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Abstract: An important goal in studying the relations between unitary VOAs and con-
formal nets is to prove the equivalence of their ribbon categories. In this article, we
prove this conjecture for many familiar examples. Our main idea is to construct new
structures associated to conformal nets: the categorical extensions. Let V' be a strongly-
local unitary regular VOA of CFT type, and assume that all V-modules are unitarizable.
Then V is associated with a conformal net Ay by Carpi et al. (From vertex operator
algebras to conformal nets and back, Vol. 254, No. 1213, Memoirs of the American
Mathematical Society, 2018). Let Rep” (V) and Rep** (Ay) be the braided tensor cate-
gories of unitary V-modules and semisimple .4y -modules respectively. We show that if
one can find enough intertwining operators of V satisfying the strong intertwining prop-
erty and the strong braiding property, then any unitary V-module W; can be integrated
to an Ay-module H;, and the functor § : Rep"(V) — Rep*(Ay), W; — H; induces

an equivalence of the ribbon categories Rep" (V) — F(Rep"(V)). This, in particular,
shows that F(Rep“(V)) is a modular tensor category. We apply the above result to all
unitary ¢ < 1 Virasoro VOAs (minimal models), many unitary affine VOAs (WZW
models), and all even lattice VOAs. In the case of Virasoro VOAs and affine VOAs, one
further knows that §(Rep"(V)) = Rep**(Ay). So we’ve proved the equivalence of the
unitary modular tensor categories Rep" (V) =~ Rep**(Ay). In the case of lattice VOAs,
besides the equivalence of Rep" (V') and §(Rep"(V)), we also prove the strong locality
of V and the strong integrability of all (unitary) V-modules. This solves a conjecture in
Carpi et al. (From vertex operator algebras to conformal nets and back, Vol. 254, No.
1213, Memoirs of the American Mathematical Society, 2018).
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1. Introduction

Backgrounds A systematic study of the relations between vertex operator algebras
(VOASs) and conformal nets, two major mathematical formulations of chiral conformal
field theories, was initiated by [CKLW18]. A main point in [CKLW18] is that, given
a unitary CFT-type VOA V satifying certain nice analytic properties (energy-bounds
condition and strong locality), one defines Ay (1) to be the von Neumann algebra gen-
erated by all smeared vertex operators localized in the open interval / C S!. Then the
collection of all these Ay (1) form a conformal net Ay . The energy-bounds condition is
needed to show the preclosedness of smeared vertex operators and the weak commuta-
tivity (Wightmann-locality) of casually disjoint smeared vertex operators. To show that
Ay satisfies the locality axiom of a conformal net, one requires that causally disjoint
smeared operators also commute strongly, in the sense that the von Neumann algebras
generated by them commute. This is the meaning of strong locality. Energy bounds con-
dition and strong locality are natural requirements on VOAs, which can be verified for
many important examples. Indeed, it is believed that all unitary VOAs satisfy these two
properties.

After building a bridge between VOAs and conformal nets, the next natural step is
to understand the relations between their representations. Let V be a unitary (energy-
bounded and) strongly local CFT-type VOA, and assume that all irreducible V-modules
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are unitarizable.! Since our main interest is in rational CFTs, we assume that V is regular
[DLMO5], so that there exists a modular tensor categorical structure on the category
Rep" (V) of unitary V-modules [HuaO8b]. We also have a braided C*-tensor categorical
structure on the representation” category Rep(Ay) of Ay by Doplicher-Haag—Roberts
(DHR) superselection theory [DHR71,DHR74,FRS89,FRS92]. Now the whole project
of relating the representation theories of “rational” VOAs and conformal nets can be
described by answering the following questions:

1. Can we define a “natural” fully faithful x-functor § : Rep"(V) — Rep(Ay)?
2. Is § essentially surjective?
3. Does § preserve the braided tensor categorical structures?

Once these problems are solved, we can conclude that the category Rep*(Ay) of
semisimple Ay -modules is a braided tensor subcategory of Rep(Ay ) admitting a ribbon
fusion categorical structure, the modular tensor category Rep” (V) admits a unitary (i.e,
C*-) structure, and § : Rep"(V) — Rep*(Ay) is an equivalence of unitary modular
tensor categories. As an important application, the Reshetikhin—Turaev 3d topological
quantum field theory (cf. [RT91, Tur94]) constructed from Rep® (V') and from Rep** (Ay)
are the same.

Problem 1 is the main subject of [CWX]. That paper shows that for many nice exam-
ples of V, any unitary V-module (W;, Y;) is energy bounded, and can be “integrated” to
an Ay-module (H;, 7;), in the sense that 7r; (Y (v, f)) = Y; (v, f) for any smeared ver-
tex operators Y (v, f) and Y; (v, f). This condition is called strong integrability. One can
thus define §(W;) = H;. By semisimpleness, any morphism F of unitary V-modules
is bounded. Thus §(F') can be defined to be the closure of F. Then [CWX] shows that
& is fully faithful. (See also [Guil7b] chapter 4 for relevant results.)®> A detailed study
of problem 2 can be found in [CW]. In the case of unitary affine VOAs, problem 2 was
completely solved by [Henl9]. For ¢ < 1 unitary Virasoro VOAs, problem 2 can be
solved by combining the results of [Xu0Oa] and [KL04] (see Sect. 5.1).

So far, the studies of problem 3 have been focusing mainly on comparing fusion
rules. The following results are known: If V is a type A unitary affine VOA, or a
¢ < 1 unitary Virasoro VOA, then Rep" (V) and Rep* (Ay ) have the same fusion rules
[Was98,Loke94]. When V is of affine type D, the tensor subcategory C of unitary V-
modules corresponding to the single-valued representations of SO (2n) has the same
fusion rules as §(C) [TLO04]. On the other hand, the equivalence of the braided tensor
categories is unknown except when V is affine sl,, in which case the braided tensor
categorical structures are determined by the fusion rules and the twist operators according
to [FK93] proposition 8.2.6.* Even for general affine sl,,, proving the equivalence of the
braided tensor categories has long been an open problem.

Categorical extensions of conformal nets

One of the main goals in this paper is to give a systematic treatment of problem 3.
We shall not only show the equivalence of fusion rules for more examples, but also

! The unitarizability of all V-modules is known to be true for many well known rational CFT models.
For some other examples, this problem is related to constructing a C*-tensor structure on Rep" (V). We will
discuss this topic in future work.

2 In this article, we assume that all conformal net modules are seperable and (hence) locally normal.

3 Besides using smeared vertex operators, one can also use Segal CFTs and a geometric interpolation
procedure to construct conformal nets from unitary VOAs, and to define the x-functor §. See [Ten16,Ten18]
for more details.

4 This argument is due to Marcel Bischoff. See [Hen17] the paragraphs after conjecture 3.



766 B. Gui

provide a new perspective on conformal nets and VOAs from which the equivalence of
the braided tensor categorical structures becomes quite natural: we shall define a new
structure associated to conformal nets, called categorical extensions.

An ordinary extension of a conformal net A is just a conformal net B containing
A as a (finite-index) subnet. It is a fermionic extension when 5 is a super-conformal
net, but it can also be anyonic in general. Full CFT and boundary CFT can also be
regarded as extensions of conformal nets. A categorical extension & of A, on the other
hand, is a universal, free, categorical, and anyonic extension of A3 By “universal”, we
mean that & contains any sort of extensions of A as sub-systems. Roughly speaking,
& is defined to be the x-extension generated “freely” by the intertwining operators of
A (or its corresponding VOA). & is free of relations, but any extension of .4, which is
a sub-system of &, is described by a set of relations, i.e, by a Frobenius algebra. As
intertwining operators do not form an algebra in general (except when the braidings are
abelian [DL93]), there seems to be no single Hilbert space H on which all intertwining
operators could act freely. Therefore, we consider tensor categories of Hilbert spaces
instead of single Hilbert spaces. As extensions of .A are in general anyonic, & is anyonic.

Let us outline some key features of categorical extensions. Note that for a conformal
net A, given an open interval /, we have state-field correspondence between an operator
x € A(I) and a vector xQ2. Vectors in Ho(I) = A(I)S2 are called I-bounded vectors.
Then the actions of .A(1) on Hy can be regarded as multiplications Ho (/) ® Ho — Ho.
With over simplification, we regard the vacuum module Hy as both a vector space and
an algebra. Now for general .A-modules H;, {;, their multiplications are in neither
‘H; nor H;, but in a tensor (fusion) product H; & H ;. More precisely, for any open
interval /, we denote by /¢ the complement of its closure in S 1 and set ‘H;(I) to be
the subspace of all £ € H; satisfying that the linear map defined by xQ2 € A(I°)Q
x& € 'H; is bounded. We call such & an 7-bounded vector. We then have a multiplication
HiI)®H; - HiEBH;,E®n+> &-n.Let L(§, I) denote this left action of £ on 'H ;.
Then we require that L(&, I) is a bounded operator intertwining the actions of A(I¢),
ie., L(§,1) € Hom 4, o)(H;, H; B H;).

The above formulation is reminiscent of Connes fusion products (Connes relative
tensor products) [Con80]. Indeed, Connes fusion is a major way to construct categorical
extensions, in which case the tensor product H; @ H is just the Connes fusion product
H; W H;, and the multiplication is the natural one. On the other hand, the standard
Connes fusion theory for bimodules tells us nothing about how the fusion products over
different intervals could be related. If we want to consider a net of left actions {L(-, 1)},
we need to take into account the monodromy behaviors of them. So L(§, I) should
depend not only on I, but also on a preferred branch of I in the universal covering
space of S!. Equivalently, we should equip I with a (continuous) argument function
arg; on I, set I = (I, arg;), and write L(§, ) as L(&, I) instead. Similarly, for any
arg-valued interval J = (J, arg;) and n € H;(J), we also have aright action R(n, J) €
HOII’IA(JC) (Hi, Hi L] H,)

Locality is the most important axiom of categorical extensions, which we now state.
Suppose that [ and J are disjoint, and the arg function arg; of I is chosen to be anticlock-
wise to arg, in the sense that arg; (¢) < arg;(z) < arg,(;) +2r foranyz € I,¢ € J.
In this case we say that 7= (I, arg;) is anticlockwise to J = (J, arg;). Now the locahty
axiom says that for any A-modules H;, H;, H, any arg-valued intervals T, J with T

anticlockwise to J, and any & € H;(1), n € H;(J), the diagram

5 Indeed, both “universal extensions” and “anyonic conformal nets” were candidates for the name of this
new structure.
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Fod) gy mH,
J

Hy
L(s,ﬂl L(E,T)l

R(.J)
HimH —2D o m e B R

commutes adjointly, in the sense that the following diagram also commutes.

R, T,
He —2D o e,

L(s,T)*T L@,T)*T

R(7,7)
Hi 0 He —2D e m e @

Due to locality, the C*-tensor categorical structure defined by [ is remembered by the
categorical extension, and is naturally equivalent to the one defined by Connes fusion
X. Moreover, if the left and right actions are related by a braiding B, in the sense that
there always exists a functorial isomorphism 8; ; : H; @ H; — H; @ H; such that
R(§, T)n =B, L&, IN)n for any arg-valued I, & € H;(I), and n € H; (the braiding
axiom), then the braid structure is also remembered. Therefore, once we have shown
that the braided tensor category Rep" (V') is unitary (i.e., a braided C*-tensor category),’
and construct a categorical extension & of Ay using the intertwining operators of V
(the vertex categorical extension), then Rep" (V) will be automatically equivalent to a
braided tensor subcategory of Rep(.Ay) under the *-functor §.

The strong intertwining and braiding properties

To construct a vertex categorical extension, locality is also the most difficult to verify.’
Our previous works [Guil7a,Guil7b] show that the unitarity of the braided tensor cate-
gory Rep" (V) follows from the strong locality of V and the strong intertwining property
for the intertwining operators of V (see Remark 4.21).8 The strong intertwining property
says that if , is a type (* j) = (W%@) intertwining operator, then for any homogeneous
veV,wd € W;, disjoint intervals I, J with I arg-valued, and smooth functions f, g
supported in /, J respectively, the smeared intertwining operator V, (w”), f) commutes
strongly with the smeared vertex operator Y ;g (v, 2).% (See Definition 4.10 for more
details.) Unfortunately, these two properties are not enough to verify the locality ax-
iom of categorical extensions. One also requires that there exist enough '* intertwining
operators satisfying the strong braiding property, whose meaning is explained below.
Choose unitary V-modules W;, W;. For any Wy € Rep"(V), we have a distinguished

W; KWy,

intertwining operator £; of type (,lkj) = (W_ A

), such that any intertwining operator
6 Though solving problem 3 will prove the unitarity of Rep"(V), in our theory we have to first prove the

unitarity in order to construct vertex categorical extensions and show the equivalence of the braided tensor

categories. This is one of our main motivations for studying the unitarity of Rep" (V) in [Guil7a,Guil7b].

7 Qur situation is similar to that of [CKLW18].

8 In [Guil7b] chapter 4 we (essentially) showed that the strong integrability of V follows also from these
two properties, hence providing an answer to problem 1 alternative to the work of [CWX]. See also Theorem
4.11.

9 The strong intertwining property for intertwining operators is parallel to the notion of localized intertwin-
ing operators in [Ten18].

10 The meaning of “enough” will be given in Theorem 4.14.
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of type (l. lj) (where W; € Rep"(V)) factors through £;. £; may act on different Wy to
denote intertwining operators of different types. The type ( ]’ ’;{) intertwining operator L ;

is defined in a similar way. Now we define a type ( J],‘fk) intertwining operator R ; acting
on each k to be R; = B; (L, where B8 denotes the braiding of V-modules. Assume
that £; and R; are energy-bounded. Then one can show (see Theorem 4.8) that for any
homogeneous w) € W;, w/) e W;, arg-valued I (disjoint and) anticlockwise to J,
and smooth functions f, g supported in 1,7 respectively, the following two diagrams
commute in the sense of braiding of smeared intertwining operators.

'R_,-(w(”,g) Rj(w(j),g)
HY ————— HJ} HY ————— H?
Liw®, ) l L (w“’%f)l L; (w“’%f)ﬁ Li (w“’%f)ﬁ
~ ’R/.(w(.i)’g) ~ ~ Rj(w(/),g) ~
ik > Iikj ik > ik

(Here, for example, H;;r = F(Wix) is the Ay-module integrated from Wy = W; X Wy,
and Hl-olf is its subspace of smooth vectors.) One can roughly say that the preclosed
operators £; (w®, f) and R; (w), g) commute adjointly. Now, we say that the actions
w(i),fv wfj) ~ Rep"(V) satisfies the strong braiding property, if for any Wy € Rep"(V)
and I, J, f, g as above, the preclosed operators £; (w®, f)and R; (w', 3) commute
strongly, in the sense that the von Neumann algebras generated by (the closures of) them
commute.

Thus strong braiding is the crucial condition for Rep" (V) and §(Rep"(V)) to have
the same braided C*-tensor categorical structure, just as strong locality is crucial for con-
structing conformal nets from VOAs, and the strong intertwining property is required
to construct conformal net modules from VOA modules, and to show the unitarity of
Rep" (V). Indeed, these three properties should be treated as a whole: together they
guarantee the existence of vertex categorical extensions. We strongly believe that con-
structing vertex categorical extensions is a more fundamental question than proving the
equivalence of the modular tensor categories, as the latter only reflect the topological
data of CFTs, while categorical extensions contain both analytic and topological data.
We summarize our philosophy: categorical extensions of conformal nets are analytic
enrichments of braided C*-tensor categories.

Analytic properties for VOA extensions

Another motivation for studying categorical extensions is to understand the relations
between various types of “rational” VOA extensions and conformal net extensions (in-
cluding full and boundary CFTs), as well as the relations between their tensor categories.
A general theory on this topic will be left to future works. In this paper, we use even
lattice VOAs as examples to demonstrate that categorical extensions are powerful tools
for studying functional analytic properties of VOA extensions.

We first explain why strong locality is not easy to prove for lattice VOAs (and for
many other VOASs). The starting point of proving the strong locality of an energy-bounded
unitary VOA V is the 1-st order energy bounds (linear energy bounds) condition. If f
and g are supported in disjoint open intervals, and one of Y (u, x) and Y (v, x) satisfies
1-order energy bounds, then using results from [TL99] (see also Lemma 4.16), we
know that Y (u, f) and Y (v, g) commute strongly. Unfortunately (or fortunately?), 1-st
order energy bounds are not necessary conditions for strong commutativity. [CKLW 18]
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theorem 8.1 tells us that if V' is generated (in the vertex-algebraic sense) by a set of quasi-
primary vectors, among which the strong commutativity of causally disjoint smeared
vertex operators holds, then V is strong local. So for instance, if V is a unitary affine
VOA, then V is generated by quasi-primary vertex operators satisfying 1-st order energy
bounds. Therefore V is strongly local. But we can easily choose u#, v € V whose vertex
operators do not satisfy 1-st order energy bounds.

The above example suggests a useful way to prove the strong locality of a VOA
V which is not necessarily generated by vertex operators satisfying 1-st order energy
bounds. Suppose that we can embed V into a larger unitary VOA U (conformal em-
bedding is not necessarily required), and if U is generated by quasi-primary vertex
operators satisfying 1-st order energy bounds, then U is strongly local. This proves the
strong locality of V. Indeed, all examples in [CKLW 18] (see chapter 8) were proved in
this way.

Now the issue for a lattice VOA V is the lack of such a larger VOA ‘U containing V.
Nor is the situation much better if we allow U to be a super VOA. In order to contain V,
0 has to be a highly anyonic vertex algebra, say, a generalized vertex algebra in the sense
of [DL93]. However, the problem with this approach is the difficulty of generalization to
non-abelian intertwining operators. Therefore, to take general cases into consideration,
one has to study categorical vertex algebras, whose corresponding categorical conformal
nets are the categorical extensions of ordinary (bosonic) conformal nets.

