can be used to describe the regularity information in any system.

The paper is organized as follows: Section 2 is devoted to the introduction of basic
method. The persistent homology analysis is reviewed in Sect. 2.1, which includes the
basic theory of simplicial complex, filtration, complex construction and persistence.
Section 2.2 is devoted for the multiscale/multiresolution persistent homology. In this
section, we discuss the multiscale rigidity function, which is essentially a continuous
version of our rigidity index in FRI model. Through a density filtration of MRF, a
MPH model is constructed. By turning the resolution parameter, MPH can be used to
study topological properties on various scales. Further, multiscale persistent functions
are introduced in Sect. 2.3. Particularly, we propose the multiscale persistent entropy.
To demonstrate the potential of our multiscale persistent functions, we use MPE as an
example and discuss its application in conformational entropy calculation. Section 3
is devoted to the validation of our MPE. A brief introduction of CE, including con-
formation representation, traditional entropy models and our MPE for CE evaluation,
is given in Sect. 3.1. Sections 3.2 and 3.3 are devoted for a classic protein structure
classification test and the protein structure index. The paper ends with a conclusion.
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2 Method

Algebraic topology is a very important mathematical tool for the study of global con-
nectivity and topological invariants in the structure (Hatcher 2001; Munkres 1984;
Edelsbrunner et al. 2002). It explores topological properties with algebraic tools, like
Abelian group, quotient group, homomorphism, isomorphism, homology. Persistent
homology is a newly invented algebraic topology method for structure characteriza-
tion. It is able to bridge the gap between topology and geometry. In this section, we give
a brief introduction of basic concepts in persistent homology. After that, we present
our multiscale persistent homology and multiscale persistent functions. MPH is orig-
inally proposed to characterize topological information on various scales. Based on
MPH, we introduce several multiscale persistent functions, particularly the multiscale
persistent entropy. A more detailed description is given below.

2.1 Persistent Homology

As an important component of topological data analysis, persistent homology has
attracted attention from researchers in various fields. Unlike the previous topological
tools, it enables a geometric measurement of homology generators and demonstrates
great power in not only qualitative but also quantitative characterization of structures.
Two essential components of persistent homology are simplicial homology and filtra-
tion process.

2.1.1 Simplicial Homology

Simplicial complex is a finite set of simplices, which can be simply understood as
vertices, edges, triangles and their high-dimensional counterparts. Simplicial com-
plex, including geometric simplicial complex and abstract simplicial complex, is not
a topological space, but it can be topologized as a subspace of R

n called polyhedron.
Groups and group operations can be defined on simplices. In this way, algebraic tools,
particularly homology analysis, can be used to analyze the topological properties.

Simplicial complex Simplices are building blocks for simplicial complex. A k-
simplex is the convex hull of k + 1 affinely independent points in R

n (n > k). For
a set of k + 1 affinely independent points v0, v1, v2, · · · , vk , a correlated k-simplex
σ k = {v0, v1, v2, · · · , vk} can be expressed as

σ k =
{

λ0v0 + λ1v1 + · · · + λkvk |
k∑

i=0

λi = 1; 0 ≤ λi ≤ 1, i = 0, 1, · · · , k

}
. (1)

A geometric k-simplex σ k is a closed convex subspace ofR
n . Its i-dimensional face is

the convex hull formed by i + 1 vertices from σ k (k > i). Geometrically, a 0-simplex
is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, and a 3-simplex represents
a tetrahedron. We can also define the empty set as a (-1)-simplex.
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A simplicial complex K is a finite set of simplices that satisfy two basic conditions,
i.e., (1) any face of a simplex from K is also in K ; (2) the intersection of any two
simplices in K is either empty or shared faces. The dimension of a simplicial complex
is the maximal dimension of its simplices. The polygon |K | is a topological space
formed by the union of all simplices of K . In order to study the topological space with
algebraic tools, we need to introduce the concept of chain.

Homology A k-chain c is a linear combination of k-simplices, i.e., c = ∑
i αiσ

k
i .

Coefficients αi can be selected from various groups, including rational fieldQ, integer
field Z and prime integer field Zp with prime number p. In computational topology,
coefficients αi is chosen from groupZ2 for simplicity. An Abelian groupCk(K , Z2) is
formed by the set of all k-chains from the simplicial complex K together with addition
operation (modulo-2).

The boundary operation is essential to the definition of homology. A boundary
operator ∂k is defined as ∂k : Ck → Ck−1. The boundary of an oriented k-simplex
[σ k] = [v0, v1, v2, · · · , vk] can be denoted as,

∂k[σ k] =
k∑

i=0

(−1)i [v0, v1, v2, · · · , v̂i , · · · , vk]. (2)

Here [v0, v1, v2, · · · , v̂i , · · · , vk]means a (k−1) oriented simplex, which is generated
by the elimination of vertex vi . An oriented simplex is a simplex together with an
orientation, i.e., ordering of its vertex set. Also we have ∂0 = 0. From its definition,
it can be found that if applying the boundary operation twice, any k-chain will be
mapped to a zero element as ∂k−1∂k = 0. Further, the k-th cycle group Zk and the k-th
boundary group Bk are the subgroups of Ck and can be defined as,

Zk = Ker ∂k = {c ∈ Ck | ∂kc = 0}, (3)

Bk = Im ∂k+1 = {c ∈ Ck | ∃d ∈ Ck+1 : c = ∂k+1d}. (4)

Their elements are called the k-th cycle and the k-th boundary, respectively. It can be
noticed that Bk ⊆ Zk , as the boundary of a boundary is always zero ∂k−1∂k = 0. The
k-th homology group Hk is the quotient group generated by the k-th cycle group Zk

and k-th boundary group Bk : Hk = Zk/Bk . The rank of k-th homology group is called
k-th Betti number and it can be calculated by

βk = rank Hk = rank Zk − rank Bk . (5)

Ifwe consider a chain groupCk(K , Z) in thefield Z , based on the fundamental theorem
of finitely generated Abelian group, homology group Hk can be further expressed as
a direct sum,

Hk = Z ⊕ · · · ⊕ Z ⊕ Z p1 ⊕ · · · ⊕ Z pn = Zβk ⊕ Z p1 ⊕ · · · ⊕ Z pn , (6)
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where the rank of free subgroups is the k-th Betti number βk . Here Z pi are torsion
groups with torsion coefficients {pi |i = 1, 2, ..., n}.

Simply speaking, geometric meanings of Betti numbers in R
3 are as follows: β0

represents the number of isolated components, β1 is the number of one-dimensional
loops, circles or tunnels, and β2 describes the number of two-dimensional voids or
cavities. Together, the Betti number sequence {β0, β1, β2, · · · } describes intrinsic
topological properties of a system. Betti numbers are important topological invariants.

