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UNIFORM MANIN-MUMFORD FOR A FAMILY OF GENUS 2
CURVES

LAURA DEMARCO, HOLLY KRIEGER, AND HEXI YE

Abstract. We introduce a general strategy for proving quantitative and uniform

bounds on the number of common points of height zero for a pair of inequivalent

height functions on P1(Q). We apply this strategy to prove a conjecture of Bo-

gomolov, Fu, and Tschinkel asserting uniform bounds on the number of common

torsion points of elliptic curves in the case of two Legendre curves over C. As a

consequence, we obtain two uniform bounds for a two-dimensional family of genus

2 curves: a uniform Manin-Mumford bound for the family over C, and a uniform

Bogomolov bound for the family over Q.

1. Introduction

In this article, we use the Arakelov-Zhang intersection of adelically-metrized line

bundles on P1(Q) to prove a uniform Manin-Mumford bound for a two-dimensional

family of genus 2 curves over C. The Manin-Mumford Conjecture, proved by Raynaud

[Ra], asserts the following: Let X be any smooth complex projective curve of genus

g ≥ 2, P ∈ X(C) any point, jP : X →֒ J(X) the Abel-Jacobi embedding of X into

its Jacobian J(X) based at P , and J(X)tors the set of torsion points of the Jacobian.

Then

(1.1) |jP (X) ∩ J(X)tors | < ∞.

In the case of genus g = 2, the curve is hyperelliptic, and the fixed points of the

hyperelliptic involution provide geometrically natural choices of base point for the

Abel-Jacobi map. We show there is a uniform bound on the number of torsion

images under such a map, provided the curve is also bielliptic, meaning that it admits

a degree-two branched cover of an elliptic curve.

Theorem 1.1. There exists a uniform constant B such that

|jP (X) ∩ J(X)tors | ≤ B

for all smooth, bielliptic curves X over C of genus 2 and all Weierstrass points P on

X.

The curves satisfying the hypothesis of Theorem 1.1 form a complex surface L2 in

the moduli space M2 of genus 2 curves. These X are also characterized by the
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property that their Jacobians admit real multiplication by the real quadratic order

of discriminant 4. Further details on L2 are given in Section 9.

Remark 1.2. We do not give an explicit value for the B of Theorem 1.1, but this

bound can be made effective by estimating the continuity constants of Section 4.

Poonen showed that there are infinitely many curves X ∈ L2 for which |jP (X) ∩

J(X)tors | is at least 22, taking P to be a Weierstrass point on X [Po, Theorem 1].

More recently, Stoll found an example with |jP (X) ∩ J(X)tors | = 34 for Weierstrass

point P [St]; the curve X is defined over Q. We know of no curve X ∈ M2(C) and

point P ∈ X satisfying |jP (X) ∩ J(X)tors | > 34.

The question of uniformity in (1.1) was raised by Mazur in [Ma] who asked if a

bound could be given that depends only on the genus g of the curve X . Quantitative

bounds on torsion points on curves have been obtained when the curve is defined

over a number field, notably by Coleman [Co], Buium [Bu], Hrushovski [Hr], and

more recently by Katz, Rabinoff, and Zureick-Brown [KRZB]. By quantifying the

p-adic approach to (1.1), these authors achieve bounds for general families of curves;

however, these bounds all involve dependence on field of definition or the choice of a

prime for the family of curves, so are not uniform for families over Q or C.

Our new technique which yields Theorem 1.1 is a quantification of the approach

of Szpiro, Ullmo, and Zhang [SUZ, Ul, Zh1] to proving (1.1), utilizing adelic equidis-

tribution theory. We first reduce to the setting where the curve is defined over Q.

Over Q, we build on the proof of the quantitative equidistribution theorem for height

functions on P1(Q) of Favre and Rivera-Letelier [FRL1].

In fact, we deduce Theorem 1.1 from a case of the following conjecture, discussed by

Bogomolov and Tschinkel [BT] and stated formally as [BFT, Conjectures 2 and 12],

which asserts uniform bounds on common torsion points for pairs of elliptic curves.

By a standard projection π : E → P1 of an elliptic curve E over C, we mean any

degree-two quotient that identifies a point P and its inverse −P . Note that π has a

simple critical point at each of the four elements of the 2-torsion subgroup E[2].

Conjecture 1.3. [BFT] There exists a uniform constant B such that

|π1(E
tors

1 ) ∩ π2(E
tors

2 )| ≤ B

for any pair of elliptic curves Ei over C and any pair of standard projections πi for

which π1(E1[2]) 6= π2(E2[2]).

Note that if π1(E1[2]) = π2(E2[2]), then E1 is isomorphic to E2 and π1(E
tors

1 ) =

π2(E
tors

2 ). The finiteness of the set π1(E
tors

1 ) ∩ π2(E
tors

2 ), under the assumption that

π1(E1[2]) 6= π2(E2[2]), follows from the main theorem of Raynaud in [Ra]; indeed,

the diagonal in P1 × P1 lifts to a (singular) curve C ⊂ E1 × E2 via π1 × π2 with

normalization of genus g ≥ 2 [BT].
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We prove Conjecture 1.3 in the case of maximal overlap of the 2-torsion points;

i.e., when

|π1(E1[2]) ∩ π2(E2[2])| = 3.

This setting corresponds to the case where the (normalization of the) curve C in

E1 × E2 has genus 2. By fixing coordinates on P1, it suffices to work with the

Legendre family of elliptic curves

(1.2) Et : y2 = x(x− 1)(x− t)

with t ∈ C \ {0, 1} and the standard projection π(x, y) = x on Et. (See Corollary

8.2.)

Theorem 1.4. There exists a uniform constant B such that

|π(Etors

t1 ) ∩ π(Etors

t2 )| ≤ B,

for all t1 6= t2 in C\{0, 1}, for the curves Et defined by (1.2) and projection π(x, y) =

x.

To prove Theorem 1.4, we introduce a general strategy for bounding the number of

common height-zero points for any pair of distinct height functions h1, h2 : P
1(Q) → R

that arise from continuous, semipositive, adelic metrics on the line bundle OP1(1).

There is a natural Arakelov-Zhang pairing between any two such heights, given by

the intersection number of the associated metrized line bundles. Our heights are

normalized so this intersection number, which we denote by h1 · h2, will satisfy

h1 · h2 ≥ 0 with equality if and only if h1 = h2.

Details on these heights and the pairing are given in Section 2. The value of h1 · h2

provides a notion of distance between the two heights (as was observed by Fili in

[Fi]). It follows from equidistribution [CL1, FRL1, BR] that

(1.3) lim
n→∞

h2(xn) = h1 · h2

for any infinite sequence of distinct points xn ∈ P1(Q) such that h1(xn) → 0 as

n → ∞, suggesting that large numbers of common zeroes between h1 and h2 will imply

that h1 and h2 are close. However, this measure of closeness between two heights is

not generally uniform in families of heights, because the rate of equidistribution is

not uniform. Nevertheless, by bounding the height pairing h1 ·h2 from below, we can

obtain an upper bound on the number of common zeroes for certain families.

In the context of Theorem 1.4, we consider the family of height functions ĥt on

P1(Q) induced from the Néron-Tate canonical height on the elliptic curve Et, for

t ∈ Q \ {0, 1}; its zeroes are precisely the elements of π(Etors

t ). We implement this

general strategy by proving three bounds on the intersection pairing ĥt1 · ĥt2 . We

prove a uniform lower bound on the pairing:
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Theorem 1.5. There exists δ > 0 such that

ĥt1 · ĥt2 ≥ δ

for all t1 6= t2 ∈ Q \ {0, 1}.

We also prove an asymptotic lower bound for parameters t1 and t2 with large height:

Theorem 1.6. There exist constants α, β > 0 such that

ĥt1 · ĥt2 ≥ αh(t1, t2)− β

for all t1 6= t2 in Q \ {0, 1}. Here h(t1, t2) is the naive logarithmic height on A2(Q).

We find an upper bound that depends on the number of common zeroes of ĥt1 and

ĥt2 as well as the heights of the parameters t1 and t2:

Theorem 1.7. For all ε > 0, there exists a constant C(ε) > 0 such that

ĥt1 · ĥt2 ≤

(

ε+
C(ε)

N(t1, t2)

)

(h(t1, t2) + 1)

for all t1 and t2 in Q \ {0, 1}, where N(t1, t2) := |π(Etors

t1
) ∩ π(Etors

t2
)|.

The three theorems combine to give a uniform bound on the number N(t1, t2) of

common zeroes of ĥt1 and ĥt2 for all t1 6= t2 in Q \ {0, 1}.

Theorems 1.5 and 1.6 follow from estimates on the local height functions and the

local equilibrium measures on the v-adic Berkovich projective line at each place v of

a number field containing t1 and t2, computed using the dynamical Lattès map ft :

P1 → P1 induced by multiplication by 2 on a Legendre curve Et. The non-archimedean

contributions to ĥt1 · ĥt2 turn out to be straightforward to compute for these heights.

Significant technical issues arise when v is archimedean and both parameters ti are

tending to the singularity set {0, 1,∞} for this family; we resolve these issues by

appealing to the theory of degenerations of complex dynamical systems on P1(C), in

which a family of complex rational maps degenerates to a non-archimedean dynamical

system acting on a Berkovich space, as in the work of DeMarco-Faber [DF1] and Favre

[Fa], using the formalism of hybrid space as discussed by Boucksom-Jonsson in [BJ].

For Theorem 1.7, we expand upon the quantitative equidistribution results of Favre-

Rivera-Letelier [FRL1] and Fili [Fi] to analyze the rates of convergence of measures

supported on finite sets of zeroes of a height h to the associated equilibrium measures

at each place v. To do so requires control on the modulus of continuity of the local

heights, and again we rely on estimates from the hybrid space to treat the cases where

a parameter t is tending to one of the singularities for the family Et.

Although Theorem 1.5 alone was not enough to prove Theorem 1.4, it implies a

uniform bound of a different sort, when combined with Zhang’s inequality on the

essential minimum of a height function [Zh2]:
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Proposition 1.8. Choose any b satisfying 0 < b < δ/2 for the δ of Theorem 1.5.

Then the set

S(b, t1, t2) := {x ∈ P1(Q) : ĥt1(x) + ĥt2(x) ≤ b}

is finite for each pair t1 6= t2 ∈ Q \ {0, 1}.

The complete proof of Theorem 1.4, however, gives more: we obtain a uniform

bound on the size of the set S(b, t1, t2) defined in Proposition 1.8 (see Theorem 8.1).

This in turn provides a uniform version of the Bogomolov Conjecture for the asso-

ciated family of genus 2 curves. The Bogomolov Conjecture was proved for each

individual curve X over Q in [Ul, Zh1]. To state our result precisely, we fix ample

and symmetric line bundles on the family of Jacobians J(X) for the genus 2 curves

X defined over Q that we consider in Theorem 1.1. Specifically, we take LX = Φ∗LD

for the isogeny Φ : J(X) → E1 × E2 of Proposition 9.1, with LD the line bundle as-

sociated to the divisor D = {O1}×E2 +E1 ×{O2}, where Oi is the identity element

of Ei.

Theorem 1.9. There exist constants B and b > 0 such that
∣

∣{x ∈ jP (X)(Q) : ĥLX
(x) ≤ b}

∣

∣ ≤ B

for all smooth curves X over Q of genus 2 admitting a degree-two map to an elliptic

curve and all Weierstrass points P on X, where ĥLX
is the Néron-Tate canonical

height on the Jacobian J(X).

Finally, we mention that we implement this general strategy towards uniform

boundedness in a follow-up article [DKY] in another setting, providing a uniform

bound on the number of common preperiodic points for distinct polynomials of the

form fc(z) = z2 + c with c ∈ C.

Remark 1.10. We have chosen to work with the Arakelov-Zhang pairing ĥt1 · ĥt2 to

measure proximity of the two height functions, with t1 6= t2 in Q \ {0, 1}, but there

are other choices we could have made. For example, Kawaguchi and Silverman in

[KS] study

δ
(

ĥt1 , ĥt2

)

:= sup
x∈P1(Q)

∣

∣

∣
ĥt1(x)− ĥt2(x)

∣

∣

∣
.

It turns out that the two quantities are comparable for this family of heights. The

upper bound ĥt1 · ĥt2 ≤ δ
(

ĥt1 , ĥt2

)

can be seen as a corollary of arithmetic equidis-

tribution and (1.3), and therefore holds for any pair of normalized heights coming

from continuous, semipositive adelic metrics on OP1(1). A lower bound of the form

ĥt1 · ĥt2 ≥ C1 δ
(

ĥt1 , ĥt2

)

−C2 for real constants C1, C2, and for all t1 6= t2 in Q\{0, 1},

is a consequence of Theorem 1.6, when combined with [KS, Theorem 1]. However,

such a lower bound does not hold for all pairs of heights coming from metrics on
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OP1(1). A comparison of these two pairings is addressed further in [DKY], for the

canonical heights associated to morphisms of P1.

Outline of the paper. We fix our notation and provide background in Section 2.

Sections 3, 4, and 5 provide the estimates on local height functions and local measures

needed to prove all of our theorems. Theorem 1.6 is proved in Section 6, and from

it we deduce Theorem 1.5 and Proposition 1.8. A generalization of Theorem 1.7 is

proved in Section 7 which treats points of small height, not only of height 0. We

prove Theorem 1.4 in Section 8 and finally Theorems 1.1 and 1.9 in Section 9.

Acknowledgements. We thank the American Institute of Mathematics, where the

initial work for this paper took place as part of an AIM SQuaRE. Special thanks

go to Ken Jacobs, Mattias Jonsson, Curt McMullen, and Khoa Nguyen for helpful

discussions. We would also like to thank the anonymous referees for their many

suggestions and careful reading of the article. During the preparation of this paper,

L. DeMarco was supported by the National Science Foundation (DMS-1600718), H.

Krieger was supported by Isaac Newton Trust (RG74916), and H. Ye was partially

supported by ZJNSF (LR18A010001) and NSFC (11701508).

2. Heights, measures, and energies

This section develops the background and notation needed for the proofs that

follow. Throughout, K is a number field and MK its set of places.

