
 

 

Strengthening proof of Bezout theorem 

 

Abstract: 

Bezout theorem is a very important theorem of elementary number theory. That 

is when an integer array 1 2, ,..., na a a  has the property that 1 2, ,..., na a a  are relatively 

prime，（i.e. 1 2( , ,..., ) 1na a a = ）， there exist an infinite number of integer arrays 

1 2( , ,..., )nx x x  which makes 1 1 2 2 ... 1n nx a x a x a+ + + = . Here, there is no particular 

limits to 1 2( , ,..., )nx x x , however, can we add some conditions to it and still keep the 

conclusion? Firstly, our findings show that when an integer array 1 2, ,..., na a a  

satisfies 1 2( , ,..., ) 1na a a =  , there are an infinite number of integer arrays 

1 2( , ,..., )nx x x  which can make 1 1 2 2 ... 1n nx a x a x a+ + + =  and 1i ix x + (i=1,2,…,n-2) 

was established at the same time. Further，we found that when n + k integers 

1 1,..., , ,...,n ka a b b  meet 1 1( ,..., , ,..., ) 1n ka a b b = , there are an infinite number of 

integer arrays  1 1
( ,..., , ,..., )

n k
x x y y  which can make 

1 1 1 1... ... 1n n k kx a x a y b y b+ + + + + = ， 1i ix x + (i=1,…,n-1) and 1j jy y +  (j = 1,..., 

k-1) meet the standard at the same time. In addition, our findings show that when n 

integers 1 2, ,..., na a a  meet 1 2( , ,..., ) 1na a a = , it has an infinite number of integer arrays 

1 2( , ,..., )nx x x  which can make 1 1 2 2 ... 1n nx a x a x a+ + + =  and ( , ) 2i jx x ≥  meet the 

standard at the same time, here 1 i j n≤ < ≤ . In short, in this paper, through the 

concise proof, we found a series of strengthening Bezout theorem, which make it 

more rich and interesting. 
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裴蜀定理的加强证明裴蜀定理的加强证明裴蜀定理的加强证明裴蜀定理的加强证明 

 

摘要：裴蜀定理是初等数论中一个非常重要的定理，即当 n 个整数 1 2, ,..., na a a 满

足 1 2( , ,..., ) 1na a a = 时 ， 存 在 无 穷 多 组 整 数 1 2( , ,..., )nx x x 可 以 使 得

1 1 2 2 ... 1n nx a x a x a+ + + = 。这里的 1 2( , ,..., )nx x x 并没有特别的限制，是否可以给

1 2( , ,..., )nx x x 一些限制条件而使裴蜀定理依然成立呢？我们的研究结果表明当 n

个整数 1 2, ,..., na a a 满足 1 2( , ,..., ) 1na a a = 时，存在无穷多组整数 1 2( , ,..., )nx x x 可以使

得 1 1 2 2 ... 1n nx a x a x a+ + + = 和 1i ix x + (i=1,3,…,n-2)同时成立。进一步我们发现，当

n+k 个整数 1 1,..., , ,...,n na a b b 满足 1 1( ,..., , ,..., ) 1n ka a b b = 时，存在无穷多组整数

| 1 1
( ,..., , ,..., )

n k
x x y y 可 以 使 得 1 1 1 1... ... 1n n k kx a x a y b y b+ + + + + = 和

1i ix x + (i=1,…,n-1)和 1j jy y + （j=1,…,k-1）同时满足。此外，我们的研究结果表

明当 n 个整数 1 2, ,..., na a a 满足 1 2( , ,..., ) 1na a a = 时，存在无穷多组整数 1 2( , ,..., )nx x x

可以使得 1 1 2 2 ... 1n nx a x a x a+ + + = 和 ( , ) 2i jx x ≥ 同时满足，这里1 i j n≤ < ≤ 。总

之，在该论文中，我们通过简洁而巧妙的证明，发现了一系列加强的裴蜀定理，

使得裴蜀定理更加丰富而有趣。 

 

 

 

 

 

 

 

 

S14

Page - 243



 

 

Strengthening proof of Bezout theorem 

 

Bezout theorem is a very important theorem of elementary number 

theory, by which lots of mathematic questions at various levels can be 

solved. Therefore, the further understanding of this theorem is very 

necessary. 

