THERE IS A NON-VAN DOUWEN MAD FAMILY

Student Zhuodong He, Chinese

Shenzhen Middle School, Shenzhen, Guangdong Province, China;

Teacher Chengyu Zhang, Chinese

There is a non-Van Douwen MAD family

Abstract

Two functions f and g on \mathbb{N} are almost disjoint if and only if f and g agree on finite many natural numbers, i.e., $\{n \in \mathbb{N} | f(n) = g(n)\}$ is finite. A set $\mathcal{A} \subset \mathbb{N}^{\mathbb{N}}$ is an almost disjoint family if and only if for any two functions f and g in \mathcal{A} , f and g are almost disjoint. A maximal almost disjoint (MAD) family is with respect to the almost disjointness in $\mathbb{N}^{\mathbb{N}}$. A Van Douwen MAD family is maximal in $\mathbb{N}^{\mathbb{N}}$, moreover it is also maximal with the respect of infinite partial functions on \mathbb{N} .

In [5] D. Raghavan proved the existence of a Van Douwen MAD family, thus he closed a long standing question in set theory. On the other hand, although obviously, Axiom of Choice (or Zorn's Lemma) implies the existence of a MAD family, we do not know whether such a MAD family is Van Douwen or not.

In this short article, the author gives some attempt to construct a MAD family which is not Van Douwen under the Continuum Hypothesis. He hopes the method that is used here can shed some light on the construction of a non-Van Douwen MAD family in ZFC and some related problems, e.g. whether or not there is a closed MAD family in $\mathbb{N}^{\mathbb{N}}$, etc., see [1].

The results in this paper was initially inspired by Yi Zhang's talk in ShenZhen Middle School in October 2010.

摘要

两个 $\mathbb{N}^{\mathbb{N}}$ 中的函数f和g几乎不相交,当且仅当f和g在图像上仅有有限个交点,也就是说集合 $\{n \in \mathbb{N} | f(n) = g(n)\}$ 是可数的。集合 $A \subset \mathbb{N}^{\mathbb{N}}$ 是几乎不相交集族当且仅当集合A中的函数两两几乎不相交。称一个几乎不相交集族A极大当且仅当对任意在集合 $\mathbb{N}^{\mathbb{N}} - A$ 中的函数g,在中总存在一个函数f与g几乎不相交。一个Van Douwen极大几乎不相交集族不仅在 $\mathbb{N}^{\mathbb{N}}$ 中极大,也在所有无穷部分函数的集合中极大。

在[5]中D. Raghavan证明了Van Douwen极大几乎不相交集族的存在性,解决了一个存在已久的集合论问题。 另一方面,尽管选择公理(或佐恩引理)蕴涵着极大几乎不相交集族的存在性,我们并不知道这样的极大几乎不相 交集族是否是Van Douwen极大几乎不相交集族。

在这篇论文中,作者证明了若连续统假设成立,则存在一个非Van Douwen极大几乎不相交集族。作者希望 本文中所用的方法能对非Van Douwen极大几乎不相交集族得构造,以及一些相关问题如是否存在一个闭的极大 几乎不相交集族,见[1],起到帮助。

本论文是最初受到张翼教授2010年10月在深圳中学的讲座启发。

1 INTRODUCTION

In this paper, we will make an attempt to shed some light on the structure of a maximal almost disjoint family in $\mathbb{N}^{\mathbb{N}}$. Namely we will try to construct a maximal almost disjoint family which is not Van Douwen [5] under the Continuum Hypothesis. Two functions f and g in $\mathbb{N}^{\mathbb{N}}$ are said to be almost disjoint if they only have finite intersections. So we use the following as our definition of the almost disjointness.

Definition 1.1. Functions f and g in $\mathbb{N}^{\mathbb{N}} = \{f | f : \mathbb{N} \to \mathbb{N}\}$ are said to be almost disjoint if and only if $|f \cap g| < \aleph_0$, i.e. $\{n \in \mathbb{N} | f(n) = g(n)\}$ is finite.