Let us explain the idea of the proof in more details. Let U be a conformal unitary
sub-VOA of V.!! Then the categorical vertex algebra 2 for U-intertwining operators
contains V. Similar to [CKLW 18] theorem 8.1, one can show that if * is generated by
U-intertwining operators satisfying 1-st order energy bounds (and hence satisfying the
strong braiding property), then all fields of U, including those of V, satisfy the strong
braiding property. (See Theorems 3.17 and 4.20.) This proves the strong locality of V.
In the case that V is an even lattice VOA, this method works by choosing U to be the
corresponding Heisenberg sub-VOA.

Outline of the paper

In chapter 2 we present a new approach to Connes fusions of conformal net modules.
The idea of using Connes fusion products to construct (braided) C*-tensor categories
for conformal nets is not new (see [Was98, BDH15,BDH17]). Our approach differs from
[Was98] by emphasizing the global aspects of Connes fusions. On the other hand, unlike
[BDH15,BDH17], many of our results do not require conformal covariance. Thus they
can be easily applied to Mobius covariant nets. We also avoid the technical assumption
of strong additivity.

In Sect. 2.1 we review some of the basic facts about conformal nets and their repre-
sentations. In Sect. 2.2 we define the notion path continuations, which plays a centrally
important role in our theory. As we will see, the braid operator is a special path con-
tinuation. In Sect. 2.3 we use path continuations to define the action of a conformal net
A on the Connes fusion H; X 'H; of A-modules H; and 7{;. In Sect. 2.4 we describe
the conformal structure of H; X #; in terms of those of H; and H ;. Connes fusions
of three (or more) representations are discussed in Sect. 2.5. In Sect. 2.6, we define the
C*-tensor categorical structure on Rep(.A) using our theory of Connes fusions. We will
also define braiding in this section, which will be shown (Proposition 2.23) to be the
same as the one defined in [Was98], section 33. However, a direct verification of the

' In principle U is required to be regular, but we also allow U to be a Heisenberg VOA.
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Hexagon axioms could be very complicated. We prove the Hexagon axioms in chapter
3 after categorical extensions are introduced.

Categorical extensions of conformal nets are defined in Sect. 3.1. In Sect. 3.2, we
use Connes fusions to construct categorical extensions (called Connes categorical ex-
tensions). Then, in Sect. 3.3, we use this machinery to prove the Hexagon axioms for
Rep(A). The next two sections are devoted to the uniqueness of categorical extensions.
In Sect. 3.4, we show that if & is a categorical extension of A over a braided C*-tensor
category %, where € is also a full subcategory of Rep(.A), then € is equivalent to
the corresponding braided C*-tensor category defined by Connes fusions. In Sect. 3.5,
we show that & can be extended to a unique maximal categorical extension & defined
also over . This maximal categorical extension & is naturally equivalent to a Connes
categorical extension. We say that & is the closure of &. The relation between & and
& is similar to that between a von Neumann algebra M and a subset E C M which
densely spans M. However, in applications one quite often starts with a subset £ which
x-algebraically (but not just linearly) generates a dense subspace of M. The situation
is similar in the construction of vertex categorical extensions (as we will see in chapter
4): if a categorical extension & over ¢ is regarded as a ¢-% bimodule ¢ %« , then, more
often, one begins with an F-F bimodule £%’~, where F is a set of objects in ¢ which
tensor-generates . Then one can use £% £ to generate 4% . Such r%ér is called a
categorical local extension. In Sect. 3.6 we show that a categorical local extension &1°¢
generates a categorical extension &. Moreover, we show that if A (resp. B) commutes
with the right (resp. left) action of F on %, (In this case A (resp. B) is called a left
(resp. right) operator of &1°¢.) then A and B commute adjointly (see Theorem 3.17).
This theorem is crucial for proving the strong braiding property of certain intertwining
operators not satisfying 1-st order energy bounds.

The goal of chapter 4 is to construct vertex categorical extensions using smeared in-
tertwining operators. Most of the material in Sects. 4.1 and 4.3—4.5 is not new. In Sect. 4.1
we review Huang—Lepowsky’s construction of ribbon categories for VOA-modules. Uni-
tary structures on these tensor categories, which were introduced in [Guil7a,Guil7b],
are reviewed in Sect. 4.3. In Sect. 4.4 we review the energy bounds conditions and
smeared intertwining operators. Constructions of conformal nets and their representa-
tions from VOAs their modules are discussed in Sect. 4.5. What’s new in this chapter is
the construction of the intertwining operators £;, R; (for any VOA module W;), which
are closely related to the left and right actions L, R in categorical extensions. The ad-
joint commutativity of £ and R (in the sense of braiding) is proved in Sects. 4.2 and 4.3.
These braid relations are crucial for verifying the locality axiom of categorical exten-
sions. In Sect. 4.4 we prove the adjoint commutativity of the smeared £ and R. Finally,
in Sect. 4.6 we use these smeared intertwining operators to construct vertex categorical
extensions.

Applications to various examples are given in chapter 5. In Sect. 5.1, we show that
if V is a ¢ < 1 unitary Virasoro VOA, or a unitary affine VOA of type A, C, G2,
then problem 3 is completely solved: Rep*(Ay) is equivalent to Rep" (V) as unitary
modular tensor categories. If V is an affine VOA of type B or D, then a partial result
exists: Let C be the monoidal subcategory of Rep" (V) tensor-generated by the smallest
non-vacuum irreducible V-module. Then C is equivalent to F(C) as unitary ribbon fusion
categories. (The braided tensor categorical structure on §(C) is defined using Connes
fusions.) In Sect. 5.2, we prove the equivalence of the ribbon fusion categories Rep" (V)
and §(Rep"(V)) when V is a unitary Heisenberg VOA. (In this case Rep" (V) is defined
to be the tensor category of semisimple unitary V-modules.) More importantly, we prove
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the strong intertwining and braiding properties for all intertwining operators of unitary
Heisenberg VOAs. This result is used in Sect. 5.3 to prove the strong intertwining and
braiding properties for all intertwining operators of an even lattice VOA V. The strong
localilty of V, the strong integrability of all V-modules, and the equivalence of the
unitary modular tensor categories Rep" (V) >~ §(Rep"(V)) thus follow.

In the literature of conformal nets, the braided tensor categories are more often defined

using DHR superselection theory. It is well known (at least when the conformal nets
are strongly additive) that Connes fusions and DHR theory define the same monoidal
structures. However, it is not clear why these two theories give the same braidings. In
chapter 6, we clarify the relation between these two theories, and show that the braided
C*-tensor categories defined by them are equivalent.
Note. When V is a unitary affine VOA of type A, the equivalence of Rep"(V) and
Rep*(Ay) was also proved in a recent work [CCP] using completely different methods.
For affine VOAs and lattice VOAs, [CCP] proved the unitarity of Rep" (V) using methods
different from those in [Guil7a,Guil7b].

2. Connes Fusion Products

2.1. Conformal nets and their representations. We first recall some basic facts about
Diff*(S1), the group of orientation-preserving diffeomorphisms of S!. Convergence in
Diff*(S') means uniform convergence of all derivatives. Diff* (S 1) contains the sub-
group PSU(1, 1) of Mébius transformations of S'. For any Hilbert space H, we let
U (H) be the group of unitary operators on H, equipped with the strong operator topol-
ogy. We let PU(H) be the projective group of U/ (H). Then a projective representation
of Diff*(S') on H is a continuous homomorphism U : Diff*(S!') — PU(H).

Let 7 be the set of open intervalsin S!, i.e., the set of non-empty non-dense connected
open subset of S L If I € J, we let I€ be the interior of the complement of I in § 1
which is again an open interval. For any I, we let Diff;(S') be the subgroup of all
g € Diff*(S') which fixes points in the closure of /€.

Let Vec(S") = C*®(S', R) be the Lie algebra of real vector fields on § ! where, for
any X, Y € Vec(S 1), [X, Y] is the negative of the usual bracket for vector fields. Then
Vec(S!) is the Lie algebra of Diff*(S!). We let VecC(S!) be the complexification of
Vec(S1). For each n € Z, we the L, be the complex vector field on S I defined by

i0 . ing 4

L,(e'"") = —ie T
Then these L, form the Witt algebra %, which is a dense Lie subalgebra of VecC(S!).
We define a * structure on % by setting L} = L_,. An element X = Zn a,L, in
VecC(Sh) is self-adjoint (i.e., fixed by ), if and only if @, = a_, for all a, if and
only if i X € Vec(S!). For such X, we can therefore consider the one parameter group
exp;x : t € R— exp(itX)in Diff*(S!). In particular, exp;z,, is the rotation subgroup.
In general, forany X € Vec(S'), we letexpy be the one parameter subgroup of Diff*(S')
generated by X.

It will be convenient to consider another type of localized diffeomorphism groups. We
let Diff%(S!) be the subgroup of Diff*(S!) (algebraically) generated by exp(Vec; (S1)),
where Vec;(S!) is the subspace of vector fields supported in 1. Then by the proof of
[Loke94] proposition V.2.1, for any J CC I (i.e., J € J,and J C I) we have

DiffY (s') c Diff;(s"). (2.1)
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So Diff%(S?) is large enough.

A conformal net A associates to each / € J a von Neumann algebra A (/) acting
on a fixed separable Hilbert space Hp, such that the following conditions hold:

(a) (Isotony) If I} C I, € J, then A(I}) is a von Neumann subalgebra of A(15).

(b) (Locality) If I, I € J are disjoint, then A(I;) and A(I) commute.

(c) (Conformal covariance) We have a strongly continuous projective unitary represen-
tation U of Diff*(S') on Ho, such that for any g € Diff*(S!), I € 7, and any
representing element V € U(Ho) of U(g),

VAOV* = A(gl).
Moreover, if g € Diff;(S!) and x € A(I€), then
VxV* = x.

(d) (Positivity of energy) The generator of the restriction of U to S! is positive.

(e) There exists a unique (up to scalar) unit vector 2 € Hy (the vacuum vector), such
that U (g)Q2 € CS for any g € PSU(1, 1). Moreover, 2 is cyclic under the action
of \/ ;<7 M(I) (the von Neumann algebra generated by all M(I)).

Note that by the up to phase invariance of €2 under the projective action of PSU(1, 1),
one may fix an actual representation of PSU(1, 1) on Hy such that g = Q for any
g € PSU(1, 1). It is also well known that a conformal net A satisfies the following
properties (cf. for example, [GL96] and the reference therein):

(1) (Additivity) A(I) =/, A(ly) if {I,} is a set of open intervals whose union is /.

(2) (Haag duality) A(I)" = A(I°). As a consequence, any representation element V of
U(g)isin A(I) if g € Diff;(S!).

(3) (Reeh—Schlieder theorem) A(7)S2 is dense in Hg for any I € J

(4) Foreach I € 7, A(I) is a type III; factor.

Let H; be a separable Hilbert space. We say that (H;, 7r;) (or simply H;) is a rep-
resention of the A (or a .A-module), if for any / € J, we have a normal unital *-
representation m; ; : A(I) — B(H;), such that for any I, I, € J satisfying I} C Iy,
and any x € A(Iy), we have m; j, (x) = 7; ,(x), which will be written as 7; (x) when
no confusion arises. Given a vector E(i) € 'H;, we often write 7; (x)E(i) as xs(i). Note
that H itself is an .A-module, called the vacuum module.

—~

Next, we discuss conformal structures on .A-modules. Let ¥4 = Diff*(S!) be the
simply connected covering group of Diff*(S'), and consider the projective representa-
tion 4 ~ Hy lifted from U : Diff*(S') ~ Ho. This projective representation is also
denoted by U. Define a topological group

Yo=1{(g,V)e¥d xU(Hp)|V is arepresenting element of U(g)}, 2.2)

called the central extension of ¢ associated to .A. The topology of ¢4 inherits from
those of & and U(Hy). Then we have a representation U of ¥4 on Hy defined by
U(g, V) = V. We have an exact sequence

1->U(1)> 94> 99— 1

where U(1) = {(1,V) € ¥ x U(Hp)|V is arepresenting element of U (1)}. Clearly
U (1) is acting as scalars on H. If H is a Hilbert space, then a (unitary) representation
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of ¥4 on H is, by definition, a homomorphism ¥4 — U (H) which restricts to a
homomorphism ¢ — PU(H) (i.e., a projective representation of ¢). The standard
action ¥4 ~ Hp is a unitary representation which is clearly continuous.

Remark 2.1. The (equivalence class of the) central extension 44 depends only on the
central charge ¢ of the conformal net A. In fact, by [TL99] proposition 5.3.1, the Lie
algebra of ¢4 is equivalent to the Virasoro algebra. The universal cover of ¥4 can be
identified with the group Diff ]EXZ (S1) considered in [Hen19]. Moreover, 4 4 can indeed
be recovered from the central extension | - R — Diff%XZ(Sl) — ¢4 — 1 by taking
the quotient of Diff %XZ (1) by the central subgroup cZ of R. We will not use these facts
in the present article, and content ourselves with the explicit construction (2.2) of ¢ 4.

It is important to consider local diffeomorphism subgroups of ¢ and ¢ 4. For each
X € Vec(S!), we define éxp x : R — ¥ to be the one parameter subgroup of ¢ lifted
from expy. We then set éxp(X) = éxpy(1). Define 4°(I) to be the subgroup of ¥
algebraically generated by éxp(Vec;(S')), which can be identified with the connected
branch of the inverse image of Diff(}(S 1Y in & containing the identity. Similarly, we let
% (I) be the branch of the inverse image of Diff; (S Yin¥ containing the identity. Since
Diff; (S!) is contractible, 4 (1) is homeomorphic to Diff; (S') under the covering map
4 — Diff*(S!). From (2.1), we know that if J cC I then 9(J) c 9°(1) c 4(I).
Finally, we let gﬁ([ ) and 4 4(I) be the respectively the inverse images of ¢°(I) and
& (I) in 9 4. Then, we also have

Ga(J) C G4 C Gal) (2.3)

when J CC I. In this article, we will be mainly interested in ¥4 (/) instead of gﬁ([ ).

The only place we use %Bl(l ) is in the proof of Proposition 4.9.
Note that by conformal covariance of A, U(g) € A(I) forany g € G 4(I).

Theorem 2.2. Any representation ‘H; of A is conformal (covariant) in the sense that
there is a unique (unitary) representation U; of 4 4 on 'H; satisfying forany I € J, g €
G A(I) that

Ui(g) = mi1(U(g))- (2.4)

Moreover, this representation is continuous.

Proof. In [Hen19], it was shown in the proof of theorem 12 that the collection of inclu-
sions {4 (1) C ¥};c7 (whichby theorem 11 isequivalentto {¥ (/) C colim;eg%(.l)}lej)

satisfies the assumption in the first paragraph of proposition 2 of that article.!” Thus, by
the second paragraph of that proposition, the canonical map
colimse 794(I) — 94 (2.5)

induced by inclusions is an isomorphism of topological groups. Thus, the collection of
continuous representations {m; ; o U : ¥4(I) ~ H;};cg gives rise to a continuous
representation ¥4 (1) ~ 'H; satisfying (2.4). As (2.5) is surjective, the representation
satisfying (2.4) is unique. O

12 our % (1) is the same as Diffy (/) in [Hen19].
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Remark 2.3. Our notion of a conformal covariant representation H; is stronger than the
usual one in the literature, which requires that ; admits a projective representation of
Diff*(S') on H; satisfying (2.6), and that the generator L of the rotation subgroup
is positive when acting on H;. Indeed, the positivity of Lo is redundant by [Wei06];
condition (2.6) follows from (2.4) by Corollary 2.6.

We rephrase the surjectivity of (2.5) as follows, which also follows directly from
[Hen19] lemma 17-(ii).

Proposition 2.4. <4 4 is (algebraically) generated by {4 (I)}1c 7.

Remark 2.5. By (2.3) and the above proposition, ¢ 4 is generated by {%ﬁ(l )}1e7- Thus,
similarly, ¢ is also generated by {4°(I)};c.7.

Corollary 2.6. For any g € 94, Ui(g) € \/jc 7 7i.1(A(D)), and

Ui(g)mi, 1 (x)Ui ()" = mi o1 (U(g)xU(g)") (2.6)
forany Il € J,x € A(I).

Proof. Clearly U;(g) € \/16.7 i (A(l)) when g € Y 4(J) for some J € J. Thus it
holds in general by Proposition 2.4. On the other hand, if we fix J € J and g € 94 (J),
then (2.6) holds whenever x € A(I) and I is small enough such that I and J can be
covered by an open interval in S'. Thus, by the additivity of A, (2.6) holds forany I € J
and x € A(/) and the given g € ¥4(J). Again, by Proposition 2.4, Eq. (2.6) holds for
any g € 94. m|

Note that ¢ restricts to the universal covering space ﬁ(l, 1) of PSU(1, 1), which
is generated by éxp(i X) where X = ajLi+agLo+a_jL_1 is aself adjoint . By [Bar54],
if we restrict the projective representation of 4 on H; to a projective representation of
PSU(1, 1), then the latter can be lifted uniquely to a (continuous) unitary representation

of FS\IE( 1, 1), also denoted by U;. This shows that any conformal .A-module H; is Mobius
covariant, in the sense that besides the positivity of L, there exists a (continuous) unitary

representation of ﬁgﬁ(l, 1) on H; such that (2.6) holds for any g € Fg_ﬁ(l, 1).