2.1. The canonical height. Fix t ∈ Q\{0, 1}. Let Et be the Legendre elliptic curve

and π : Et → P1 the projection defined by π(x, y) = x. The multiplication-by-two

endomorphism on Et descends via π to a morphism of degree 4 on P1 given by

(2.1) ft(x) =
(x2 − t)2

4x(x− 1)(x− t)
.

The canonical height on the elliptic curve

ĥEt : Et(Q) → R

can be defined via the projection π and the iteration of ft as hEt(P ) := 1
2
ĥt(π(P ))

where

ĥt : P
1(Q) → R

is the dynamical canonical height defined by

(2.2) ĥt(x) = lim
n→∞

1

4n
h(fn

t (x)).

Here, h is the (logarithmic) Weil height on P1(Q). Note that ĥt(x) ≥ 0 for all

x ∈ P1(Q), and

ĥt(x) = 0 ⇐⇒ x ∈ π(Etors

t )
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[Si], [CS].

The height ĥt has a local decomposition as follows: for any number field K con-

taining t, and for each place v ∈ MK , there exists a local height function λt,v such

that

ĥt(x) =
∑

v∈MK

rv

|Gal(K/K) · x|

∑

y∈Gal(K/K)·x

λt,v(y)

for all x ∈ K, where

rv :=
[Kv : Qv]

[K : Q]
.

The local heights λt,v can be chosen to extend continuously to P1(Cv) \ {∞}, where

Cv is the completion (w.r.t. v) of an algebraic closure of the completion Kv, and to

satisfy

λt,v(x) = log |x|v +O(1)

as |x|v → ∞.

2.2. Local heights and escape rates. To compute the local heights, we will often

express the maps ft : P
1 → P1 of (2.1) in homogeneous coordinates, as

Ft(z, w) :=
(

(z2 − tw2)2, 4zw(z − w)(z − tw)
)

for z and w in Cv. As observed in [BR, Chapter 10], its escape-rate function

(2.3) GFt,v(z, w) := lim
n→∞

1

4n
log ‖F n

t (z, w)‖v,

where ‖(z, w)‖v = max{|x|v, |y|v}, satisfies

ĥt(x) =
∑

v∈MK

rv

|Gal(K/K) · x̃|

∑

ỹ∈Gal(K/K)·x̃

GFt,v(ỹ)

for x ∈ P1(K) and x̃ any choice of lift of x to K
2
\ {(0, 0)}. In particular, we may

take

(2.4) λt,v(x) = GFt,v(x, 1)

as a local height for ĥt.

The elliptic curves Et and E1−t and E1/t are isomorphic, with the following trans-

formation formulas for the local heights:

Proposition 2.1. Fix any number field K and v ∈ MK . Then, for all t ∈ K \ {0, 1},

we have

GF1−t,v(1− z, 1) = GFt,v(z, 1) = GF1/t,v(z, t) = GF1/t,v(z/t, 1) + log |t|v.
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Proof. Let A be the automorphism A(z, w) = (w − z, w). Then

A ◦ F n
t = −F n

1−t ◦ A

for all iterates, proving the first equality. Similarly, let B(z, w) = (z, tw). Then

B ◦ F n
t = F n

1/t ◦B

for all iterates, proving the second equality. The final equality follows from the

logarithmic homogeneity of G. �

2.3. The Berkovich projective line. Let K be a number field. For each v ∈ MK ,

let A1,an
v denote the Berkovich affine line over Cv. For non-archimedean v, the points of

A1,an
v come in four types. The Type I points in A1,an

v are, by definition, the elements

of the field Cv. The Type II points are in one-to-one correspondence with disks

D(a, r) = {x ∈ Cv : |x − a|v ≤ r} with r > 0 rational, and these are the branch

points for the underlying tree structure on A1,an
v . The Type III points correspond

to disks D(a, r) with r irrational. (We will not need the Type IV points in this

article.) A Type II or III point corresponding to D(a, r) will be denoted by ζa,r. The

Gauss point ζ0,1 is the Type II point identified with the unit disk. The Berkovich

projective line P1,an
v = A1,an

v ∪ {∞} is the one-point compactification of A1,an
v , which

is a canonically-defined path-connected compact Hausdorff space containing P1(Cv)

as a dense subspace. If v is archimedean, then Cv ≃ C and P1,an
v = P1(C).

For each v ∈ MK there is a distribution-valued Laplacian operator ∆ on P1,an
v . The

function log+ |z|v on P1(Cv) extends naturally to a continuous real valued function

P1,an
v → R ∪ {∞}, and the Laplacian is normalized such that

∆ log+ |z|v = ωv − δ∞

on P1,an
v , where ωv = mS1 is the Lebesgue probability measure on the unit circle when

v is archimedean, and ωv = δG is a point mass at the Gauss point of P1,an
v when v

is non-archimedean. A probability measure µv on P1,an
v is said to have continuous

potentials if µv − ωv = ∆g with g : P1,an
v → R continuous. The function g for µv is

unique up to the addition of a constant. See [BR, Chapter 5] for more details. Note

that the Laplacian used here is the negative of the one appearing in [PST] and [BR],

but agrees with the usual Laplacian (up to a factor of 2π) at the archimedean places.

For v non-archimedean, we set

H := A1,an
v \ Cv.

The hyperbolic distance dhyp on H gives it the structure of a metrized R-tree and

satisfies

dhyp(ζa,r1, ζa,r2) = log(r1/r2)
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for any a ∈ Cv and any r1 ≥ r2 > 0. We will say that a probability measure µv on H

is an interval measure if it is the uniform distribution on an interval [ζ1, ζ2] ⊂ H with

respect to the linear structure induced from the hyperbolic metric dhyp.

2.4. Canonical measures and good reduction. For each Legendre elliptic curve

Et with t in a number field K and each v ∈ MK , the local height λt,v of (2.4) extends

to define a continuous and subharmonic function on A1,an
v with logarithmic singularity

at ∞. We have

∆λt,v = µt,v − δ∞

on P1,an
v , where µt,v is the canonical probability measure for the dynamical system ft

at v [FRL1], [BR, Theorem 10.2].

For archimedean v ∈ MK , the measure µt,v is the unique ft-invariant measure

on P1(C) achieving the maximal entropy log 4. It is the push-forward of the Haar

measure on Et(C) via the projection π introduced in §2.1. See, for example, [Mi] for

a dynamical discussion of the maps ft on the Riemann sphere.

For non-archimedean v ∈ MK , if the curve Et and the map ft have good reduction,

the measure µt,v is the point mass δG supported on the Gauss point ζ0,1. The map

ft has potential good reduction, meaning that it has good reduction under a suitable

change of coordinates on P1, if and only if the measure µt,v is supported at a single

Type II point in H. In general, the support of µt,v is equal to the Julia set of ft in

P1,an
v .

Recall that the j-invariant of the elliptic curve Et over C is given by

(2.5) j(t) =
256(1− t + t2)3

(1− t)2t2
.

For t ∈ K and non-archimedean v ∈ MK , the map ft has potential good reduction at

v if and only if the curve Et has potential good reduction at v. This equivalence can

be proved via equidistribution of torsion points on Et at all places [BPe, Theorem 1]

(thus implying that the measure µt,v will also be supported at a single point of P1,an
v )

or via a direct calculation showing that the Julia set of ft is a singleton if and only if

|j(t)|v ≤ 1.

2.5. The height as an adelic metric. Suppose t ∈ K \ {0, 1}. The height ĥt on

P1(Q), introduced in §2.1, is induced from an adelic metric on OP1(1), in the sense

of Zhang [Zh2]. Fixing coordinates on P1 and a section s of OP1(1) with (s) = (∞),

then a metric ‖ · ‖t,v can be defined at each place v of K by setting

− log ‖s(z)‖t,v = λt,v(z) = GFt,v(z, 1),

for the function GFt,v of (2.3). The height ĥt satisfies

ĥt(x) =
∑

v∈MK

rv

|Gal(K/K) · x|

∑

y∈Gal(K/K)·x

(− log ‖s(y)‖t,v)
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for all x 6= ∞ in P1(Q). Writing λt,v(z) = log |z|v + cv + o(1) as |z|v → ∞ with a

constant cv at each place v of K, we may compute that

(2.6) 0 = ĥt(∞) =
∑

v∈MK

rv cv,

because ∞ is the projection of the origin of Et.

2.6. The intersection pairing. For these heights ĥt coming from the Legendre

family of elliptic curves, with t ∈ Q \ {0, 1}, we have

(2.7) ĥt1 = ĥt2 ⇐⇒ t1 = t2.

Indeed, any height coming from an adelic metric on OP1(1) is uniquely determined, up

to an additive constant, by the associated curvature distributions; see, for example,

the construction of a height function from the measures in [FRL1]. For heights of the

form ĥt, at each archimedean place v of a number field containing t, the curvature

distribution µt,v on P1(C) is the push-forward of the Haar measure on Et(C) by π; it

therefore has a greater density at the four branch points {0, 1, t,∞} of π, and thus

determines t.

There is a well-defined intersection number between any pair of such heights, as in

[Zh2] (see also [CL2]); more precisely, it is the arithmetic intersection number of the

two associated adelically metrized line bundles. By the non-degeneracy of this height

pairing and (2.7),

(2.8) ĥt1 · ĥt2 ≥ 0 with equality if and only if t1 = t2,

as computed in [PST].

To define the pairing ĥt1 · ĥt2 , we fix sections s and u of OP1(1) such that their

divisors do not intersect. Given t1 and t2 in a number field K, and a place v of K,

we set

〈ĥt1 , ĥt2〉
s,u
v :=

∫

log ‖s‖−1
t1,v ∆(log ‖u‖−1

t2,v) = 〈ĥt2 , ĥt1〉
u,s
v .

The integral is over the Berkovich analytification P1,an
v of P1, over the field Cv. The

metrics satisfy

∆(log ‖s‖−1
t,v ) = µt,v − δ(s),

and µt,v is the associated curvature distribution.

The height pairing is then defined as

(2.9) ĥt1 · ĥt2 := ĥt1((u)) + ĥt2((s)) +
∑

v∈MK

rv 〈ĥt1 , ĥt2〉
s,u
v
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which is independent of the choices of s and u. This pairing is easily seen to be

symmetric, and since ĥt(∞) = 0 for all t, it can be expressed as

ĥt1 · ĥt2 = ĥt2(∞) +
∑

v∈MK

rv

∫

(log ‖s‖−1
t1,v

) dµt2,v =
∑

v∈MK

rv

∫

λt1,v dµt2,v

= ĥt1(∞) +
∑

v∈MK

rv

∫

(log ‖s‖−1
t2,v) dµt1,v =

∑

v∈MK

rv

∫

λt2,v dµt1,v(2.10)

when (s) = (∞).

As ĥt · ĥt = 0 for all t ∈ Q \ {0, 1} from (2.8), note that

(2.11)
∑

v∈MK

rv

∫

λt,v dµt,v = 0 =
∑

v∈MK

rv cv,

by combining (2.10) and (2.6). The pairing can be rewritten as:

ĥt1 · ĥt2 =
1

2

(

ĥt2(∞) + ĥt1(∞) +
∑

v∈MK

rv

(
∫

λt1,v dµt2,v +

∫

λt2,v dµt1,v

)

)

=
1

2

∑

v∈MK

rv

(
∫

(λt1,v − λt2,v) dµt2,v +

∫

(λt2,v − λt1,v) dµt1,v

)

.(2.12)

The advantage of working with (2.12) is the following local version of the non-

degeneracy property (2.8):

Proposition 2.2. [FRL1, Propositions 2.6 and 4.5] Let K be a number field and

v ∈ MK . For any t1, t2 ∈ K \ {0, 1}, the local energy

Ev(t1, t2) :=
1

2

(
∫

(λt1,v − λt2,v) dµt2,v +

∫

(λt2,v − λt1,v) dµt1,v

)

is non-negative; it is equal to 0 if and only if µt1,v = µt2,v.

Proposition 2.3. Let v ∈ MK , and fix t1, t2 ∈ K \ {0, 1}. We have

Ev(t2, t1) = Ev(t1, t2) = Ev(1− t1, 1− t2) = Ev(1/t1, 1/t2).

Proof. Given measures µt1,v and µt2,v, the local energy Ev(t1, t2) can be expressed as

−
1

2

∫

g d(µt1,v − µt2,v)

for any continuous potential g of the signed measure µt1,v −µt2,v, because g = λt1,v −

λt2,v + c for some constant c. We have

f1−t = α ◦ ft ◦ α
−1

for α(z) = 1− z = α−1(z), such that µ1−t,v = α∗µt,v and g = (λt1,v − λt2,v) ◦ α
−1 is a

potential for the measure µ1−t1,v − µ1−t2,v. Therefore, Ev(1 − t1, 1 − t2) = Ev(t1, t2).

Similarly, we have f1/t(z) = α ◦ ft ◦ α−1(z) for α(z) = z/t, so Ev(1/t1, 1/t2) =

Ev(t1, t2). �
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2.7. Measures and mutual energy. Suppose that ν1 and ν2 are signed measures

on P1(C) with trace measures |νi| for which the function log |z − w| ∈ L1(|ν1| ⊗ |ν2|)

on C2 \Diag. The mutual energy of ν1 and ν2 is defined in [FRL1] by

(2.13) (ν1, ν2) := −

∫

C2\Diag

log |z − w| dν1 ⊗ dν2.

This definition extends to the non-archimedean setting by replacing |z −w| with the

Hsia kernel δv(z, w) based at the point at ∞. In this way, for v ∈ M0
K , a pairing is

defined similarly as

(2.14) (ν1, ν2)v := −

∫

A1,an
v ×A1,an

v \Diag

log δv(z, w) dν1 ⊗ dν2.

See [FRL1, §4.4] and [BR, Chapter 4].

For measures νi of total mass 0 with continuous potentials on P1,an
v we have

(ν1, ν2)v = −

∫

g1 dν2

for any choice of continuous potential g1 for ν1. Further, (ν1, ν2)v ≥ 0 with equality

if and only if ν1 = ν2 [FRL1, Propositions 2.6 and 4.5]. Note that Proposition 2.2 is

a special case of this fact. Indeed, in this notation, the local energy Ev(t1, t2) defined

in Proposition 2.2 is given by

(2.15) Ev(t1, t2) =
1

2
(µt1,v − µt2,v, µt1,v − µt2,v)v

at each place v of a number field containing t1 and t2, for the canonical measures

introduced in §2.4.