2.1.2 Persistent Homology Analysis

In computational geometry and topology, a big problem is to recover the original
topological space from a sampled point cloud data. The simplest and also the most
widely usedmethod is to employ an open coveringwith a consistent radius parameter ε.
However, how to find the best suitable ε for the underling space has puzzled researchers
for a long time. It is true that when ε is too small, originally connected regions may not
be fully recovered. But when ε is too large, originally non-connected regions may be
mistaken as connected. To solve this problem, a brilliant idea has been proposed and it
is known as filtration. In the filtration process, through a systematical investigation of
a wide range of ε values, a series of topological spaces from various scales have been
generated. It is found that some topological invariants last for a large range of ε values,
but some invariants disappear very quickly when the scale changes. State different,
the calculated topological invariant has a certain “lifespan” or persistence. This means
that a special geometric measurement (range of ε) can be assigned to each topological
invariant. This method is known as the persistent homology. It differs greatly from
the traditional geometric and topological methods by the incorporation of geometric
information into topological invariants. It can work as a bridge between geometry and
topology (Bubenik and Kim 2007; Edelsbrunner and Harer 2010; Dey et al. 2008; Dey
and Wang 2013; Mischaikow and Nanda 2013).

General filtration processes Filtration is of great importance to persistent homology.
A suitable filtration is key to the persistent homology analysis. In practice, twofiltration
algorithms, Euclidean distance-based and density-based ones, are commonly used.
These filtration processes can be modified in many different ways to address physical
needs as shown in our previous papers (Xia and Wei 2014; Xia et al. 2015; Wang and
Wei 2016).

The Euclidean distance-based filtration is straightforward. We assign each point in
the data a sphere with an ever-increasing radius.When these spheres gradually overlap
with each other, complexes can be constructed by using different definitions, such as
Čech complex, Rips complex and Alpha complex (Edelsbrunner and Mucke 1994).
More importantly, during a filtration, previously formed simplicial complexes are
included into latter ones. We demonstrate the filtration process in Fig. 1. We consider
a fullereneC60 molecule, which is constructed by 60 carbon atoms. We associate each
carbon atom with a sphere. During the filtration process, the sphere is systematically
increased.

Another important filtration process is the density-based filtration process. In this
process, the filtration goes along the increase or decrease in the density value. In

123



Multiscale Persistent Functions for Biomolecular... 9

Fig. 1 Filtration process and
barcode representation of a
fullerene C60 molecule. During
the filtration process, each
carbon atom is associated with a
sphere, whose radius increases
systematically to generate
topologies on various scales. In
the molecular barcode
representation, each bar
represents a homology generator
and has unique chemical or
physical properties. For β0 bars,
they are related to atomic bonds.
The pentagon and hexagon ring
structures are represented by β1
bars. The void or cavity
structures are captured in β2
bars (Color figure online)

this way, a series of isosurfaces are generated. Morse complex (Mischaikow and
Nanda 2013) is used for the characterization of their topological invariants. Persis-
tence information can be derived from these complexes.Amore rigorousmathematical
formulation is given in the following.

Persistent homology The filtration can be described as a nested sequence of its
subcomplexes,

∅ = K 0 ⊆ K 1 ⊆ · · · ⊆ Km = K . (7)

Generally speaking, abstract simplicial complexes generated from a filtration give a
multiscale representation of the corresponding topological space, from which related
homology groups can be evaluated to reveal topological features. Furthermore, the
p-persistent k-th homology group at filtration time i can be represented as

Hi,p
k = Zi

k/(B
i+p
k

⋂
Zi
k). (8)

Through the study of the persistent pattern of these topological features, the persistent
homology is capable of capturing the intrinsic properties of the underlying space.

Barcode representation To visualize the persistent homology results, many elegant
representation methods have been proposed, including persistent diagram (Mis-
chaikow and Nanda 2013), persistent barcode (Ghrist 2008), persistent landscape
(Bubenik 2015).

In this paper, we use barcode representation. Basically, barcodes are clusters of
bars. Each of these bars represents a homology generator with “birth” and “death”
time as its starting and ending points. In this way, the length of bar tells how long
the homology generator “lives” or “persists.” Figure 1 demonstrates the barcodes of
fullerene C60.
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Fig. 2 Illustration of multiscale features in picornavirus capsid (ID: 5APM). The virus capsid is a highly
symmetric structure made of protein complexes. Each protein complex is composed of several proteins.
And a protein usually has several chains. If zoom in further, we can also arrive at residual level and atomic
level (Color figure online)

It is worth mentioning that for molecular or biomolecular data, all bars, no matter
long or short, are important. This is because that bars are tightly associated with
structural, physical or chemical properties. For example, β0 bars in Fig. 1 represent
C–C bond lengths of fullerene C60 molecule. Actually, it can be seen that there are
two types of C-C bonds in C60 molecule and their lengths are around 1.37 Å and 1.45
Å. This corresponds very well with the chemical properties of the C60 fullerene (Xia
et al. 2015). Further, we can find that there are two types of β1 bars. Structurally, they
represent the pentagon and hexagon rings formed from the adjacent five or six carbon
atoms. And their barlengths are measurement of the ring sizes. Finally, the longest bar
in β2 represents the void or cavity insideC60 molecule and its barlength gives the size.

2.2 Multiscale Persistent Homology

With the great advancement of experimental tools and the accumulation of gigantic
amount of data, we are able to observe and study the world from various scales.
Traditionally, we study biology at the level of population, tissue and cell. Nowadays,
we can obtain biomolecular information from subcellular, molecular and atomic scale.
Especially, in molecular biology and structural biology, enormous efforts have been
devoted to acquire biomolecular information in atomic detail. This is because that
most of important biological processes, including transcription, translation, enzyme
interaction, protein folding, protein–protein interaction, ion transportation, happen at
atomic level. However, the obtained biomolecular data often involves excessively high
degrees of freedom and high dimensionality, thus, it is computationally prohibitively
expensive. For example, if we want to explore the molecular mechanics of a human
immunodeficiency virus (HIV) capsid, we are facing with 4.2 million atoms. With
each atom moves in R

3 space, this gives rise to a problem of 12.6 million degrees of
freedom. On the other hand, large biomolecules are essential multiscale, ranging from
atom, residue, domain, protein monomer, protein polymer to the whole biomolecular
assembly. Figure 2 illustrates the multiscale property in the picornavirus capsid.

