Strengthening proof of Bezout theorem

Yukun Ding

Abstract

: Bezout theorem is a very important theorem of elementary number theory. That is when an integer array $a_{1}, a_{2}, \ldots, a_{n}$ has the property that $a_{1}, a_{2}, \ldots, a_{n}$ are relatively prime, (i.e. $\left.\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1\right)$, there exist an infinite number of integer arrays $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which makes $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=1$. Here, there is no particular limits to $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, however, can we add some conditions to it and still keep the conclusion? Firstly, our findings show that when an integer array $a_{1}, a_{2}, \ldots, a_{n}$ satisfies $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$, there are an infinite number of integer arrays $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which can make $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=1$ and $x_{i} \mid x_{i+1}(\mathrm{i}=1,2, \ldots, \mathrm{n}-2)$ was established at the same time. Further, we found that when $n+k$ integers $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{k}$ meet $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{k}\right)=1$, there are an infinite number of integer arrays $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$ which can make $x_{1} a_{1}+\ldots+x_{n} a_{n}+y_{1} b_{1}+\ldots+y_{k} b_{k}=1, \quad x_{i} \mid x_{i+1}(\mathrm{i}=1, \ldots, \mathrm{n}-1)$ and $y_{j} \mid y_{j+1} \quad(\mathrm{j}=1, \ldots$, $\mathrm{k}-1)$ meet the standard at the same time. In addition, our findings show that when n integers $a_{1}, a_{2}, \ldots, a_{n}$ meet $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$, it has an infinite number of integer arrays $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which can make $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=1$ and $\left(x_{i}, x_{j}\right) \geq 2$ meet the standard at the same time, here $1 \leq i<j \leq n$. In short, in this paper, through the concise proof, we found a series of strengthening Bezout theorem, which make it more rich and interesting.

裴蜀定理的加强证明

摘要：裴蜀定理是初等数论中一个非常重要的定理，即当 n 个整数 $a_{1}, a_{2}, \ldots, a_{n}$ 满足 $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$ 时，存 在 无 穷 多组整数 $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ 可以使得 $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=1$ 。这里的 $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ 并没有特别的限制，是否可以给 $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ 一些限制条件而使裴蜀定理依然成立呢？我们的研究结果表明当 n个整数 $a_{1}, a_{2}, \ldots, a_{n}$ 满足 $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$ 时，存在无穷多组整数 $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ 可以使得 $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=1$ 和 $x_{i} \mid x_{i+1}(\mathrm{i}=1,3, \ldots, \mathrm{n}-2)$ 同时成立。进一步我们发现，当 $\mathrm{n}+\mathrm{k}$ 个整数 $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ 满足 $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{k}\right)=1$ 时，存在无穷多组整数 $\mid\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$ 可 以 使 得 $x_{1} a_{1}+\ldots+x_{n} a_{n}+y_{1} b_{1}+\ldots+y_{k} b_{k}=1$ 和 $x_{i} \mid x_{i+1}(\mathrm{i}=1, \ldots, \mathrm{n}-1)$ 和 $y_{j} \mid y_{j+1}(\mathrm{j}=1, \ldots, \mathrm{k}-1)$ 同时满足。此外，我们的研究结果表明当 n 个整数 $a_{1}, a_{2}, \ldots, a_{n}$ 满足 $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$ 时，存在无穷多组整数 $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$可以使得 $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=1$ 和 $\left(x_{i}, x_{j}\right) \geq 2$ 同时满足，这里 $1 \leq i<j \leq n$ 。总之，在该论文中，我们通过简洁而巧妙的证明，发现了一系列加强的裴蜀定理，使得裴蜀定理更加丰富而有趣。

Strengthening proof of Bezout theorem

Bezout theorem is a very important theorem of elementary number theory, by which lots of mathematic questions at various levels can be solved. Therefore, the further understanding of this theorem is very necessary.

First, let's look at the content of the theorem, set n integers $a_{1}, a_{2}, \ldots, a_{n}, \mathrm{~d}$ is their greatest common divisor (i.e. $\left.\left(a_{1}, a_{2}, \ldots, a_{n}\right)=d\right)$, then it has an infinite number of integer arrays $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which makes $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=d$. Specially, if $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$, then there will be an infinite number of integer arrays $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which makes $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=1$.