The mutual energy (·, ·)v of (2.13) and (2.14) can also be defined for discrete mea-

sures. If F = {x1, . . . , xn} is any finite set in a number field K, and v ∈ MK , then

denote by [F ]v the probability measure supported equally on the elements of F ⊂ Cv.

Then

(2.16)
∑

v

rv ([F ]v, [F ]v)v =
∑

v

rv
1

|F |2

∑

i 6=j

log |xi − xj |v = 0

by the product formula.

2.8. A metric on the space of adelic heights. The height pairing gives rise to a

metric on the space of continuous, semipositive, adelic metrics on OP1(1) [Fi, Theorem

1]. Given a number field K and any collection of probability measures {µv}v∈MK
on

P1,an
v with continuous potentials for which µv = ωv at all but finitely many places

(where ωv is a point mass supported on the Gauss point), then there is a unique

metric on OP1(1) with curvature distributions given by {µv}v∈MK
, normalized such



UNIFORM MANIN-MUMFORD FOR A FAMILY OF GENUS 2 CURVES 13

that its associated height function h : P1(Q) → R satisfies h · h = 0 [FRL1]. The

height pairing between any two such heights is computed as

h1 · h2 =
1

2

∑

v∈MK

rv (µ1,v − µ2,v, µ1,v − µ2,v)v.

Fili observed that a distance between h1 and h2 can be defined by

dist(h1, h2) := (h1 · h2)
1/2 .

Indeed, we have already seen that h1 ·h2 = 0 if and only if h1 = h2 because of the non-

degeneracy of the mutual energy (·, ·)v at each place. Furthermore, dist(·, ·) satisfies

a triangle inequality: at each place, the mutual energy induces a non-degenerate,

symmetric, bilinear form on the vector space of measures of mass 0 with continuous

potentials on P1,an
v , and so the triangle inequality for dist(·, ·) follows from an ℓ2

triangle inequality.

3. Non-archimedean energy

Throughout this section, we fix a number field K and a non-archimedean place

v ∈ MK , and provide a lower bound on the non-archimedean local energy defined in

Proposition 2.2:

Theorem 3.1. For t1, t2 ∈ K \ {0, 1}, we have

Ev(t1, t2)−
4

3
log |2|v ≥















































log2 |t1/t2|v
6 logmax{|t2|v, |t1|v}

for min{|t2|v, |t1|v} > 1

log2 |t1/t2|v
−6 logmin{|t2|v, |t1|v}

for max{|t2|v, |t1|v} < 1

| log |t1/t2|v|

6
otherwise.

Equality holds for v ∤ 2 with min{|t1 − 1|v, |t2 − 1|v} ≥ 1.

3.1. Measure and escape rate for v ∤ 2.

Proposition 3.2. Suppose t ∈ K \ {0, 1} and v ∤ 2. Then ft has good reduction at

v if and only if |t(t− 1)|v = 1. If |t(t− 1)|v 6= 1, then ft fails to have potential good

reduction at v, and the canonical measure µt,v on P1,an
v of ft is the interval measure

supported on

I =

{

[ζ0,1, ζ0,|t|v ] for |t|v > 1 or |t|v < 1,

[ζ0,1, ζ1,|1−t|v ] for |1− t|v < 1.
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Proof. By Proposition 2.1, it suffices to treat the cases with |t|v > 1. By [FRL2, §5.1],

f−1
t (I) = I and the action of ft on I is by a tent map of degree 2. That is,

ft(ζ0,|t|rv) =

{

ζ0,|t|2r−1
v

for 1/2 ≤ r ≤ 1,

ζ0,|t|1−2r
v

for 0 ≤ r ≤ 1/2.

The proposition follows. �

We may now compute the local height λt,v(z) = GFt,v(z, 1) on A1,an
v , which is locally

constant away from the interval [0,∞) ⊂ A1,an
v .

Proposition 3.3. Suppose v ∤ 2 is non-archimedean and |t(t− 1)|v ≥ 1. The escape-

rate function GFt,v satisfies

(3.1) GFt,v(z, 1) =







































log |z|v for |z|v ≥ |t|v

1

2

(

log2 |z|v
log |t|v

+ log |t|v

)

for 1 < |z|v < |t|v

1

2
log |t|v for |z|v ≤ 1

for all z ∈ Cv.

Proof. Let λ be the continuous extension of the expression on the right hand side of the

formula (3.1) to A1,an
v . By Proposition 3.2, µt,v is the interval measure corresponding

to [ζ0,1, ζ0,|t|v ], and a direct computation shows that

∆λ = µt,v − δ∞.

Thus it suffices to show that GFt,v(·, 1) and λ agree at a single point. For any z0 ∈ Cv

with |z0|v > |t|v, define (zn, wn) := F n
t (z0, 1), so that

(3.2) (zn+1, wn+1) = Ft(zn, wn) = ((z2n − tw2
n)

2, 4znwn(zn − wn)(zn − twn)).

Inductively,

|zn|v = |z0|
4n

v > |t|v|wn|v > |wn|v.

Consequently,

GFt,v(z0, 1) = lim
n→∞

1

4n
log ‖F n

t (z0, 1)‖v = log |z0|v = λ(z0).

�

A similar application of Proposition 3.2 yields
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Proposition 3.4. Suppose v ∤ 2 is non-archimedean and |t|v < 1. The escape-rate

function GFt,v satisfies

(3.3) GFt,v(z, 1) =







































log |z|v for |z|v ≥ 1

−
log2 |z|v
2 log |t|v

+ log |z|v for |t|v < |z|v < 1

1

2
log |t|v for |z|v ≤ |t|v

for all z ∈ Cv.

3.2. Proof of Theorem 3.1 for v ∤ 2. We compute the local energy Ev(t1, t2) by

cases.

Case (1): |t1|v > 1 and |t2|v < 1. Recall the local energy can be expressed as

2Ev(t1, t2) =

∫

P1,an
v

(λt1,v − λt2,v) dµt2,v +

∫

P1,an
v

(λt2,v − λt1,v) dµt1,v.

Therefore by Proposition 3.2, 3.3 and 3.4,

2Ev(t1, t2) =

∫

P1,an
v

(λt1,v − λt2,v) dµt2,v +

∫

P1,an
v

(λt2,v − λt1,v) dµt1,v.

=

∫ 0

log |t2|v

(

log |t1|v
2

−

(

−
x2

2 log |t2|v
+ x

))

dx

− log |t2|v

+

∫ log |t1|v

0

(

x−
1

2

(

x2

log |t1|v
+ log |t1|v

))

dx

log |t1|v

=
log |t1/t2|v

3
.

Case (2): |t1|v > 1 and |t2|v > 1. Without loss of generality, we assume that

|t1|v = max{|t1|v, |t2|v}. By Proposition 3.2 and 3.3,

2Ev(t1, t2) =

∫

P1,an
v

(λt1,v − λt2,v) dµt2,v +

∫

P1,an
v

(λt2,v − λt1,v) dµt1,v.

=

∫ log |t2|v

0

(

1

2

(

x2

log |t1|v
+ log |t1|v

)

−
1

2

(

x2

log |t2|v
+ log |t2|v

))

dx

log |t2|v

+

∫ log |t2|v

0

(

1

2

(

x2

log |t2|v
+ log |t2|v

)

−
1

2

(

x2

log |t1|v
+ log |t1|v

))

dx

log |t1|v

+

∫ log |t1|v

log |t2|v

(

x−
1

2

(

x2

log |t1|v
+ log |t1|v

))

dx

log |t1|v

=
log2 |t1/t2|v

3 logmax{|t1|v, |t2|v}
.
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Case (3): |t2(t2 − 1)|v = 1 and |t1 − 1|v ≥ 1. In this case, ft2 has good reduction, so

µt2,v is a point mass supported on the Gauss point ζ0,1. Hence

2Ev(t1, t2) =
| log |t1|v|

3
=

| log |t1/t2|v|

3
.

Case (4): The remaining cases reduce to the above three by the symmetry relations

of Proposition 2.3. This completes the proof of Theorem 3.1 under the assumption

that v ∤ 2.

3.3. Measure and escape rate for v | 2.

Proposition 3.5. Suppose v | 2 is non-archimedean. The canonical measure µt,v on

P1,an
v of ft is the interval measure corresponding to the interval I with

I =







[ζ0,|t/4|v , ζ0,|4|v ] for |t|v < |16|v,

[ζ0,|1/4|v , ζ0,|4t|v ] for |t|v > 1/|16|v,

[ζ1,|1−t|v/|4|v , ζ1,|4|v ] for |1− t|v < |16|v.

For |16|v ≤ |t|v ≤ 1/|16|v with |1− t|v ≥ |16|v, ft(z) has potential good reduction, and

µt,v is supported on a single point in H.

Proof. We proceed as in the computations of [FRL2, §5.1], though the authors had

assumed for simplicity that the residue characteristic of their field is not 2. If |t|v >

|1/16|v, the interval [ζ0,|1/4|v , ζ0,|4t|v ] is totally invariant by ft, and

ft(ζ0,|4t|v|16t|−r
v
) = ζ0,|4t|v|16t|−2r

v
and ft(ζ0,|4t|v|16t|r−1

v
) = ζ0,|4t|v|16t|−2r

v

for r ∈ [0, 1/2]. Thus µt,v is the interval measure on [ζ0,|1/4|v , ζ0,|4t|v ]. The cases

|t|v < |16|v or |1− t|v < |16|v can then be deduced from Proposition 2.1.

For all |16|v ≤ |t|v ≤ 1/|16|v with |1 − t|v ≥ |16|v, we have |j(t)|v ≤ 1, so ft has

potential good reduction. �

Following the proofs of Propositions 3.3 and 3.4, from Proposition 3.5 we obtain

Proposition 3.6. Suppose v | 2 is non-archimedean. We have

(3.4) GFt,v(z, 1) =







































log |z|v for |z|v ≥ |4t|v

1

2

(

log2 |4z|v
log |16t|v

+ log |t|v

)

for 1/|4|v < |z|v < |4t|v

1

2
log |t|v for |z|v ≤ 1/|4|v
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for t with |t|v ≥ 1/|16|v, and

(3.5) GFt,v(z, 1) =







































log |z|v for |z|v ≥ |4|v

1

2

(

log2 |4z/t|v
log |16/t|v

+ log |t|v

)

for |4|v < |z|v < |t/4|v

1

2
log |t|v for |z|v ≤ |t/4|v

for t with |t|v ≤ |16|v.

3.4. Proof of Theorem 3.1 for v | 2. We compute as in the case where v ∤ 2.

Case (1): {t1, t2} with min{|t1|v, |t2|v} ≥ 1/|16|v and max{|t1|v, |t2|v} > 1/|16|v.

Proposition 3.6 yields

2Ev(t1, t2) =
log2 |t1/t2|v

3 logmax{|16t1|v, |16t2|v}
≥

log2 |t1/t2|v
3 logmax{|t1|v, |t2|v}

.

Case (2): |t1|v ≥ 1/|16|v and |t2|v ≤ |16|v. Again by Proposition 3.6,

2Ev(t1, t2) =
log |16t1|v − log |t2/16|v

3
− log |16|v ≥

log |t1/t2|v
3

.

Case (3): |t1|v > 1/|16|v, |16|v ≤ |t2|v ≤ 1/|16|v and |1 − t2|v ≥ |16|v. Let ζt2 ∈ H

be the support of µt2,v. For any z ∈ Cv with |z|v > 1/|4|v,

|ft2(z)|v =
|(z2 − t2)

2|v
|4z(z − 1)(z − t2)|v

> |z|v.

Hence ζ0,1/|4|v ∈ [ζt2 ,∞). Let z0 ∈ Cv with |z0|v > 1/|4|v, and let (zn, wn) := F n
t2(z0, 1).

From the recursive formula (3.2), inductively we have |zn| = |z0|
4n

v > |wn|v/|4|v.

Consequently

λt2,v(z) = GFt2 ,v
(z, 1) = lim

n→∞

log ‖F n
t2
‖v

4n
= log |z|v

for z with |z|v > 1/|4|v, and then λt2,v(ζ0,r) = log r for r ≥ 1/|4|v. Moreover, as

∆λt2,v = δζt2 − δ∞, the function λt2,v is increasing at a constant rate along the ray

[ζt2 ,∞), with respect to the hyperbolic metric. Therefore λt2,v(ζt2) ≤ λt2,v(ζ0,1/|4|v) =
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− log |4|v. Hence by Propositions 3.5 and 3.6,

2Ev(t1, t2) =

∫

P1,an
v

(λt1,v − λt2,v) dµt2,v +

∫

P1,an
v

(λt2,v − λt1,v) dµt1,v.

= (λt1,v(ζt2)− λt2,v(ζt2))

+

∫ log |4t1|v

log |1/4|v

(

x−
1

2

(

(x+ log |4|v)
2

log |16t1|v
+ log |t1|v

))

dx

log |16t1|v

≥
log |16t1|v

3
.

Here we have used λt2,v(ζt2) ≤ − log |4|v and λt1,v(ζt2) = 1
2
log |t1|v for the last in-

equality.

Of course, for |16|v ≤ |ti|v ≤ 1/|16|v and |1− ti|v ≥ |16|v for i = 1, 2, we have

2Ev(t1, t2) ≥ 0 ≥
| log |t1/t2|v|

3
+

8

3
log |2|v.

Case (4): The remaining cases reduce to the above three by the symmetry relations

of Proposition 2.3. This completes the proof of Theorem 3.1.