To address the challengeof the complexity andmultiscale nature of the biomolecular
data, multiscale modelings are widely used in biophysics, biochemistry and compu-
tational biology. More recently, persistent homology has been advocated as a new
strategy for the topological simplification of complex data. Since topological repre-
sentations can dramatically reduce geometric details leaving only the essential global
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connectivity information, it provides a great promise for complexity and dimension-
ality reduction. However, the direct application of persistent homology analysis to
large biomolecules, particularly macroproteins and protein assemblies is currently
unfeasible. One of the major reasons is that a uniform resolution is used in the fil-
tration. Therefore, cross-scale filtration at a high resolution is prohibitively expensive
computationally. With this consideration, we proposed a multiresolution/multiscale
persistent homology model. The essential idea is to match the scale of interest with
appropriate resolution in the topological analysis. Simply speaking, this works like
using a microscope. By tuning a specially designed resolution parameter to the proper
value, we can focus our topological representation on the right scale. Since different
resolutions give rise to topological information on different scales, our multiresolution
persistent homology is essentially multiscale. So it is also called multiscale persistent
homology and shares the same abbreviation MPH.

Multiscale rigidity function, which is derived from our flexibility and rigidity index
(FRI) method (Xia et al. 2013; Opron et al. 2014), is essential to our MPH. With this
function, a discrete point cloud data is converted into a continuous density function.
The conversion is realized by using a kernel function with a resolution parameter. And
this special parameter enables us to facilitate a multiscale analysis of complex data.
More details will be discussed below.

Multiscale rigidity function Multiscale rigidity function is derived from our flexibility
and rigidity index model (Xia et al. 2013; Opron et al. 2014), in which flexibility index
and rigidity index are two essential components. In our previous works, we find that
these two indexes can be used to study biomolecular flexibility properties, particularly
in experimental B-factor prediction (Opron et al. 2015, 2016; Xia et al. 2015; Nguyen
et al. 2016). The continuous version of rigidity index is rigidity function, which is
originally devised for the representation of biomolecular densities (Xia andWei 2015a;
Xia et al. 2015). We find that a rigidity function with a special resolution parameter
can deliver a multiscale representation of biomolecular structures (Xia andWei 2015a;
Xia et al. 2015). We call it multiscale rigidity function.

For a data set with a total N entries, which can be physical elements like atoms,
residues and domains or data components like points, pixels and voxels, if we assume
their generalized coordinates are r1, r2, · · · , rN , a multiscale rigidity function can be
derived from the data as,

μ(r; η) =
N∑
j

w j	(‖r − r j‖; η), (9)

where w j and 	(‖r − r j‖; η) are weight and kernel function for the j-th atom. The
kernel function satisfies the following admissibility conditions,

lim‖r−r j‖→0
	(‖r − r j‖; η) = 1; (10)

lim‖r−r j‖→∞ 	(‖r − r j‖; η) = 0. (11)
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Here η > 0 is a resolution parameter that can be adjusted to achieve the desirable
resolution for a given scale. Commonly used correlation functions are generalized
Gaussian functions,

	(‖r − r j‖; η, κ) = e−(‖r−r j‖/η)κ

, κ > 0, (12)

or generalized Lorentz functions,

	(‖r − r j‖; η, υ) = 1

1 + (‖r − r j‖/η
)υ , υ > 0. (13)

It can be noticed that the larger the η value, the lower the resolution is.
The MRF of the data can be expressed as,

μ(r; η) =
N∑
j

w j	(‖ r − r j ‖; η). (14)

Generally, parameter w j is chosen as the atomic number. For example, its value is 6
for carbon atom and 8 for oxygen atom.

Amultiscale geometricmodel can be naturally derived fromourMRFs. To illustrate
this idea, an example of protein complex (ID: 3JBL) is demonstrated in Fig. 3a–c. We
use the coarse-grained representation with totally 9999 Cα atoms. Generalized Gaus-

sian kernel 	(‖r − r j‖; η) = e−(
‖r−r j ‖

η
)2 with η =1Å , 4Å and 20Å is employed

in the multiscale rigidity function. The demonstrated surfaces are extracted by using
isovalue 1, 10 and 600, respectively. It can be seen that these surfaces represent protein
geometries from different scales and they have dramatically different physical impli-
cations. Roughly speaking, Fig. 3a–c are on the atomic scale, subdomain/domain scale
and protein scale, respectively.

Multiscale persistent homology To enable a more quantitatively comparison between
various scales, we propose MPH. In our model, we linearly rescale all the rigidity
function values to the region [0, 1] using formula

μs(r; η) = 1.0 − μ(r; η)

μmax
. (15)

Here μ(r) and μs(r) are the original and normalized rigidity function, and μmax
is the maximum value of the original rigidity function. The filtration is done along
the normalized rigidity function value from small to large. Figure 3d–f demonstrates
the barcode results from the previously mentioned protein example. When η = 1Å,
we can observe the atomic information in β0 bars. There are around 10000 β0 bars,
corresponding to virtual bonds between adjacentCα atoms.When the value η increases
to 4 Å , both β0 and β1 bars decrease dramatically. Actually, barcodes capture the
topological information from the scale of protein domain and protein subdomain.
Further, when we enlarge η to 20 Å , the most global scale begins to emerge. We can
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Fig. 3 Multiresolution persistent homology analysis of activated NAIP2-NLRC4 inflammasome structure
(ID: 3JBL). a–c Isosurfaces of multiscale rigidity functions profiles generated at three resolutions η =
1.0, 4.0 and 20.0Å. The isosurface values are 1.0, 10.0 and 600.0, respectively. d–f The corresponding
persistent barcode representations from multiscale persistent homology. Top and bottom panels are for β0
and β1 barcodes, respectively. The horizontal axes denote the normalized rigidity density value. It can be
seen that with the decrease in resolution, the density profiles of protein isosurfaces shift from local details
to global patterns

clearly identify 11 relatively small circles and 1 large circle in the structure. And the
topological information is well captured in our persistent barcode. To sum up, based
on MRF, our MPH is able to capture and characterize the topological information of
the structure from various scales.