2.2. Connes fusion H; (I)XH ;(J). Starting from this section, we use Connes fusion to
study the tensor category of the representations of conformal nets. Except in Sect. 2.4,
most of the discussions in this and the following chapters do not rely on the conformal
structures of conformal net modules. Thus the results are also true for Mobius covariant
nets and their (normal) representations.

For any .A-modules H;, H;, we let Hom 4 (H;, H ;) be the vector space of bounded
linear operators T : H; — Hj, such that T7;(x) = 7;(x)T for any I € J and
x € A(I). Similarly, given I € J, we let Hom 4(;)(H;, ;) be the vector space of
bounded linear operators ; — H; intertwining only the actions of A(I). Since A(1)
is a type Il factor, H; and K ; are equivalent as .A(/)-modules if they are both non-trivial.
Therefore Hom 41y (H;, H ;) has unitary operators.

Definition 2.7. Let H; be an .A-module. Given I € 7, we say that a vector £ € H; is
I-bounded, if there exists A € Hom 4(j¢)(Ho, H;), such that AQ = &.
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Since A(I€)L2 is dense in Hy by Reeh—Schlieder theorem, such A, if exists, must be
unique, and we will denote this operator by Z (&, I). Let H; (I) be the set of I-bounded
vectors in H;. In other words H; (1) = Hom 4(;)(Ho, H;)$2. Then clearly Ho(I) =
A(I)S2 by Haag duality. In particular H (/) is dense. Since there exist unitary operators
in Hom 4 (Ho, H;), Hi(I) is also dense in ;.13

We now define the Connes fusion product(s) of two A-modules H;, ;. Choose
disjoint 7, J € J. We define a positive sesquilinear form (-|-) (antilinear on the second
variable) on H; (1) ® H;(J) by setting, for any &1, & € H; (1), n1,n2 € H;(J),

1@ ml&2 ®@m) =(Z(n2, N*Z(m, NZ(&, D*Z (&1L DRIKQ). 2.7)

The positivity of (:|-) is easy to show (see for example [Tak02] proposition IX.3.15).
Since Z(&, 1)*Z (&1, 1) € Hom 4(;¢)(Ho, Ho) = AI€) = A(I) and, similarly,
Z(na, J)*Z(n1, J) € A(J), we also have

(&1 ®@ ml&2 @ m) = (Z(&2, D*Z(&1, DZ (2, 1) Z (1, 1)) (2.8)

Definition 2.8. Define a Hilbert space H; (/) W H ;(J) to be the completion of H; (I) ®
'H ;(J) under (-|-). This Hilbert space is called the Connes fusion (product) of H;, H;
over the intervals 7, J.

For simplicity, we let £ ® n € H; (1) ® H;(J) also denote the corresponding vector
inH;(I)® H;(J).

Note that the order of Connes fusion doesn’t matter: we can identify H; (1) X'H ; (J)
with H; (J) X H; (1) by the canonical map H; (/) XH;(J) 3ER@n—> n®E.

We now relate Connes fusions over different intervals. Note that by the intertwining
properties of these Z’s, we clearly have

E1 @& @ m) = (wj(Z(&2, D*ZE1, DInilm) = (mi(Z(n2, I)*Z(n1, I)é1162).
2.9)

Here Z (&, 1)*Z (&1, 1) and Z (12, J)*Z(n1, J) are regarded respectively as elements in
A(I) and A(J). From these relations, one easily sees that H ® K is dense in H; (1) X
'H ; (J) under the inner product (-|-) if H and K are dense subspaces of H; (1), H;(J)
respectively. In particular, if Iy C I, J; C J are open intervals, then, as H; (/1) is dense
in H; (and therefore in H; (1)) and H;(J1) is dense in H;(J), H; (I1) K H;(Jy) is the
same as H; (1) X H; (J).

Definition 2.9. Let /; C [ and J; C J be open intervals. By canonical equivalence

(or canonical map) H; (1) X H;(J;) = H;(I) X 'H;(J) we mean the unitary map
definedby £ ® n — & ® n, where § € H; (1), n € H;(J1). Its inverse map is called the

canonical equivalence H; (1) X H;(J) 3 H; (1) WH;(J).
Next, we shall relate H; (/1) W H;(J1) and H; (I2) X'H;(J2) when I3, I, and Ji, J>

are in general positions. In this case the equivalence maps will depend on the homotopy
classes of paths relating these two pairs of intervals. This is where braid groups enter our

13 One can indeed prove the density without appeal to the type III property. See [Tak02] chapter IX lemma
3.3 (iii).
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story. To this end, we first define, for any distinct points z, ¢ € S!, the Connes fusion
of H;, H; over z, ¢, to be a Hilbert space

Hi) ®H;(¢) = lim H,»U)&Hju):( I Hi(l)&Hj(J))/z,
1, 1)>(z,¢) (1,7)>(z,¢)

where the subscript open intervals 7, J € J are disjoint, and the equivalence relation is
given by the canonical equivalence.'* Then for any fixed disjoint open intervals I, J € J
containing z, { respectively, we have an obvious canonical map

Hi (1) RH(J) = Hi(z) RH, ()

as well as its inverse map.

Now let Confr(S") = {(z, ¢ € 8" 1z £ ¢}. Let y(r) = (a(2), B(1)) (0 <t < 1)be
a path in Conf,(S!) with initial point (z1, ¢1) = ¥ (0) and end point (z2, £2) = y(1). We
shall use this path to define a unitary map H;(z1) X H; (¢1)—>H;(z2) W H;(¢2). First,
we say that y is small if there exist disjoint open intervals 7, J € J such that the image
of y is included in I x J. Then the map y* : H;(z1) K H;(£1)—H;(z2) W H;(L2) is
defined using the canonical equivalences

M) BH; Q1) = Hi(D) BH,;(J) = Hi(za) RH;j ().

For a general path y, we choose 0 =t <t <, <--- <t, = 1,suchthat y |, _, ;718
smallforanyk = 1, 2, ..., n. Thisis called a partition of y . Let y, be areparametrization
of ¥|[4_,.41 such that the variable ¢ is again defined on [0, 1]. We then define a unitary
map

Y Hi(z) KH;(6)—>Hi(z2) BH;(£2),
Y = VaVa1 VI
Obviously, finer partitions give the same result. Therefore the map y® is independent of

the partitions. We call it the path continuation H; (z1) X 'H; (1) rd Hi(z2) XH ()
induced by y.

Now we return to the Connes fusions over open intervals. Suppose we have two pairs
of mutually disjoint open intervals /1, Jy and I, J; in S1. Choose a path y in Confy(S1)
such that y(0) € I1 x J1, y(1) € I x Jo. Let (z1, &1) = y(0) and (22, &) = y(1). We
then define the path continuation H; (1) X H;(J1) = Hi(lh) K ‘Hj(J2) induced by
y to be the map y* defined by

Hi (1) BH; () S Hi(x) BH;j(61) D Hi(z) BH;j(62) > Hi(l) BH; ().
The following obvious lemma provides a practical way of calculating y°.
Lemma 2.10. Choose disjoint 11, J1 € J,and I, J € J. Lety be a pathin Confy(S1)

from Iy x Jyto Iy x Jr. If y ([0, 1)) C 1 x Jiory ([0, 1]) C I x Jh,and 1N, J1NJ2 €
J (see Fig. 1), then y* : H;(I1) XH;(J1) — H;(I2) XH;(J2) equals the map

Hi(I) BH; () = Hi(l; N 1) RH;(Jy N Jy) = Hi(l) RH;j(Ja).
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Fig. 1. Figure of Lemma 2.10

We now show that homotopic paths induce the same map.

Proposition 2.11. Let y, ¥ be two paths in Confy(S') with y (0), 7(0) € I x Jy and
y(1), (1) € I, x J,. Suppose that there exists a homotopy map T : [0, 1] x [0, 1] —
Conf,(S1) connecting the two paths y = T'(-,0) and y = T'(-, 1). Assume moreover
that T'(0,[0, 1) Cc I} x J1,T(1,[0,1]) C I x Jo. Then y® = y°.

Proof. Choose 0 =t9g <t <--- <t =1,0=50 <51 <--- <35, = 1such that
foranya =0,1,--- ,m,b =0, 1---,n, there exists a pair of disjoint open intervals
Loy, Jup in S! satisfying the following conditions:

(D) Tta—1,tal X [sb—1,Sp1) C la,p X Jap whena, b > 0.
) Iop =11, Jop = J1. Imp = 2, Jnp = J2.
(3) Whena >0, I,—1, N 14 and J,—1,5 N Ju p are open intervals in st

Then for any b, the map I'(, s)® : H;(I1) X H;(J1)—H; (1) X H;(J2) induced by
the path I'(-, sp) is, by Lemma 2.10, equal to the map R}, defined by

Hi () ®KH;(J1) =Hi(lo,p) XH;(Jo,p) S Hilloy N1 p) K Hji(Jop N J1p)
= Hi(h,p) BH;(J1,5)
S Hi(hpNhyp) K Hi(J1p N J2,p) S Hi(lp) W H;i(J2)
S S Hilny) B () = Hi (1) RH;(J2).
Similarly I'(-, sp)*® also equals Rp1. Therefore
Y =T =R =T(Cs1)*=R=T(,5)"=---=T(,s)*=y".
m

We close this section with a brief discussion of Connes fusions defined on a single
interval. For any I € J we define the Hilbert space H; (/) X H; to be the closure of
‘H;(I) ® H; under the positive sesquilinear form (-|-) defined by

(&1 @ ml&2 @ m) = (wj(Z (&2, D*Z (&1, D)niln2) (2.10)

14 1t will be interesting to compare our definition with the P (z)-tensor products in [HL95a].
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for any &1,& € H;(I),n1,m2 € H;. Then clearly H ® K is dense in H; (1) X 'H;
when H is dense in H; (I) and K is dense in ;. In particular we can take H = H; (1)
and K = H;(J) where J € [J is disjoint from /. Therefore, by (2.9), we have a

canonical equivalence H; (/) X H;(J) 3 H;(I) XH; definedby E @ n = £ @7
(¢ e Hi(I1),n € H;(J)). Its inverse is also called the canonical equivalence 7; (/) X

H; = Hi (D) RH; ().
Now for any z € S! one can define Hi(z) X H;, in a similar to way, to be

1i_r>n . ‘H;(I) X H ;. One therefore has a canonical equivalence between H; (z) X H ;

and H;(I) X 'H; for any I € [J containing z. If « is a path in S! from z; to 72, one
can define the path continuation o® : H;(z1) X 'H ;—H;(z2) X H; induced by « in
a similar way. One can furthermore use this map to define, for any path  in ' from
LeJtwlheJ,amapa®: H;(I}) XH;—H;(I2) XH;, also called the equivalence
induced by «. Homotopic paths induce the same map.

Path continuations of Connes fusions over single intervals can be related to those
over two intervals by the following proposition.

Proposition 2.12. Let y = («, B) be a path in Confy(S1) from It x Jy to I x Ja, where
the open intervals Iy, J1 are disjoint, and I, Jo are disjoint. Then the equivalence

a®: Hi(Ih) XH;—H; (1) XH; equals the map

Hi(I) ®H; = H; (L) KH, () Y Hi(D) KM, () = Hi(h) RH;. (2.11)

Proof. Let R denote the unitary map described by (2.11). We first assume that y is small
enough, such that «([0, 1]) C I1, B([0, 1]) C Jy,and Iy N I, J1 N J, € J. Then by
Lemma 2.10 (and its variant for single interval fusions), «® and R coincide when acting
on the dense subspace H; (/1 N 1) @ H;(J; N J2) of H; (1) X 'H ;. Therefore a® = R.

For a general y, we consider a partition 0 = 1y < ] < --- < t, = 1, such that
foreacha = 0, 1,2,...,n, there exists a pair of disjoint open intervals I;, J‘; in !

satisfying the following conditions:

(1) y([ta=1, ta]) C I, whena > 0.
Q) Iy=nL,Jy=J01.1,=1L,J,=1J.
(3) Whena > 0,1/, N1, and J,_, N J, are open intervals in S'.

Foreacha > 0,choose apath y, = (o, B,) defined on [0, 1] to be areparametrization of
¥ llta—1,11- Then yg is small and, from the last paragraph, the map o} : H; (I _ )XH; —
Hi(1;) X H; equals the map R, defined by

Hi(I_DRH; S HiI_)BH;JL_ )5 H()BH () S Hi(I) RH,.
(2.12)

Now o® = R follows from the fact thata® = ajary | ---af and R = R, R, 1 --- R;.O

Similar properties also hold for H; X H;(J).

2.3. Actions of conformal nets. Assume as usual that I, J € J are disjoint. In this
section, we equip H; (1) X H ; (J) with an A-module structure, and show that the action
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of A commutes with path continuations. First, note that we have natural representations
of A(I) and A(J) on H; (1) X H;(J) defined by

xE@n =x£@n yéE®N=£Qy,

forany € € H;(I),n € H;(J),x € A(),y € A(J).If K C I (resp. K C J) then the
above representation of A(I) (resp. A(J)) restricts to one of A(K). We would like to
define a natural action of A(K') on 'H; (/) X H ;(J) even when K is not contained inside
I or J. The following proposition gives us a clue on how to define it.

Proposition 2.13. Let y be a path in Conf,(SY) from I x J to J x I. Then for the path
continuation y* : H;(I) X H;(J) — H;(J) X H;(), we have

x=""ay (2.13)
for any x € A(I). A similar result holds for any y € A(J).

Note that the x on the left hand side of (2.13) is acting on vectors in H;, whereas on
the right hand side, x is acting on vectors in ;. To prove this proposition we first need
a lemma.

Lemma 2.14. Choose disjoint 11, J1 € J,and I, J, € J. If [ NI, J1NJ» € T, then
the map

Hi(I) BH; () = Hi(l) N 1) RH;(Jy N J) = Hi(la) K H;j(J2)
intertwines the actions of A(I} N Ip).

Proof. Denote the above map by R. Choose an arbitrary x € A(I; N I). Then for any
§eHi(hNnh)andn € H;j(J1NJ2), xR(E ®n) clearly equals Rx(§ ® n), which must
be x§ ® n € H;(I2) X'H;(J2). Therefore, by density, xR = Rx. O

Proof of Proposition 2.13. Since by additivity wehhave A(I) = \/ g ; AK) (K cC 1
means K € J and [ contains the closure of K), it suffices to verify x = (y‘)_lxy' for
any fixed K cC I and x € A(K). Another way to achieve this is to replace, by density,
J by asmaller J1 CC J, and let J{, Ji, I be the new I, J, K.

Let y = («, B). We first assume that y is small enough, such that «([0, 1]) and
B([0, 1]) can both be covered by open intervals in S'. For example, y can be a clockwise
or anticlockwise rotation not exceeding 2. We now choose a pair of disjoint open
intervals Iy, J; in S' satisfying

@ nni,hnJ, NI, inJedJd,

(b) K C Jy, _

(c) y is homotopic (in the sense of Proposition 2.11) to a path ¥ = (a, B) from I x J
to J x I, such that &([0, 1]) is covered by I U I} U J and B([0, 1]) is covered by
1UJUJ.

(See Fig. 2.) Now consider two unitary maps
R:Hi(DRH;(J) = Hi(IN 1) RH;(JNT) = Hi(h) BH; (),
S H () RH;(J) = Hi(hNJ)RH;(Ji N1 S Hi(J)RH; ).

Then from Lemma 2.10 it is easy to see that y* = SR. According to Lemma 2.14,
Sx = xS. Therefore it suffices to show x = R*xR.
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A

Fig. 2. Figure of Lemma 2.14

Chooseany & € H;(IN11), n € H;(JNJp). Thensuch & ®7n span a dense subspace of
Hi(I)XH;(J).Clearly R(§ ® n) =& ® n € H;(I}) XH;(J1). Now since x € A(K)
and K C Ji, we have xR(§ ® 1) = £ ® xn € H;(I}) ¥ 'H;(J1). Choose arbitrary
g eH;(INN),n €H;(JNJp). Wealso have R(§' ® ') = &’ ® n'. Therefore

(R*xRE@nIE' ®@n') = (xRE®MIRE ®@ 1) = (§ ®xnl§’ ®n')
= (1 (ZE', 1) ZE, I))xnln') = (7w (ZE, 1) ZE, Toxomin'). (2.14)
Since &,&" € H;(I N 1), we actually have Z(§, 1)) = Z(, 1N 1) = Z(&, 1) and,
similarly, Z(&', I;) = Z(&’, I). Note also that x € A(K) and K C I.So Z(§,I)x €
Hom 4(7¢y(Ho, H;i). As K isdisjoint from I N1y, by locality, Z(&§, [)xQ2 = xZ(§, )2 =
x&. Therefore Z(&, I)x = Z(x&, I). So (2.14) equals
(T (ZE', D*ZE Donn')y = (i (ZE', D*Z(x&, D)nln')
=(xE@nE' ®@n) = (xE@NIE @)
This proves R*xR = x, and hence x = (y*) " 'xy*.
We now prove (2.13) for more general y. Let y| be small path (in the same sense as
above) from I x J to J x I, and y, another small path from J x I to I x J, such that
y2 * 1 is homotopic to an anticlockwise rotation by 2. Then there exists n € Z such

that y is homotopic to y; * (y2 % ¥1)*™. So y* = y; (y5 ¥")". From what we’ve shown,
both y;* and y, intertwines x. Therefore y*x = xy°. O

Theorem-Definition 2.15. Let H;, H; be A-modules, and choose disjoint I, J € J.