4. Archimedean places and the hybrid space

In this section, we provide some of the estimates we need to control the archime-

dean contributions to the height pairings. Throughout this section, we assume our

parameter t ∈ C \ {0, 1} is complex. We let µt denote the probability measure on

P1(C) which is the push forward of the Haar measure on the Legendre elliptic curve

Et(C) via π(x, y) = x. This measure is also the unique measure of maximal entropy

for the dynamical system defined by the Lattès map

ft(z) =
(z2 − t)2

4z(z − 1)(z − t)
,

as noted in [Mi, §7]. We study degenerations of the probability measures µt and

their potentials as t → 0. (The cases of t → 1 and t → ∞ are similar.) To this

end, we consider the action of ft sending (t, z) to (t, ft(z)) on the complex surface

X = D∗ × P1(C), where D∗ is the punctured unit disk. We make use of the hybrid

space Xhyb, in which the Berkovich projective line over the field of formal Laurent

series C((t)) creates a central fiber of X over t = 0 in the unit disk D. We appeal to

the topological description of the hybrid space from [BJ] and the associated dynamical

degenerations described in [Fa].
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4.1. The family of Lattès maps and their escape rates. In homogeneous coor-

dinates on C2, recall that the maps ft may be presented as

Ft(z, w) :=
(

(z2 − tw2)2, 4zw(z − w)(z − tw)
)

,

for t ∈ C \ {0, 1}. They have escape-rate functions

(4.1) GFt(z, w) := lim
t→∞

1

4n
log ‖F n

t (z, w)‖,

as in (2.3).

View the families ft and Ft as maps f = fT and F = FT defined over the field

k = C(T ), and consider the non-archimedean absolute value | · |0 on k satisfying

|g(T )|0 = e− ord0 g. Let k0 = C((T )) denote the completion of C(T ) with respect to

this absolute value. Let L denote a (minimal) complete and algebraically closed field

containing k0. The non-archimedean escape rate ĜF on L2 is defined as in (2.3). Since

|T |0 < 1, it is given for x ∈ L by the following formula, exactly as in Proposition 3.4:

ĝf(x) := ĜF (x, 1) =



















log |x|0 for |x|0 ≥ 1

log |x|0 −
(log |x|0)

2

2 log |T |0
for |T |0 < |x|0 < 1

1

2
log |T |0 for |x|0 ≤ |T |0

(4.2)

=



















−a for |x|0 = |T |a0 with a ≤ 0

−a +
1

2
a2 for |x|0 = |T |a0 with 0 ≤ a ≤ 1

−
1

2
for |x|0 = |T |a0 with a ≥ 1

The function ĝf extends naturally to the Berkovich space P1,an
L ; away from the point

at ∞, it is a continuous potential for the equilibrium measure µ̂f of f .

The potential ĝf and the measure µ̂f are invariant under the action of Gal(L/k0) on

P1,an
L . They descend to define a function and probability measure – that we will also

denote by ĝf and µ̂f – on the quotient Berkovich line P1,an
k0

(see [Be, §4.2] for details

on this quotient map). As computed in Proposition 3.2, the measure µ̂f is supported

on the interval [ζ0,|T |0, ζ0,1], and it is uniform with respect the linear structure from

the hyperbolic metric.

4.2. Convergence of measures. The family ft acts on the product space D∗ × P1

sending (t, z) to (t, ft(z)). It extends meromorphically to X0 := D× P1, or indeed to

any model complex surface X → D which is isomorphic to D∗ × P1 over D∗ and has

a simple normal crossings divisor as its central fiber.

Fixing a surface X → D and letting t → 0, the degeneration of the measures µt

of maximal entropy for ft – or indeed for any meromorphic family of rational maps

on P1 – to the central fiber of X is now well understood. In [DF1, DF2], the limit

of the measures µt is computed for any choice of model X , and a relation is shown
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between these limits and the non-archimedean measure µ̂f . In particular, if we define

the annulus

At(a, b, C) := {z ∈ C : C−1|t|a ≤ |z| ≤ C|t|b}

for t ∈ D∗, C > 1, and real numbers a ≥ b, then

(4.3) µt(At(a, b, C)) → µ̂f([ζ0,|T |a0
, ζ0,|T |b0

]) = lengthR([0, 1] ∩ [b, a])

as t → 0. This follows from [DF1, Theorem B] (allowing for changes of coordinates

on P1 and base changes, passing to covers of the punctured disk D∗) or from the

computations described in [DF2, Theorem D] (taking Γ to be a vertex set in the

interval [ζ0,1, ζ0,|T |0]). Another proof is described below in §4.3. In particular, this

convergence implies:

Lemma 4.1. Given any ε > 0 and integer n ≥ 1, there exists δ > 0 such that

1

n
− ε < µt({|t|

(i+1)/n ≤ |z| ≤ |t|i/n}) <
1

n
+ ε

for all 0 < |t| < δ and i = 0, . . . , n− 1.

Taking ε = 1/n2 in Lemma 4.1, we observe that for any given n, there is a δ > 0

such that we also have

(4.4) µt

(

{|z| ≥ 1} ∪ {|z| ≤ |t|}

)

<
1

n

for all 0 < |t| < δ.

4.3. Convergence in the hybrid space. In [Fa], Favre gives an alternate proof of

(4.3) by showing that

(4.5) µt → µ̂f

weakly in the hybrid space Xhyb [Fa, Theorem B]. The hybrid space consists of replac-

ing the central fiber in the models X above with the Berkovich line P1,an
k0

, carrying an

appropriate topology. The convergence of measures follows from the convergence of

their potentials to the potential of the measure µ̂f in the Berkovich line. We describe

this convergence here, as we will use it for proving our main result.

Let m1 denote the Lebesgue measure on the unit circle in C, normalized to have

total length 1. Let Φt(z) denote a continuous potential on P1(C) for the measure

µt −m1. Explicitly, in local coordinates z ∈ C ⊂ P1, we can take

(4.6) Φt(z) = GFt(z, 1)− log+ |z|

with GFt as in (4.1). In [Fa], Favre proves that the function

(4.7) ϕ(t, z) :=
Φt(z)

log |t|−1



UNIFORM MANIN-MUMFORD FOR A FAMILY OF GENUS 2 CURVES 21

extends to define a continuous function on Xhyb, taking the values of a potential of

the limiting measure µ̂f − ω0 on the central fiber. Here ω0 is the delta mass on the

Gauss point ζ0,1 of the Berkovich line P1,an
k0

. More precisely, we consider the function

ϕ̂f(x) :=



















0 for |x|0 ≥ 1

log |x|0 −
(log |x|0)

2

2 log |T |0
for |T |0 < |x|0 < 1

1

2
log |T |0 for |x|0 ≤ |T |0

(4.8)

=



















0 for |x|0 = |T |a0 with a ≤ 0

−a+
1

2
a2 for |x|0 = |T |a0 with 0 ≤ a ≤ 1

−
1

2
for |x|0 = |T |a0 with a ≥ 1

for x ∈ L, similar to the formula for ĝf in (4.2). This function ϕ̂f extends continuously

to all of P1,an
L ; it is Galois invariant over k0; and it descends to the quotient P1,an

k0
.

Favre’s theorem implies that the function ϕ of (4.7) extends continuously to Xhyb,

coinciding with ϕ̂f over t = 0:

Proposition 4.2. Given any ε > 0, there exists δ > 0, such that
∣

∣ϕ(t, z)− ϕ̂f (ζ0,|T |a0
)
∣

∣ < ε

for all 0 < |t| < δ, for all a ∈ R, and all z for which
∣

∣

∣

∣

log |z|

log |t|
− a

∣

∣

∣

∣

< δ.

Proof. Recall that the absolute value | · |0 on L induces a continuous function on the

Berkovich space that we will also denote by | · |0 : P1,an
k0

→ R≥0 ∪ {∞}. We use

the standard absolute value | · | on C, extended to a continuous function P1(C) →

R≥0 ∪ {∞}.

The topology on P1,an
k0

is such that annuli of the form

A(r1, r2) := {x ∈ P1,an
k0

: r1 < |x|0 < r2}

are open for any choice of 0 ≤ r1 < r2 ≤ ∞, as are the Berkovich disks of the form

D0(r) := {x ∈ P1,an
k0

: |x|0 < r} and D∞(r) := {x ∈ P1,an
k0

: |x|0 > r}

for any 0 < r < ∞. The topology on Xhyb is such that an annular set of the form

{(t, z) ∈ D∗ × P1(C) : |t|a+δ < |z| < |t|a−δ and 0 < |t| < δ} ∪ A(|T |a+δ
0 , |T |a−δ

0 )

is an open neighborhood of ζ0,|T |a0
on the central fiber for any a and any δ > 0.

Similarly, the disk-like sets

{(t, z) ∈ D∗ × P1(C) : |z| < |t|a and 0 < |t| < δ} ∪D0(|T |
a
0)
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and

{(t, z) ∈ D∗ × P1(C) : |z| > |t|a and 0 < |t| < δ} ∪D∞(|T |a0)

are open for any a ∈ R, and allowing a and δ to vary provides open neighborhoods at

0 and ∞ respectively in the central fiber. See [BJ, §2.2 and Definition 4.9] for details

on the hybrid topology. Note in particular that the hybrid topology restricted to the

central fiber induces the usual (weak) Berkovich topology.

By the continuity statement of [Fa, Theorem 2.10] and exhibiting ϕ as a uniform

limit of model functions ([Fa, Section 4.3] provides the details in the dynamical case)

the function ϕ extends to define a continuous function on Xhyb, taking the values

of ϕ̂f on the central fiber. Let L denote the closed segment in P1,an
k0

between 0

and ∞. We may by compactness cover L by finitely many neighborhoods on which

|ϕ(x)−ϕ(y)| ≤ ǫ. As the values of ϕ̂f depend only on the values of ϕ on L, each open

neighborhood of a point in the interior of L contains an open interval in L, and ϕ̂ is

constant near 0 and ∞, we may assume these neighborhoods are annular or disk-like

as defined above. Thus we obtain a uniform δ as claimed. �

As Φt(z) = GFt(z, 1)− log+ |z|, we also have a uniform continuity statement for G

when |z| is bounded from above:

Proposition 4.3. Given any ε > 0 and M > 1, there exists δ > 0 such that
∣

∣

∣

∣

GFt(z, 1)

log |t|−1
− ĝf(ζ0,|T |a0

)

∣

∣

∣

∣

< ε

for all 0 < |t| < δ, for all a ∈ R, and all |z| ≤ M for which
∣

∣

∣

∣

log |z|

log |t|
− a

∣

∣

∣

∣

< δ.

4.4. Discrete measures and regularizations. Let F be any finite set in C. Denote

by [F ] the probability measure supported equally on the elements of F , and for r > 0,

denote by [F ]r the probability measure supported equally and uniformly on circles of

radius r about each element of F .

Proposition 4.4. For every ε > 0, there exists c = c(ε) > 0 such that

|(µt, [F ])− (µt, [F ]r)| < ε max{log |t|−1, log |t− 1|−1, log |t|, 1}

for all t ∈ C \ {0, 1} and any finite set F in C and any

r ≤ c min{|t|2, |t− 1|2, |t|−2}.

Proof. For any x ∈ C and any r > 0, let mx,r be the probability measure supported

on the circle of radius r around x. Recall that

(ρ, σ) := −

∫∫

C×C\∆

log |z − w| dρ(z) dσ(w).



UNIFORM MANIN-MUMFORD FOR A FAMILY OF GENUS 2 CURVES 23

For each fixed t, the function GFt(·, 1) is a potential for µt in C, and therefore, there

exists a constant Ct such that
∫

C

log |z − w| dµt(z) = GFt(w, 1) + Ct.

Now let F be any finite set in C. Then, assuming r < 1, we have

(µt, [F ]r)− (µt, [F ]) =
1

|F |

∑

x∈F

(

GFt(x, 1)−

∫

GFt(ζ, 1) dmx,r(ζ)

)

=
1

|F |

∑

{x∈F :|x|>2}

(

Φt(x)−

∫

Φt(ζ) dmx,r(ζ)

)

+
1

|F |

∑

{x∈F :|x|≤2}

(

GFt(x, 1)−

∫

GFt(ζ, 1) dmx,r(ζ)

)

because the function log+ |z| is harmonic away from the unit circle on C.

By Proposition 4.3, there exists δ > 0 such that

(4.9)

∣

∣

∣

∣

GFt(z, 1)

log |t|−1
− ĝf(ζ0,|T |a0

)

∣

∣

∣

∣

< ε/2

for all |z| ≤ 2 satisfying
∣

∣

∣

∣

log |z|

log |t|
− a

∣

∣

∣

∣

< δ

and all |t| < δ and any a ∈ R. Shrinking δ if needed, we have

(4.10) |ϕ(t, z)| < ε/2

for |z| ≥ 1 and all |t| < δ, by Proposition 4.2.

Let Cδ be the compact subset of C \ {0, 1} consisting of all t with |t| ≥ δ and

|t − 1| ≥ δ and |1/t| ≥ δ. Over Cδ × P1, the family of potentials {Φt} is uniformly

continuous. So there exists c1 = c1(δ) such that

|Φt(z)− Φt(z
′)| < ε

whenever dist(z, z′) < c1 and for all t ∈ Cδ. Here, dist represents the chordal distance

on P1. Furthermore, we may take c1 such that we also have

|GFt(z, 1)−GFt(z
′, 1)| < ε

for all |z − z′| < c1 with |z| ≤ 2, and all t ∈ Cδ. Thus

|(µt, [F ]r)− (µt, [F ])| < ε

for any choice of finite set F , t ∈ Cδ, and r < c1.

Now assume that |t| < δ. We will consider three cases. First, suppose |t|1+δ ≤

|z| ≤ 2. Choose any c2 = c2(δ) such that

(4.11)
∣

∣log(1± c2δ
1−δ)

∣

∣ < δ(log δ−1).
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Then

|log |z′/z|| =

∣

∣

∣

∣

log

∣

∣

∣

∣

z′ − z

z
+ 1

∣

∣

∣

∣

∣

∣

∣

∣

≤ max

{

log

(

1 +

∣

∣

∣

∣

z′ − z

z

∣

∣

∣

∣

)

,

∣

∣

∣

∣

log

(

1−

∣

∣

∣

∣

z′ − z

z

∣

∣

∣

∣

)
∣

∣

∣

∣

}

≤ max

∣

∣

∣

∣

log

(

1±
c2|t|

2

|z|

)
∣

∣

∣

∣

≤ max
∣

∣log
(

1± c2δ
1−δ
)
∣

∣

< δ(log δ−1) ≤ δ log |t|−1

for all |t| < δ. This is equivalent to

(4.12)

∣

∣

∣

∣

log |z|

log |t|
−

log |z′|

log |t|

∣

∣

∣

∣

< δ

for all |z − z′| < c2|t|
2 with |t|1+δ ≤ |z| ≤ 2. Combined with (4.9) and setting

a = (log |z|)/(log |t|), this implies that

|GFt(z, 1)−GFt(z
′, 1)| < ε log |t|−1

for such pairs z and z′.