It should be noticed that our MPH is different from multidimensional persistent
homology.Multidimensional persistent homology comes from higher-dimensional fil-
tration process (Carlsson et al. 2009; Cohen-Steiner et al. 2006; Cerri and Landi 2013;
Frosini and Landi 1999; Biasotti et al. 2008; Cerri et al. 2013). Its construction is non-
trivial because theoretically, a complete discrete representation for multidimensional
persistent module analogous to one-dimensional situation dose not exist (Carlsson and
Zomorodian 2009). However, there are some computable incomplete invariants that
can be used. For example, persistent Betti numbers (PBNs) (Edelsbrunner et al. 2002)
have been proved to be stable in the constraint of certain marching distance (Cerri
and Landi 2013). More recently, we have proposed two ways of constructing multi-
dimensional persistent homology (Xia and Wei 2015a, b). The first one is constructed
from some dynamic processes. In it, one more filtration parameter, which is along the
evolution time, is considered. The second type is based on multiresolution process,
and the resolution/scale parameter is considered as the new filtration parameter. Our
MPH belongs to the second type. It should be noticed that, for a dynamic process, even
though we can have multidimensional persistence, the whole system is characterized
with a single scale and the associated persistent homology is not multiscale. It is also
worth mentioning that our MPH is relatively stable under a small variation of resolu-
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tion value. This is true because our MRF is continuous and a relatively small variation
of resolution will only induce a small fluctuation in rigidity values. The stability of
our model can be rigorously studied by using the “stability theorem” (Chazal et al.
2014).

With this brief introduction of MRF and MPH, now we are ready to discuss our
MPFs.

2.3 Multiscale Persistent Functions

As stated above, a series of barcodes from various scales are generated in our MPH.
We can represent them as follows:

{Lk, j (η) = [ak, j (η), bk, j (η)]|k = 0, 1, 2, ...; j = 1, 2, 3, ...., Nk(η)}, (16)

where parameter k is the dimension of Betti number βk , parameter j indicates the j-th
bar, and Nk is the number of βk barcodes. Further, we define the set of barcodes in the
k-th dimension as,

Lk(η) = {Lk, j (η), j = 1, 2, 3, ...., Nk(η)}, k ≥ 0.

Based on these barcodes, various persistent functions can be defined. In our previous
works (Xia andWei 2014; Xia et al. 2015), we have defined the accumulated barlength
(on a fixed resolution η0) as,

Ab(Lk(η0)) =
∑
j

(
bk, j (η0) − ak, j (η0)

)
, (17)

and used it to study the bond energy and the folding energy in protein unfolding
simulation. In fullerene total curvature energy evaluation, the intrinsic barcode of β2
(on a fixed resolution η0) is,

Ib(L2(η0)) = max{b2, j (η0) − a2, j (η0)| j = 1, 2, ..., N2(η0)}, (18)

which is found to have important physical meanings (Xia et al. 2015). However, all
these functions are defined on a single resolution, which has limited their power in
characterizing topological properties of a multiscale system.

In this section, based on our MPF, we propose a series of MPFs, particularly MPE.
These functions can be used for either visualization or quantitative analysis of multi-
scale topological properties of structures we interested.

2.3.1 Multiscale Persistent Entropy

Entropy is proposed for characterizing disorder of a system (Karplus and Kushick
1981; Brady and Sharp 1997). It measures the degrees of freedom for a system to
evolve into various potential configurations. Entropy is a key property to understand a

123



Multiscale Persistent Functions for Biomolecular... 15

wide variety of physical, chemical and biochemical phenomena. It plays very impor-
tant roles in characterizing various biomolecular functions and interactions, including
protein folding, protein–protein interaction, protein–ligand binding, chromosome con-
figuration, DNA translation and transcription. For instance, the folding of a single
peptide chain into a well-defined native structure is greatly facilitated by the reduction
in its CE. Therefore, the study of entropy is very important in computational chemistry,
biophysics and biochemistry.

Recently, persistent entropyhas beenproposed and is used to study complex systems
(Merelli et al. 2015), networks (Rucco et al. 2016), noise signals (Rucco et al. 2017),
etc (Chintakunta et al. 2015). Based on ourMRF, we propose aMPEmodel as follows:

Sk(η) =
Nk(η)∑

j

−pk, j (η)log(pk, j (η)), (19)

with the probability function

pk, j (η) = bk, j (η) − ak, j (η)∑
j

(
bk, j (η) − ak, j (η)

) . (20)

The MPE can also be simplified as follows:

Sk(η) = log

⎛
⎝Nk (η)∑

j

(
bk, j (η) − ak, j (η)

)⎞⎠

−
∑Nk (η)

j

(
(bk, j (η) − ak, j (η))log(bk, j (η) − ak, j (η))

)
∑Nk (η)

j

(
bk, j (η) − ak, j (η)

) . (21)

Persistent entropy can be used to characterize the disorder of a system. Essentially,
each bar in the barcodes can be viewed as an independent “state,” and its length is the
relative “probability” of this state. In this way, Shannon entropy concept can be natu-
rally used to define persistent entropy. Generally speaking, our model is very similar
to the previous persistent entropy, except that we have incorporated a resolution/scale
parameter in our representation, which gives us more flexibility in structural analysis.

Other multiscale persistent functions Several other types of functions are also found
to be interesting and useful. The first type is

f1(x; Lk(η)) =
∑
j

wk, j (η)e
−

(
x− bk, j (η)+ak, j (η)

2
σ(η)(bk, j (η)−ak, j (η))

)κ

, κ > 0 (22)

where wk, j (η) is the weight function for the j-th bar of βk . Parameter σ(η) is the
characterization of “significance” of barcode in different lengths.
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It should be noticed that there is no meaningful sequence arrangement for bar-
codes. However, for biomolecules, their barcodes are highly organized. Each bar or
each type of bar has its unique structural, physical or chemical implication. With this
consideration, we can assign a weight value wk, j (η) to each bar or each type of bars.

The second important type of persistent energy functions is

f2(x; Lk(η)) =
∑
j

wk, j (η)
1

1 +
(

x− bk, j (η)+ak, j (η)

2
σ(η)(bk, j (η)−ak, j (η))

)υ , υ > 0. (23)

It can be noticed that these two multiscale functions can be used to visualize and
quantitatively characterize the barcodes information.

More interestingly,we can construct a persistent homology-based potential function
(or energy function) ETop as follows:

ETop =
2∑

i=0

E(Lk(η)). (24)

Here E(Lk(η)) is the energy contribution from βk bars. Different physical models can
be used. For example, we can choose a harmonic potential function and construct a
persistent homology potential E(Lk(η)) as follows:

E(Lk(η)) = γ

2

∑
j

|Lk, j (η)|2, (25)

where Lk, j (η) is barlength variation for j-th bar of βk , between the equilibrium and
non-equilibrium structures. And γ is the spring constant. Ideologically, our persistent
homology potential is similar to the statistical potential in protein structure prediction
(Shen and Sali 2006). Instead of using the traditional angle and bond representation,
statistical potential uses knowledge-based scoring function of residue contacts, while
our persistent homology potential uses special topological invariants. The full potential
of our persistent homology potential will require further investigation.

To demonstrate some potential applications of our MPFs, we use MPE as an exam-
ple. In the following section, we will discuss the application of MPE in CE evaluation.