There are many proof methods of the theorem, it is not difficult to prove it, our idea is to take some restrictions to the integer arrays $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, which make this theorem still succeed. We start from the $\mathrm{n}=$ 2 , if $\left(a_{1}, a_{2}\right)=1$, there are an infinite number of integer arrays $\left(x_{1}, x_{2}\right)$ makes $x_{1} a_{1}+x_{2} a_{2}=1$. We guess that here ($\mathrm{x}_{1}, \mathrm{x}_{2}$) can satisfy $x_{1} \mid x_{2}$ (i.e. x_{1} divide exactly into x_{2}), which makes $x_{1} a_{1}+x_{2} a_{2}=1$. If the conditions set up, we will get $x_{1} \mid 1$, and we also can say the $\mathrm{x}_{1}=1$ or -1 , which $x_{2} a_{2}=1 \pm a_{1}$. Obviously, the equation may not have integer solutions, such as $\mathrm{a}_{1}=5, \mathrm{a}_{2}=7$.

Then we came to see the case when $\mathrm{n}=3$, if $\left(a_{1}, a_{2}, a_{3}\right)=1$, there are
infinite integer arrays $\left(x_{1}, x_{2}, x_{3}\right)$ which makes $x_{1} a_{1}+x_{2} a_{2}+x_{3} a_{3}=1$, we wonder if here in $\left(x_{1}, x_{2}, x_{3}\right)$, there is a relation of being divided? Assumed that $x_{1} \mid x_{2}$ and $x_{2} \mid x_{3}$, we will learn $x_{1} \mid 1$, namely $x_{1}=1$ or -1 . If the conditions are set up, we may get the equation $x_{2} a_{2}+x_{3} a_{3}=1 \pm a_{1}$, apparently which may not have integer solutions, as the example that $a_{1}=77, a_{2}=119, a_{3}=187$ shows. So the conclusion is not established. So when $\mathrm{n}=3$, whether there are an infinite number of integer arrays $\left(x_{1}, x_{2}, x_{3}\right)$, and two of them have the relations of division, for example $x_{1} \mid x_{2}$, makes the $x_{1} a_{1}+x_{2} a_{2}+x_{3} a_{3}=1$ established. Fortunately, the theorem is set up.

We first prove a lemma 1: if $\left(a_{1}, a_{2}, a_{3}\right)=1$, there are an infinite number of integer \mathbf{k}, which make $\left(k a_{1}+a_{2}, a_{3}\right)=1$

Prove 1: if $\left(a_{1}, a_{3}\right)=1$, prove there are infinite integer k easily, making that $k a_{1}+a_{2} \equiv 1\left(\bmod a_{3}\right)$. The conclusion is established
$\operatorname{If}\left(a_{1}, a_{3}\right)=d \geq 2$, unique decomposition theorem is expressed as below $a_{1}=p_{1}^{\alpha_{1}} \ldots p_{l}^{\alpha_{1}} q \quad\left(\alpha_{i} \geq 1\right.$, and p_{i} is prime number $)$
$a_{3}=p_{1}^{\beta_{1}} \ldots p_{l}^{\beta_{1}} r \quad\left(\beta_{i} \geq 1\right.$, and p_{i} is prime number $)$
$\left(a_{1}, a_{3}\right)=d=p_{1}{ }^{\min \left(\alpha_{1}, \beta_{1}\right)} \ldots . p_{l}{ }^{\min \left(\alpha_{l}, \beta_{l}\right)}$

And it is easy to know that $\left(r, a_{1}\right)=1,\left(p_{i}, a_{2}\right)=1$
It is easy to prove any integer k all have $\left(k a_{1}+a_{2}, p_{i}\right)=1$, then $\left(k a_{1}+a_{2}, p_{1}^{\alpha_{1}} \ldots p_{l}^{\alpha_{l}}\right)=1$

And there is an infinite number of integer k which makes
$k a_{1}+a_{2} \equiv 1(\bmod r)$, then $\left(k a_{1}+a_{2}, r\right)=1$,
$\left(k a_{1}+a_{2}, a_{3}\right)=1$ is established.