(a) There exists a (unique) representation ”ilgj of A on H;(I) XH;(J) satisfying the

following condition: If K, L € J are disjoint, y is a path in Conf»(S") from [ x J —
K x L, and x € A(K), then

i () = ()t (2.15)

where y* : H;(I) XH;(J) — H;(K) WH;(L) is the equivalence induced by y .
(b) There exists a (unique) representation nlf&j of Aon H;(I) X H;(J) satisfying the

following condition: If K, L € [J are disjoint, ¢ is a path in Conf,(S") from I x J —
L x K, and x € A(K), then

7l (0 = (%) xg”, (2.16)

where ¢* : H; (1) XH ;(J) — H;(L) X H;(K) is the equivalence induced by .
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(c) nl.lgj and ”;’rﬁj are equal. Therefore wir; = yrl.lgj = nl.’gj gives A a natural
representation on 'H; (1) X H ; (J).

(d) The unitary maps induced by inclusions of intervals, restrictions of intervals, and
path continuations are equivalences of A-modules, i.e., they intertwine the actions

of A.

Proof. Choose disjoint K, L € J, and choose y, ¢ asin (a) and (b). Then ¢ *x ™" is a
path from K x L to L x K. Apply Proposition 2.13 to ¢ %y ~! which induces ¢*(y*)~!,
we obtain

1

)yt = (6" xg® (2.17)
for any x € A(K). Now we define nl.lﬁj using relation (2.15). We need to show that

this definition is independent of y. If ¥ is another path in Conf(S') from I x J —
K x L, then by (2.17), (y*)"'xy® = (¢*)"x¢c® = (#*)~'xP*. This proves the well-
definedness of ”ilg," Thus (a) is proved. (b) can be proved in a similar way. (c) follows
directly from (2.17). (d) is obvious. O

Definition 2.16. Let H;, H;,, H;, H;; be A-modules, I,J € J are disjoint,
F € Homy(H;, Hi), G € Homy(H;, H ). We define a (clearly bounded) map
F®G:H(I)XH;(J)— Hy(I)XH;(J) such that for any & € H; (1), n € H;(J),

(F®G)E®n =FEQGn. (2.18)

In the future, when several different fusion products are considered simultaneously,
we will write F ® G as F X G to avoid ambiguity.
The following properties are easy to show.

Proposition 2.17. F ® G commutes with the canonical equivalences induced by in-
clusions and restrictions of intervals, and hence commutes with path continuations.
Moreover, F ® G is an A-module homomorphism, i.e., F ® G € Hom 4(H;(I) X
H;i(J), Hir (1) K H jr ().

Proof. The first statement is easy. The second one follows from the first one and the
easy fact that F ® G intertwines the actions of A(I) or A(J). O

Actions of A on single interval fusions can be defined in a similar way. Let I € J. If
K e Jisasub-interval of I, welet A(K) acton H; (I)XI’H ; by setting x (£ ®n) = xE®7
for any x € A(K), & € H;(I),n € H;. For general K, we choose a path « in S! from
I to K, and let A(K) act on H;(I) X H; by setting mjx;(x) = (a@®)"'xa® for any
x € A(K). This action is independent of the path chosen, and hence makes H; (1) XH ;
a natural A-module. H; X H;(J) can be treated in a similar way. Alternatively, one
can use the action of A on H;(I) X H;(J), together with the canonical equivalence
H; (1) XH;—H;(I) X H;(J), to define the action of A on H; (/) X H ;. These two
ways give the same definitions. In particular, x(§ ® n) = £ @ xnforany & € H;(I),n €
Hj, x € A(I°). Tensor products of homomorphisms can also be defined using (2.18).

We now show that a given .4-module H; can be identified with its fusion with the
vacuum module Hy. Define a linear map t; : H; () @ Ho — H; satisfying 1; (§ ® yQ) =
yé& forany € € H; (1), y € A(I°). It is easy to check that j; is an isometry with dense
range. Therefore f; extends to a unitary map tj; : H; (I)X'Hy — H;. Clearly ; preserves
the canonical equivalences induced by restrictions and inclusions of intervals, and hence
preserves path continuations. f; also commutes with the action of A (7). Therefore b;
intertwines the actions of .A. We thus conclude:
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Theorem 2.18. There exists a (unique) unitary A-module isomorphism f; : H;(I) X
Ho — H; satisfying

0i(§ ® y2) = y§

forany& € H; (1), y € A(I€). Moreover j; preserves path continuations, i.e., §;a® = f;
for any path « : [0, 11 — S from I to another open interval in S'.

Similar results hold for H; (1) X Ho(J).

2.4. Conformal structures. Let H;, H; be A-modules, and choose I € J. Then we
know that H;, H;, H; (I) X'H; are all conformal .A-modules. In this section we describe
the action U;g; of 94 on H; (1) X 'H; in terms of those on H; and ;. This result will
be used in the next chapter to study the conformal structures of categorical extensions.
(See Theorems 3.5 and 3.13.)

Choose g € 4 4. Choose a path A : [0,1] — ¥4 from 1 to g (i.e. A(0) = 1 and
A(1) = g). We require only that A descends to a continuous path [1] in ¢; the continuity
of A in ¢ 4 is not necessary. Note that the homotopy class of [A] is uniquely determined
by g. Consider the action of & on § L lifted from ¢ (and hence from Diff*(S!)). Choose
arbitrary z € I. Then the map X, defined by

A1 (0,11 = SY, e A()z

is a path from [ to g/ with initial point z and end point gz. The homotopy class of A; is
clearly determined by that of [A] and hence by g. Thus, by Proposition 2.11, A7 depends
only on g but not on the choice of A. For instance, if g € ¥4 is alift of EXp(2iw Lg) € ¥,
then y? is the path continuation induced by an anticlockwise rotation by 27.

We now let g act on H; (1) X 'H; by setting

Ul @ E @) = 07 (2 Ng™'2 ® gn) (2.19)

forany & € H; (1), n € H;. (Here the actions of g on H; (1), H; are the standard ones.)
Note that since Z(&, I) intertwines the actions of A(I€), gZ (&, I )g_l intertwines the
actionsof g A(1€)g~ ! = A(gI€).SogZ(E, g~ e Hom 4, 1¢)(Ho, H;). Accordingly,

()»;)’1 CHi(gDXH; = H; (1) X'H ; is the path continuation induced by the path Az’l
from g1 to I. Set

gke ! =gz Dg7'Q, (2.20)
which is a vector in H; (gI). Equivalently,
Z(gkg™ ' gl) =8Z(. Dg ™. (2.21)
Then (2.19) can be simplified as
Ul (©)E®m = ()7 (s£87" ® g1). (2.22)

Note that although (2.22) only gives a linear map Ui/IXj (&) - HiH®H; - H;(HK
H ;, where H; (1) ® H j (or more precisely, the quotient of H; (1) ® H ; over its subspace
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annihilated by (-|-)) is regarded as a dense subspace of H; (/) X 'H ;, one computes, for
any &' € H;(I),n' € H;, that

(Ul (@)E @ MIUjg;(@)E ®n)) = (gtg™ @ gnlgt's™ ®@ gn')
=(Z(gt'g™ " gD)*Z(gtg™ " gDgnlgn’) = (¢ Z(&', N*Z(E, Dg™" - gnlgn’)
=(ZE,D*ZE Dnln') = @ nlg' @ 1n').

Therefore Ui/ﬁj (g) is an isometry. As the image of A7 Ui/&j (g) isclearly H;(gl) ® H;,
which is dense in H; (g1) X H;, Ui/ﬁj (g) extends to a unitary map on H; (/) X H;.

Lemma 2.19. If (2.22) defines a unitary representation Ui’®j of G4 on Hi(1) X H;,
then Ul.’ R, equals the standard one U ;.

Proof. Suppose that Ui/|XIj is a representation. By the uniqueness statement in Theorem
2.2, itremains to check (2.4) for Ui/®j’ i.e.,tocheck that forany K € J and g € Y4(K),

Ui, (@) = mim;.x U(2) (2.23)

when acting on H; (1) X H ;.
Note first of all that from the definition (2.22), it is clear that the action Ul.’ ;) of 4 4 on

Connes fusions commutes with the canonical maps induced by restrictions and inclusions
of intervals. So it also commutes with path continuations. Therefore, by adjusting 7, it
suffices to prove (2.23) when K C I€. In this case g € ¥ 4(I°), which implies that g
commutes with Z(&, 1) (i.e. g’g‘g_l = &), and that the path A, considered in (2.22) is a
constant. Hence, for any & € H; (1), n € H;,

Ulmjx@E®n =£§®gn. (2.24)

One the other hand, from the canonical equivalence H; (1) X H; = Hi () WH; ()
and the way we define the action of A(K) on H;(I) X H;(I¢), one easily sees that
mim; (U (g))(§ ® n) also equals § ® gn. Hence (2.23) is proved. |

Lemma 2.20. (2.22) defines a unitary representation Ui/ﬁj of 94 on Hi(I) X H;.
Namely, forany & € H;(I),n € Hj, g, h € 94,

Uln, (@)U, (M E @ n) = Ujg; (8 (€ @ n). (2.25)

Proof. We write Ui/ 5 U’ for brevity. By [Hen19] lemma 17-(ii), ¢ is (algebraically)

generated by ¢ (J) forall J € J whose length | J| is less than |I]. Thus, ¢ 4 is generated
by ¥ 4(J) for all J satisfying |J| < |I|. Therefore, it suffices to verify (2.25) when h
belongs to ¥ 4(J) satisfying |J| < |I|. Choose Iy € J to be a sub-interval of I disjoint
from J. Since H; (Io) @ H; is dense in H; (1) X'H ;, it suffices to assume that £ € H; (lp).

In that case, as argued near (2.24), we have héh~! = £ and hence U’ (h) (€ ®n) = EQh.
Therefore, we need to check

U'(g)( ® hn) = U'(gh) (€ ®n). (2.26)

Choose a path A in ¥4 from 1 to g. Again, we assume the continuity only for the
projection [A] of A in &. Choose z € Ij. Then the left hand side of (2.26) is

U'(@)E®@hn) =0 ' (gtg™' ® ghn).
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Choose a path u in ¥4(J) from 1 to h. (This is possible since ¥(J) is clearly con-
tractible.) Then A = A(¢)(¢) is a path in & 4 from 1 to gh. Since z € Iy is outside J,
u(t)z = zforany ¢ € [0, 1]. It follows that (Apt), = A;. Using heh™' =&, we compute
the right hand side of (2.26):

U'(gh)(E @ m) = (0D~ (ghsh™ g7 @ ghm) = () ™' (g8 © ghn).
This proves (2.26). |
The above two lemmas imply the following main result of this section.

Theorem 2.21. Let H;, H ; be A-modules. Then for any I € J, the unitary representa-
tion U j of 9 4 defining the conformal structure of H; (1) X'H ; can be described as fol-
lows. For any g € G 4, we choose amap X : [0, 1] = 9 4 satisfying A(0) = 1,2(1) = ¢
such that A descends to a (continuous) path in 4. Choose any z € 1, and let A, be the
patht € [0, 1] — A(t)z in S'. Then for any &€ € H;(I), n € H;,

gE@n =0 (gsg" ®gn) (2.27)

where gg~! = gZ(&, g™ ', and Ay Hi(D) X H; — Hi(gl) X H; is the path
continuation induced by A;.

Using (2.27), one can easily describe the Mobius structure on H; (/) X ;. For any
A-module Hj and a self-adjoint vector field X =} _; 5 _j asLs, we let the operator
¢'X denote the action of éxp(i X) € PSU(1, 1) on Hy. Now define the path Ay : [0, 1] —
PSU(1, 1) to be Ax (1) = éXp(it X). For an arbitrary z € I, let Ax,; = (Ax) be the path
t € [0, 1] = Ax(t)z. Then for any & € H;(I), n € Hj, we have the formula

X E@n =0y (e *E®e ). (2.28)

Here we use the fact that ¢! X& = e/X£e~/X since Q is fixed by PSU(1, 1).
The action of ¥ 4 on ‘H; X H ;(J) can be described in a similar way.

2.5. Associativity. In this section we study Connes fusion of more than two .A-modules.
For simplicity, our discussion is restricted to the case of 3 modules. The general cases
can be treated in a similar way.

We first discuss Connes fusions over three disjoint intervals. There are two equiva-
lent ways to define them. Let H;, H;, Hy be A-modules, and 1, J, K be disjoint open
intervals in S!. Let (-|-) be a positive sesquilinear form on H; (/) ® H;(J) @ H;(K)
satisfying

&1 ®@m @ x1l62 @ m ® x2)
=(Z&, D*ZE, DZ2, 1) Z(n1, N Z(x2, K)*Z(x1, K)QURQ) (2.29)

forany &1, & € H; (1), n1,n2 € H;(J), x1, x2 € H;(K). The Connes fusion ; (/) X
H;(J) W Hi(K) is defined to be the Hilbert space completion of H; (/) @ H;(J) ®
‘Hi (K) under (-|-). Canonical equivalences induced by restrictions and inclusions of open
intervals, and path continuations can be defined in a similar way. We have natural actions
of A(I), A(J), A(K) on H; (1) X H;(J) X Hi(K). These actions can be extended to
a representation of .4 using path continuations.
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One can also defined fusions of three modules as iterated fusions of two modules.
For example, consider H; (1) X (H;(J) X H;(K)). This expression is a combination
of a fusion over two intervals with a fusion over one interval: we first take a fusion of
Hj, Hy over J, K, and treat this fusion as a single .A-module H; = H;(J) X Hi(K);
then we take H; (1) X H; as a fusion over 1. It is easy to check that the right hand side
of (2.29) also gives the formula for the positive sesquilinear form of the iterated Connes
fusion. Therefore we have a unitary map

Hi(1) X (H;(J) MH(K)) — Hi (1) ®H;(J) KH(K),
EQMOX)—=§®@n®x (G eHi(),neH;(J),neH(K)). (2.30)

Similarly one can define (H; (1) XH ;(J)) X Hy, and an equivalence (H; (1) X'H ; (/) K
Hi(K) = H;i(I) B H;(J) K H (K) mapping (€ ® 1) ® x to £ @ n ® . Therefore

we have a natural unitary associativity map (H; (1) X H;(J)) W Hp(K) — H;(I) K
(H;(J) W H(K)).

For Connes fusions of three modules over two intervals, one also has similar isomor-
phisms between H; (1) X 'H ; X Hp (K), (H; (1) KH ;) K Hi(K), and H; (1) X (H; X
‘Hx (K)). Here, the second and the third fusions are iterations of two fusions over single
intervals.

We now show that associativity maps are .4-module isomorphisms. We only prove
this for fusions over two intervals. The three-interval cases can be proved in a similar
way. To show this, note that the above isomorphisms clearly commute with the actions
of A(I). Hence it suffices to prove that they also commute with path continuations, as
indicated by the following proposition.

Proposition 2.22. Let H;, H;, Hy be A-modules. Choose two pairs of disjoint intervals
[,JeJ, I',J € J. Lety = (a, B) : [0,1] — Confs(S") be a path from I x J to
I’ x J'. Then the following diagrams commute.

*(a*®id

(Hi (D) B H) BH; () —— L2 (1 R H) BH, ()

| |

H(DRHEH; () —L s () B H RH, () 2.31)

Hi (1) B (M RH () —— 88 30,1y ) (M R H;(J7)

We remark that 8° commutes with «® ® id; and «® commutes with id; ® 8° by the
functoriality of path continuations (see Proposition 2.17).

Proof. We only prove the commutativity of the first diagram, as the second one can
be proved similarly. Let us first assume that y = («, ) is small in the sense that
y([0,1) cI’x J,and INI', JNJ" € J.Thenitis easy to verify the commutativity
of the first diagram by considering the actions of these maps on any (§ ® x) ® n, where
EeH (NI, x € Hi,neH(JNJT).

In the general case, we can divide y = («, ) into small paths in Conf» (S 1 y =
Yn * Yn—1 * - - - % y1, and choose pairs of disjoint open intervals Iy, Jo € J, 1, J; €
T, L, J, € J,suchthat Iy = 1,Jy = J, 1, = I',J, = J’, and that for any



786 B. Gui

s =1,2,...,n,wehave I,_1 NI, Js_1 NJ; € J,and y5([0, 1]) C I; x J;. Write
ys = (o, Bs). Then by the first paragraph, for each s the diagram

B; (o ®id )
(Hi (Ts—1) B H) KH ;i (Js—1) B (i) R H) B H;j(Js)

s
Hil—) R H BH (o) ———— Hi(l) B H B H, ()
commutes. Since 8 commutes with oy ® id; for any 1 < 5,7 < n, and since a® =
ay---af, B = BB, ¥* = v, -y, the commutativity of the first diagram of
(2.31) follows. O

2.6. C*-Tensor categories. Let Rep(A) be the C*-category of .A-modules. In this sec-
tion, we equip Rep(.A) with a unitary monoidal structure. More precisely, we want to
define a tensor (fusion) x-bifunctor X : Rep(A) x Rep(A) — Rep(A), define unitary as-
sociativity isomorphisms which are functorial with respect to the tensor bifunctor, define
aunit object, identify (unitarily) a module with the tensor (fusion) product of this module
with the unit, and verify the triangle and pentagon axioms. (See [Tur94,BK01,EGNO]
for the general theory of tensor categories.)

LetS! = {z e S':Imz > 0}, 8! ={zeS':Imz < 0}. Forany H;, H; € Rep(A),
we define their tensor product H; XH ; to be H; (Si) XH; (S 1). We also identify H; H j
with H; (S}L) XH; and H; }'H; (S1) through the canonical equivalences. Let us simplify
our notations by writing Si and S! as +and — in Connes fusions. Then by our definition,

H,‘ gHj = Hl’(+) @Hj(—) = Hl'(+) @Hj = H,‘ @Hj(—). (2.32)

Since this definition of tensor bifunctor relies on two fixed open intervals, we do not
have a natural identification of H; X H; and H; X 'H;. If F € Hom 4(H;, H;), G €
Hom(H;:, H ), then the tensor product F ® G : H; WH; — H;X'H ; is defined using
(2.18). That (F @ G)* = F* @ G* is easy to verify, which shows that the bifunctor X
preserves the *-structures.