3 Application

In this section, we will give a brief review of conformational entropy. A comparison
between the traditional entropy and ourMPEwill be discussed. To validate our model,
we employ a classic test example, i.e., classification of all-alpha (AA), all-beta (AB)
and mixed-alpha-and-beta (MAB) proteins. We find that in suitable resolutions, our
MPE can be used to discriminate different protein configurations very efficiently. We
further propose a protein structure index based on our entropy model.
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3.1 Conformational Entropy

Biomolecular CE is of great importance (Frederick et al. 2007; Marlow et al. 2010)
for the study of interaction between systems, like protein–protein, receptor–ligand,
antigen–antibody, DNA–protein, RNA–ribosome (Gellman 1997; Brooijmans and
Kuntz 2003; Janin et al. 2013). The understanding of interactions requires the char-
acterization of binding process, in which CE plays an essential role (Frederick et al.
2007; Marlow et al. 2010). It is found that changes in protein CE can contribute signif-
icantly to the free energy of protein–ligand association (Frederick et al. 2007). Internal
dynamics of the protein calmodulin varies significantly when binding to a target. The
apparent change in the corresponding CE is linearly related to the change in the overall
binding entropy. Also, CE of protein side chain is a major effect in the energetics of
folding. The entropy of heterogeneous random coil or denatured proteins is signifi-
cantly higher than that of the folded native state tertiary structure. In particular, CE
of the amino acid side chains in a protein is thought to be a major contributor to the
energetic stabilization of the denatured state and thus a barrier to protein folding. The
reduction in the number of accessible main chain and side chain conformation when
a protein folds into a compact globule, yields an unfavorable entropic effect. This
reduction in CE counters the hydrophobic effect favoring the folded state and in part
explains the marginal stability of most globular proteins.

Even though biomolecular conformational energy is a key property to understand a
wide variety of physical, chemical and biochemical phenomena, its evaluation or cal-
culation is very challenging both experimentally and computationally. Only recently,
nuclear magnetic resonance relaxation methods for characterizing thermal motions on
the picosecond–nanosecond timescale are developed and the resulting order parame-
ters are used as a proxy for CE evaluation (Frederick et al. 2007; Trbovic et al. 2008;
Sapienza and Lee 2010). Atomic force microscopy for unfolding has great potential
in measuring the backbone CE for protein folding (Thompson et al. 2002). Neu-
tron spectroscopy is also used to elucidate the role of CE upon thermal unfolding by
observing the picosecond motions, which are dominated by side chain reorientation
and segmental movements of flexible polypeptide backbone regions (Fitter 2003).

Computationally, entropy evaluation necessitates a characterization of biomolecu-
lar configuration spaces. Due to the limitation of Cartesian grid-based representation,
structural parameters, particular dihedral angles and bond angles, are usually employed
for structure description. Their distributions can be derived fromvarious computational
methods, including molecular dynamics, Monte Carlo simulation, normal mode anal-
ysis. Variousmicrostates can be obtained by the discretization of the angle distribution,
usually through an equal-spacing grid. And conformational entropy can be evaluated
by using the classic Shannon entropy form. Even though it is suggested that the rela-
tive entropy is consistent in this procedural, a lack of a robust classification still poses
a challenge to a rigorous estimation of entropy. A detailed discussion will be given
below.

Conformation representation A quantitative evaluation of CE requires the character-
ization of biomolecular conformation spaces. Generally, dihedral angle models are
employed. In these models, biomolecular structures are parameterized by their back-
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Fig. 4 Illustration of a (θ, τ ) angle representation of protein 1VJU (chain A). The coarse-grained model
with each residue represented by its Cα atom (red ball) is used. The virtual dihedral angle θ is rescaled
to [0o, 180◦] by treating the parallel and antiparallel situations as the same. a Angle τ is the virtual bond
angle between adjacent three Cα atoms, and angle τ is the dihedral angle formed by four Cα atoms. For
four atoms, there are two τ angles. We only depict one. b The coarse-grained model of protein 1VJU (chain
A). c The (θ, τ ) angle distribution of protein 1VJU (chain A). It should be noticed that since for each four
Cα atoms, there is only one θ angle but two τ angles. To make their number consistent, in (θ, τ ) angle
distribution, our bond angle τ is defined as the average of every two virtual bond angles (Color figure online)

bone dihedral angle φ and ψ , and side chain rotametric angles χ . And the probability
distribution function can be expressed as P(φ,ψ, χ) in this representation. More
specifically, three unique dihedral angles can be found on the protein backbone (or
protein peptide chain) and all of them are formed between the adjacent four backbone
atoms. Dihedral angle φ is formed between atoms {C, N ,Cα,C}, angle ψ is between
atoms {N ,Cα,C, N }, and angle ω is from atoms {Cα,C, N ,Cα}. Due to the partial
double-bond character, dihedral ω is within a peptide planar and its value is normally
180◦. In this way, each residue can be associated with a pair of φ and ψ angles,
and protein backbone configuration can be characterized by a two-dimensional vector
composed of (φ,ψ) angles. AndRamachandran plot, a (φ,ψ) angle distribution graph,
is commonly used to visualize energetically favorable regions.

However, for macromolecules with a large number of amino acids, the (φ, ψ)
representation can be computationally inefficient. To reduce the complexity, many
coarse-grained models are used. The most common one is the Cα model, in which a
whole amino acid residue is represented by itsCα atom.Correspondingly, the backbone
configuration can be characterized by virtual dihedral angle θ and virtual bond angle τ

(Levitt andWarshel 1975; Korkut and Hendrickson 2013). To be more specific, virtual
dihedral angle θ is evaluated from four consecutive Cα atoms. These four atoms can
form two virtual bond angles, and our bond angle τ is defined as their average. In this
way, for protein with Nres residues, we have Nt = Nres − 3 number of (θ , τ ) points.
Figure 4a illustrates the geometric meaning of angle θ and τ . In this representation,
a Cα backbone of a protein is specified with (θ , τ ) virtual angles. In analogy to the
Ramachandran plot, we can use the distribution of (θ , τ ) angles to explore structure
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Fig. 5 Illustration of limitation of traditional entropy calculation. a Two identical data colored by red
and blue have dramatically different entropy values in coarse grid. b The calculated entropy values for two
identical data in various mesh spacing. The entropy curves are colored in the same way as the corresponding
data sets. cThe same entropymay represent dramatically different data distributions in a refinedmesh (Color
figure online)

properties. Figure 4b and c illustrates a (θ , τ ) angle distributions for protein 1VJU
(chain A). The angle distribution representation is essential to the CE evaluation.