First, let's look at the content of the theorem, set n 

integers 1 2, ,..., na a a , d is their greatest common divisor （ i.e. 

1 2( , ,..., )na a a d= ） , then it has an infinite number of integer arrays 

1 2( , ,..., )nx x x  which makes 1 1 2 2 ... n nx a x a x a d+ + + = . Specially, if 

1 2( , ,..., ) 1na a a = ,  then there will be an infinite number of integer arrays 

1 2( , ,..., )nx x x  which makes 1 1 2 2 ... 1n nx a x a x a+ + + = . 

There are many proof methods of the theorem, it is not difficult to 

prove it, our idea is to take some restrictions to the integer arrays 

1 2( , ,..., )nx x x , which make this theorem still succeed. We start from the n = 

2, if 1 2( , ) 1a a =  , there are an infinite number of integer arrays 1 2( , )x x  

makes 1 1 2 2 1x a x a+ = . We guess that here (x1, x2) can satisfy 1 2x x （i.e. x1 

divide exactly into x2）, which makes 1 1 2 2 1x a x a+ = . If the conditions set 

up, we will get 1 1x  , and we also can say the x1 = 1 or -1, which 

2 2 11x a a= ± . Obviously, the equation may not have integer solutions, 

such as a1=5，a2=7. 

    Then we came to see the case when n = 3, if 1 2 3( , , ) 1a a a = , there are 
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infinite integer arrays 1 2 3( , , )x x x  which makes 1 1 2 2 3 3 1x a x a x a+ + =  , we 

wonder if here in 1 2 3( , , )x x x , there is a relation of being divided? Assumed 

that 1 2x x and 2 3x x ， we will learn 1 1x , namely 1 1x =  or -1. If the 

conditions are set up, we may get the equation 2 2 3 3 11x a x a a+ = ± , 

apparently which may not have integer solutions, as the example that 

1 2 377, 119, 187a a a= = =  shows. So the conclusion is not established. So 

when n = 3, whether there are an infinite number of integer arrays 

1 2 3( , , )x x x , and two of them have the relations of division, for 

example 1 2x x , makes the 1 1 2 2 3 3 1x a x a x a+ + =  established. Fortunately, the 

theorem is set up. 

We first prove a lemma 1: if 1 2 3( , , ) 1a a a = , there are an infinite 

number of integer k, which make 1 2 3( , ) 1ka a a+ =  

Prove 1: if 1 3( , ) 1a a =  , prove there are infinite integer k easily, making 

that 1 2 31(mod )ka a a+ ≡ . The conclusion is established 

If 1 3( , ) 2a a d= ≥  , unique decomposition theorem is expressed as below 

1

1 1 ... l

la p p q
αα=  ( iα ≥1, and ip  is prime number) 

1

3 1 ... l

la p p r
ββ=  ( iβ ≥1, and ip  is prime number) 

1 1 min( , )min( , )

1 3 1( , ) .... l l

la a d p p
α βα β= =  

And it is easy to know that 1( , ) 1r a = ， 2( , ) 1ip a =  

It is easy to prove any integer k all have 1 2( , ) 1ika a p+ =  , then 

1

1 2 1( , ... ) 1l

lka a p p
αα+ =  

And there is an infinite number of integer k which makes 
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1 2 1(mod )ka a r+ ≡  , then 1 2( , ) 1ka a r+ = ,  

1 2 3( , ) 1ka a a+ =  is established. 