For H;, H;j, Hi € Rep(A),"> we define the associativity isomorphism (H; K H R

Hi = H; X (H; X Hy) to be the one for

(Hi(+) M) B Hi (=) = H;(+) B (H; B He(-), (2.33)

which is clearly functorial. The pentagon axiom (see Fig. 3) holds , since it can easily
be verified forall §) ® ) @ £® @ £, where £ € H;(S1), V) e H;(S)), &P e
Hi(S1), €D € H;(SL). (Note that § D @ £V e (H; ®H,;)(S), EW @D e (M B
H)(SL).) (cf. [Loke94] lemma VI.5.5.1.) One can thus remove all the brackets in an
iterated fusion. For example, all the iterated fusions in Fig. 3 can be identified as H; X
H; X H XH,.

Let Hj be the unit object. By Theorem 2.18, we have unitary isomorphisms

fi 0 H B Ho = Hi(SH B Hy = Hi,

15" Although Rep(.A) is not a set, we still write H; € Rep(.A) to mean that H; is an object in Rep(.A). We
will use similar notations for other categories.
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+) BH;) B Hy(—)) B Ha(—)

I
/ 1) RH) () B Hy) B H (—

R (H; K Hy(—))) B Hy(— Hi(+) B H;) (+ (Hy B Hy (=)

+)KH;) K 7'151»@7'(1( N(=)

/

Hi(+) K Hj&m ) & Hy(— H(+) K Hx(mxy, )

Hi(+) B ((H;(+ ) B Hy) ) Hi(—))

Hi(+) & (H;(+ ) (M ®H(—)))

Fig. 3. Pentagon Axiom

u.
bjt Ho R H; = HoRH;(SL) =H;(SL) KHy = H,.
The triangle axiom says that
f; ®id; =id; ® b, (2.34)

where id; (resp. id;) is the identity operator on H; (resp. H ;). To see this, note that
both sides of (2.34) act on H; XM Ho X 'H; = H;(+) X Ho X H;(—). Let us choose
I CC Si, Jcc St,and K € J disjoint from 7, J. Then for any & € H;(I),n €
H;(J), x € A(K), one computes that

#Rd)ERxQRn =xE@neH; KWH;(—),
(id; ®b))E®xQ®n) =& @xn € Hi(+) XH;.

One can easily construct path continuations to show that both x§ ® n and £ ® xn equal
x (& ® n). Therefore (2.34) holds. A construction of C*-tensor categorical structure on
Rep(.A) is now finished.

We close this section with a brief discussion of braiding in Rep(.A). Let o be a path
of 180° clockwise rotation from S Jlr to S1, e.g.,

0:00,1] = S, 1> TG, (2.35)

The braid operator B; ; : H; W H; — H; X H; is defined to be

Bij:Hi ®H; = Hi(SHRH, 2 Hi(sh MH; =H;(S}) RH;(SL) = H,; KM,
(2.36)

or written more simply, B = o°. This unitary map is clearly functorial. So Rep(A) be-
comes a braided C*-tensor category once we’ve proved the hexagon axioms for B; ;. The
proof of hexagon axioms will be much easier after we introduce categorical extensions.
So we leave the proof to the next chapter (see Sect. 3.3).
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Note that our description of the C*-tensor category Rep(A) and the braiding B (as
well as the Hexagon axioms to be proved in the next chapter) do not rely on the conformal
structures of A and .A-modules. Thus the above results hold when A is only a Mobius
covariant net. In [Was98] section 33, A.Wassermann defines braiding in a different way
(see Eq. (2.39)), which relies on the conformal structures. In the following we show that
our definition of B agrees with that of Wassermann. Although this result is interesting
in its own right, we will not use it in the rest of this paper. The following discussion can
be skipped safely.

Choose H;, H; € Rep(A). Consider a path A in I/D_S\G(l, 1) defined by ¢ € [0, 1] —
éxp(—imtLg). Setz =i,and A, : t € [0, 1] — A(f)z € S'. Then A, = o where g is
defined by (2.35). By (2.28), for any & € 'H,'(S}r), n e Hj(Sl_),

DM@ &) = el (eiThoy @ i Tlog) (2.37)

where we regard n ® & € Hj(Sl_) X H; (Si) and e/Loy @ el Log ¢ Hj(Si) KH; (SL).
Under the identification H;(SL) & H;(S!) = H;(S}) K H;(S1) = H; K H; and
H;(SH R H;(SL) = H; ®H,, (2.37) becomes

DTN E @) = e Tl (el @ e Thog) (2.38)

where we regard § ® n € H; X'H;, ey @ eiTlog ¢ H; XH;. As A, = o, we have
B = A?. We thus conclude:

Proposition 2.23. If H;, H; are conformal A-modules, then the inverse of B;; : H; X
H; — H; KH; can be described by

Bii(E®@n) =e M0 @e™0E)  (VE € Hi(S)),m € H;(SL)).  (2.39)

3. Connes Fusions and Categorical Extensions

3.1. Categorical extensions. Let A be a conformal net as usual. Let % be a full abelian
(C*-)subcategory of Rep(A) containing Hy. In other words, % is a class of .A-modules
which, up to unitary equivalences, is closed under taking .A-submodules and finite direct
sums.'® Equip % with a tensor bifunctor [ (not necessarily the Connes fusion bifunctor

I), functorial unitary associativity isomorphisms (H; @ H ;) & H = H: O (H; @Hk),

and unitary isomorphisms H; & Ho = Hi, Ho O H; = ‘H;, so that € becomes a
C*-tensor category with unit Ho. We identify (H; @ ;) O Hi, H; @ (H; & Hy) as
H; B H; B Hy, and H; & Ho, Ho B H; as H;.

An arg function defined on / € J is a continuous function arg; : I — R such that
7 = 192l a2, (D) for any z € 1. We say that an open interval I € 7 is arg-valued, if /
is equipped with an arg function arg;. An arg-valued / is often denoted by I or (I, arg;).
Two identical open intervals are regarded as different arg-valued intervals if they have
different arg functions. We let J_be the set of all arg-valued open intervals in S". LIt
I = (I arg;), J = (J,arg;) € j we say that T is an (arg valued) open submterval
of T 1fI cJ and arg, |1 = arg;. In this case we erte T j& J.Given J € J, we say
T cC JifT e j T C J and I CC J. We say that 7 and J are disjoint if 7 and J are

16 Tndeed it is not necessary to require 4’ to be a full subcategory. We add this condition only to simplify
discussions.
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disjoint. We say T is anticlockwise to J (or J is clockwise to 1), if 7 and J are disjoint,
and arg; (¢) < arg;(z) < arg](g“) +2r foranyz € I, ¢ € J.

The group ¢ acts on J in a natural way: If g € 9, T=d, arg;) € ._7 we choose
a path A in & from 1 to g. Then for any z € I, we have a path A, in S! defined by
Az(t) : t € [0, 1] = A(f)z. Let us now extend arg; (z) continuously to an argument of
gz along the path A,. More precisely, we define a continuous functionarg, : [0, 1] — R,
such that for any ¢ € [0, 1], arg, (¢) is an argument of A,(¢) = A(t)z. Then we take
arg, (1) to be the argument of gz. Now we let arg 1 be the arg function on g/ satisfying
arg,;(gz) = arg; (1). We define gT = (g1, arg, ). Itis easy to check that this definition
is well defined, and that the action of ¥4 ~ Jisa group action. We can easily lift this
actionto ¥4 ~ J.

If P, Q,R,S are Hilbert spaces, and we have bounded linear operators A : P —
R,B:Q—S,C:P— Q,D: R — S, we say that the diagram

PLQ

Al Bl 3.1)

R—D>S

commutes adjointly, if both this diagram and the diagram

P—C—>Q

A*T B*T (3.2)

R_L,s

commute. Note that (3.2) commutes if and only if the following diagram (3.3) commutes.

PLQ

Al Bl (3.3)

R(LS

Note also that if either A, B or C, D are unitary, then the commutativity implies the
adjoint commutativity of (3.1).

Definition 3.1. Let ) assign, to each Te j and H; € €, aset$H; (I) such that ; (11) C
9; (1) whenever I; C I>. A categorical extension & = (A, ¢, [, §) of A associates,
toany H;, Hy € €, Te j a € H;(I), bounded linear operators

L(a, T) € Hom _gze)(Hy, H; B Hz),

R(CL, T) S HOIHA(IC)(Hk, Hk ] Hl‘),

such that the following conditions are satisfied:

(a) (Isotony) If I; € I € 7, and a € $;(I1), then L(a, ;) = L(a, I), R(a, I;) =
R(a, I) when acting on any Hy € %.
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(b) (Functoriality) If H;, Hy, Hy' € f, F € Hom 4 (Hg, Hy), the following diagrams
commute forany I € 7, a € $;(I).

F R(a,])

Hy ——  Hyp Hiy ——> Hir B H;
L(a,IN)l L(a,IN)l Fl F®id,l . (3.4)
H; B Hy ——> H,; @ Hy He 2D, g0 m

(c) (Neutrality) For any H; € €, under the identifications H; = H; & Ho = Ho & H;,
the relation

L(a, ) = R(a, HQ (3.5)

holds for any Te J a€; (I)

(d) (Reeh—Schlieder property) If H; € €, T e j then under the identification H; =
‘H; @ Ho, the set L($; (1), I)Q spans a dense subspace of H;.

(e) (Density of fusion products) If H;, Hy € ¢, € J, then the set L($); (I) I)Hk
spans a dense subspace of H; 1 Hy, and R($; (N, TYHy spans a dense subspace of
Hr B H;.

(f) (Locality) For any Hy € €, disjoint 7, Je j with 7 anticlockwise to J, , and any
ae$Hi),beH;jJ),the following diagram (3.6) commutes adjointly.

R(6,J)

Hi & Hj
L] l L(a,IN)l (3.6)
HimH —D s @ BN,

(g) (Braiding) There is a unitary linear map B; ; : H; @ H; — H; @ H; for any
H;, H; € €, such that

BijL(a, T)n = R(a, I)n 3.7)

whenever I € j,a € ﬁi(f), neH;.

Definition 3.2, A categorical extension & is called conformal (covariant), if for any
g €Yy, Te j H; €€,aehH; (I) there exits an elementgag_1 € 9N (gI) such that

L(gag™"' ¢1) = gL(a. g™ (3.8)
when acting on any H; € €.

Note that (3.8) is equivalent to

R(gag™', gl) = gR(a, Dg™! (3.9)

by relation (3.7) and Corollary 2.6.

We now derive some immediate consequences from the definition of a categorical
extension &. The first thing to notice is that for any H; € &, T e j and a € H;(1),
the operator L(a, T ) (acting on all possible .A-modules in %) is uniquely determined
by the vector L(a, I)Q2. To see this, we choose an arbitrary H; € %, and choose
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Je jclockwise to 1. Then by locality, L(a, TLR(b JN)Q R(b, f)L(a T)Q for any
beH; (J) So the action of L(a, I) on R($H;(J), J)SZ is determined by L(a, I)Q By
Reeh-Schlieder property, R($; (J ), J )R = L(5; (J ), T )2 spans a dense subspace of
‘H;. Therefore L(a, b ) is uniquely determined by L(a, b )<2. Note also that L(a, T VRS
‘H; (I). Hence we may relabel & to satisfy the following condition:

Definition 3.3. A categorical extension & = (A, €, [, §) is called vector-labeled, if
forany H; € €, 1 € J, the set $; (1) is a subset of H; (), and for any a € $;(1), the
following creation property (state-field correspondence) holds:

L(a, NQ = a. (3.10)

If & is vector-labeled, x € A(I),and xQ2 € $o(1), then for any Hy € €, L(x$2, ) =
Te(x) = R(x2, 1 ) ‘when acting on Hy.. Indeed, we choose an arbitrary J € J clockwise
tol,and b e fjk(J) Then by locality, L(xS2, I)R(b J)Q = R(b, J)L(xQ I)Q =
R(b, J)xQ = mr(x)R(b, J)Q Now L(x2, I') = my(x) follows immediately from the
Reeh—Schlieder property. Similar argument shows that 7 (x) = R(x2, I).

3.2. Connes categorical extensions. The main goal in this section is to use Connes
fusions to construct a conformal categorical extension ¢ _= (A, Rep(A), X, H) of A.
For any H; € Rep(A), I = (I,arg;) € J, we set H;(I) = H;(I), which plays the
role of $; (1) in the definition of categorical extensions. Fix z; =i,z = —i, and let
: [0, 1] — S! be an 180° clockwise rotation from z, to z_ defined for instance by

(2 35) Choose a path a5 : [0, 1] — S! from (a point in) / to z4, such that the arg value
arg; (a7(0)) of a7(0) changes continuously along this path to the arg value 7 of z4 = i.
(Forexample, if —1 € I, and T = (], arg;) is defined in such a way thatarg; (—1) = 57,
then we can choose ajtobea (5 — 2) 180° clockwise rotation from —1 to i.) Then we
know that arg; (e7(0)) changes continuously along the path @ * A7 to the arg value —7
of z_ = —i.

Now for any & € H;(I) and any Hy € Rep(A), we let Z(&, I) (which is originally a
linear map Hy — H;) also be a bounded linear operator from Hy to H; (1) X Hy:

ZE, D) Hy —> H;(I) X Hy, X &R x.

Clearly Z(&, I) € Hom 4(j¢)(Hx, H; (1)XHy). Now we define L (&, 7) tHy > HiXH
to be

LE D H 280 (1)&Hk—>H(S)®Hk H; K H,. 3.11)

Since path continuations commute with the actions of A, we have L(E 1 ) €
Hom 4jey(Hy, H; X Hy). Similarly, we define R(Z, I e Hom 4jey(Hy, Hi X H;)
to be

~ , (oxaj)®
RETD My 280 i 80 HiSH R He = He My, (3.12)
Then Eq. (3.7) (with B = B) follows directly from the fact that B = p°.

Theorem 3.4. With the above constructions, 6¢ = (A, Rep(A), X, H) is a vector-
labeled categorical extension of A. We call it the Connes categorical extension of A.
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Proof. We only prove locality here. All the other axioms are easy to verify using the
results obtained in the previous chapter.

Step 1. We show that for any H;, H;, Hr € Rep(A), disjoint I, J € J, and & €
Hi(I), n € H;(J), the following diagram commutes adjointly:

z.7) He RH;(J)

Hi
Z(S,I)l Z(é,l)l . (3.13)

H(D B H —"1 s H (R H B M, ()

It is easy to show that this diagram commutes. Indeed, if we choose an arbitrary y € Hy,
then clearly Z(n, J)Z(E, Dx = Q@ x ®n = Z(&, 1)Z(n, J)x. To prove the adjoint
commutativity, we choose any &’ € H; (I), x' € Hy. Then it is easy to show

ZED"E @ x) =m(ZE DZE, D)X’ (3.14)

by evaluating both sides with an arbitrary vector x € Hy. Similarly, we have

ZEDZo, NE XN =2ED"E @ x' @n)
=mx;(ZE D ZE, D) ®n).
Since Z (¢, 1)*Z (&', I)|, € A(I), the right hand side of the above expression equals
m(ZE D ZE, D)) @n=Z, NHym(ZE, D*ZE', D)x',

which, by (3.14), equals Z(n, J)Z(E, D*(E" ® x'). Thus we’ve proved Z(n, J)
Z(E, D* = Z(E, D*Z(n, J), and hence the adjoint commutativity of (3.13).

Step 2. We prove the adjoint commutativity of (3.6) for a = &, b = 5. Choose a path
By from J toz_ € S1, such that the arg value arg;(87(0)) of B5(0) changes contin-
uously along this path to the arg value —% of z_. Then clearly R(n, N = ,B}Z(n, J).
By replacing a7 and B85 with homotopic paths, we assume that (aj, 87) is a path in
Conf,(S), ie., aj(t) # B5(t) for any ¢ € [0, 1]. (It is here that the anticlockwiseness
of T to J is used.) Consider the following 2 x 2 matrix of diagrams:

Z(n.9) By
—_—

Hy Hy ®H;(J) —I Hi ®H;(SL)

2.0 260 261

id; ®B%
H;i (1) W Hy @D Hi (D) W H BH;(J) —]>Hi(1)®(Hk®Hj(S',)) (3.15)

arl al~®1d]i arl

1 Z@.J) 1 by 1 1
Hi(SHRH ——22 0 (H;(SHRH) BHj(J) —— Hi(SHRH RH;(SL).

If we can prove the adjoint commutativity of all these four diagrams, then (3.6) com-
mutes adjointly. Now the (1, 1)-diagram commutes adjointly due to step 1. It is easy
to show that the (2, 1)-diagram commutes when a;~ is more generally any morphism in

Hom 4 (H; (1) X Hy, H; (Sl) X H}). Therefore (2, 1) commutes. Since oz; and ali ®id;
are unitary, (2, 1) commutes adjointly. Similarly (1, 2) also commutes adjointly. The
(adjoint) commutativity of the (2, 2)-diagram follows from Proposition 2.22. |
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The above argument and result clearly hold for any Mobius covariant net. Now that
we assume .4 to be conformal covariant, we can also show that the Connes categorical
extension is conformal covariant.

Theorem 3.5. &¢ is a conformal vector-labeled categorical extension.