Conformational entropy evaluation In CE evaluation, angular domain will be dis-
cretized into equal subdomains. Each subdomain is regarded as a configuration state,
and its probability can be evaluated by counting the number of angle points within the
region and dividing it by total number of points. In this way, a discrete CE formula
can be employed, which is the widely used Shannon entropy:

S = −
∑

pi log(pi ) (26)

where pi is the probability of the system being in state i and the sum is taken over all
possible states of the system. It should be noticed that the Boltzmann constant is no
longer exist in this definition, as Shannon entropy is entropy of information.

However, the partition of angular domain into different states is not unique and
highly depends on the way of discretization. Figure 5 demonstrates the great impor-
tance of discretization. To evaluate the entropy, the whole region is discretized. Each
grid box is regarded as an independent state. The probability pi can be evaluated by
counting the number of angular points in the i-th grid box and dividing it by the total
number of points. The discretization procedure has no common standard and is a very
subtle issue. For instance, we have two identical point sets colored by red and blue,
but located in different regions of the angular domain. First, a coarse 3 × 3 mesh is
used in Fig. 5a.With this discretization, two data have dramatically different entropies,
i.e., one is 0.0 and the other is about 1.39. Then, we employ a mesh refinement and
subdivide each grid box equally into four boxes. This time the entropy values are very
close, i.e., one is 1.11 and the other is 1.39. With further mesh refinement, these two
entropy values converge to the same value. To get a whole picture of the relationship
between entropies and mesh sizes, various grid spacings are used and Fig. 5b shows
the corresponding entropy values. To avoid confusion, the angular points are colored
in the same way as the corresponding data. It can be seen that as the grid spacing
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Fig. 6 Illustration of entropy values for the protein set in different grid spacing. The grid spacings d from
a to h are 0.2◦, 1.0◦, 5.0◦, 10.0◦, 20.0◦, 30.0◦, 60.0◦ and 180.0◦, respectively. The blue line represents the
function log(N ) with N the residue number (Color figure online)

decreases (or grid size increases), two data begin to share the same entropy, whose
value is not a constant but keeps increasing. Since finer meshes deliver same entropies
for these two data, it seems that finer meshes are always preferred. This, however, is
not true. To see it clearly, an example is given in Fig. 5c. We still use two sets of data
colored in blue and read. The red-colored data is the same as in Fig. 5a. The blue-
colored data is generated by redistributing the grid boxes contained with red points.
To be more specific, the process is done as follows. First we “stabilize” the red data
points in their grid boxes. Then we move these grid boxes together with the red points
to new blank boxes. Finally, we change the red color into blue. We repeat this process
for all boxes contained with red data points. In this way, no matter how refiner the
meshes are at the beginning, CEs for these two sets will always be the same, as point
distributions for correlated grid boxes are the same.

To further illustrate the great impact of grid spacing in biomolecular CE evaluation,
we carefully choose a data set with 110 proteins. The protein IDs are listed in Table
2. All chosen proteins have resolutions smaller than 1.5 Å . Most structures have only
one chain in it except eight structures marked by asterisk. For these data, we remove
all the other chains from it leaving only the first chain (chain A) in the structure. In
this way, there are no unphysical dihedral and bond angles in our (θ , τ ) plot due to
the dislocation between the ends of two chains. Figure 6 demonstrates the relation
between the calculated CEs and grid spacings. To avoid confusion, the blue curve in
the each subfigure of Fig. 6 represents function log(Nt ). Again Nt is the total number
of angle points and equals to Nres − 3 with Nres the total number of residues. It can
be seen that when the grid spacing is small enough, CE simply converges to log(Nt ).
When grid spacing is large enough to incorporate all the points in a single grid, the
entropy goes to zero. Essentially, grid spacing works as a resolution parameter and we
can rewrite the entropy formula in Eq. (26) as

123



Multiscale Persistent Functions for Biomolecular... 21

Fig. 7 Illustration of multiscale rigidity function and barcode results protein 1VJU (chain A). a and b
The illustrated multiscale rigidity function is constructed by using generalized Gaussian kernel with a scale
parameter η = 8◦. c The barcodes representation of density filtration for protein 1VJU (chain A). The
x-axis is the normalized density value. Three bars corresponded to the three peaks in the density map, and
contour plot can be observed. And in this way, the points in Fig. 4c are naturally subdivided into three
regions represented by three individual bars in barcodes. And the probability for each subdomain equals to
the ratio between its barlength and the total barlength (Color figure online)

S(d) = −
∑

pi (d)log(pi (d)) (27)

where parameter d is the grid spacing. We also have,

lim
d→0◦ S(d) = log(Nt ); lim

d→180◦ S(d) = 0. (28)

This means in CE evaluation, we cannot use extremely fine or extremely coarse mesh.
Instead, a “suitable” intermediate resolution is preferred.

Traditional discretization methods always use a regular mesh without any con-
sideration of the angular distribution properties. More recently, K-mean clustering
algorithm has been used to study CE by Zhang et al. (2008). In this method, angular
points are classified into several clusters so that the summation of distances between
points to their cluster centers is minimized. Inspired by this method, we propose a
MPE-based CE evaluation method. Similar to Zhang’s method, we do not use a regu-
lar mesh to discretize a configuration space; instead, we define configurational states
by their angular distribution properties. In our method, angular distribution is trans-
formed into an angular rigidity function. And configurational states are represented by
topological invariants, particularlyβ0 bars.With this representation, persistent entropy
can be used as a proxy for CE. Since a resolution parameter is naturally incorporated
into our persistent entropy, we will be able to deliver a multiscale entropy model and
find themost “suitable” entropy for protein structure description. A detailed discussion
is given below.

Multiscale persistent entropy The angular distribution data are point cloud data. Its
classification problem can be transformed into a topological problem by using our
MRF. To be more specific, we consider protein 1VJU (chain A) as demonstrated in
Fig. 4b and c. Based on its (θ, τ ) angular distribution, a rigidity function, as illustrated
in Fig. 7a, is generated by using the generalized Gaussian kernel in Eq. (1) with κ = 2
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Fig. 8 Multiscale density function distributions and their corresponding barcodes for protein 1VJU (chain
A). The (θ, τ ) angular data are from Fig. 4c. The generalized Gaussian kernel in Eq. (1) is used with κ = 2.
The values of resolution parameter η in a–f are 0.5◦, 5.0o, 10◦ and 60.0◦, respectively. The barcodes are
for β0. The number of bars represents how many clusters in the system. And the bar length represents the
size of each cluster (Color figure online)

and η = 8◦. After the comparison of this rigidity function and its angular distribution
in Fig. 4c, it can be seen that topology of the rigidity function reveals the clustering
information within the data. Simply speaking, if more angular points concentrate in a
certain region, a higher “peak” will emerge in our rigidity function in the same region.
If there is less or no points, a “valley” or “plane” will appear in the rigidity function.
In Fig. 7a and b, we can observe three “peaks” in the rigidity function, meaning that
the original angular points are concentrated in three clusters. Further, larger clusters
result in higher “peaks”, that is to say the size of clusters can be measured by relative
heights of “peaks.” All these angular distribution properties are naturally incorporated
into our persistent barcodes illustrated in Fig. 7c. Basically, three bars represent three
clusters and their barlengthsmeasure the density or point numbers in the cluster. Simply
speaking, each β0 bar represents a cluster of the data and its barlength represents the
relative size of this cluster. In this way, persistent entropy is a natural measurement of
the disorder. To avoid confusion, all the persistent homology calculation in this paper
is done with software Dipha (Bauer et al. 2014).