For a set of functions in $\mathbb{N}^{\mathbb{N}}$, if all functions in the family are pairwise almost disjoint, we call such family an almost disjoint family.

Definition 1.2. A family \mathcal{A} in $\mathbb{N}^{\mathbb{N}}$ is called an almost disjoint family if and only if for any two functions f and g in \mathcal{A} , $|f \cap g| < \aleph_0$. An almost disjoint family \mathcal{A} in $\mathbb{N}^{\mathbb{N}}$ is called a maximal almost disjoint family or a MAD family, if and only if for any function g in $\mathbb{N}^{\mathbb{N}}$ there is a function f in \mathcal{A} so that f and g are not almost disjoint.

Van Douwen asked whether there is a MAD family of functions \mathcal{A} in $\mathbb{N}^{\mathbb{N}}$ that is also maximal with respect to all infinite partial functions [3]. We call such a family Van Douwen MAD [5].

Definition 1.3. A MAD family \mathcal{A} in $\mathbb{N}^{\mathbb{N}}$ is called a Van Douwen MAD family if and only if for any infinite partial function g, $|f_i \cap g| = \aleph_0$, for all $f_i \in \mathcal{A}$.

Van Douwen's question dates to the 1980s. It occurs as problem 4.2 in A. Miller's problem list [3]. By axiom of choice or by Zorn's lemma, we know that there is a MAD family, e.g. see [6]. But we do not have sufficient details to determine whether the MAD family is Van Douwen or not. In 1999 Y. Zhang [7] got some partial results on this problem. He showed the cardinalities of Van Douwen MAD families are independent of ZFC, etc. D. Raghavan [5] solved this problem in 2010. He showed that there is a Van Douwen MAD family in ZFC. Van Douwen's problem was solved. By solving this problem, Raghavan got the Sacks Prize. We now know that there is a Van Douwen MAD family in ZFC. Naturally we can also ask whether or not all MAD families are Van Douwen. If a MAD family is not Van Douwen, we call the family a non-Van Douwen MAD family.

Definition 1.4. A MAD family \mathcal{A} in $\mathbb{N}^{\mathbb{N}}$ is called non-Van Douwen if and only if there is an infinite partial function g, for any function f in \mathcal{A} , f and g are almost disjoint.

In this paper, unless otherwise defined, we will use the standard terminology of set theory, see, e.g. [2]. In Section 2 we will discuss some lemmas which are essential for the process of the construction. We will also define an infinite partial function for the construction of the non-Van Douwen MAD family. Then in Section 3 we will construct a Van Douwen MAD family step by step under the Continuum Hypothesis. We will also show that Continuum Hypothesis implies that there is a dense non-Van Douwen MAD family. However, the existence of non-Van Douwen MAD family in ZCF is still an open question.

2 SOME TECHNICAL LEMMAS

In this section we will discuss some lemmas which are essential for the construction of a non Van Douwen MAD family. We will also list some well-known results as lemmas for later use.

S02

Lemma 2.1. The biggest prime number does not exist.

Definition 2.2. Let g be an infinite partial function such that the $dom(g) = \{p, p^p, p^{p^p}, \dots\}$, in which p is a large enough prime number, and $g(p) = p^p$, $g(g(p)) = p^{g(p)}$, $g(g(g(p))) = p^{g(g(p))}$, \dots , $g(g(\cdots g(p) \cdots)) = p^{g(\cdots g(p) \cdots)}$, \dots .

We will frequently use this function g in later sections.

Lemma 2.3. Let $\mathcal{A} = \{ \alpha \in ord | 0 \leq \alpha < \aleph_1 \}$ and $\mathcal{B} = \{ \beta \in ord | \aleph_0 \leq \beta < \aleph_1 \}$. There is a bijection between \mathcal{A} and \mathcal{B} .