Prove 2:  the unique decomposition theorem will be expressed as 

1 1 1

3 1 1 1... ... ...k l m

k l ma p p q q r r
α β γα β γ=  

( 1 1 1,... , ,... , ...k l mp p q q r r  are prime numbers, and , , 1i i iα β γ ≥ ) 

1) assumed that 1i
p a , and 2( , ) 1ip a =  , no matter what's value of k, 

1 2( , ) 1ika a p+ =  

2) assumed that 1( , ) 1iq a = , and 2iq a  only requires 1(mod )ik q≡ , which 

makes 1 2( , ) 1ika a q+ =  

3) assumed that 1( , ) 1ir a = ， 2( , ) 1ir a =  , just need 1 2 1(mod )ika a r+ ≡  

That is 1 21 (mod )ika a r≡ − , there must be integer ib  makes 1 1(mod )i ia b r≡ , 

That is to say 2(1 )(mod )i ik b a r≡ − , from 1 1,... , ,...,l mq q r r ，any two of these are 

relatively prime, according to the Chinese remainder theorem, the 

following more than equations must have an infinite number of integer 

solutions 

1

1 2 1

2

1(mod )

...

1(mod )

(1 )(mod )

...

(1 )(mod )

l

m m

k q

k q

k b a r

k b a r

≡


 ≡
 ≡ −



≡ −

 

1 2 3( , ) 1ka a a+ =  is established 

 

Using the above lemma 1, we prove the following theorem 1  
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Theorem 1: if 1 2 3( , , ) 1a a a =  , there are an infinite number of integer 

arrays 1 2 3( , , )x x x  , satisfy 

1）））） 1 1 2 2 3 3 1x a x a x a+ + =  

2）））） 1 2x x  

Proof: from the above lemma 1, we know that there are infinite k which 

makes 2 1 3( , ) 1ka a a+ = , 

From Bezout theorem, there are infinite integer arrays ( , )s t , which 

makes 2 1 3( ) 1s ka a ta+ + =  

Set 1 2 3, ,x s x sk x t= = = , it is easy to know 1 2x x , the theorem 1 was set up. 

 

Furthermore, let's guess the above conclusions are established to 

all n (n≥3)，that is the following guess: if 1 2( , ,..., ) 1na a a = , it has an 

infinite number of integer arrays 1 2
( , ,..., )

n
x x x , satisfy 

1) 1 1 2 2 ... 1n nx a x a x a+ + + =  

2) 1i ix x + (i=1,2,…,n-2) 

 

In order to prove the guess, we should first prove the following lemma 2 

Lemma 2: if 1 2( , ,..., ) 1na a a = ，，，，there are infinite number of integer 

arrays
1 2 2( , ,..., )nm m m −  which makes

1 1 2 1 2 3 1 2 1( ... ... , ) 1n n na m a m m a m m a a− −+ + + + =  

Prove: from the lemma 1 we know that when n = 3，the conclusions are 

established. 

Assumed n = k is set up, let’s prove that when n = k + 1 it was set up 
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1 2 1( , ,..., , ) 1k ka a a a + = , set 1 1

1 1 1... ...l h

k l ha p p q q
α βα β

+ =  

( 1 1,... , ,...l hp p q q  are prime numbers, and , 1i iα β ≥ ) 

1) assumed 1 1( , ... ) 1la p p = ， 

Make 1 10(mod ... )lm p p≡ , then 1 1 2 1 2 3 1 1 1( ... ... , ... ) 1k k la m a m m a m m a p p−+ + + + =  

2) assumed 1...i hq q a , it is easy to know that 2 3 1( , ,..., , ... ) 1k ha a a q q = , from 

inductive assumption we know that there are an infinite number of integer 

arrays 2 1
( ,..., )

k
m m − , satisfy 2 2 3 2 1 1( ... ... , ... ) 1k k ha m a m m a q q−+ + + = ,  

Then make 1 11(mod ... )hm q q≡ ,we can infer that 

1 1 2 1 2 3 1 1 1( ... ... , ... ) 1k k ha m a m m a m m a q q−+ + + + = , 

It is easy to know that 1 1( ... , ... ) 1l hp p q q = , By the Chinese remainder 

theorem, we know that the number of integer m1 which meet the 

conditions is infinite. Then there are an infinite number of integer arrays 

1 2 1
( , ,..., )

k
m m m − , which make 1 1 2 1 2 3 1 1 1( ... ... , ) 1k k ka m a m m a m m a a− ++ + + + = .  