Proof. Choose any H;, Hy € Rep(A), T € 7,& € Hi(I), g € 94. We show that
gL Dg™' = L(ggg™". g). (3.16)

Recall our notation gég~! = gZ(£, I)g~'Q2. Choose z € I, and let aj be a path in sl
from z to z, = i, along which arg; (z) changes continuously to the argument 7 of z,.

Let furthermore A be a path in Ypfrom1ltog,andlet A, : ¢t € [0,1] — A(t)z € st
Therefore, if we write gl = (g1, arg, ), then ay* (A7)~ 1 is apath in S! from gz to z4,
along which the argument arg,; (¢z) of gz changes continuously to the argument 5 of
z+. It follows that L(€,T) = @Z(€, 1) and L(g€g™", gD = at(03) "' Z(gkg ™, g ).
By relation (2.27), we have

gZE D=0 ""Z(@gtg  gDg.

Using the fact that path continuations intertwine the actions of ¢ 4 (since they intertwine
the actions of .A. Note also Corollary 2.6), we have

gLE Dg ' =ga3Z(E. Ng™' =at-gZ(E 1) g™
=a} 03" Z(gtg " gDg g7 = L(gkg ™", gD).

3.3. Hexagon axioms. With the results obtained so far, we give an easy proof of the
hexagon axioms for the braid operators B defined in Sect. 2.6. First we collect some useful
formulas. For any H;, HJ € Rep(A), disjoint I Je j and & € H;(I),n e H;(J),if

T is anticlockwise to J, then
LE Ty =B;;L(n, JE. (3.17)

Indeed, L(¢. T = L(§. DR(n, )@ = R(p. DLE. DR = R(n. 1) = BjiL(n. D).
Therefore, if I is clockwise to J then

L, Dn =B L, )E. (3.18)

Next, if ' € Hom 4(H;, H;i/), G € Hom 4(H, H ), then it is easy to see that for any
leJ, §eHi(l),neH;,

(F® G)L(, Dy = L(FE, )Gn. (3.19)

The following properties are parallel to the fusion and braid relations for intertwining
operators of vertex operator algebras.
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~

Proposition 3.6. Choose I, J, O € J suchthatT,J C O, and & € Hi(I),n € H;(J).
Then L(&, )n € (H; XH;)(O), and

L, DL, J) = L(LE, T)n, O) (3.20)

when acting on any Hy € Rep(A).

Proof. Since L(§, 7) = L(§, 5) L(n,_ J~) L(&, 5) we may assume that T =
J = 0. Since both L(&, O) and L(7, O) intertwines the actions of A(O0¢), so does
L(&, O)L(n, 0) Hence L(S O)L(n, 0) e HomA(OL)(Ho, H; X H;). Since
L&, O)L(n, O)Q L(&, O)n, we conclude L (&, 0);7 e (H; XH; )(0)

Now we choose arg . such that 0° = (0°, argc) is clockwise to O. Then for any

Hy € Rep(A) and x € Hi(0°),
L&, O)L(n, O)x = L(§, O)L(n, O)R(x, O°) = R(x, O°)L(&, O)L(, 0)R
= R(x, O°)L(¢, O)n = R(x, O°)L(L(E, O)n, 0)Q
= L(L(¢, O)n, O)R(x, 0°)Q
= L(L(, O)n, O)x.

This proves (3.20). O

Proposition 3.7. Suppose that T is anticlockwise to J, and there exits O € J such that
I,J C O. Then for any Hi, H;, Hk € Rep(A),& € Hi(I),n € H;(J), x € H, we
have

L, DL, Dx = B, ®idy)L(n, J)LE, Dx. (3.21)
Proof. We compute

B;; ®ide)L(n, HLE, Dy = B,,; @idy)L(L(y, N, O)x = L(B;;L(n, J)E, O)x
= L(L(, )y, O)x = L&, DL, J)x.

O

The above proposition is equivalent to the braiding condition (g) of Definition 3.1.
Although 3.1-(g) looks simpler and is easier to verify than (3.21), the latter has clearer
physical meaning: it says that the left operators L satisfy braid statistics, which gener-
alize the usual boson and fermion statistics.

Now we prove the hexagon axioms for B. In this paper, we always let H;x; or its
subscript i X j denote H; X H ;.

Theorem 3.8 (Hexagon axioms for B). Choose any H;, Hj, Hi € Rep(A). Then for
the braiding B defined by 180° clockwise rotations (see the end of Sect. 2.6), we have
the following relations for morphisms H; X 'H; W Hy — Hi XWH; KH;:
Bik ®id;)(id; ® Bj k) = Biwj«, (3.22)
By ®id))(id; ® B ) = By .. (3.23)
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Proof. Since the proof of the two relations are similar, we only prove the first one.
Choose disjoint I, J, K € J such that 7 is clockwise to J J is clockwise to K and
I ] K can be covered by an arg-valued open interval in S°. ! Choose O € J containing
T, J and clockwise to K. Then for any & € H; (1), 1€ H;(J), x € Hi(K), the action
of the left hand side of Eq. (3.22) on L(§, I)L(n, J)x is

~ ~ (id; ®B; k) ~ ~
L& DL, J)x — L&, DBj«L(n, J)x
~ ~ B; x®id; ~ ~
= L&, DL(x, K)n — L(x, K)L(&, Dn.

On the other hand, the action of the right hand side of (3.22) on L(§, T )L(n, J )x is

~ ~ ~  ~ By ~ o~
L& DLG, Dy = LILE D, 0)x —= Big; «L(LE, D, O)x
= L(x, K)L(, D.

Hence (3.22) is proved. O

Theorem 3.9. With the monoidal structure and the braid operators defined in Sect. 2.6,
Rep(A) is a braided C*-tensor category.

3.4. Uniqueness of tensor categorical structures. Let & = (A, €, [, H) be a categor-
ical extension of .4 with braid operator B. In this section, we show that (¢, [, B) is a
braided C*-tensor category (i.e., the unitary map B is a functorial .4-module isomor-
phism satisfying the Hexagon axioms), and that there is a natural equivalent between
(¢, &, B) and a braided tensor subcategory of (Rep(A), X, B).

To begin with, we let ¥ be the C*-category of all A-modules H; such that H; is
unitarily equivalent to some object in ¢". We assume without loss of generality that & is
vector-labeled. So, in particular, for eachT € j Hi €€, % (I ) is a subset of H; (1). We
thus write &, n, ... instead of a, b, ... for elements in ; (I ). But then there is a conflict
of notations, as L(&, I) may denote a left action in either & or the Connes categorical
extension &¢. We avoid this issue by letting L™ (£, T ) and LY (&, T ) denote left actions in
&= (A%, 15, 9) and & = (A, Rep(A), K, H) respectively. Similar notations apply
to right actions.

Theorem 3.10. Let & = (A, €, [, ) be a vector-labeled categorical extension of A.
Then (¢, @, B) is a braided C*-tensor category, € is closed under Connes fusion product
X, and there is a (unique) unitary functorial (i.e. natural) isomorphism

@i Hi¥XH; — H; BH; (VH,‘,H]'G%), (3.24)
such that for any Ted, Hi,Hj €¥,& e 5i(7)aﬂ €Hj,

;L Din = LP(, D, (3.25)
®;;R¥(&, )y = RP(&, Dn. (3.26)
Moreover, ® induces an equivalence of braided C*-tensor categories (Cg, X, B) ~

(¢, 1@, B). More precisely, “equivalence” means that for any H;, H;, Hi € €, the
following conditions are satisfied:
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(a) The following diagram commutes.

id[®¢k,j
M R RH; — 3 ) (He @ M)

o, ®id ,i q”*"m-’i . (3.27)

iGk,j

(o)
HiBHOXH; ————— H,BH:OH;

(b) The following two maps equal id; : H; — H;.

Do,

Hi ~ Ho RH; —5 Ho 0 H; ~ H,, (3.28)
b;

H; ~ H; B Hy —> H; @ Ho ~ M. (3.29)

(c) The following diagram commutes.

B; ;

H ®H; — H; ®H;

®; ,i d’-"‘l . (3.30)
B j

HmH, — H;EBH;

Note that the functoriality of ® means that for any objects H;, H;/, H;, H;» of €
and any F' € Hom 4(H;, H;), G € Hom 4(H, H ), we have @ ;(F X G) = (F &
G)®; ;, where FX G and F [0 G are the tensor products /' ® G in (?t X) and in (%, @)
respectively.

Proof. Step 1. Let H;, H; € €. Choose any disjoint T, J € J such that T is anticlock-
wise to J. Then for any & € §;(I) and x € A(I°),

LEE DxQ =xLBP¢E, DQ = x8 = xLBE, DQ = LB E, DxQ, (3.31)

which shows that LE(¢, T) = L¥ (&, T) when acting on Ho. Similar result holds for
the right actions 0f~m0dules on H0.~ Then using locality, we compute, for any x1, x2 €
A, &1,5 € (1), m, 2 € H;(J), that
(1 L &1, Dm |2 L® &2, Do)
= (xi LY &L DRP (1, QUL (&, DR (12, Q)
= (RY (2, N*LB (&, D*x3xLP &, DRP (1, NHQIKQ)
= (RY (2, D* R (1, J)LE (&2, 1) x5 LE (&1, DQIRQ). (3.32)
Note that on the right hand side of (3.32), L (&1, T), LY (&2, ), R& (1, J), RZ (2, )
all act on the vacuum module. Similarly,
(1 L€ Dl L™ 2, D)
= (R (2, I R, NLY &2, D' LY 61, DRIQ),  (3.33)

and on the right hand side of this equations, all the operators R¥® are acting on Hp.
Therefore the left hand sides of (3.32) and (3.33) are equal. We thus conclude, by the
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density of fusion products and the Reeh—Schlieder property (conditions (d) and (e) of
Definition 3.1), that there is a unique unitary map CDi ’jj i HiXH; — H;O'H; satisfying

O T L®(E, i =xL2E D (Vx € AD). € € H:(D).n € 5,;(1)).

In particular, d> 1ntertw1nes the actions of A(I) on H; &H and H; @H ;. Itis obvious
that if 10, Jo € j and Iy C I, Jo C J, then dJIO h le.”j . Therefore it is easy to see
that <I> = <I>[ 7 for any I’ Jed such that 7 is anticlockwise to f’ ie., <I>[’J

1ndependent of I and J. This shows that CD J intertwines the actions of A(I') for any

e J. .

We thus write CDI’J =®; ;. Then ®; ; : H; XH; — H; O H/ is a unitary A-
module 1som0rphlsm satlsfylng (3.25) for any £ € 9; (I ).n €85 (J ). In particular,
Hi X H; [j € CasH; B H, j € €. By Reeh—Schlieder property, (3.25) holds for any
Ee®; (I), n € H;. By (3.25) and the functoriality of Lg(é, I)and LU (g, I), it is clear
that ®; ;(id; &g) = (id; B~G)d>,-,j for any H;- € ¢ and G € Hom 4(H;, H ). Now
assume § € ;(1),n € H;(J). Then

®; i R¥(n, NE = o; ; L%, Din = LD, Dn = RP(n, D)E.

Since $); (I~ ) spans a dense subspace of H; by Reeh—Schlieder property, the left and the
right hand sides of the above equation are equal for any & € H;. Equivalently, we’ve
proved condition (3.26). A similar argument shows that ®;/ ; (FXid;) = (F3id;)®; ;
for any H;y € € and F € Hom 4 (H;, H;’). Therefore @ is functorial.

Step 2. We now show that ® induces an equivalence of C*-tensor categories. We
first verify the commutativity of digram (3.27). Choose any H;, H;, Hx € €, disjoint
T, J e j such that T is anticlockwise to J~, and & € ﬁi(IN), n e S')j(J~), X € Hg.
Then using conditions (3.25), (3.26), and the functoriality and locality of categorical
extensions (conditions (b) and (f) of Definition 3.1), we compute

i @Dk, ~ ~
O 1B, Db, RE 0 Dy

~ q)ll‘ ~ ~
= L% DR, Dy —= L9, DR, Dx,

LB DR®(m, Dy

and also
~ ~ ~ ~ D, (®id; ~ ~
LB, DR®(n, Dy = R¥4, HLBE, THx —— R¥(m, N0, 1 LB (€, Dy
~ ~  Dimk ~ ~ ~ ~
= R¥(m, DL, Dx —=5 RP(, HLPE, Dx = L2, DRY(n, Dx.

Therefore diagram (3.27) commutes.
For condition (b), we choose any Ie j & € 'H;. Then

¢ =1%@Q, De 2 1B, De =¢.

Thus (3.28) equals identity. Similarly (3.29) also equals identity. Thus & is an equiva-
lence of C*-tensor categories.
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Finally, choose anyéeﬁi(IN),neHj.Then
X ~ ch'_j ol ~ Bi,j D] ~
L=&, Dn —> L=(¢&, n — R=(&, D,
and also
K. 7 B ®. % Qi o5, &
L*™¢, Dn — RT(¢E, Dn — R=(E, Dn.

Hence diagram (3.30) commutes. This shows that ® intertwines B and 8. Thus, due to
the functoriality of @, we conclude that 3 is functorial and satisfies hexagon axioms since
these are true for B. Since ® and B are isomorphisms of .A-modules, so is B. Therefore
(%, 3, B) is a braided C*-tensor category equivalent to (‘5 X, B) under the functorial
map ©. O

3.5. Uniqueness of maximal categorical extensions.

Definition 3.11. Let & = (A, €, [, 55) and .7 = (A, ¢, 13, R) be vector-labeled cate-
gorical extensions of .A. We say that . is a small extension of & if ); (I ) C & (I ) for
any H; € €, T e J,and for any £ € 9; (1) the operator L (&, 1) (resp. R(&, 1)) of &
equals the one of .%. In this case we write & C ..

By density of fusion products, it is clear that & and .%# have the same braid operator 8.

Theorem 3.12. Let & = (A, €, &, ) be a veitor-labeled categorical extension of A.
Then & has a u_nique maximal small extensi'on & = (A, €, [, H), called the closure of
&. Moreover, & satisfies that for any I € J and H;, H; € € :

(a) H; (1) = H,;(I). 5 -
(b) If € € Hi(I),n € H;(I), then L, Dy € (H; @ H;)(I), and L(LE, Dn, T) =
L, DL, D).

Proof. Asin the last chapter, we let LY, RY denote actions in &, and let X s R™ denote
actions in the Connes categorical extension &¢. Consider the functorial isomorphism @
in Theorem 3.10. We now define & = (A, %, @, 'H) such that H; (1) = H; (1) for any
H; € €, T € 7, and for any H;, H; € ¢, the bounded linear operators L (, 1) and
RY(E, 1)) mapping H; — H; B 'H; and ‘H; — H; @ H; respectively are defined by

LB, Tn = & ;L% &, D, (3.34)
RUE, Dn =, R¥E, Dy (3.35)

for any n € H;. Condition (a) is clearly satisfied. Condition (b) follows from Proposi-
tion 3.6. This construction is clearly compatible with &. So once we’ve proved that &
satisfies the axioms of a categorical extension, then & is a small extension of &.

We only check that & satisfies locality, as all the other axioms are easy to verify.
Choose any / € J anticlockwise to J € J. Choose H;, H; € ¢,& € H;(I),n €
H;(J). Consider the following 2 x 2 matrix of diagrams:
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e —20D L gumH,  — L en
Lg@i)l L%,T)l L%J)J
HRH —0D g mamH, —eC L R e, (336
<I>,-.kl <I>,»,k®id,i c1>,-,k|3jl
Ho o H — 0D g a R, — L mH @ H,

The (1, 1)-diagram commutes adjointly due to the locality of &¢. The (2, 1)-diagram
and the (1, 2)-diagram both commute (and hence commute adjointly since the maps
involved are unitary) due to the functoriality axiom of &¢. The (2, 2)-diagram is ex-
actly diagram (3.27). So it commutes (adjointly) by Theorem 3.10. Therefore the largest
diagram commutes adjointly, which proves the locality of &.

Now suppose that .Z is a small extension of &. If we construct .% in a similar way,
then by the uniqueness of ® (which follows from the density of fusion products and
the Reeh—Schlieder property of &), we clearly have & = .Z. Therefore .# C &. Thus
we’ve proved that any small extension of & is included in &, which means that & is the
unique maximal small extension of & O

The proof of Theorem 3.12 implies a very interesting consequence.
Theorem 3.13. Any categorical extension & = (A, €, [0, $) of A is conformal.

Proof. Assume that & is vector-labeled. We want to check that for any g € ¥4, Te
J, Hi €€, & €9Hi(]),

LP(geg™", gD) = gLP (6, Dg™! (3.37)

when acting on any H; € ¢. By Theorem 3.5, we have

L¥(geg™!, gT) = gL¥¢, Dg ™" (3.38)

Since A-module homomorphisms intertwine the actions of ¢4 by Proposition 2.4, g
commutes with ®. Therefore relation (3.37) follows from (3.38) and (3.34). m|

We say that a vector-labeled categorical extension & is closed if & = &.

3.6. Semisimple categorical extensions. In this section we assume that the full abelian
C*-subcategory € of Rep(A) is semisimple, i.e., any module H; € ¥ is unitarily equiv-
alent to a finite direct sum of .A-modules in 4". We equip ¢ with a braided C*-tensor
categorical structure (%, [, 8).!7 If F is a set of A-modules in €, we say that F gen-
erates ¢, if for any irreducible H; € €, there exist H;,, ..., H;, € F such that H; is
equivalent to an (irreducible) A-submodule of H;, & H;, & - - - & H,;,.