Proof. Let f be the bijection from \mathcal{A} to \mathcal{B} .

$$f(x) = \begin{cases} \aleph_0 + 2x + 1 & \text{if } 0 \le x < \aleph_0, \\ \aleph_0 + 2y & \text{if } \aleph_0 \le x < \aleph_0 + \aleph_0 \text{ and } x = \aleph_0 + y, \\ x & \text{if } \aleph_0 + \aleph_0 \le x < \aleph_1. \end{cases}$$

So there is a bijection between \mathcal{A} and \mathcal{B} .

Lemma 2.4. For a function f in $\mathbb{N}^{\mathbb{N}}$ and an countable almost disjoint family \mathcal{A} in $\mathbb{N}^{\mathbb{N}}$, if $\mathcal{A} \cup \{f\}$ is also an almost disjoint family, but f is not almost disjoint with the infinite partial function g, which was defined in Definition 2.2, we can always construct a new function f' such that (1) $|f' \cap f| = \aleph_0$, and (2) $|f' \cap h| < \aleph_0$, for $h \in \mathcal{A}$, and (3) $|f' \cap g| < \aleph_0$.

Proof. By Definition 2.2, $dom(g) = \{p, p^p, p^{p^p}, \dots\}$. Assume that the almost disjoint family

$$\mathcal{A} = \{ f_i \in \mathbb{N}^{\mathbb{N}} | 0 \le i \le \alpha, \aleph_0 \le \alpha < \aleph_1 \}.$$

Let

$$f'(x) = \begin{cases} 1 + g(x) + f(x) + \sum_{i=0}^{x-1} f_{i-1}(x) & \text{if } x \in dom(g), \\ f(x) & \text{if } x \in \mathbb{N} - dom(g). \end{cases}$$

Since f is almost disjoint with all functions in \mathcal{A} , and

if $x \in dom(g), f'(x) > f_i(x)$, for $0 \le i < x$,

f' is almost disjoint with all functions in \mathcal{A} . Also since for $x \in dom(g)$ f'(x) > g(x), f' is almost disjoint with g.

The following are lemmas that are essential for the construction of a dense non-Van Douwen MAD family.

Lemma 2.5. There are countably many finite partial functions from \mathbb{N} to \mathbb{N} .

Lemma 2.6. A set \mathcal{D} is dense in $\mathbb{N}^{\mathbb{N}}$ if and only if for any basic open set \mathcal{B}_s , $\mathcal{D} \cap \mathcal{B}_s \neq \emptyset$.

Page - 233

3 CONSTRUCTING A NON-VAN DOUWEN MAD FAMILY UNDER THE CONTINUUM HYPOTHESIS

S02

In this section, we will prove our main theorem, i.e. we will construct a non-Van Douwen MAD family.

Theorem 3.1. Continuum Hypothesis implies that there is a non-Van Douwen MAD family.

Proof. By definition of the non-Van Douwen MAD family, to construct a non-Van Dauwen MAD family, we need to fix an infinite partial function. Let this infinite partial function be the function g that we defined in Definition 2.2. To construct a non-Van Douwen MAD family, we first construct an almost disjoint family \mathcal{A}_{\aleph_0} as following,

$$\mathcal{A}_{\aleph_0} = \{ f_i \in \mathbb{N} | f_i(x) = i, i \in \mathbb{N} \}.$$

We will extend \mathcal{A}_{\aleph_0} to a non-Van Douwen MAD family. By Lemma 2.3 and CH, we can list all functions in $\mathbb{N}^{\mathbb{N}}$ as follows: $f_{\aleph_0}, f_{\aleph_0+1}, f_{\aleph_0+2}, \cdots, f_{\alpha}, \cdots$, where $\aleph_0 \leq \alpha < \aleph_1$. At each stage α , we can do as following. For the function f_{α} , if $\{f_{\alpha}\} \cup \mathcal{A}_{\alpha}$ is not an almost disjoint family, let

$$\mathcal{A}_{\alpha+1} = \mathcal{A}_{\alpha},$$

if $\{f_{\alpha}\} \cup \mathcal{A}_{\alpha}$ is an almost disjoint family, and f_{α} is almost disjoint with g, let

$$\mathcal{A}_{\alpha+1} = \{f_\alpha\} \cup \mathcal{A}_\alpha,$$

if $\{f_{\alpha}\} \cup \mathcal{A}_{\alpha}$ is an almost disjoint family, but f_{α} is not almost disjoint with g, by Lemma 2.4 we construct a new function f'_{α} such that