Namely when n = k + 1 is set up, by mathematical induction we 

know that when 3n ≥ , if 1 2( , ,..., ) 1na a a = , then there are an infinite 

number of integer arrays 1 2 2
( , ,..., )

n
m m m − ,  

Which make 1 1 2 1 2 3 1 2 1( ... ... , ) 1n n na m a m m a m m a a− −+ + + + =  

 

From the above lemma 2, it is easy to prove the theorem 2 which we 

guessed before is established, namely 

Theorem 2: if 1 2( , ,..., ) 1na a a = , there are an infinite number of integer 

arrays 1 2
( , ,..., )

n
x x x , satisfy 
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1）））） 1 1 2 2 ... 1n nx a x a x a+ + + =  

2）））） 1i ix x + (i=1,2,…,n-2) 

Prove: from the lemma 2, it can be seen that there are an infinite number 

of integer arrays ( , )x y  which makes 

1 1 2 1 2 3 1 2 1( ... ... ) 1n n nx a m a m m a m m a ya− −+ + + + + =  established 

Set 1 2 1 3 1 2 1 1 2 2, , ,..., ... ,n n nx x x xm x xm m x xm m m x y− −= = = = =  

It is easy to know theorem 2 was set up 

 

Furthermore , we proposed the following guess: 2n ≥ ，，，， 2k ≥ , if 

1 1( ,..., , ,..., ) 1n ka a b b = , then there are an infinite number of integer arrays 

1 1
( ,..., , ,..., )

n k
x x y y , satisfy 

1） 1 1 1 1... ... 1n n k kx a x a y b y b+ + + + + =  

2） 1i ix x + (i=1,…,n-1) and 1j jy y + （j=1,…,k-1） 

 

In order to prove the guess, we first prove the lemma 3 below 

Lemma 3:If 1 1( ,..., , ,..., ) 1n ka a b b = , there are an infinite number of 

integer arrays 1 1 1 1
( ,..., , ,..., )

n k
m m t t− − which make 

1 1 2 1 2 3 1 1 1 1 2 1 2 3 1 1( ... ... , ... ... ) 1n n k ka m a m m a m m a b t b t t b t t b− −+ + + + + + + + =  

Prove: set 1 2( , ,..., )na a a d= , so 1( ,..., , ) 1kb b d =  

From lemma 2, we can infer that there are an infinite number of integer 

arrays 1 1
( ,..., )

k
t t −  which make 1 1 2 1 2 3 1 1

( ... ... , ) 1
k k

b t b t t b t t b d−+ + + + = , 

So, it is easy to know that 1 2 1 1 2 1 2 3 1 1( , ,..., , ... ... ) 1n k ka a a b t b t t b t t b−+ + + + =  
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From lemma2, we also infer that there are an infinite number of integer 

arrays 1 1
( ,..., )

n
m m −  which make 

1 1 2 1 2 3 1 1 1 1 2 1 2 3 1 1( ... ... , ... ... ) 1n n k ka m a m m a m m a b t b t t b t t b− −+ + + + + + + + =  

 

From the above lemma 3, it is easy to prove that the theorem 3 we 

guessed before is established, namely 

Theorem 3: 2n ≥ ，，，， 2k ≥ , if 1 1( ,..., , ,..., ) 1n ka a b b = , there are an 

infinite number of integer arrays 1 1
( ,..., , ,..., )

n k
x x y y , satisfy 

1）））） 1 1 1 1... ... 1n n k kx a x a y b y b+ + + + + =  

2）））） 1i ix x + (i=1,…,n-1) and 1j jy y + （（（（j=1,…,k-1）））） 

Prove: from the lemma 3, it can be seen that there are an infinite number 

of integer arrays ( , )m t  which makes 

1 1 2 1 2 3 1 1 1 1 2 1 2 3 1 1( ... ... ) ( ... ... ) 1n n k km a m a m m a m m a t b t b t t b t t b− −+ + + + + + + + + = , 

set 1 2 1 1 2 1 1 2 1 1 2 1, ,..., ... , , ,..., ...n n k kx m x mm x mm m m y t y tt y tt t t− −= = = = = =  