Prove 2: the unique decomposition theorem will be expressed as $a_{3}=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}} q_{1}^{\beta_{1}} \ldots q_{l}^{\beta_{l}} r_{1}^{\gamma_{1}} \ldots r_{m}^{\gamma_{m}}$
$\left(p_{1}, \ldots p_{k}, q_{1}, \ldots q_{l}, r_{1} \ldots r_{m}\right.$ are prime numbers, and $\left.\alpha_{i}, \beta_{i}, \gamma_{i} \geq 1\right)$

1) assumed that $p_{i} \mid a_{1}$, and $\left(p_{i}, a_{2}\right)=1$, no matter what's value of k , $\left(k a_{1}+a_{2}, p_{i}\right)=1$
2) assumed that $\left(q_{i}, a_{1}\right)=1$, and $q_{i} \mid a_{2}$ only requires $k \equiv 1\left(\bmod q_{i}\right)$, which $\operatorname{makes}\left(k a_{1}+a_{2}, q_{i}\right)=1$
3) assumed that $\left(r_{i}, a_{1}\right)=1,\left(r_{i}, a_{2}\right)=1$, just need $k a_{1}+a_{2} \equiv 1\left(\bmod r_{i}\right)$

That is $k a_{1} \equiv 1-a_{2}\left(\bmod r_{i}\right)$, there must be integer b_{i} makes $a_{1} b_{i} \equiv 1\left(\bmod r_{i}\right)$,

That is to say $k \equiv b_{i}\left(1-a_{2}\right)\left(\bmod r_{i}\right)$, from $q_{1}, \ldots q_{l}, r_{1}, \ldots, r_{m}$, any two of these are relatively prime, according to the Chinese remainder theorem, the following more than equations must have an infinite number of integer solutions
$\left\{\begin{array}{l}k \equiv 1\left(\bmod q_{1}\right) \\ \cdots \\ k \equiv 1\left(\bmod q_{l}\right) \\ k \equiv b_{1}\left(1-a_{2}\right)\left(\bmod r_{1}\right) \\ \cdots \\ k \equiv b_{m}\left(1-a_{2}\right)\left(\bmod r_{m}\right)\end{array}\right.$
$\left(k a_{1}+a_{2}, a_{3}\right)=1 \quad$ is established

Using the above lemma 1 , we prove the following theorem 1

Theorem 1: if $\left(a_{1}, a_{2}, a_{3}\right)=1$, there are an infinite number of integer arrays $\left(x_{1}, x_{2}, x_{3}\right)$, satisfy

1) $x_{1} a_{1}+x_{2} a_{2}+x_{3} a_{3}=1$
2) $x_{1} \mid x_{2}$

Proof: from the above lemma 1, we know that there are infinite k which $\operatorname{makes}\left(k a_{2}+a_{1}, a_{3}\right)=1$,

From Bezout theorem, there are infinite integer arrays (s, t), which makes $s\left(k a_{2}+a_{1}\right)+t a_{3}=1$

Set $x_{1}=s, x_{2}=s k, x_{3}=t$, it is easy to know $x_{1} \mid x_{2}$, the theorem 1 was set up.

Furthermore, let's guess the above conclusions are established to all $\mathrm{n}(\mathrm{n} \geq 3)$, that is the following guess: $\operatorname{if}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$, it has an infinite number of integer arrays $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, satisfy

1) $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=1$
2) $x_{i} \mid x_{i+1}(\mathrm{i}=1,2, \ldots, \mathrm{n}-2)$

In order to prove the guess, we should first prove the following lemma 2
Lemma 2: if $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$, there are infinite number of integer $\operatorname{arrays}\left(m_{1}, m_{2}, \ldots, m_{n-2}\right)$ which makes $\left(a_{1}+m_{1} a_{2}+m_{1} m_{2} a_{3}+\ldots+m_{1} \ldots m_{n-2} a_{n-1}, a_{n}\right)=1$

Prove: from the lemma 1 we know that when $\mathrm{n}=3$, the conclusions are established.