Further, with various resolution values, the above persistent homology analysis is
able to give a full “spectrum” information of the data. Figure 8 illustrates MRF dis-
tributions and barcode results for protein 1VJU (chain A). The rigidity functions are
generated with resolution parameter η = 0.5◦, 5.0◦, 10◦ and 60.0◦. From the com-
parison of density function contours and barcode results, it can be seen that our β0
bars capture topological features of density maps very well. When resolution value
is small, local details of the density maps are revealed. So more short bars emerge.
Correspondingly, we classify data into more clusters. When resolution value is large,
local details are smoothed away leaving only a few long persisting bars. In this situa-
tion, data are classified into a very few clusters. Depending on the scale we interested,
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Fig. 9 Comparison of persistent entropies with traditional entropies at different resolutions. In a and b, we
fix resolution value η as 1.0◦ and use two grid spacings 2.0◦ and 3.0◦. The Pearson correlation coefficients
between our persistent entropy and two traditional ones are 0.984 and 0.988 for a and b, respectively. In c
and d, we fix the value of resolution parameter η as 5.0◦ and use two grid spacings 10.0◦ and 15.0◦. The
corresponding Pearson correlation coefficients are 0.848 and 0.863 for c and d, respectively. Since we use
the Gaussian kernel, we chose grid spacing values based on 3η rule (Color figure online)

the resolution can be systematically adjusted. This gives us great flexibility in struc-
ture characterization. Moreover, unlike the traditional way of discretization, which
employs a regular mesh, our discretization and classification is highly dependent on
data structure, thus preserving more topological features in the data. To have a clear
picture of the difference between the two approaches, we compare the our MPE with
the general CE evaluation method. Again we use the same data set with 110 proteins
as in Sect. 3.1, and protein IDs are listed in Table 2.

Generally speaking, our scale parameter η can be viewed as a counterpart of grid
spacing in a traditional discretization scheme. Since dominant values in a Gaussian
kernel have a range about 3η, we choose the size of the grad spacing to be about
2 to 3 times of η and make a comparison. It is seen that when grid spacing is very
small, all entropy values approach to log(Nt ) as indicated in Fig. 6. This property is
well-preserved in our scheme. It can be seen that there is a nice linear correlation for
small η values as demonstrated in Fig. 9a and b. Further, when the grid spacings are
extremely large, entropies in the traditional method approach to zero as demonstrated
in Fig. 6h. This is also true in our scheme. When η value is very large, density map
can have only one peak as indicated in Fig. 8d and the corresponding barcodes have
only one long persisting bar as illustrated in Fig. 8f. In this way, our persistent entropy
equals exactly to zero just as the same as in the traditional method. And a nice linear
correlation can also been achieved.

More interesting is the situation when resolutions and grid spacing values are in the
middle range. In this situation, two types ofmethods differ greatly. This is largely due to
the reason that different ways of classification are used and angular data are discretized
into dramatically different clusters. Figure 9c, d demonstrates this difference. The
resolution parameter η is 5.0◦. The grid spacings are 10.0◦ and 15.0◦ in Fig. 9c and
d. The Pearson correlation coefficients decrease greatly compared with the ones in
Fig. 9a and b. It should be noticed that in the traditional CE calculation, grid spacing
value is always chosen in a range around 10◦ to 60◦. And this is exactly the range
in which our classification results are dramatically different from traditional ones. To
further demonstrate the great power of our MPE, we use a classic protein structure
classification test.
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Fig. 10 Persistent entropy-based protein structure classification. The three protein classes are all-alpha
(AA) protein, all-beta (AB) protein and mixed-alpha-and-beta (MAB) protein. Three hundred structures
are chosen from each type of proteins, and they are colored in red (AA), blue (AB) and yellow (MAB),
respectively. Two optimized thresholds are 1.45 and 2.25. It can be seen that AA type and AB type are
clearly separated from each other in our method (Color figure online)

3.2 Protein Structure Classification Test

Based on secondary structures, proteins can be classified into three general categories,
i.e., AA, AB and MAB proteins. To validated our MPE in protein structure classifica-
tion, we employ a classic test dataset (Cang et al. 2015), which is downloaded from
Structural Classification of Proteins—extended (SCOPe) database. In this test case,
300 structures are chosen from each type of proteins.

In our approach, for each protein, we calculate (θ , τ ) angle distribution first, then
evaluate the rigidity function and perform the persistent homology analysis on the
function. For all protein structures, a generalized Gaussian kernel with κ = 2 and
η = 5◦ is used. As stated in the previous section, similar to the traditional entropy
method, we cannot use an extremely small or an extremely large resolution value.
In this section, we choose η = 5◦ for protein structure classification. Other η values
may also be suitable. Figure 10 shows our persistent entropy results. The red, blue
and yellow points represent AA, AB and MAB samples, respectively. In general,
The persistent entropies for AA are lower than those for AB. And there is a clear
separation between two sets of values. This means persistent entropy can be used as
a proper measurement to classify AA and AB proteins. In the mean time, persistent
entropies for MAB proteins are distributed in the middle. To have a more quantitative
comparison, we can choose two thresholds to classify the persistent entropies into
three categories, corresponding to three types of proteins. For the test case, we find
that the two best values are 1.45 and 2.25. We define a true positive rate (TPR) as
the proportion of positives that are correctly identified as such. For instance, among
the 300 MAB proteins, only 275 are predicted as MAB (with entropy value between
the two thresholds). Therefore, the TPR for MAB is 91.7%. To avoid confusion, our
thresholds are chosen to maximize the TPRs.