It easy to know that theorem 3 was set up 

 

Now, let's prove the interesting theorem 4 

Theorem 4: 3n ≥ , if 1( ,..., ) 1na a = , there are an infinite number of 

integer arrays 1
( ,..., )

n
x x , satisfy 

1）））） 1 1 ... 1n nx a x a+ + =  

2）））） ( , ) 2i jx x ≥ ，，，，1 i j n≤ < ≤  

Prove: Set 
,1,

1, ,... k tt t

tt t k ta p p
αα=   1 t n≤ ≤  
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Set 1 2... nB q q q= ， i

i

B
B

q
= ( 1,..., nq q are prime numbers which are 

different from 1, ,,...,
tt k tp p ,1 t n≤ ≤ ) 

Set i i ic B a= ，1 i n≤ ≤  

Then it is easy to know that 1 2( , ,..., ) 1nc c c = , from the Bezout theorem, 

we know that there are an infinite number of integer arrays 1
( ,..., )

n
y y  

which make 1 1 ... 1n ny c y c+ + =  

Therefore 1 1 1 ... 1n n ny B a y B a+ + =  

Set i i ix y B=  then ( , ) 2i j

i j

B
x x

q q
≥ ≥  

 

We can also strengthen the theorem 2 into the theorem 5 

Theorem 5: if 1 2( , ,..., ) 1na a a = , there are an infinite number of 

integer arrays 1
( ,..., )

n
x x , satisfy 

1）））） 1 1 2 2 ... 1n nx a x a x a+ + + =  

2）））） 1i ix x + (i=1,2,…,n-2) 

3）））） ( , ) 2i nx x ≥  (i=2,…,n-1) 

Prove: Set 
,1,

1, ,... k tt t

tt t k ta p p
αα=   1 t n≤ ≤  

Set 1 1 1 2 1 2, ,n n i ib q a b q a b q q a= = = ，，，， 2 1i n≤ ≤ −  

( 1 2,q q  are prime numbers which are different from 1, ,,...,
tt k tp p , 

1 t n≤ ≤ ) 

Therefore 1( ,..., ) 1nb b =  

From the theorem 2, we can infer that there are an infinite number of 
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integer arrays 1 2
( , ,..., )

n
y y y , satisfy 

1） 1 1 2 2 ... 1n ny b y b y b+ + + = ， 

2） 1i iy y + (i=1,2,…,n-2) 

From 1), we can infer that 1 1 1 2 1 2 2 1 1 2 1 2... 1n n n ny q a y q q a y q q a y q a− −+ + + + =  

Set 1 1 1 2 1 2, ,n n i ix y q x y q x y q q= = = ，，，， 2 1i n≤ ≤ −  

Therefore there are an infinite number of integer arrays 1 2
( , ,..., )

n
x x x , 

satisfy 1） 1 1 2 2 ... 1n nx a x a x a+ + + =  

2） 1i ix x + (i=1,2,…,n-2) 

3） ( , ) 2i nx x ≥  (i=2,…,n-1) 

After continuous exploration, we get a series of very interesting 

theorems 1-5 as well as important lemmas 1-3. Finally, we proved 

theorems 2-5 which are stronger than Bezout theorem. To the best of our 

knowledge, the similar conclusion on Bezout theorem was scarcely 

reported. Therefore, we could see if we continue to explore some old and 

classic theorem, we can get some interesting new results. We wish this 

article can play a valuable role on Bezout theorem. 
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