Assumed $\mathrm{n}=\mathrm{k}$ is set up, let's prove that when $\mathrm{n}=\mathrm{k}+1$ it was set up
$\left(a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}\right)=1$, set $a_{k+1}=p_{1}^{\alpha_{1}} \ldots p_{l}^{\alpha_{l}} q_{1}^{\beta_{1}} \ldots q_{h}^{\beta_{h}}$
$\left(p_{1}, \ldots p_{l}, q_{1}, \ldots q_{h}\right.$ are prime numbers, and $\left.\alpha_{i}, \beta_{i} \geq 1\right)$

1) assumed $\left(a_{1}, p_{1} \ldots p_{l}\right)=1$,

Make $m_{1} \equiv 0\left(\bmod p_{1} \ldots p_{l}\right)$, then $\left(a_{1}+m_{1} a_{2}+m_{1} m_{2} a_{3}+\ldots+m_{1} \ldots m_{k-1} a_{k}, p_{1} \ldots p_{l}\right)=1$
2) assumed $q_{i} \ldots q_{h} \mid a_{1}$, it is easy to know that $\left(a_{2}, a_{3}, \ldots, a_{k}, q_{1} \ldots q_{h}\right)=1$, from inductive assumption we know that there are an infinite number of integer arrays $\left(m_{2}, \ldots, m_{k-1}\right)$, satisfy $\left(a_{2}+m_{2} a_{3}+\ldots+m_{2} \ldots m_{k-1} a_{k}, q_{1} \ldots q_{h}\right)=1$, Then make $m_{1} \equiv 1\left(\bmod q_{1} \ldots q_{h}\right)$, we can infer that $\left(a_{1}+m_{1} a_{2}+m_{1} m_{2} a_{3}+\ldots+m_{1} \ldots m_{k-1} a_{k}, q_{1} \ldots q_{h}\right)=1$,

It is easy to know that $\left(p_{1} \ldots p_{l}, q_{1} \ldots q_{h}\right)=1$, By the Chinese remainder theorem, we know that the number of integer m_{1} which meet the conditions is infinite. Then there are an infinite number of integer arrays $\left(m_{1}, m_{2}, \ldots, m_{k-1}\right)$, which make $\left(a_{1}+m_{1} a_{2}+m_{1} m_{2} a_{3}+\ldots+m_{1} \ldots m_{k-1} a_{k}, a_{k+1}\right)=1$.

Namely when $\mathrm{n}=\mathrm{k}+1$ is set up, by mathematical induction we know that when $n \geq 3$, if $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$, then there are an infinite number of integer arrays $\left(m_{1}, m_{2}, \ldots, m_{n-2}\right)$,

Which make $\left(a_{1}+m_{1} a_{2}+m_{1} m_{2} a_{3}+\ldots+m_{1} \ldots m_{n-2} a_{n-1}, a_{n}\right)=1$

From the above lemma 2, it is easy to prove the theorem 2 which we guessed before is established, namely

Theorem 2: if $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$, there are an infinite number of integer
arrays $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, satisfy

1) $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=1$
2) $x_{i} \mid x_{i+1}(\mathbf{i}=\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n - 2})$

Prove: from the lemma 2, it can be seen that there are an infinite number of integer arrays (x, y) which makes $x\left(a_{1}+m_{1} a_{2}+m_{1} m_{2} a_{3}+\ldots+m_{1} \ldots m_{n-2} a_{n-1}\right)+y a_{n}=1$ established

Set $x_{1}=x, x_{2}=x m_{1}, x_{3}=x m_{1} m_{2}, \ldots, x_{n-1}=x m_{1} m_{2} \ldots m_{n-2}, x_{n}=y$
It is easy to know theorem 2 was set up

Furthermore, we proposed the following guess: $n \geq 2, k \geq 2$, if $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{k}\right)=1$, then there are an infinite number of integer arrays $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$, satisfy