17" As we have seen in Theorem 3.10), Hexagon axioms and the functoriality of braidings are consequences
of the existence of a categorical existence. However, for the categorical local extensions, we need to assume
these two properties at the very beginning: see step 2 of the proof of Theorem 3.15.
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Definition 3.14. Assume (%', [, B) is semisimple and F is a generating set of .A-modules
in €. Let § assign, to each T e j H; € F,aset H;(I) such that $; (11) C 9i (Iz)
whenever I; C L. A categorical local extension & loc — (A, F, @, 9) of Aassociates,
toanyH; e F, Hr € 6,1 € J,aeH; (1) bounded linear operators

L(a, T) (S HOII]A(]C)(Hk, Hj [ Hk),
R(a, T) € Hom 47y (Hi, Hk @ H,;),

such that the axioms of Definition 3.1 are satisfied only for H; € F, and the locality
(axiom (f)) holds only for H;, H; € JF. We also assume that the unitary operator [3 in the
braiding axiom (see (3.7)) is the same as the one of the braided C*-tensor category €.

Similar to categorical extensions, if & loc s a categorical local extension, then for any
H; € F,a e $H;(I), the operator L(a, /), acting on any .A-module in ¢, is determined
by L(a, I)2. Indeed, for any irreducible H; € ¢, we can find H;,, ..., H;, € F and
an isometric G € Hom 4(H;, H; @ --- 8 'H},). Choose J € J clockwise to /. Then
forany by € $;,(J),...b, € 9;,(J),

L(a, NG* - R(b,, J)---R(by, N = (id; ® G*) - R(b,, J)--- R(by, )L(a, NK.
(3.39)

By Reeh—Schlieder property and density of fusion products, vectors of the form G* -
R(by,, J)--- R(by, J)S2 span a dense subspace of H ;. Thus the action of L(a, I) on
any irreducible H; € ¢ is determined by L(a, 1S2. The general case follows from
the functoriality of &'°°. Therefore &'°° is equivalent to a vector-labeled categorical
local extension. (The meaning of “vector-labeled” is understood in a similar way as in
Definition 3.3.)

Theorem 3.15. After relabeling, gloe = (.4, F, [, H) can be extended to a unique
closed vector-labeled categorical extension & = (A, €, 0, H).

Proof. Step 1. Assume without loss of generality that &'°° is vector-labeled. We first
prove the uniqueness. Let F® be the class of all H; € € which is equivalent to a fi-
nite direct sum of A-modules in F. Assume & = (A, €, 3, H) is a closed categorical
extensmn containing &'°°. Then for any H;, € F,1I € j ¢ € H;,(I), the operator
L, T)is uniquely determined by & lo¢ due to Eq. (3.39) (with a replaced by &) and the
fact that §); (1) spans a dense subspace of H;.

NowifH; € ]:@,wecanﬁndH,-l, ..., ’Hi, € F,andisometric U1 € Hom 4(H,,, H;),

., Un € Hom 4(H,;,,, H;), such that U U7, ..., U, U}, are orthogonal projections,
and U1U{ + - -+ U, Uy, = id;. Then by (3.19), for any Hy € ¢, & € H; (1), x € Hx,

LE Dy = (U1 @ id)LWUTE, D)+ + (Un @id)LURE, Dyx.  (3.40)
Therefore, L(&, 1) is uniquely determined by &1°¢. .
Next, if H;,..., H;, € F®, then by Theorem 3.12-(b), for any E(”) € H;, (1),
L Em) e M (D),

L(L(S(im), [N) . L(S(iz)’ [N)%-(il), T) — L(é_-(im)7 'f) . L(‘;);(iz)7 T)L(S(il), IN)
(3.41)
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Therefore, since vectors of the form L&), T) ... L& T)gD span a dense sub-
space of H;, [ --- @ H;,, the left actions of H;, [ --- @ H;, on modules in € are
determined by &1°¢.

Finally, for any H; € ¢, we can find H;,,..., H;, € F ® and an isometric F €
Hom 4 (H;, Hi,, @+ --EH;,). Since F*F = id;, by (3.19), for any Te j, Hiy € 6,& €
Hi(D), x € Hx,

L Dx = (F* @idy)L(FE, T)x. (3.42)

Therefore L (&, IN) is determined by £'°¢. As R(&, T) is related to L (&, T) by B, R(&, 7)
is also determined by &'°°. Thus the uniqueness is proved.

Step 2. We prove the existence. Let us first extend &'°° to a categorical local ex-
tension éolloc = (A, F® @, R). For any H; € F®, we choose H,, ..., H;, € F and
Ui, ..., Uy as in step 1. If it turns out that H; € F, then we choose m = 1, H;, =
H;, Uy = id;. Now for any T € J, we define &;(I) = ;,(I) U --- U $;, (I). If
s=1,2,..., mand E = a5 € .6,;?(7) C ﬁ,-(f), we set, for any Hy € €, x € Hy,

L Dy = (U; ®idy)L(ay, 1), (3.43)
R(E, T)x = Bi g L(¢, T) = (idy ® Us)R(ay, I). (3.44)

(Note that the functoriality of B is used in the second equation of (3.44).) Then one can
easily check that éall"c = (A, F®, @, R) satisfies all the axioms of a categorical local
extension.

Let P be the class of all H; € ¥ equaling H;, & --- @ H,;, for some m =

1,2,... and H;,, ..., Hi, € F®. We now extend éalloc to a categorical local exten-
sion c§’1°° = (A, P, &, M). For each Hl € ’P we choose H“, ..., Hi, € F® such
that H, = H,m - @ H;,. For any I € j . we deﬁne jm(l) to be the set of all
gl, 12, .. m) € jxm satisfying that 11, .. I C I and that I is anticlockwise to
Iy foranys =2,...,m. We now set
M= [ R x-x K, ).

@y Iy eTm (D

and deﬁne for any Hy € € and m = (a1,~- ,0y) € ﬁ,l(1~1) X -0 X ﬁ,m(lm) C
N (I) bounded linear operators L(m, I) € Hom 4(rey(Hi, Hi © Hy), R(m, I) c
Hom 4(7¢)(Hg, Hx & H;), such that for any x € Hy,
L, T)x = L(a. In) -+~ L(ar. TD)x. (3.45)
R(m, Dy = B;x L(m, I)x. (3.46)

Then all the axioms of a categorical local extension, except the locality, are easy to verify
for éazloc. ‘We now show that

R(m, Dy = R(ar, Ir) -~ R(twm, Ln)x. (3.47)

Then the locality of &% follows immediately from that of &/°°.
Let us prove (3.47) when m = 3. For general m the argument is similar. By the
coherence theorem for braided tensor categories, we have

Bik = Bismirmig k = Bigx ®1d;, ®1d;))(di; ® By, x ®@1d;)) (id; ® id;, @ By ).



802 B. Gui

Therefore the action of B; ; on L(m, T )x is

L(m, Dy = L(as, 3)L(az, L) L(a1, I1)x

id,'3 ®id,‘2 ®ﬁ,'] k ~ ~ ~
————— L(as3, I3)L(az, I2)B;, xL(ay, I1)

= L(a3, 3)L(az, )R (a1, I1)x = R(ay, 1) L(a3, [3)L(az, I)x

idi; ®8;, k ®id;| ~_ . ~ ~

————— R(ay, [1)({ds; ® By, 1) L(as, I3)L(az, I2) x

= R(ay, I1)L(a3, I3)B;, xL(az, I2) x

= R(a1, I1)L(a3, 3)R(az, ) x = R(ay, [1)R(az, I2)L(a3, I3)x
Bi3,k®idi2®id,‘1 ~ ~ ~ ~ ~ -
—————— R(a1, [))R(az, [2)Bi; xL(a3, I3)x = R(ay, [1)R(az, )R(a3, I3) x.

Hence (3.47) is proved.

Finally we extend &, lo¢ t0 a categorical extension & = (A, €, @, M). This will finish
our proof For any ‘H; € Cﬁ we can find H,O € P and anisometric F' € Hom 4 (H;, H;,).
For any Ted, we set DN; (I) = S)JT,O(I) Ifn=mce¢ 93?,0(1) =M (I) and Hy € €,
we define L(m, I) € Hom 47y (Hk, H; @ Hy), R(m, I) € Hom 4(je)(Hi, Hx B H;)
satisfying that for any y € Hy,

Ln, Dx = (F*®idg)L(m, Dy,
R(n, Ny =BixL(n, I)x = (idx ® F*)R(m, ).

This construction makes & a categorical extension of A. Its closure & = (A, €, &, H)
is the desired vector-labeled closed categorical extension containing &'°¢. O

We now give an application of this theorem.

Definition 3.16. A left operator of é?l"c = (A, F, &, 9) is a quadruple (A, a, I, M),
where a is an element, H; € %,1 € J, and for any Hy € €, there is a bounded linear
operator A(a, I) € Hom g(;cy(Hy, H; B Hy), such that the following conditions are
satisfied:

(a) If Hy, Hy € €, F € Hom 4(Hy, Hy ), then the following diagram commutes.

_r Hy
m«hl anl . (3.48)

H 0 H 25 4 8 Hy

(b) ForanyH; € F, Hy € €, J € J clockwise to T, and any by € .‘rjj(f), the following
diagram commutes (not necessarily adjointly).

R(bo,J)

A(ai)l A(a,T)l . (3.49)

R(bg.J’
D M mH B H;
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Similarly, a right operator of & s a quadruple (B, b, 7J. ,’H;), where b is an el-
ement, H; € ¢,J € J, and for any Hy € %, there is a bounded linear operator
B(b, J) € Hom 4y (Hx, Hi © 'H;), such that the following conditions are satisfied:

(a) If Hk, Hy € €, F € Hom 4 (Hy, Hy), then the following diagram commutes.

B(b,])

Hy —— HiOH;
Fl F®m1l . (3.50)
He 20D 4 o,

(b) For any H; € F,Hy € €, T € J anticlockwise to J, and any ap € i (I), the
following diagram commutes.

B(b,J
Hi #) Hir B H;
L(uo,IN)l L(uO,IN)l . (3.51)
B(b,J)

H; & Hx H; B Hr B H;

Theorem 3.17. Let (A, a, I, H;) and (B b, 7, Hj) be a left operator and a right op-

erator of &' = (A, F, @, 9), where T is annclocszse to J, and Hi, Hj € €. Then
these two operators commute adjointly, in the sense that for any Hy € €, the following
diagram commutes adjointly.

BOD Ly mH,
J
A(ai)l A(a,f)l . (3.52)
o7
M B H —D s o e B

Proof. By step 2 of the proof of Theorem 3.15, we can construct a categorical extension

= (A, €, 3, M) such that any left (resp. right) operator of &'°¢ is also a left (resp.
right) operator of &. Let & be the closure of &. Set &€ = A(a, T)Q € H;(I). Then for
any Hy € €, ¢ € M (J),

A(a, DR(c, N = R(c, NA(a, Q2 = R(c, ))€ = R(c, )L, DR
= LE, DR(e, HS.

Therefore A(a, 1) ) equals L(§, T ) when acting on any H; € %. Similarly, if we let
n = B(b, J), then B(b, J) equals R(n, J). Therefore A(a, I) and B(b, J) commute
adjointly. O
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4. VOAs and Categorical Extensions

4.1. Tensor categories of VOAs. We review the construction of tensor categories for “ra-
tional” vertex operator algebras (VOAs) by Huang—Lepowsky. See [Hua08b] for more
details. The reader is also referred to [Guil7a] Sect. 2.4 for a sketch of this construction.
The notations we will use in this paper are close to those in [Guil7a].

Let V be a VOA of CFT type. This means that V has grading V = @nez>o V(n)
with V(0) = CQ where 2 is the vacuum vector of V. We let Rep® (V) be the category
of semisimple V-modules. So if W; € Rep**(V), we assume that W; is a finite direct
sum of irreducible V-modules. In this paper, unless otherwise stated, a V-module Wy
is always assumed to be semisimple. We also assume that the eigenvalues of Ly on W;
are real. For any s € R, we let P be the projection of W; onto the s-eigenspace W;(s)
of L. If w® € W; is homogeneous (i.e., an eigenvector of L), we let A ) be the
conformal weight (the corresponding eigenvalue) of w®. A vector w®) € W; is called
quasi-primary if it is homogeneous and L w®) = 0.

For any W;, W;, Wi € Rep*®(V), we let V(l.kj) = V(W%Vj) be the vector space of
intertwining operators of V. (See [FHL93] for the general theory of intertwining oper-
ators of VOAs.) If Y, € V(l.k .), we call W;, W;, Wy the charge space, the source space,

J
and the target space of ), respectively. We assume the following:

Condition A. For any W;, W;, Wy € Rep**(V), the vector space V(,.kj) is finite dimen-
sional.

For each equivalence class of irreducible V-modules, we choose a representing module,
and £ be the set of these V-modules. We let £ contain the vacuum module Wy = V. We
shall also write i € £ if W; € £. The second condition we require on V is:

Condition B. For any W;, W; € Rep*(V), there are only finitely many Wy € & satis-
fying dim V(%) > 0.

Now we can define a tensor bifunctor I on Rep® (V). For any W;, W; € Rep*(V),
we define

k *
W,-,-EW,NW,:@\J(. ) ® Wi (4.1
ke& Ly
where V(ikj)* is the dual vector space of V(ikj). Note that here V(ikj) is finite dimen-
sional, and the sum of k is finite by condition B. The action of V on W;; is

Yij(w.x) = Pid® Ye(v.x)  (weV) 4.2)

where Y} is the vertex operator describing the action of V on W;, and x is a formal
variable.

When k£ € &, any intertwining operator ), € V(l.kj) is naturally a linear map
V(ikj)* — C, which can be extended naturally to a homomorphism of V-modules
W; X W; — W,. For general W, € Rep™(V), v(l.kj) can also be identified with
Homy (W; X W;, W) using the following identifications

k
v(i j) ~ @v(i’j) ® Homy (W,, Wy),

te€
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Homy (W; & W;, W) ~ @5 Homy (W; & W;, W,) ® Homy (W, Wy).
te€

The tensor product of F € Homy (W;, W;,), G € Homy (W}, W},) is defined in the
following way. For each k € £ we have alinearmap (FQG)' : V(, k ) — V(”kjl) such

2 )2

thatif ) € V(izka)’ then (F ® G)'Y € V(ilkjl)’ and for any wi) e Wi, wl e Wi,
(F® &' Y)w, v)w = Y(Fw, x)Guw. 4.3)

Then F ® G : V(l1 ]1) — V(izka)* is defined to be the transpose of (F ® G)!, and can
be extended to a homomorphism

F®G=EPF®G) @id: Wy BWj, - Wi, I Wj,.
ke&

To construct associativity and braid isomorphisms, we need to consider products and
iterations of intertwining operators. For any V-module W;, we let W; denote its con-
tragredient module. A sequence of intertwining operators Vg, - . ., Va, of V is called
a chain of intertwining operators, if the source space of ), equals the target space of
Yoy forany m = 2,3,...,n. We will also take the complex-analytic point of view

instead of the formal one for intertwining operators. For any ), € V(ikj), and any

w® e Wi, w) e W;, w® ¢ We, z € C = C\{0},

(ya(w(i)’ z)w("'), w@)) — <ya(w(i)’ x)w(./')7 w(z)>| (4.4)

X=z

depends not only on z but also on the arg-value arg z of z. We regard )V, w®, Hw) asa
vector in the algebraic completion W of Wy, which is also the dual vector space of Wx.

Condition C. Let Yy, , ..., Va, be an arbitrary chain of intertwining operators of V.
For each 1 < m < n, we let W;, be the charge space of V,,. Let W;, be the
source space of Vy,, and let Wy be the target space of V,,. Then for any w) ¢
Wiy, wi) ¢ Wi, ..., win) ¢ Wi, w® e Wy, and arg-valued z1, 22, ..., 2y € C such
that 0 < |z1| < |z2] < -+ < |zul, the expression

Ve W 7)Y, (w0 20 1) - Yy (0, 2w 0 ®)) (4.5)

converges absolutely and locally uniformly, which means that there exists a neighbor-
hood U of (z1, . .., zn) inthe n-th order configuration space Conf,, (C*) of C* = C\ {0},
such that the series

Z |(y01,, (w(in), Cn)Ps,l,lya,,,l (w(in_l)v é‘n—l)Pxn,z

51,82,..0,8n—1€ER
o Py Vo, (', cyw® @y | (4.6)

converges and is uniformly bounded for all (1, ..., ;) € U. Here each Py, (1 <m <
n — 1) is the projection of the target space of V., onta its weight-s,, component. More-
over; the function locally defined by (4.5) for any (z1, ..., zn) € U can be analytically
continued to a multi-valued holomorphic function on Conf, (C*).
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Thus one can construct all genus-0 conformal blocks using products of intertwining
operators. Using the braid operators B : V(l.kj) — V(jki) defined by defined by
Voo, 2w = (BLY) V), uw® = 1Y w0, T u @)

(where arg(e®"%) = 47 + arg z) for any ), € V(ikj), w® e Wi, w) e W, one can

show that for any ), € V(ikj), w® e W;,w) € W;, the iteration of two intertwining
operators

VeV w?, z; — z)wP, 7))

converges absolutely and locally uniformly whenever 0 < |z; — z;| < |z}, in the sense

that for any w® e W, w® e Wz, there exits a neighborhood U C Conf,(C*) of
(zi, zj), such that the series

D Vs (PaYaw®, 2 — 2w, 2w |w®)]
aeR

converges and is uniformly bounded for all (¢;, {;) € U. We assume that iterations and
products of intertwining operators can be related in the following way:

Condition D. Ler ), € V(l.lr), Vs € V(jrk), zi,zj € C* satisfying 0 < |z; —
Zjl < lzjl < lzil, and choose argz;,argz;, arg(z; — z;). Then there exist W €
Rep*(V), Yy € V(l.sj), Vg € V(S’k), and a neighborhood U C Conf»(C*) of (z;, z),
such that forany w® € W;, w) € W;, andany (&, ¢;) € U witharg §;, arg £, arg(¢; —
¢j) close to arg z;, arg zj, arg(z; — z;) respectively, the following equation holds when
acting on Wy:

Vuw®, eV, ¢j) = Vo Vo w?, ¢ — £Hw'?, ¢)). (4.8)

Thus, products of intertwining operators can be written as iterations of intertwining
operators. Using the braid operators B, one can easily prove the converse statement,
i.e., iterations can be expressed as products of intertwining operators.