We have compared our persistent entropy results with the ones from traditional
entropies (Stites and Pranata 1995; Baruah et al. 2015), persistent homology-based
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Fig. 11 Comparison of the performance of traditional entropies and virtual bond angle mean and variance
method in protein structure classification. Again, red, blue and yellow points represent all-alpha (AA),
all-beta (AB) and mixed-alpha-and-beta (MAB) proteins, respectively. Three hundred structures are chosen
from each type. a–d Traditional entropies with grid sizes as 5◦, 10◦, 20◦ and 30◦, respectively. e and f
Variance and mean values of virtual bond angles, respectively (Color figure online)

Table 1 Comparison of the performance of our persistent entropy with traditional entropies, persistent
homology-based support vector machine method and virtual bond angle mean and variance method, in
protein structure classification

TPR S(5◦) S(10◦) S(20◦) S(30◦) Mean Variance PH-SVM PE

AA 82.3 85.7 89.0 91.0 93.3 95.3 90.7 100.0

AB 86.7 83.7 83.3 68.0 89.0 93.0 78.8 88.7

MAB 46.0 61.7 79.7 67.0 89.7 4.33 83.3 91.7

Average 71.7 77.0 84.0 75.3 90.7 64.2 84.93 93.4

Here TPR is true positive rate. AA, AB and MAB stand for all-alpha, all-beta, or mixed-alpha-and-beta
proteins, respectively. S(d) with grid spacing d = 5◦, 10◦, 20◦ and 30◦ represents traditional entropy
result. PH-SVM is a persistent homology-based support vector machine method (Cang et al. 2015) PE is
our persistent entropy

support vector machine method (Cang et al. 2015) and virtual bond angle mean and
variance method. The results are demonstrated in Fig. 11 and Table 1. It can be seen
that our persistent entropy-based method gives the best result. It is worth mentioning
that the classification results of traditional entropies can be further improved if a certain
nonlinear threshold boundary is used. However, our persistent entropy will still prove
to be better, as none of them are able to discriminate AA and AB with zero error.
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Fig. 12 Protein structure index derived from persistent entropy. The proteins and PSIs are 1GK7 (0.00),
1I2T (0.60), 4XQI (0.84), 4EPV (1.52), 4ALT (2.11) and 3ZFP (2.50). A low PSI means that the cor-
responding angular distribution is highly concentrated in a certain region and usually represents α-helix
structure. As PSI value increases, the related angular distribution will be more diverse or scattered, meaning
the structure has more twist β-sheets and loops

3.3 Protein Structure Index

Motivated by our success in protein structure classification, we propose a topological
index based on our MPE to quantitatively characterize the protein structure “regular-
ity.” We call it protein structure index.

The essential idea of PSI is to evaluate the disorder of protein (θ , τ ) angles. We
find that when a protein structure contains only α-helix, its (θ , τ ) plot is very regular
with data points highly concentrated around (50◦, 90◦). The corresponding persistent
entropy is very low. The reason is that α-helix has a highly “regular” spiral confor-
mation. On the other hand, β-sheet is also a very regular structure with (θ , τ ) angles
concentrated around (195◦, 117◦). In contrast, β-sheets have various twist configura-
tions so that (θ , τ ) angles tend to be more scattered than the ones in α-helix. Persistent
entropy for β-sheet is generally larger than that of β-sheet. Further, if protein struc-
tures have a large portion of loops or intrinsically disordered regions, (θ , τ ) angles will
be more diverse and the corresponding persistent entropy will be even higher. Phys-
ically, loops and intrinsically disordered regions are usually very unstable compared
with α-helix and β-sheet. Intrinsically disorder regions even lack a fixed or ordered
three-dimensional structure. In general, there is a strong correlation between angular
distribution and structure disorder. And (θ , τ ) angle-based persistent entropy provides
a way to quantitative characterization of protein structure regularity.

To evaluate our PSI model, we use the 110 protein data set in Table 2. We sys-
tematically calculate their (θ , τ ) angles, transform point cloud data into density
representations and employ the persistent homology analysis. We use the generalized
Gaussian kernel with κ = 2 and η = 5◦ as previously. The results are demonstrated
in Fig. 12 and Table 2. It can be seen that the protein structure index provides a com-
parably nice description of protein regularity. The smallest index indicates the most
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regular structure, i.e., a regular β-sheet. As the index increases, the protein structure
gets more and more “irregular.” Again, by “irregular,” we mean large portion of loops
and intrinsic disorder regions. It is worth mentioning that our PSI is different from
Debye–Waller factor, also known as B-factor. Essentially, PSI is the general structure
property with each protein one PSI value. B-factor is defined on each atom and it is
used to describe the “compactness” (Halle 2002). Simply speaking, atoms with more
neighbors will have a smaller B-factor than the ones with less neighbors.

Our structure index can also be used to describe the regularity in any system.
Essentially, it provides a unique way of characterization disorder. It should noticed
that, our protein structure index is only based on the β0 persistent entropy. More
interesting information can be derived from β1 and β2 topological entropies. This,
however, will not be discussed in the current paper.

4 Conclusion Remarks

In this paper, we discuss our multiscale persistent homology analysis, particular mul-
tiscale persistent function, for biomolecular structure characterization. The multiscale
persistent homology analysis is based on twomethods, i.e., multiscale rigidity function
and persistent homology. The multiscale rigidity function is essentially a continuous
version of the rigidity index in our flexibility rigidity index model. It incorporates the
multiscale information by using a specially designed resolution parameter. Further,
multiscale barcode representation of the structure data can be achieved by a density
filtration over multiscale rigidity functions. Multiscale persistent functions are defined
on these barcode spaces. We discuss in great detail a particular function–multiscale
persistent entropy and illustrate its applications in protein structure classification and
characterization.

There are several significant characteristics of our multiscale persistent entropy.
Firstly, we naturally divide the data into several clusters. This classification is based
on the general topological features of the rigidity function derived from (θ , τ ) angu-
lar points. Secondly, the classification information is embedded into our β0 barcodes.
Essentially, each β0 bar represents a cluster and its length represents the relative size of
the cluster. Thirdly, even through β0-based clustering is very natural and reveals inter-
esting structure information, it still does not differ greatly from the available methods,
including hierarchical clustering, K-mean methods (Zhang et al. 2008), spectral graph
theory (Chung 1997). And for persistent entropy, similar results can be obtained by the
other clustering methods with some special kernels on the right scale. However, clus-
tering and topological entropies defined from higher-dimensional homologies, i.e., β1,
β2, will be dramatically different from all the previous clustering methods. Because
these topological invariants are able to describe higher-dimensional global structure
information. In this way, topological entropies defined by higher-dimensional bar-
codes will be able to provide more interesting intrinsic topological information of the
structure. This interesting topic requires further investigation.
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