(1) $|f'_{\alpha} \cap f_{\alpha}| = \aleph_0$, and (2) $|f'_{\alpha} \cap h| < \aleph_0$, for $h \in \mathcal{A}_{\alpha}$, and (3) $|f'_{\alpha} \cap g| < \aleph_0$, and let

$$\mathcal{A}_{\alpha+1} = \{f'_{\alpha}\} \cup \mathcal{A}_{\alpha}.$$

For a limit ordinal α , we let

$$\mathcal{A}_{\alpha} = \bigcup_{\aleph_0 \leq \beta < \alpha} \mathcal{A}_{\beta}.$$

We start with \mathcal{A}_{\aleph_0} to continue doing this process under the Continuum Hypothesis and we will get a series of almost disjoint families: \mathcal{A}_{\aleph_0} , \mathcal{A}_{\aleph_0+1} , \mathcal{A}_{\aleph_0+2} , \cdots , \mathcal{A}_{α} , \cdots ($\alpha < \aleph_1$). Let

$$\mathcal{A} = \bigcup_{\aleph_0 \le \alpha < \aleph_1} \mathcal{A}_\alpha.$$

 \mathcal{A} is a non-Van Douwen MAD family.

We will first verify that the family is a maximal almost disjoint family.

Suppose that there is a function h in $\mathbb{N}^{\mathbb{N}} - \mathcal{A}$ such that h is almost disjoint with all functions in \mathcal{A} . Let us consider h in the following two cases.

a. Let h be almost disjoint with g, which was defined in Definition 2.2.

Since we have considered all functions in $\mathbb{N}^{\mathbb{N}}$, there must be a β such that $h = f_{\beta}$, $\aleph_0 \leq \beta < \aleph_1$. Now for the family A_{β} , h is the next function we need to consider. Since h is almost disjoint with all functions in \mathcal{A} , h is almost disjoint with all functions in \mathcal{A}_{β} . Also h is almost disjoint with g, which was defined in Definition 2.2. As a result based on the rules of the process, we would add h into \mathcal{A}_{β} : let $\mathcal{A}_{\beta+1} = \mathcal{A}_{\beta} \cup \{h\}$. Therefore if there were a such function h, h should have been in \mathcal{A} . Thus h should not exist.

S02

b. Let h be not almost disjoint with g, which was defined in Definition 2.2.

Since we have considered all functions in $\mathbb{N}^{\mathbb{N}}$, there must be a β such that $h = f_{\beta}$, $\aleph_0 \leq \beta < \aleph_1$. For the almost disjoint family A_{β} , h is the next function we need to consider. We know that h is not almost disjoint with g, which was defined in Definition 2.2. Based on the rules of the process, we would change part of h to construct a new function h' in $\mathbb{N}^{\mathbb{N}}$ such that h' is almost disjoint with all functions in \mathcal{A}_{β} and h' is almost disjoint with g, which was defined in Definition 2.2. Then we added h' into \mathcal{A}_{β} instead of h: let $\mathcal{A}_{\beta+1} = \mathcal{A}_{\beta} \cup \{h'\}$. We can inferred that $h' \in \mathcal{A}$, but we know that h is not almost disjoint with h'. Therefore such function h could not exist.

Hence such function h in the assumption above does not exist.

Secondly, we will verify that \mathcal{A} is a non-Van Douwen MAD family.

We know that functions in $\mathcal{A}_{\aleph_0} = \{f_i \in \mathbb{N} | f_i(x) = \overline{i}, i \in \mathbb{N}\}$ are almost disjoint with g. Based on the rules of the construction, we know that the functions we added into \mathcal{A}_{\aleph_0} later are all almost disjoint with g. As a result all functions in \mathcal{A} are almost disjoint with g. \mathcal{A} is a non-Van Douwen MAD family.