1) $x_{1} a_{1}+\ldots+x_{n} a_{n}+y_{1} b_{1}+\ldots+y_{k} b_{k}=1$
2) $x_{i} \mid x_{i+1}(\mathrm{i}=1, \ldots, \mathrm{n}-1)$ and $y_{j} \mid y_{j+1}(\mathrm{j}=1, \ldots, \mathrm{k}-1)$

In order to prove the guess, we first prove the lemma 3 below
Lemma 3:If $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{k}\right)=1$, there are an infinite number of
integer arrays $\left(m_{1}, \ldots, m_{n-1}, t_{1}, \ldots, t_{k-1}\right)$ which make

$$
\left(a_{1}+m_{1} a_{2}+m_{1} m_{2} a_{3}+\ldots+m_{1} \ldots m_{n-1} a_{n}, b_{1}+t_{1} b_{2}+t_{1} t_{2} b_{3}+\ldots+t_{1} \ldots t_{k-1} b_{k}\right)=1
$$

Prove: set $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=d$, so $\left(b_{1}, \ldots, b_{k}, d\right)=1$
From lemma 2, we can infer that there are an infinite number of integer arrays $\left(t_{1}, \ldots, t_{k-1}\right)$ which make $\left(b_{1}+t_{1} b_{2}+t_{1} t_{2} b_{3}+\ldots+t_{1} \ldots t_{k-1} b_{k}, d\right)=1$,

So, it is easy to know that $\left(a_{1}, a_{2}, \ldots, a_{n}, b_{1}+t_{1} b_{2}+t_{1} t_{2} b_{3}+\ldots+t_{1} \ldots t_{k-1} b_{k}\right)=1$

From lemma2, we also infer that there are an infinite number of integer arrays $\left(m_{1}, \ldots, m_{n-1}\right)$ which make $\left(a_{1}+m_{1} a_{2}+m_{1} m_{2} a_{3}+\ldots+m_{1} \ldots m_{n-1} a_{n}, b_{1}+t_{1} b_{2}+t_{1} t_{2} b_{3}+\ldots+t_{1} \ldots t_{k-1} b_{k}\right)=1$

From the above lemma 3, it is easy to prove that the theorem 3 we guessed before is established, namely

Theorem 3: $n \geq 2, k \geq 2$, if $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{k}\right)=1$, there are an infinite number of integer arrays $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$, satisfy

1) $x_{1} a_{1}+\ldots+x_{n} a_{n}+y_{1} b_{1}+\ldots+y_{k} b_{k}=1$
2) $x_{i} \mid x_{i+1}(\mathbf{i}=\mathbf{1}, \ldots, \mathbf{n}-\mathbf{1})$ and $y_{j} \mid y_{j+1}(\mathbf{j}=\mathbf{1}, \ldots, \mathbf{k}-\mathbf{1})$

Prove: from the lemma 3, it can be seen that there are an infinite number of integer arrays (m, t) which makes
$m\left(a_{1}+m_{1} a_{2}+m_{1} m_{2} a_{3}+\ldots+m_{1} \ldots m_{n-1} a_{n}\right)+t\left(b_{1}+t_{1} b_{2}+t_{1} t_{2} b_{3}+\ldots+t_{1} \ldots t_{k-1} b_{k}\right)=1$, set $x_{1}=m, x_{2}=m m_{1}, \ldots, x_{n}=m m_{1} m_{2} \ldots m_{n-1}, y_{1}=t, y_{2}=t t_{1}, \ldots, y_{k}=t t_{1} t_{2} \ldots t_{k-1}$

It easy to know that theorem 3 was set up

Now, let's prove the interesting theorem 4
Theorem 4: $n \geq 3$, if $\left(a_{1}, \ldots, a_{n}\right)=1$, there are an infinite number of integer arrays $\left(x_{1}, \ldots, x_{n}\right)$, satisfy

1) $x_{1} a_{1}+\ldots+x_{n} a_{n}=1$
2) $\left(x_{i}, x_{j}\right) \geq 2,1 \leq i<j \leq n$