Second, suppose that |z| ≤ |t|1+δ. By shrinking c2 further if necessary, we have

c2 < (1− δδ)/δ, and therefore if |z| ≤ |t|1+δ and |z− z′| < c2|t|
2, with |t| < δ, we also

have |z′| ≤ |t|. Applying the convergence (4.9) where ĝf = −1/2, for all |z| ≤ |t|1+δ

we have

|GFt(z, 1)−GFt(z
′, 1)| < ε log |t|−1

for z′ satisfying |z − z′| < c2|t|
2 and for all |t| < δ.

Third, for |z| ≥ 2, by the convergence (4.10),

|Φt(z)− Φt(z
′)| < ε log |t|−1

for all |z| ≥ 2 and |z − z′| < c2|t|
2 and |t| < δ.

Together these three cases yield

|(µt, [F ]r)− (µt, [F ])| < ε log |t|−1

for any choice of finite set F and all |t| < δ, with r < c2|t|
2.

If |t− 1| < δ, the arguments above go through by replacing z with 1− z, as

GF1−t(1− z, 1) = GFt(z, 1)

by Proposition 2.1. It follows that

|(µt, [F ]r)− (µt, [F ])| < ε log |t− 1|−1

for any choice of finite set F , |t− 1| < δ, and r < c2 |t− 1|2, with δ and c2 as above.
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For t near ∞, more care is needed, as

GFt(z, 1) = GF1/t
(z, t) = GF1/t

(z/t, 1) + log |t|

by Proposition 2.1. Setting s = 1/t,

GFt(z, 1)

log |t|
=

GFs(s z, 1)− log |s|

log |s|−1
=

GFs(s z, 1)

log |s|−1
+ 1.

From (4.9), we have
∣

∣

∣

∣

GFs(s z, 1)

log |s|−1
− ĝf(ζ0,|T |1−a

0
)

∣

∣

∣

∣

< ε/2

for |sz| ≤ 2, |s| < δ, and
∣

∣

∣

∣

log |sz|

log |s|
− (1− a)

∣

∣

∣

∣

< δ,

for any choice of a ∈ R. Thus,

(4.13)

∣

∣

∣

∣

GFt(z, 1)

log |t|
−
(

ĝf (ζ0,|T |1−a
0

) + 1
)

∣

∣

∣

∣

< ε/2

for all |z| ≤ 2|t| satisfying
∣

∣

∣

∣

log |z|

log |t|
− a

∣

∣

∣

∣

< δ

with |t| > δ−1 and any a ∈ R. As in (4.10), we also have

|ϕ(t, z)| < ε/2

for |z| ≥ |t| and |t| > δ−1, because ĝf(ζ0,|T |1−a
0

)+ 1 = a for all a ≥ 1, from the formula

given in (4.2). The choice of c2 in (4.11) is similar. It follows that

|(µt, [F ]r)− (µt, [F ])| < ε log |t|

for any choice of finite set F and all |t| > 1/δ, with r < c2 |t|
−2.

Let c := min{c1, c2} to complete the proof. �

5. Archimedean energy

As in Section 4, assume t ∈ C \ {0, 1} is a complex parameter, with µt on P1(C)

the push-forward of the Haar measure on Et(C), and λt(z) = GFt(z, 1) a potential

for µt − δ∞ on P1(C). In this section we provide estimates on the archimedean local

energy (introduced in Proposition 2.2)

E∞(s, t) :=
1

2

(
∫

(λs − λt) dµt +

∫

(λt − λs) dµs

)

,

for s, t ∈ C \ {0, 1} as one or both of the parameters tends to 0, 1, or ∞. We treat

three cases separately: where only one parameter escapes into a cusp, where both

parameters escape into a cusp, and where the two parameters head to two different
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cusps. By the symmetry established in Proposition 2.3, we focus on the case where s

tends to 0.

Throughout, we work in hybrid space and make use of the convergence of potentials

to ĝf and measures to µ̂f as t → 0, as proved in [Fa, Theorem B] and explained in

§4.3.

5.1. A single escaping parameter.

Theorem 5.1. Given ε > 0 and any compact set C ⊂ C \ {0, 1}, there exists δ > 0

such that
(

1

6
− ε

)

log |s|−1 ≤ E∞(s, t) ≤

(

1

6
+ ε

)

log |s|−1

for all s satisfying 0 < |s| < δ and all t ∈ C.

Proof. Recall that for any s ∈ C \ {0, 1}, we have defined Φs(z) = GFs(z, 1)− log+ |z|

in (4.6) and ϕ(s, z) = Φs(z)/(log |s|
−1). For any pair s, t ∈ C\{0, 1}, the local energy

E∞(s, t) satisfies

E∞(s, t)

log |s|−1
=

1

2 log |s|−1

(
∫

(Φs − Φt) dµt +

∫

(Φt − Φs) dµs

)

=
1

2

(
∫
(

ϕ(s, z)−
Φt

log |s|−1

)

dµt +

∫

Φt

log |s|−1
dµs −

∫

ϕ(s, z) dµs

)

.

Fix ε > 0 and suppose that C ⊂ C \ {0, 1} is compact. The Φt functions are

uniformly bounded for all t ∈ C and all z ∈ P1(C), so there is a δ such that
∣

∣

∣

∣

∫

Φt

log |s|−1
dµs

∣

∣

∣

∣

< ε

for all |s| < δ and all t ∈ C. We can also find a small r = r(C) such that

µt({|z| ≤ r}) < ε

for all t ∈ C. By Proposition 4.2, (shrinking δ if needed)

|ϕ(s, z)| < ε

for all |z| > r and |s| < δ, and

|ϕ(s, z)| < 1

for all z and all |s| < δ. Consequently,
∣

∣

∣

∣

∫
(

ϕ(s, z)−
Φt

log |s|−1

)

dµt

∣

∣

∣

∣

≤

∫

{|z|≤r}

|ϕ(s, z)| dµt +

∫

{|z|>r}

|ϕ(s, z)| dµt

+

∫
∣

∣

∣

∣

Φt

log |s|−1

∣

∣

∣

∣

dµt

< 3ε.
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Finally, by the weak convergence of µs → µ̂f and convergence of ϕ(s, z) to ϕ̂f , we

can shrink δ again such that

∣

∣

∣

∣

∫

ϕ(s, z) dµs −

∫

ϕ̂f dµ̂f

∣

∣

∣

∣

< ε

for all |s| < δ. Recalling the formula for ϕ̂f from (4.8), we have

∫

ϕ̂f dµ̂f =

∫ 1

0

(

−a +
a2

2

)

da = −
1

3
,

since the measure µ̂f is the uniform distribution on the interval [0, 1] in the a coordi-

nates, as described in §4.1. Therefore,

(

1

6
− 4ε

)

log |s|−1 ≤ E∞(s, t) ≤

(

1

6
+ 4ε

)

log |s|−1

for all |s| < δ and all t ∈ C. �

5.2. Both parameters escaping to the same cusp.

Theorem 5.2. Given ε > 0, there exists δ > 0 such that

(

1

6

(

1−
1

b

)2

− ε

)

log |s|−1 ≤ E∞(s, t) ≤

(

1

6

(

1−
1

b

)2

+ ε

)

log |s|−1

for all s, t satisfying 0 < |s| ≤ |t| < δ, where b = (log |s|)/(log |t|) ≥ 1.

For each real number b ≥ 1, consider the function

ϕ̂b(x) :=



















0 for |x|0 ≥ 1

log |x|0 −
(log |x|0)

2

2b log |T |0
for |T |b0 ≤ |x|0 ≤ 1

b

2
log |T |0 for |x|0 ≤ |T |b0

=







0 for |x|0 = |T |a0 with a ≤ 0

−a + a2/(2b) for |x|0 = |T |a0 with 0 ≤ a ≤ b

−b/2 for |x|0 = |T |a0 with a ≥ b

for all x ∈ L. Note that ϕ̂1 = ϕ̂f from (4.8). As with ϕ̂1, each ϕ̂b extends naturally

to a function on the Berkovich projective line P1,an
k0

and is a potential of the measure

µ̂b − δG, where µ̂b is interval measure on [ζ0,|T |b0
, ζ0,1] and δG is the delta-mass at the

Gauss point ζ0,1.
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For each b ≥ 1, the non-archimedean local energy E0(µ̂1, µ̂b) is given by

E0(µ̂1, µ̂b) :=
1

2

(
∫

(ϕ̂1 − ϕ̂b) dµ̂b +

∫

(ϕ̂b − ϕ̂1) dµ̂1

)

=

(

log(|T |0/|T |
b
0)
)2

−6 logmin{|T |0, |T |
b
0}

=
(b− 1)2

6b
,

as computed in Theorem 3.1 (in the case v ∤ 2).

For s and t in C \ {0, 1}, if both s and t are close to one of the three cusps, we

can estimate the archimedean local energy E∞(s, t) in terms of the non-archimedean

pairing using the degeneration description in hybrid space. We first prove a special

case of Theorem 5.2:

Proposition 5.3. Given ε > 0 and B > 2, there exists δ > 0 such that

(E0(µ̂1, µ̂b)− ε) log |t|−1 ≤ E∞(s, t) ≤ (E0(µ̂1, µ̂b) + ε) log |t|−1

for all s, t satisfying 0 < |t|B ≤ |s| ≤ |t| < δ, where b = (log |s|)/(log |t|) ≤ B.

This proposition is an immediate consequence of the weak convergence of measures

µt → µ̂1 in the hybrid space, and the convergence of potentials as described in §4.3.

We give the details to clarify how the bound b ≤ B is used.

Proof. Fix ε > 0 and B > 2.

For s and t in the punctured unit disk D∗, and for any 1 ≤ b ≤ B, consider

(5.1) ϕ(t, z) :=
ΦFt(z, 1)

log |t|−1
and bϕ(s, z) =

bΦFs(z, 1)

log |s|−1
=

ΦFs(z, 1)

log |t|−1
,

viewed as functions on the fiber {t} × C in the hybrid space. By Proposition 4.2,

there exists δ1 > 0 such that

(5.2)
∣

∣ϕ(t, z)− ϕ̂1(ζ0,|T |a0
)
∣

∣ < ε/(4B)

for all |t| < δ1, a ≥ 0, and all |t|a+δ1 < |z| < |t|a−δ1 . In particular,

|ϕ(t, z)| < ε/(4B)

for all |z| ≥ 1 and all |t| < δ1. It follows that

bϕ(s, z) → ϕ̂b(ζ|T |a0
)

in the hybrid space as s and t tend to 0 with |s| = |t|b and (log |z|)/(log |t|) → a,

uniformly in b for 1 ≤ b ≤ B. This is because the annulus

At(a, δ) := {z ∈ C : |t|a+δ < |z| < |t|a−δ}
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for each fixed t ∈ D∗, δ > 0 and a ∈ R, can be written in terms of s as

At(a, δ) =
{

z ∈ C : |s|a/b+δ/b < |z| < |s|a/b−δ/b
}

whenever |s| = |t|b. Therefore,

(5.3)
∣

∣bϕ(s, z)− ϕ̂b(ζ0,|T |a0
)
∣

∣ =

∣

∣

∣

∣

bΦFs(z, 1)

log |s|−1
− b ϕ̂1(ζ0,|T |

a/b
0

)

∣

∣

∣

∣

< b ε/(4B) < ε/4

for all z ∈ At(a, δ1), as a consequence of (5.2). In particular,

|b ϕ(s, z)| < ε/4

for all |z| ≥ 1 and all |t| < δ1.

Recall that the measures µt on the fiber over t converge weakly in Xhyb to the

measure µ̂1 on the central fiber. For each s with |s| = |t|b, let µs
t denote the measure

associated to fs but viewed in the fiber {t} × P1. The measures µs
t converge to the

measure µ̂b as t → 0 with |s| = |t|b, and this convergence can also be made uniform

in b with b ≤ B. That is, by Lemma 4.1, for any n there exists δ2 > 0 such that

(5.4)
1

n
−

1

n2
< µt({|t|

(i+1)/n ≤ |z| ≤ |t|i/n}) <
1

n
+

1

n2

for all |t| < δ2 and each i = 0, . . . , n. Note that this implies that

µt({|z| ≤ |t|} ∪ {|z| ≥ 1}) <
1

n
.

Therefore, we also have

(5.5)
1

n
−

1

n2
< µs

t ({|t|
b(i+1)/n ≤ |z| ≤ |t|bi/n}) <

1

n
+

1

n2

and

µs
t ({|z| ≤ |t|b} ∪ {|z| ≥ 1}) <

1

n
.

for all |t| < δ2. Thus, the measure µ̂b on small sub-annuli of the annulus {|t|b ≤ |z| ≤

1} is controlled uniformly for all 1 ≤ b ≤ B.

Putting all the pieces together,

E∞(s, t)

log |t|−1
=

1

2

(
∫

(bϕ(s, z)− ϕ(t, z)) dµt +

∫

(ϕ(t, z)− bϕ(s, z)) dµs
t

)

is within ε of

E0(µ̂1, µ̂b) =
1

2

(
∫

(ϕ̂b − ϕ̂1) dµ̂1 +

∫

(ϕ̂1 − ϕ̂b) dµ̂b

)

=
(b− 1)2

6b

for all t sufficiently small and all s with |s| = |t|b, for any 1 ≤ b ≤ B. �

Here is an equivalent restatement of Theorem 5.2, expressed in terms of the growth

of |t|:
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Theorem 5.4. Given ε > 0, there exists δ > 0 such that
(

(b− 1)2

6b
− b ε

)

log |t|−1 ≤ E∞(s, t) ≤

(

(b− 1)2

6b
+ b ε

)

log |t|−1

for all s, t satisfying 0 < |s| ≤ |t| < δ, where b = (log |s|)/(log |t|) ≥ 1.