In $\mathbb{N}^{\mathbb{N}}$, we consider its natural topology, e.g. see [4], i.e. the basic open set $\mathcal{B}_s = \{f \in \mathbb{N}^{\mathbb{N}} | f \supset s\}$, where s is a finite partial function. We know that it is an open problem whether there is a closed MAD family in $\mathbb{N}^{\mathbb{N}}$, see e.g. [1]. However, by our construction of non-Van Douwen MAD family above, we can easily prove the following corollaries.

Corollary 3.2. Continuum Hypothesis implies that there is a dense non-Van Douwen MAD family $\mathcal{A} \subseteq \mathbb{N}^{\mathbb{N}}$.

Proof. We will use a similar way to construct a dense non-Van Douwen MAD family. By Theorem 2.5, we can list all finite partial function as following: $S_0, S_1, S_2, \dots, S_n, \dots$, in which $n \in \mathbb{N}$. Let

$$f_n(i) = \begin{cases} s_n(i) & \text{if } i \in dom(s_n), \\ n & \text{if } i \notin dom(s_n), \end{cases}$$

and

 $\mathcal{A}_{\aleph_0} = \{ f_i | , i \in \mathbb{N} \}.$

For any basic open set \mathcal{B}_s , there must be a natural number n such that $f_n \in \mathcal{B}_s$. As a result for any basic open set \mathcal{B}_s , $\mathcal{A}_{\aleph_0} \cap \mathcal{B}_s \neq \emptyset$. By Lemma 2.6, we know that \mathcal{A}_{\aleph_0} is dense in $\mathbb{N}^{\mathbb{N}}$. Then we list all functions in $\mathbb{N}^{\mathbb{N}}$ as follows: $f_{\aleph_0}, f_{\aleph_0+1}, f_{\aleph_0+2}, \cdots, f_{\alpha}, \cdots$, where $\aleph_0 \leq \alpha < \aleph_1$, and use similar method to construct $\mathcal{A}_{\aleph_0+1}, \mathcal{A}_{\aleph_0+2}, \cdots, \mathcal{A}_{\alpha}, \cdots$, where α is an ordinal such that $\aleph_0 < \alpha < \aleph_1$. Then similarly we let

$$\mathcal{A} = \bigcup_{leph_0 \le lpha < leph_1} \mathcal{A}_lpha.$$

Since $\mathcal{A}_{\aleph_0} \subset \mathcal{A}$ is dense in $\mathbb{N}^{\mathbb{N}}$, \mathcal{A} is dense in $\mathbb{N}^{\mathbb{N}}$. Therefore \mathcal{A} is a dense non-Van Douwen MAD family.

Corollary 3.3. There is a dense MAD family $\mathcal{A} \subset \mathbb{N}^{\mathbb{N}}$

References

- B. Kastermans, J. Steprāns, and Y. Zhang, Analytic and coanalytic families of almost disjoint functions, J. Symbolic Logic 73 (2008), no. 4, 1158-1172.
- [2] K. Kunen, Set theory. an introduction to independence proofs 1980 by North-Holland.
- [3] Arnold W. Miller, Arnie Miller's problem list, Set theory of the reals (Ramat Gan, 1991), Israel Math. Conf. Proc., vol. 6 (Bar-Ilan Univ., Ramat Gan, 1993), pp. 645-654.
- [4] ____, Some properties of measure and category, **Trans. Amer. Math. Soc., vol. 266** (1981), no. 1, pp. 93-114.
- [5] Dilip Raghavan, There is a Van Douwen MAD family, Trans. Amer. Math. Soc., vol. 362 (2010), no. 11, pp. 5879-5891.
- [6] Yi Zhang, On a class of m.a.d. families, J. Symbolic Logic 64 (1999), no. 2, pp. 737-746.
- [7] ____, Towards a problem of E. van Douwen and A. Miller, Math. Log. Q. 45 (1999), no. 2, pp. 183-188.