Prove: Set $\quad a_{t}=p_{1, t}^{\alpha_{1, t}} \ldots p_{k_{t}, t}^{\alpha_{k, t}} \quad 1 \leq t \leq n$

Set $B=q_{1} q_{2} \ldots q_{n}, B_{i}=\frac{B}{q_{i}}\left(q_{1}, \ldots, q_{n}\right.$ are prime numbers which are different from $\left.p_{1, t}, \ldots, p_{k_{t}, t}, 1 \leq t \leq n\right)$

Set $c_{i}=B_{i} a_{i}, 1 \leq i \leq n$
Then it is easy to know that $\left(c_{1}, c_{2}, \ldots, c_{n}\right)=1$, from the Bezout theorem, we know that there are an infinite number of integer arrays (y_{1}, \ldots, y_{n}) which make $y_{1} c_{1}+\ldots+y_{n} c_{n}=1$

Therefore $y_{1} B_{1} a_{1}+\ldots+y_{n} B_{n} a_{n}=1$
Set $x_{i}=y_{i} B_{i}$ then $\left(x_{i}, x_{j}\right) \geq \frac{B}{q_{i} q_{j}} \geq 2$

We can also strengthen the theorem 2 into the theorem 5
Theorem 5: if $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$, there are an infinite number of integer arrays $\left(x_{1}, \ldots, x_{n}\right)$, satisfy

1) $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=1$
2) $x_{i} \mid x_{i+1}(\mathbf{i}=\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n - 2})$
3) $\left(x_{i}, x_{n}\right) \geq 2(\mathbf{i}=\mathbf{2}, \ldots, \mathbf{n}-\mathbf{1})$

Prove: Set $\quad a_{t}=p_{1, t}^{\alpha_{1, t}} \ldots p_{k_{t}, t}^{\alpha_{k_{t}, t}} \quad 1 \leq t \leq n$
Set $b_{1}=q_{1} a_{1}, b_{n}=q_{2} a_{n}, b_{i}=q_{1} q_{2} a_{i}, 2 \leq i \leq n-1$
$\left(q_{1}, q_{2}\right.$ are prime numbers which are different from $p_{1, t}, \ldots, p_{k_{1}, t}$, $1 \leq t \leq n)$

Therefore $\left(b_{1}, \ldots, b_{n}\right)=1$
From the theorem 2, we can infer that there are an infinite number of
integer arrays $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, satisfy

1) $y_{1} b_{1}+y_{2} b_{2}+\ldots+y_{n} b_{n}=1$,
2) $y_{i} \mid y_{i+1}(\mathrm{i}=1,2, \ldots, \mathrm{n}-2)$

From 1), we can infer that $y_{1} q_{1} a_{1}+y_{2} q_{1} q_{2} a_{2}+\ldots+y_{n-1} q_{1} q_{2} a_{n-1}+y_{n} q_{2} a_{n}=1$
Set $x_{1}=y_{1} q_{1}, x_{n}=y_{n} q_{2}, x_{i}=y_{i} q_{1} q_{2}, 2 \leq i \leq n-1$
Therefore there are an infinite number of integer arrays $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$,
satisfy 1) $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}=1$
2) $x_{i} \mid x_{i+1}(\mathrm{i}=1,2, \ldots, \mathrm{n}-2)$

3) $\left(x_{i}, x_{n}\right) \geq 2(\mathrm{i}=2, \ldots, \mathrm{n}-1)$
After continuous exploration, we get a series of very interesting theorems 1-5 as well as important lemmas 1-3. Finally, we proved theorems 2-5 which are stronger than Bezout theorem. To the best of our knowledge, the similar conclusion on Bezout theorem was scarcely reported. Therefore, we could see if we continue to explore some old and classic theorem, we can get some interesting new results. We wish this article can play a valuable role on Bezout theorem.

Bibliography

[1] PanChengDong, PanChengBiao, The concise number theory, Beijing university press, 1998.1
[2] ShenWenXuan, ZhangYao, LengGangSong, TangLiHua, The Olympic mathematics elementary theory, hunan normal university press, 2009.8