Comparing Theorem 5.4 to the statement of Proposition 5.3, we see that we lose

the ability to bound the energy within a uniform ε when b becomes large.

Proof of Theorems 5.4 and 5.2. Fix ε > 0.

As in the proof of Proposition 5.3, we make use of the weak convergence of measures

µt → µ̂1 and convergence of the potentials ϕ(t, z) → ϕ̂1 in the hybrid space as t → 0.

Recalling the formula for ϕ̂f from (4.8), we have
∫

ϕ̂f dµ̂f =

∫ 1

0

(

−a +
a2

2

)

da = −
1

3
,

since the measure µ̂f is the uniform distribution on the interval [0, 1] in the a coordi-

nates, as described in §4.1.

Choose r satisfying 0 < r < ε/100. There is a δ2 such that

µt({|z| ≤ |t|}) < ε/50

and

|ϕ(t, z)| < ε/50 for |z| ≥ |t|r

and

|ϕ(t, z)| <
1

2
+ ε/50 for all z

for all |t| < δ2. Thus, for s ∈ C∗ with |s| = |t|b and b > 1/r, we have

|bϕ(s, z)| < b ε/50 for |z| ≥ |t|

and

|bϕ(s, z)| <
b

2
+ b ε/50 for all z

for all |t| < δ2. By shrinking δ2 further if necessary, we appeal to the weak convergence

of measures µt → µ̂1 in the hybrid space to deduce that

(5.6)

∣

∣

∣

∣

∫

ϕ(t, z) dµt +
1

3

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

ϕ(t, z) dµt −

∫

ϕ̂1 dµ̂1

∣

∣

∣

∣

< ε/10

for all |t| < δ2.

Now fix B > 1/r, and recall that r < ε/100, so that

(5.7)

∣

∣

∣

∣

(b− 1)2

6 b
−

b

6

∣

∣

∣

∣

< b ε/50
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for all b ≥ B. For this B, we can find a δB > 0 such that Proposition 5.3 is satisfied

for all 0 < |s| = |t|b ≤ |t| < δB with 1 ≤ b ≤ B. Choose any δ ≤ min{δB, δ2}, and we

obtain the theorem for b ≤ B.

Now suppose b ≥ B. We will estimate

E∞(s, t)

log |t|−1
=

1

2

(
∫

(bϕ(s, z)− ϕ(t, z)) dµt +

∫

(ϕ(t, z)− bϕ(s, z)) dµs
t

)

for all |t| < δ and any s with |s| = |t|b by estimating the two integrals separately.

As shown above,

|bϕ(s, z)− ϕ(t, z)| ≤ 1/2 + ε/50 + b ε/50 < b ε/10

for all |z| ≥ |t| and 0 < |s| = |t|b ≤ |t| < δ with b ≥ B, and

|bϕ(s, z)− ϕ(t, z)| ≤ 1/2 + ε/50 + b/2 + b ε/50

for all z and 0 < |s| = |t|b ≤ |t| < δ. Writing the first integral as
∫

(bϕ(s, z)− ϕ(t, z)) dµt =

∫

|z|≥|t|

(bϕ(s, z)−ϕ(t, z)) dµt+

∫

|z|≤|t|

(bϕ(s, z)−ϕ(t, z)) dµt,

it follows that
∣

∣

∣

∣

∫

(bϕ(s, z)− ϕ(t, z)) dµt

∣

∣

∣

∣

≤ b ε/10 + (1/2 + ε/50 + b/2 + b ε/50)(ε/50) < b ε/5

for all b ≥ B and 0 < |s| = |t|b ≤ |t| < δ.

Write the second integral as
∫

(ϕ(t, z)− bϕ(s, z)) dµs
t =

∫

ϕ(t, z) dµs
t −

∫

bϕ(s, z) dµs
t .

As |ϕ(t, z)| is bounded by 1/2 + ε/50, we have
∣

∣

∣

∣

∫

ϕ(t, z) dµs
t

∣

∣

∣

∣

≤
1

2
+ ε/50 < b ε/25

for all b ≥ B. On the other hand, we have
∫

bϕ(s, z) dµs
t = b

∫

ϕ(s, z) dµs

so that
∣

∣

∣

∣

∫

bϕ(s, z) dµs
t +

b

3

∣

∣

∣

∣

< b ε/10

for all 0 < |s| = |t|b ≤ |t| < δ from (5.6).

We conclude that
∣

∣

∣

∣

E∞(s, t)

log |t|−1
−

b

6

∣

∣

∣

∣

< b ε/2
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for all b sufficiently large and all |t| < δ. On the other hand, we also have
∣

∣

∣

∣

b

6
−

(b− 1)2

6b

∣

∣

∣

∣

< b ε/50

for all b ≥ B by our choice of B, so the theorem is proved. �

5.3. Parameters escaping to different cusps.

Theorem 5.5. Given ε > 0, there exists δ > 0 such that
(

1

6

(

1 +
1

b

)

− ε

)

log |s|−1 ≤ E∞(s, t) ≤

(

1

6

(

1 +
1

b

)

+ ε

)

log |s|−1

for all s, t ∈ C satisfying |t| > 1/δ and 0 < |s| ≤ 1/|t|, where b = −(log |s|)/(log |t|).

Proof. The proof is nearly identical to that of Theorem 5.2, working in the hybrid

space over a unit disk that we will parameterize by u ∈ D. For fixed b ≥ 1, t = 1/u

and any s satisfying |s| = |u|b, consider the functions

gu(z) =
GF1/u

(z, 1)

log |u|−1
=

GFt(z, 1)

log |t|

and

bgs(z) = b
GFs(z, 1)

log |s|−1

in the fiber {u} × P1.

As computed in Proposition 3.3, the limit of gu(z) as u → 0 with |z| = |u|a is

ĝ∞(a) :=







−a for a ≤ −1

(a2 + 1)/2 for − 1 ≤ a ≤ 0

1/2 for a ≥ 0

As u → 0, the measures µ1/u on {u} × P1 will to converge the canonical measure µ̂∞

for the map f = f1/U on the Berkovich projective line, working over the field C((U));

the measure µ̂∞ is uniformly distributed on the interval [ζ0,1, ζ0,|U |−1
0
].

As s → 0 with |s| = 1/|t|b = |u|b, b ≥ 1, we have

bgs(z) → ĝb(ζ0,|U |a0
)

for |z| = |u|a, exactly as in (5.3). The non-archimedean local energy is computed in

Theorem 3.1 as

E(µ̂∞, µ̂b) =
b+ 1

6
.

We conclude as in the proof of Theorem 5.2 that, for all given ε > 0, there exists

δ > 0 such that
(

b+ 1

6
− b ε

)

log |t| ≤ E∞(s, t) ≤

(

b+ 1

6
+ b ε

)

log |t|

for all |t| > 1/δ and |s| = 1/|t|b. This completes the proof of Theorem 5.5. �
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6. Proof of Theorems 1.5 and 1.6

In this section, we first prove Theorem 1.6, which states there exist constants

α, β > 0 such that

ĥt1 · ĥt2 ≥ αh(t1, t2)− β

for all t1 6= t2 in Q \ {0, 1}. We then use this lower bound to prove Theorem 1.5 and

Proposition 1.8.

6.1. Balancing local contributions. Fix any r such that

0 < r ≤ 1/16.

Fix t1, t2 ∈ Q \ {0, 1}, and let K be any number field containing t1 and t2. We split

the places MK into “good” and “bad” subsets, depending on the pair t1, t2 and the

choice of r. Let Mgood(t1, t2) be the set of places v ∈ MK with

| log |t2/t1|v| ≥ r ·max{| log |t2|v|, | log |t1|v|};

and set Mbad(t1, t2) = MK\Mgood(t1, t2). We further decompose Mgood(t1, t2) into its

archimedean (M∞
good) and non-archimedean (M0

good) places.

Lemma 6.1. There exists a constant C0 > 0 such that

6Ev(t1, t2) ≥
3r

4
| log |t1/t2|v| − C0

for any choice of t1 and t2 in Q \ {0, 1} and for all v ∈ M∞
good(t1, t2).

Proof. Let

ǫ =
r2

24
and let δ1 be the minimum of the δ’s from Theorems 5.2 and 5.5 for this choice of ǫ.

Let δ2 be the δ of Theorem 5.1 for the compact set

{t ∈ C : δ1 ≤ |t| ≤ 1/δ1 and |t− 1| ≥ δ1}

in C \ {0, 1}. Let δ0 be the minimum of δ1 and δ2, and let C0 be any real number

larger than log(1/δ0).

Now fix t1, t2 and any number field K containing t1 and t2, and fix a place v ∈

M∞
good(t1, t2) ⊂ MK . If δ0 ≤ |ti|v ≤ 1/δ0 for i = 1, 2, we have

6Ev(t1, t2) ≥ 0 ≥
3r

4
| log |t1/t2|v| − C0.

As v ∈ M∞
good, if |t2|v ≤ |t1|v < 1, then

|t2|v = |t1|
b
v < |t1|v for

b− 1

b
≥ r
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and therefore, by Theorem 5.2, if additionally |t1|v < δ1, then we have

6Ev(t1, t2) ≥

(

(b− 1)2

b2
− 6ǫ

)

| log |t1|
b
v|

≥

(

(b− 1)r

b
−

r2

4

)

| log |t1|
b
v|

≥
3r

4

b− 1

b
| log |t1|

b
v| =

3r

4
| log |t1/t2|v|.

If |t1|v < δ1 and |t2|v = 1/|t1|
b
v for some b ≥ 1, then by Theorem 5.5

6Ev(t1, t2) ≥

(

(b+ 1)

b
− 6ǫ

)

| log |t1|
b
v| ≥

3(b+ 1)r

4
| log |t1|v| =

3r

4
| log |t1/t2|v|;

if δ1 ≤ |t1|v ≤ 1/δ1, |t1 − 1|v ≥ δ1 and |t2|v < δ0, we have by Theorem 5.1 that

6Ev(t1, t2) ≥ (1− 6ǫ)| log |t2|v| ≥
3r

4
| log |t1/t2|v| − C0.

Combining the above inequalities with the symmetry relations of Proposition 2.3, we

obtain

6Ev(t1, t2) ≥
3r

4
| log |t1/t2|v| − C0.

�

Lemma 6.2. There is a constant C > 0 such that
∑

v∈Mgood(t1,t2)

3rvEv(t1, t2) ≥
3r

4
h(t2/t1)−

3r2

2
h(t1, t2)− C

for any t1 6= t2 ∈ Q\{0, 1}.

Proof. Fix t1 and t2 and any number fieldK containing them. For the non-archimedean

places v ∈ M0
good(t1, t2), by Theorem 3.1, we have

6Ev(t1, t2) ≥ r · | log |t2/t1|v| − 8 log+ |1/2|v,

and thus

(6.1)
∑

v∈M0
good

(t1,t2)

6rvEv(t1, t2) ≥
∑

v∈M0
good

(t1,t2)

rv
(

r · | log |t2/t1|v| − 8 log+ |1/2|v
)

.

Now choose any integer N0 so that logN0 is larger than the C0 of Lemma 6.1, for

each archimedean v ∈ M∞
good(t1, t2). We have

6Ev(t1, t2) ≥
3r

4
| log |t2/t1|v| − logN0

for all v ∈ M∞
good(t1, t2). With h the naive logarithmic height on Q, we set

C = 4 h(2) +
1

2
h(N0) =

1

2
log(28N0).
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Then, we have
∑

v∈Mgood(t1,t2)

6rvEv(t1, t2) =
∑

v∈M∞

good
(t1,t2)

6rvEv(t1, t2) +
∑

v∈M0
good

(t1,t2)

6rvEv(t1, t2)

≥
∑

v∈Mgood(t1,t2)

rv
3r

4
| log |t2/t1|v| −

∑

v∈MK

rv
(

8 log+ |2|v + log+ |N0|v
)

=
∑

v∈Mgood(t1,t2)

rv
3r

4
| log |t2/t1|v| − 2C

=
∑

v∈MK

rv
3r

4
| log |t2/t1|v| −

∑

v∈Mbad(t1,t2)

rv
3r

4
| log |t2/t1|v| − 2C

≥
∑

v∈MK

3rvr

4
| log |t2/t1|v| −

∑

v∈Mbad(t1,t2)

3r2rv
4

max{| log |t2|v|, | log |t1|v|} − 2C

≥
3r

4
2 h(t2/t1)−

3r2

4
· 4 h(t2, t1)− 2C

For the last inequality, we use the facts that 2 h(x) =
∑

v∈MK
rv| log |x|v| for nonzero

x ∈ K and
∑

v∈MK

rv max{| log |t2|v|, | log |t1|v|} ≤ 2 (h(t2) + h(t1)) ≤ 4 h(t2, t1).

�

6.2. Proof of Theorem 1.6. We begin with a standard lemma.

Lemma 6.3. There is a constant C > 0, such that

h

(

t2
t1

,
1− t2
1− t1

)

≥
1

2
h(t1, t2)− C

for t1 6= t2 ∈ Q \ {0, 1}. Here the h is the naive logarithmic height on A2(Q).

Proof. Consider the birational transformation g : P2
99K P2 defined in affine coordi-

nates by g(x1, x2) = (x2/x1, (1− x2)/(1− x1)), with inverse

g−1(y1, y2) =

(

1− y2
y1 − y2

,
y1(1− y2)

y1 − y2

)

of degree d = 2. There exists a constant C such that

h(g−1(x : y : z)) ≤ (deg g−1) h(x : y : z) + C = 2 h(x : y : z) + C

outside of the indeterminacy set for g−1 in P2 [HS, Theorem B.2.5]. The indeterminacy

set for g−1 is {(0 : 1 : 0), (1 : 0 : 0), (1 : 1 : 1)}. Therefore, letting (t1 : t2 : 1) =

g−1(x : y : 1) for some point (x : y : 1), we obtain

h(t1, t2) ≤ 2 h(g(t1, t2)) + C
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for all t1 6= t2 in Q \ {0, 1}. In other words,

h

(

t2
t1
,
t2 − 1

t1 − 1

)

≥
1

2
h(t1, t2)−

1

2
C.

�

Now fix t1 6= t2 in Q \ {0, 1}. From Lemma 6.2, we know there is a constant C

(independent of t1 and t2) such that

3 ĥt1 · ĥt2 = 3
∑

v∈MK

rv Ev(t1, t2)

≥ 3
∑

v∈Mgood(t1,t2)

rv Ev(t1, t2)

≥
3r

4
h(t2/t1)−

3r2

2
h(t2, t1)− C(6.2)

for any t1 6= t2 ∈ Q\{0, 1}. Replacing ti in inequality (6.2) with 1 − ti, for i = 1, 2,

we also have

3 ĥ1−t1 · ĥ1−t2 ≥
3r

4
h

(

1− t2
1− t1

)

−
3r2

2
h(1− t2, 1− t1)− C.

Combining this with Proposition 2.3, we find that

(6.3) 3 ĥt1 · ĥt2 ≥
3r

4
h

(

1− t2
1− t1

)

−
3r2

2
h(1− t2, 1− t1)− C.

Consequently, by adding the inequalities (6.2) and (6.3), we have

6 ĥt1 · ĥt2 ≥
3r

4

(

h(t2/t1) + h

(

1− t2
1− t1

))

−
3r2

2
(h(t2, t1) + h(1− t2, 1− t1))− 2C.

Observe that there is a constant C ′ > 0 from Lemma 6.3 such that

h(t2/t1) + h

(

1− t2
1− t1

)

≥ h

(

t2
t1
,
1− t2
1− t1

)

≥
1

2
· h(t1, t2)− C ′.

Since |h(1 − t2, 1 − t1) − h(t1, t2)| is uniformly bounded over all pairs t1, t2 ∈ Q, we

may combine the above inequality with the previous to conclude that

6 ĥt1 · ĥt2 ≥
3r

8
h(t1, t2)− 3r2 · h(t1, t2)− 6C ′′,

In other words,

ĥt1 · ĥt2 ≥ (r/16− r2/2)h(t2, t1)− C ′′,

and the proof of Theorem 1.6 is complete by taking α = r/16− r2/2 and β = C ′′. �

Remark 6.4. If we set r = 1/16, the constant α > 0 in Theorem 1.6 can be taken

to be α = 1/512.
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6.3. Proof of Theorem 1.5. We will use Theorem 1.6 to deduce a uniform lower

bound on the height pairing ĥs · ĥt for all s 6= t in Q \ {0, 1}.

Suppose there exist parameters sn 6= tn ∈ Q such that

ĥsn · ĥtn → 0 as n → ∞.

Fix ǫ > 0. For each n, choose a number field Kn containing sn and tn. By assumption

and non-negativity of the local energies Ev (Proposition 2.2), there is N ∈ N such

that for all n > N , the archimedean contribution to the pairing is less than ǫ; that

is, for n > N ,
∑

v∈M∞

Kn

rv Ev(sn, tn) < ǫ,

recalling that rv =
[Knv:Qv]
[Kn:Q]

now depends on n.

Let Mn be the set of archimedean places v in M∞
Kn

such that Ev(sn, tn) < 2ǫ, noting

that for n > N , we have
∑

v∈Mn

rv ≥
1

2
.

Recall that the local energy Ev(s, t) is continuous in s and t, and it vanishes if and

only if s = t. So there exists a δ, depending only on ǫ, so that, for each n > N and

for each place v ∈ Mn, one of the following must hold:

(1) |tn − sn|v < δ

(2) min{|sn|v, |tn|v} < δ

(3) min{|sn − 1|v, |tn − 1|v} < δ

(4) max{|sn|v, |tn|v} > 1/δ

Note that we can take δ → 0 as ǫ → 0. We may then, for each n > N , choose a

subset M ′
n of Mn for which sn and tn satisfy the same one of the four conditions at

all places v ∈ M ′
n, and such that

∑

v∈M ′

n

rv ≥
1

8
.

We conclude by the product formula that

max{h(sn − tn), h(sn, tn), h(sn − 1, tn − 1)} >
1

8
log

1

δ
.

It then follows from the triangle inequality, combined with shrinking our choice of ǫ,

that we have h(sn, tn) → ∞. The inequality of Theorem 1.6 implies that ĥsn ·ĥtn → ∞

as well, a contradiction. This completes the proof of Theorem 1.5.
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6.4. Proof of Proposition 1.8. Fix a number field K, and fix t1 6= t2 in K \ {0, 1}.

Let ‖ · ‖i denote the adelic metric on the line bundle OP1(1) associated to the height

ĥti . Let L denote the line bundle OP1(1) equipped with the metric (‖ · ‖1‖ · ‖2)
1/2; its

associated height function is

hL(x) =
1

2

(

ĥt1(x) + ĥt2(x)
)

.

Zhang’s inequality on the essential minimum of a height function implies that

lim inf
n→∞

hL(xn) ≥ (hL · hL)/(2 degL) =
1

2
(hL · hL)

along any infinite sequence of distinct points xn ∈ P1(Q) [Zh2, Theorem 1.10]. In

particular, the set

{x ∈ P1(Q) : ĥt1(x) + ĥt2(x) ≤ b}

is finite for any choice of b < hL · hL.

By the linearity of the intersection pairing, we see that

hL · hL =
1

4
ĥt1 · ĥt1 +

1

2
ĥt1 · ĥt2 +

1

4
ĥt2 · ĥt2 =

1

2
ĥt1 · ĥt2 .

Therefore, we may choose any b < δ/2 for the δ of Theorem 1.5, and the proposition

is proved.

7. Proof of Theorem 1.7

Fix any b ≥ 0 such that b < δ/2 for the δ of Theorem 1.5. Recall from Proposition

1.8 that the set

(7.1) S(b, t1, t2) := {x ∈ P1(Q) : ĥt1(x) + ĥt2(x) ≤ b}

is finite for every pair t1 6= t2 ∈ Q \ {0, 1}. Note that {0, 1,∞} ⊂ S(b, t1, t2) so that

|S(b, t1, t2)| ≥ 3 for all t1 6= t2 in Q \ {0, 1} and all b ≥ 0. In this section, we prove

the following generalization of Theorem 1.7.

Theorem 7.1. Let b ≥ 0 be chosen so that b < δ/2 for the δ of Theorem 1.5. For all

ε > 0, there exists a constant C(ε) so that

ĥt1 · ĥt2 ≤ 4b+

(

ε+
C(ε)

|S(b, t1, t2)|

)

(h(t1, t2) + 1),

for all t1 6= t2 in Q \ {0, 1}, for the set S(b, t1, t2) defined by (7.1).

Note that Theorem 1.7 follows from Theorem 7.1 by setting b = 0.
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7.1. Adelic measures and heights associated to a finite set. Fix a number

field K, and suppose that F is a finite set in K which is Gal(K/K)-invariant. Let η

be a collection of positive real numbers

η := {ηv}v∈MK

with ηv = 1 for all but finitely many v ∈ MK . For archimedean v ∈ MK and x ∈ F ,

we letmx,v denote the Lebesgue probability measure on the circle of radius ηv centered

at the point x ∈ F . We then set

mF,η,v =
1

|F |

∑

x∈F

mx,v.

Similarly, for each non-archimedean v ∈ MK , we let mF,η,v denote the probability

measure distributed uniformly on the points ζx,ηv in A1,an
v over all x ∈ F . Then

mF,η = {mF,η,v}v∈MK
is an adelic measure in the sense of [FRL1]. It gives rise to a

unique height hF,η on P1(Q) associated to a continuous and semipositive adelic metric

on OP1(1) with curvature distributions given by mF,η,v and satisfying

(7.2) hF,η · hF,η = 0.

Its local heights are given by

λF,η,v(z) = αv +
1

|F |

∑

x∈F

logmax{|z − x|v, ηv},

for z ∈ Cv and suitable constants αv; taking

αv = −
1

2 |F |

∑

x∈F

∫

logmax{|z − x|v, ηv} dmF,η,v

gives (7.2).

Remark 7.2. The height hF,η will generally not admit sequences of “small” points,

meaning sequences xn ∈ P1(Q) with hF,η(xn) → 0. In fact, for any choices of F and

η such that
∑

v rv αv 6= 0, the essential minimum of hF,η is positive.

7.2. An upper bound on the height pairing. Now suppose that t1 and t2 lie in

K\{0, 1}. Recall that µt and ĥt respectively denote the measure and height associated

to the curve Et. By the triangle inequality for the distance function of §2.8, we have

(7.3)
(

ĥt1 · ĥt2

)1/2

≤
(

ĥt1 · hF,η

)1/2

+
(

ĥt2 · hF,η

)1/2

for any choice of F and η. By symmetry and bilinearity of the mutual energy,

ĥti · hF,η =
1

2

∑

v∈MK

rv (µti,v −mF,η,v, µti,v −mF,η,v)v

=
1

2

∑

v∈MK

rv ((µti,v, µti,v)v − 2 (mF,η,v, µti,v)v + (mF,η,v, mF,η,v)v)
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for i = 1, 2. For fixed i, writing the local height for ĥti as λti,v = log |z|v + cv + o(1)

for |z|v → ∞ yields

∑

v

rv (µti,v, µti,v)v = −
∑

v

rv

∫

(λti,v − cv) dµti,v = 0

from (2.11). Therefore,

ĥti · hF,η =
1

2

∑

v∈MK

rv (−2(µti,v, mF,η,v)v + (mF,η,v, mF,η,v)v) .

Recall from §2.7 that [F ]v is the probability measure on P1,an
v distributed equally

on the elements of F for each v ∈ MK . By [FRL1, Lemma 4.11] and [Fi, Lemma 12],

we have

(mF,η,v, mF,η,v)v ≤ ([F ]v, [F ]v)v +
− log ηv
|F |

.

It follows that

ĥti · hF,η ≤
1

2

∑

v∈MK

rv ·

(

−2 (µti,v, mF,η,v)v + ([F ]v, [F ]v)v +
− log ηv
|F |

)

=
1

2

∑

v∈MK

rv ·

(

−2 (µti,v, mF,η,v)v +
− log ηv
|F |

)

(7.4)

with the final equality following from (2.16).

Proposition 7.3. Suppose t 6= 0, 1 lies in a number field K. Assume that F is a

finite, Gal(K/K)-invariant set of points. Then

ĥt · hF,η ≤ ĥt(F ) +
∑

v∈MK

rv

(

−(µt,v, mF,η,v)v + (µt,v, [F ]v)v +
− log ηv
2 |F |

)

.

for any choice of η = {ηv}v with ηv = 1 for all but finitely many v ∈ MK .

Proof. The height of F is computed as

ĥt(F ) =
1

|F |

∑

x∈F

ĥt(x) = ĥt(∞)−
∑

v∈MK

rv (µt,v, [F ]v)v = −
∑

v∈MK

rv (µt,v, [F ]v)v,

and therefore we may add ĥt(F )+
∑

v rv (µt,v, [F ]v)v to the right hand side of (7.4). �

7.3. Proof of Theorem 7.1. Fix 0 ≤ b < δ/2 so that Proposition 1.8 is satisfied for

all t1 6= t2 in Q\ {0, 1}. Now fix t1 6= t2 in Q \ {0, 1} and a number field K containing

t1 and t2. Set

F = {x ∈ P1(Q) : ĥt1(x) + ĥt2(x) ≤ b} \ {∞} = S(b, t1, t2) \ {∞},

so F is a finite, Gal(K/K)-invariant set with

ĥti(F ) ≤ b
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for i = 1, 2. At each non-archimedean place v of K, we set

ηv := min{1, |t1(t1 − 1)|v, |t2(t2 − 1)|v}.

Now fix ε′ > 0. For each archimedean v, we set

ηv := c(ε′) min
i=1,2

min{|ti|
2
v, |ti − 1|2v, |ti|

−2
v }

where the constant c(ε′) is from Proposition 4.4. Let η = {ηv}v; observe that ηv = 1

for all but finitely many v, and

(7.5)
∑

v∈MK

−rv log ηv ≤ 2 (h(t1) + h(1− t1) + h(t2) + h(1− t2))−
1

2
log c(ε′).

For non-archimedean v, the explicit form of the measure µti,v (described in Section

3) implies that

(µti,v, mF,η,v)v = (µti,v, [F ]v)v

for this choice of η, because the potentials for µti,v are constant on disks of radius ηv.

We thus obtain from Proposition 7.3 that

ĥti · hF,η ≤ b +
∑

v∈M0
K

rv
− log ηv
2|F |

+
∑

v∈M∞

K

rv

(

−(µti,v, mF,η,v)v + (µti,v, [F ]v)v +
− log ηv
2|F |

)

for i = 1, 2, where M0
K denotes the non-archimedean places and M∞

K the archimedean

places.

We have for v ∈ M∞
K that

−(µti,v, mF,η,v)v + (µti , [F ]v)v ≤ ε′ logmax{|ti|v, |ti|
−1
v , |ti − 1|−1

v }

for i = 1, 2 by Proposition 4.4.

Since the logarithmic Weil height satisfies 2 h(x) =
∑

v | log |x|v|, we thus obtain

ĥti · hF,η ≤ b+ 2ε′ (h(ti) + h(ti − 1))

+
2 (h(t1) + h(1− t1) + h(t2) + h(1− t2))−

1
2
log c(ε′)

|F |

for i = 1, 2. Since h(1−ti) ≤ h(ti)+log 2 ≤ h(t1, t2)+log 2 for i = 1, 2, this inequality

becomes

ĥti · hF,η ≤ b+ 2ε′ (2h(t1, t2) + log 2) +
1

|F |
(8h(t1, t2) + 4 log 2−

1

2
log c(ε′))

for i = 1, 2.
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By the triangle inequality (7.3), we have

(

ĥt1 · ĥt2

)1/2

≤
(

ĥt1 · hF,η

)1/2

+
(

ĥt2 · hF,η

)1/2

≤ 2

(

b+ 2ε′ (2h(t1, t2) + log 2) +
1

|F |
(8h(t1, t2) + 4 log 2−

1

2
log c(ε′))

)1/2

,

so

ĥt1 · ĥt2 ≤ 4

(

b+ 2ε′ (2h(t1, t2) + log 2) +
1

|F |
(8h(t1, t2) + 4 log 2−

1

2
log c(ε′))

)

= 4b+

(

32

|F |
+ 16ε′

)

h(t1, t2) +
16 log 2− 2 log c(ε′)

|F |
+ 8ε′ log 2.(7.6)

Fix any ε > 0, and choose ε′ < ε/16. Since |F | = |S(b, t1, t2)| − 1 ≥ 2, we can find

a large constant C(ε) satisfying

32

|F |
+ 16ε′ ≤ ε+

C(ε)

|S(b, t1, t2)|

and

16 log 2− 2 log c(ε′)

|F |
+ 8ε′ log 2 ≤ ε+

C(ε)

|S(b, t1, t2)|
.

The inequality (7.6) then yields

ĥt1 · ĥt2 ≤ 4b+

(

ε+
C(ε)

|S(b, t1, t2)|

)

(h(t1, t2) + 1),

concluding the proof of Theorem 7.1.

8. Proof of Theorem 1.4

In this section, we deduce Theorem 1.4 from Theorems 1.5, 1.6, 1.7 for algebraic

values of t1 and t2; we then extend the result to hold for parameters ti in C, via a

specialization argument. In fact, we prove the following stronger result over Q:

Theorem 8.1. There exist constants B and b > 0 so that

∣

∣{x ∈ P1(Q) : ĥt1(x) + ĥt2(x) ≤ b}
∣

∣ ≤ B

for all t1 6= t2 in Q \ {0, 1}.
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8.1. Proof of Theorem 8.1. Let δ > 0 be as in Theorem 1.5 so that

ĥt1 · ĥt2 ≥ δ

for all t1 6= t2 in Q \ {0, 1}. Fix

0 < b < δ/8

so that, from Proposition 1.8, the set

S(b, t1, t2) = {x ∈ P1(Q) : ĥt1(x) + ĥt2(x) ≤ b}

is finite for all t1 6= t2 in Q \ {0, 1}. Let h(t1, t2) be the naive logarithmic height on

A2(Q). Fix H > 2β
α

for the α, β of Theorem 1.6 and such that

(8.1)
H − 8b/α

H + 1
> 3/4.

Suppose that t1 6= t2 ∈ Q satisfy h(t1, t2) ≥ H . Then for ε = α
4
, there exists by

Theorem 7.1 a constant C such that

ĥt1 · ĥt2 ≤ 4b+

(

α

4
+

C

|S(b, t1, t2)|

)

(h(t1, t2) + 1).

On the other hand, by Theorem 1.6 and the choice of H , we have

α

2
h(t1, t2) ≤ αh(t1, t2)− β ≤ ĥt1 · ĥt2 .

Therefore
α

2
h(t1, t2) ≤ 4b+

(

α

4
+

C

|S(b, t1, t2)|

)

(h(t1, t2) + 1),

and so

|S(b, t1, t2)| ≤
C

(

αh/2−4b
h+1

)

− α
4

=
C

α
2

(

h−8b/α
h+1

)

− α
4

≤
8C

α

for h := h(t1, t2) ≥ H , from (8.1).

Suppose now that t1 6= t2 ∈ Q satisfy h(t1, t2) < H . Set ε′ = δ
4(H+1)

, and find a

constant C ′ as in Theorem 7.1 so that

ĥt1 · ĥt2 ≤ 4b+

(

ε′ +
C ′

|S(b, t1, t2)|

)

(h(t1, t2) + 1),

and thus, since b < δ/8, we have

δ/2 < δ − 4b ≤

(

ε′ +
C ′

|S(b, t1, t2)|

)

(h(t1, t2) + 1).

We conclude that

|S(b, t1, t2)| ≤
4(H + 1)C ′

δ
,

providing a uniform bound also for t1 and t2 satisfying h(t1, t2) < H . This completes

the proof of Theorem 8.1.
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8.2. Specialization: proof of Theorem 1.4. We implement a standard special-

ization argument to deduce Theorem 1.4 from Theorem 8.1. Note that the division

polynomials for the Legendre curve Et have coefficients in Q[t]; see, for example, [Si,

Exercise 3.7]. Let B be the uniform bound obtained in Theorem 8.1, so that

(8.2) |π(Etors

t1
) ∩ π(Etors

t2
)| =

∣

∣{x ∈ P1(Q) : ĥt1(x) = ĥt2(x) = 0}
∣

∣ ≤ B

for all t1 6= t2 ∈ Q \ {0, 1}. Assume that there exist t1 6= t2 ∈ C \ {0, 1} with

N(t1, t2) := |π(Etors

t1 ) ∩ π(Etors

t2 )| > B

and t1 transcendental. If x ∈ π(Etors

t1
)∩P1(Q), then x ∈ π(Etors

t ) for all t ∈ C \ {0, 1}

as it is a root of a division polynomial. It follows that there is at least one non-

algebraic point x ∈ π(Etors

t1
) ∩ π(Etors

t2
), as only x = 0, 1,∞ are torsion images for all

t ∈ C \ {0, 1} [DWY, Proposition 1.4].

Now let

S := {x1, x2, · · · , xN} = π(Etors

t1 ) ∩ π(Etors

t2 ),

where N = N(t1, t2), and assume that x1 is transcendental. Because it is a torsion

image for both parameters, Q(x1, t1, t2) and therefore also the field

L := Q(t1, t2, x1, · · · , xN )

are of transcendence degree one. Consequently L is isomorphic to a function field

k = K(X) for a number field K and an algebraic curve X defined over Q. Via the

identification of L with k, there exists an algebraic point γ ∈ X(K) with distinct

specializations xi(γ) ∈ P1(Q) for i = 1, . . . , N and

t1(γ) 6= t2(γ) ∈ Q \ {0, 1}.

The division relations in L imply that the specializations Et1(γ) and Et2(γ) have at

least N common torsion images, contradicting (8.2). Therefore, we must have

|π(Etors

t1 ) ∩ π(Etors

t2 )| ≤ B

for all t1 6= t2 ∈ C \ {0, 1}, and the proof of Theorem 1.4 is complete.

8.3. Common torsion images. We obtain the following immediate corollary of

Theorem 1.4, which is a special case of Conjecture 1.3. Recall that a standard pro-

jection from elliptic curve E to P1 is any degree-two branched cover that identifies

each point P ∈ E with its inverse −P .

Corollary 8.2. There exists a uniform bound B such that

|π1(E
tors

1 ) ∩ π2(E
tors

2 )| ≤ B

for any pair of elliptic curves Ei over C and any pair of standard projections πi for

which

|π1(E1[2]) ∩ π2(E2[2])| = 3.
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Proof. By fixing coordinates on P1, we may assume that π1(E1[2]) ∩ π2(E2[2]) =

{0, 1,∞}. For each e ∈ Ei[2] the composition πe
i (P ) = πi(P + e) is again a stan-

dard projection and satisfies πe
i (E

tors

i ) = πi(E
tors

i ). Therefore, we may assume that

πi(Oi) = ∞ for the origin Oi of Ei, i = 1, 2. Putting each Ei into Legendre form now

shows that the corollary follows from Theorem 1.4. �

9. Proof of Theorems 1.1 and 1.9

Throughout this section, we let L2 denote the hypersurface in the moduli space

M2 consisting of all genus 2 curves X over C that admit a degree-two map to an

elliptic curve; see, e.g., [SV] for details on L2. The surface L2 consists of all X whose

Jacobians admit real multiplication by the real quadratic order of discriminant 4, as

explained in the proof of [Mc, Theorem 4.10].

For any smooth, compact, genus 2 curve over C, and for any Weierstrass point P

on X ,

|jP (X) ∩ J(X)tors | ≥ 6

as the difference of two Weierstrass points is torsion. On the other hand, any curve

X of genus g ≥ 2 has |jP (X) ∩ J(X)tors | ≤ 2 for all but finitely many P , by Baker

and Poonen [BP], so an Abel-Jacobi map based at a Weierstrass point has in this

sense a large number of torsion images.

In this section we deduce Theorem 1.1 from Corollary 8.2, providing a uniform

upper bound on |jP (X)∩J(X)tors | for all X in L2. We also deduce Theorem 1.9 from

Theorem 8.1.

9.1. Genus 2 curve from a pair of elliptic curves. Suppose that π1 : E1 → P1

and π2 : E2 → P1 are standard projections on elliptic curves Ei such that

|π1(E1[2]) ∩ π2(E2[2])| = 3,

as in Corollary 8.2. Recall that standard projections are degree-two branched covers

π : E → P1 such that π(P ) = π(−P ) for all points P ∈ E, and so they have simple

critical points at the four points of E[2]. Consider the diagonal D ⊂ P1 × P1, and

lift D to a curve C ⊂ E1 × E2 via Π = π1 × π2. Let ν : X → C normalize C, noting

that the degree four map Π ◦ ν : X → D has branch locus π1(E1[2]) ∪ π2(E2[2]),

with each branch point the image of two points in X , each of multiplicity two. By

Riemann-Hurwitz, the genus of X is 2, and by construction, the curve X is in L2 in

M2. Note that X maps to both of the elliptic curves E1 and E2 with degree 2.
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9.2. A pair of elliptic curves from a genus 2 curve. Here we observe that every

X ∈ L2 arises from the construction described in §9.1. In particular, admitting

a degree-two branched cover X → E1 to an elliptic curve E1 implies that X also

admits a second degree-two branched cover X → E2. The proof of the following

proposition shows how the curve E2 arises:

Proposition 9.1. Every X ∈ L2 is the lift of the diagonal under a product of standard

projections πi on elliptic curves Ei for which

|π1(E1[2]) ∩ π2(E2[2])| = 3.

Moreover, there is a Weierstrass point Q ∈ X(C) and a degree-four isogeny Φ :

J(X) → E1 ×E2 such that

Φ ◦ jQ(X) = (π1 × π2)
−1D in E1 × E2

where D is the diagonal in P1 × P1, J(X) is the Jacobian of X, and jQ is the Abel-

Jacobi embedding associated to Q.

Proof. As noted by [SV] and attributed to Jacobi [Ja], each curve X ∈ L2 has an

affine model

C : y2 = x6 − s1x
4 + s2x

2 − 1,

where the polynomial on the right has non-zero discriminant. C admits degree two

maps (x, y) 7→ (x2, y) and (x, y) 7→ (1/x2, iy/x3) to elliptic curves with affine presen-

tation

E1 : y
2 = x3 − s1x

2 + s2x− 1

and

E2 : y
2 = x3 − s2x

2 + s1x− 1,

respectively, defining a map ν : X → E1 × E2. For each of these curves, the x-

coordinate projection πx is standard, so π1 := πx and π2 := 1/πx are standard pro-

jections for E1 and E2 respectively. The projection π1 ramifies over {∞, r1, r2, r3}

and π2 ramifies over {0, r1, r2, r3}, where {r1, r2, r3} are the distinct, nonzero roots of

x3 − s1x
2 + s2x− 1. Thus

|π1(E1[2]) ∩ π2(E2[2])| = 3.

Define Π := π1 × π2, noting that for (x, y) ∈ C, we have

Π ◦ ν(x, y) = Π(x2, 1/x2) = (x2, x2).

Thus Π ◦ ν(X) = D, where D ⊂ P1 × P1 is the diagonal.

Fix r ∈ π1(E1[2]) ∩ π2(E2[2]), and equip each Ei with a group structure such

that the identity lies above r. Observe that the [−1]-involution on E1 × E2 induces

the hyperelliptic involution on X . In particular, the Weierstrass points on X are

the six preimages of π1(E1[2]) ∩ π2(E2[2]) under Π ◦ ν. Choose Q ∈ X such that

Π(ν(Q)) = (r, r), so that Q is Weierstrass and ν factors as Φ ◦ jQ for some isogeny
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Φ : J(X) → E1 × E2. The nontrivial elements of the kernel of Φ are precisely the

three 2-torsion points in J(X) which are differences of Weierstrass points mapping

to the same point in the diagonal D ⊂ P1 × P1. Thus Φ is degree four as claimed,

completing the proof. �

9.3. Proof of Theorem 1.1. Fix X ∈ L2. From Proposition 9.1, we have elliptic

curves E1 and E2 and a Weierstrass point Q ∈ X such that

|jQ(X) ∩ J(X)tors | ≤ 16 |π1(E
tors

1 ) ∩ π2(E
tors

2 )|,

for a pair of standard projections πi : Ei → P1 satisfying |π1(E1[2]) ∩ π2(E2[2])| = 3.

Given any other Weierstrass point P ∈ X , we have [P−Q] ∈ J(X)tors , so we conclude

that

|jP (X) ∩ J(X)tors | = |jQ(X) ∩ J(X)tors | ≤ 16B,

where B is the constant of Corollary 8.2.

9.4. Proof of Theorem 1.9. Fix X ∈ L2 ⊂ M2, defined over Q. From Proposition

9.1 there is a pair t1 6= t2 in Q \ {0, 1} and an isogeny Φ : J(X) → Et1 × Et2 of

degree 4 so that Π ◦ Φ ◦ jQ(X) is the diagonal in P1 × P1, where Π = π × π and Q is

a Weierstrass point on X . Recall from §2.1 that the Néron-Tate canonical height on

ĥEt on Et satisfies

ĥEt(P ) =
1

2
ĥt(π(P ))

for all P ∈ Et(Q) and each t ∈ Q \ {0, 1}.

Let

D = {O1} × Et2 + Et1 × {O2}

be a divisor on Et1 ×Et2 where Oi denotes the identity element of Eti , and let LD be

the associated line bundle. Let LX = Φ∗LD on J(X), and let ĥLX
be the associated

Néron-Tate canonical height on J(X)(Q). By the functoriality of canonical heights

[HS, Theorem B.5.6], we have

ĥLX
(x) = ĥLD

(Φ(x))

= ĥEt1
(Φ(x)1) + ĥEt2

(Φ(x)2)

=
1

2

(

ĥt1(π(Φ(x)1)) + ĥt2(π(Φ(x)2))
)

,

where Φ(x) = (Φ(x)1,Φ(x)2) in Et1 × Et2 . Restricting to the points x ∈ jP (X)(Q),

so that π(Φ(x)1) = π(Φ(x)2) in P1, the theorem now follows from Theorem 8.1.
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