We are now ready to define the associativity isomorphism. Given three V-modules
Wi, W;, W, we have natural identifications

t\* s\*
(W; W) KWy = EBV(M) ®V<i j> ® W, (4.9)
s,te€
t * r *
K (W; X = . 4.1
W, & (W; ® W) SBV(" r> ®V<jk) W, (4.10)

Choose basis O, CHY !

i @; ¢ of these vector spaces of intertwining operators. Choose
arg-valued z;,z; € C* satisfying 0 < |z; — zj| < |zj] < |z;| and argz; = argz; =
arg(z; — zj). Forany r, t € E,ac ®§r, B € G);.k, there exist unique complex numbers
Ffﬂa (YS €& o Ae @fj, B’ € ©!,) independent of the choice of z;, z;, such that for
any w® € W;, w) € W;, we have the fusion relation

Vaw® 2 Ve 2y =" Y F Ve Qe 5 — 2w, z)).
sef a'c0};,p'c0),

@.11)
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Thus {F, f ﬂa } can be regarded as a matrix, called fusion matrix. This matrix is invertible,
as one can write iterations as products of intertwining operators, which gives the inverse

matrix of {F fl;a/}. For each t € £, define an isomorphism

& r@V(itr) ¥ V(fk) ” %V(sg ® V<isf>’

Ve ® Vs> D > F V@V (4.12)

o ! =S ’ 12
se€ a €0y, p'€0),

Then A is independent of the basis chosen. Define

r\* s \* £\ * A\
A'TGE?V(S/) ®V(i j) _)EBV<”> ®V(jk> (4.13)

re€

to be the transpose of A', and extend it to

A=) "A®id : (W, RW)) R W, > W; B (W; B W). (4.14)
te€

Then A is our associativity map. One can easily verify that A is functorial. Moreover,
A satisfies the pentagon axiom.

Let Wy = V be the identity object of Rep** (V). Then the isomorphism Wy X W; =
VX W; — W; is defined using the intertwining operator ¥; € V(; ;). Similarly, the iso-
morphism W; XV — W; is defined using the creation operator ) ;) of W;, whichis a
type (') intertwining operator defined by V() = B+Y; = B_Y;. These isomorphisms
satisfy the triangle axioms. Therefore Rep®* (V) is a monoidal category.

Condition E. The monoidal category Rep** (V) is rigid, i.e., every object has left and
right duals.

Finally we define the braiding. Let ; ; : V(ikj)* — V(jkl.)* be the transpose of

B, : v( ,",) - v(k) V> B,Y,
J1 )

and extend it to a morphism

Bi'j:ZBi’j ®id, : W, X W; — W; X W,;. 4.15)
te€

This gives the braid operator. These braid operators satisfy the hexagon axioms.
Therefore Rep** (V) becomes a rigid braided tensor category. We also define, for any
W; € Rep®(V), the twist 9; € Endy(W;) to be the action of ¢*7L0 on W;. Then
Rep** (V) becomes a rigid ribbon category (cf. [HuaO8b] theorem 4.1). In the case that
there are only finitely many equivalence classes of irreducible V-modules (i.e., £ is a
finite set), Rep® (V) is a ribbon fusion category.

We now relate  with the braid relations of intertwining operators. Let
Yo € V(l.tr), Vg € V(jrk), 7i, 2; € C* with |z;| = |z;|. Choose arg z;, arg z;. Then for
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any w®D e Wy, wl) e W;, the expression Vo (w®, zi)yﬂ(w(j), z;) is understood as a
linear functional on Wy ® W7 defined in the following way. If w® ¢ Wi, w® e Wz, then

Ve, 20 p P, 2w ®, w®) = lim (Vw220 Vp@ . 2w ®, w®),

(We set arg(rz;) = argz; when A > 0.) the right hand side of which is definable due to
condition C.

Foreachr, s, t € £, choose basis O , @;k, O, @;.S ofV(l.tr), V(jrk), V(isk), V(jts)

respectively. Using condition D and the braid operators B4, one can show that for any
rntel aec®

B E @;k, there exist unique complex numbers (Bi)g;ga/ (Vse&, a €

e, B € @’js), such that for any w® e W;, w/) € W, the following braid relation
holds for any w® e W, wW e W,

Ve )V 2y =" > Boh Ve, )V, z),
se€ a’e@fk,ﬁ’e(a;s

(4.16)

where the sign &= is +if z; is anticlockwise to z; (i.e.,arg z; < argz; < argz;+2m), and
1P
— if z; is clockwise to z ;. We can regard {( Bi)g ﬂa } as matrices, called braid matrices,

which again are invertible. {(Bi)gﬁa } depend only on the clockwise or anticlockwise
order of z; and z;, but not on the specific choice of z;, z;. Since we have

t * r *
WiRW;RWo =PV, ) ev( | ew, (4.17)
ir Jjk
r,te€
* *
t N
WiRW,Rwo =P V(. ) eVl | ew, (4.18)
VA ik

the isomorphism B;; ® idg : W; X (W; X Wr) — W; K (W; I W) restricts, for each
t € &, to an isomorphism

t * s * t * r *
®())) #7() - () =)
se& J s ! re€ Lr J
By (for instance) [Guil7a] proposition 2.12, the transpose of this map is given by
t t
©(/,) (i) - ()« (ih)
re€ br J se€ J s !

Va®Vs > Y. Y (Bl Yy @V (4.19)

sef a'e@) p'e0
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4.2. The intertwining operators L; and R;. In this section, we define, for any W; €
Rep**(V), a pair of intertwining operators £; and R; that are closely related to the
operators L and R in categorical extensions. Recall the definition of tensor product
WikWi = P, ce V(i’k)*@)W,.IfWi € Rep®(V),welet L; actonany Wy € Rep* (V) as

Wi&wk),suchthatforany w® e Wi, w® e wy

anintertwining operator of type (/%) = (" W,
1

andanyt € £, w' € W=, Y, € V(itk),
(i, )w®, Yy @ w?) = (Vuw®, )w®, w). (4.20)
This relation is simply written as

(LiwD, )w®, V) = Vo (w®, x)w®. 4.21)

Let ©, be a basis of V(i’k), and let {Y* : o € ©!,} be the dual basis, where each

JVJ“ is the dual element of ). Then we have another description of £;: for any w® e
Wi, w® e Wy,

Liw? Hwh =3" %" VRV, w®, x)yw®. (4.22)

o
te€ oce()ik

We also define, for any Wy, € Rep*(V), a type (l.ki) = (WW"I_%;‘; ") intertwining operator
Ri, such that for any w® e W;, w® e Wy,

Ri(w®, x)yw® =B 1 L (w®, x)w®., (4.23)

We write £; (resp. R;) as L; | (resp. R;|x) if we want to emphasize that the source space
of L; (resp. R;) is Wy.
It is easy to check that £ and R are functorial, in the sense that for any F' €
Homy (W;, Wir), G € Homy (Wi, W), w® € Wi, w® e W,
(F®G)Li(w?, x)w® = Ly (Fw?, x)Guw®, (4.24)
(G ® F)YR;(w?, x)w® = Ry (Fw®, x)Guw®. (4.25)

Our next goal is to prove the commutativity of £ and R. First we need a preparatory
result.

Proposition 4.1. Choose W;, W;, Wy € Rep*(V), and arg-valued distinct z;, zj € § 1
such that z; is anti-clockwise to z j. Then for any w® e Wi, wW) e Wi, w® ¢ Wk, the
following braid relation holds.

Liw® 2L, 2w = B @ id) L, )L, zpw®  (4.26)
It will be interesting to compare the above formula with Proposition 3.7.

Proof. Recall (4.17) and (4.18). Forany r, s, t € £, we choose basis ©’ ®;.k, OGN

ir’ s’

of ©!,, 87, 0", O of V(') V(j’k), V(j.’s), V(;*,) respectively. Then for any a €
o). f e o,

(Liw D, z2)L; D, z)w®, Ve @ Vp) = Vo ®, 20) Vs P, z)w®.
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Now for these basis intertwining operators we have the braid relation (4.16), where the
sign of £ is taken to be +. Therefore, by the discussion at the end of Sect. 4.1, the
transpose of 3 ® id on the vector spaces of intertwining operators is described by (4.19).
Thus we can compute that
(B0 ®idi) L, 2)Liw?, 2w ®, Yo @ Vp)
=3 Y B @ )L, zw®, Ve @ V)
se€ o' eOy <0,
=3 Y B Y )Y@, zu®
se€ a’e@jﬁk,ﬁ’ee)z.x
= Vo, z)Vp (", zj)w®.

Hence the proposition is proved. O

Theorem 4.2. Choose W;, W;, Wy € Rep*(V), w® € W;, w') € W}, and arg-valued
distinctzj,zj € S U such that z; is anti-clockwise to z j- Then the diagram

R'(w(j>,1')
Wi - Wi X W;

i) Liw®.)| (4.27)

R; (w(.i>’zj)
W, RW, —— W, KXW, B W,

commutes, in the sense that the following braid relation holds for any w® e Wj.:
Liw®, )R, zpw® =R, z)Liw?, zi)w®.

Proof. By hexagon axioms, B;;x = (id; ® B;x)(B;; ® idy). We thus compute, using
Proposition 4.1 and the functoriality of £;, that
R, 2 Li(w®, zp)w® =Bl z)Li(w®, z)w®
= (id; ® B0 B ®id)L; Y, z2))Li(w®, z)w®
= (id; ® B; ) Li(w?, z) L, zpw® = Li(w®, z)B; 4L (W, zj)w®
=Liw?, )R, z))w®.

We close this section with the fusion relation of L.

Proposition 4.3. Choose W;, W;, Wy € Rep®(V), and arg-valued distinct z;, z; € s!
such that 0 < |z; — zj| < |zj| < |zi| and arg z; = arg z; = arg(z; — z;). Then for any
w e W;, w) e Wi, w® e Wy, the following fusion relation holds.

Liw®, 2L, zpw® = Lij(Liw, zi — 2w, z)w®. (4.28)
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Proof. Foreachr,s,t € £ we choose basis ®§k, @fj, ek, @;k ofV(Stk), V(l.sj), V(i’r),

V(jrk) respectively, and assume that the fusion relation (4.11) holds. Choose any r, t €
E,aec® Be @;k,then

ir’

(LiwD, 20 LD, z)w®, Ve @ Vp) = Vo w®, 20) Vs P, z)w®.

On the other hand, the expression (£;; (L;(w®, z; — z)w, z))w®, Y, ® V), when
written more precisely, should be (£;; (£;(w®, z; — z))w, z))w®, ALY, ® Vp)),
where A is the associativity isomorphism. By (4.12), we have
(Lij(Liw D, zi —zpwD, z)w®, AV ® Vp))
=y > Ff,ga (Lij (L, zi — 2w, 2)pw®, Vg @ V)
s€€ o'€®};, /€0,
=3 > F YOz —zpw?, zpw®
se& oz/eG)"?j,ﬂ’e@ik

= Vuw®, z) Vg (w, z ) w®.

Thus our proof is complete. O

4.3. Unitarity. Beginning with this section, we assume the following unitary condition
(see [DL14,CKLW 18] for the definition of unitary VOAS):

Condition F. V is a unitary VOA with inner product {-|-) and PCT operator ©.

Recall that a V-module W; is called unitary, if W; is equipped with an inner product
(-|-), such that for any v € V, the vertex operator Y; (v, x) (where x is a formal variable)
on W; satisfies

Yi(v, x)" = Y (—=x"Hoev, x 7). (4.29)

Here 1 means the formal adjoint operation. So the above relation is equivalent to saying
that

(¥i(w, Dy ws’) = ¥y (=x ) 00v, xHu)

for any wY), wg) e W;.
Condition G. If W;, W; € Rep®(V) are unitarizable, then W;XIW  is also unitarizable.

By this condition, if W;, W; are unitarizable, then for any ¢ € &, V(itj) is trivial
unless W; is also unitary.

We let Rep” (V) be the category of unitary semisimple V-modules. Whenever W, € £
is unitarizable, we fix a unitary structure on W;. If ¢+ = 0, then the unitary structure on
Wy is chosen to be the one on V. Then one can define a ribbon categorical structure on
Rep" (V) in a similar way as for Rep** (V). Rep" (V) is clearly equivalent to a ribbon ten-
sor subcategory of Rep® (V). In the rest of this paper, we will always focus on modules
in Rep”(V) instead of in Rep®* (V).
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Note that for any W; € Rep"(V), the inner product (-|-) induces a natural anti-unitary
map C; : W; — W5, such that forany v € V,

Y:(v, x) = C;Y;(Ov, x)C; . (4.30)

(Cf. [Guil7a] equation (1.19).) We write w@ = C;w¥) for any w”) € W;. One can also
show that Co® : V = Wy — Wy is a unitary V-module isomorphism. Therefore V is
self-dual. We identify V with W using Co®. Under this identification, C is the same
as @~ = @. So by our notation, v = @v forany v € V.

Let us now equip the ribbon category Rep" (V) with a unitary structure. In the fol-
lowing, we assume that all modules are unitary. If ), € V(ikj), we define the adjoint

intertwining operator y; = ), to be a type (f] k) intertwining operator satisfying that
for any w) € W;,

Viw®, x) = Vor w®, x) = Yy (L1 (e xHLoyy® x~1T, (4.31)

Recall the creation operator ) ;) defined in Sect. 4.1. It is clear that V) = Lo =
Rilo. The adjoint intertwining operator YV, ¢y« of V() is called the annihilation operator
of W;. Now for any W;, W; € Rep"(V), t € &, we choose a basis ®l’.j of V(l.[j). Choose
any arg-valued z1, zo € C* satisfying 0 < |z —z1| < |z1| < |z2| andargz; = argzy =
arg(zo —z1). Then there exists a unique complex matrix {A*?} independent of the choice

of z;, z», such that for any wgi), wg) € W;, the following fusion relation holds.

Yi ety s 22 —zpwi’ 2y =Y > APVl 2)Vu ] 21). (4.32)

te€ a.e0;;

Recall that by our notation in the last section, Jv)“ € V(l.t /)* is the dual element of ), .

For each t € &, we define a sesquilinear form A on V(i’j)*, antilinear on the second
variable, such that for any o, 8 € ©! i
AQH|PP) = AP (4.33)

It is easy to check that this definition of A is independent of the choice of basis.

Condition H. Foreach W;, W; € Rep"(V), W; € &, the sesquilinear form A on V(l. ’j)*
is positive.

By the rigidity of Rep"(V) (Condition E), A is also non-degenerate (cf. [Guil7b]
theorem 6.7 step 3). Therefore, A is a (non-degenerate) inner product on each V(it 1.)*,

which can be extended naturally to an inner producton W; XW; = @, ¢ V(,' j)>k W,
under which W; X W; becomes a unitary V-module. One can show (cf. [Guil7b] chapter
7) that under these inner products, all the structural maps (associativity isomorphisms,
braid operators, etc.) are unitary. We thus identify the unitary V-modules W; X (W ; X W)
and (W; K W;) X Wy as W; X W; X Wy, and identify V X W;, W; X V as W;. Hence
Rep"(V) is a braided C*-tensor category. Moreover, if £ is finite, then Rep®(V) is a
unitary ribbon fusion category.
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Recall that for each W; € Rep"(V), L; acts on each W; € Rep"(V) as a type (,”j)
intertwining operator. We let ET acton each W; X W; as the adjoint intertwining operator
of £;|;, which is of type ( ) In other words, we let E lij = (Lil; )", In the remaining

part of this section, we shall show that £7 and R commute.
For any W; € Rep"(V), we let evy; € Homy (W7 X W;, V) be the morphism defined

by the intertwining operator YV, (i)+- Then for any wg') , wg) e w;,
ev; L (w(’) Ow) = y,((i)*(w L owd) = ﬂ(w(’) Owd). (4.34)
More generally, we have:
Proposition 4.4. For any W;, W; € Rep®(V), w® € W;, w'/) e W;; = W; X W;,
LD, 2w = (ev;; ® id)) L (wD, 2w, (4.35)

Proof. Choose any w(') g) e W;,wl) e W, and choose arg-valued z1, z such that
0 < |z2—2z1] < |z1| < |z2|and arg z; = arg 7o = arg(zp —z1). We first rewrite (4.32) us-
ing £. Note that Lo|  isjust Y, and Vi« = ElT |;. Therefore the left hand side of (4.32)is

L',O(L',T(w2 .20 — Zi)wgi),zl)w(j)
when acting on wW) e w ;. On the other hand, if we let ®§ j be an orthonormal basis of
V(l.t j), and write £; as (4.22), then it is easy to see that the right hand side of (4.32) equals
L; (w(l) 2)Liw\”, zpw?
when acting on w/). Therefore (4.32) is equivalent to
Lot @, 22 — 2w, 2w = £f@?, )L, 2w, @36)

Using Proposition 4.3, the functoriality of £ (equation (4.24)), and equations (4.34)
and (4.36), we compute

(evi; ®id) L7, )L !, 2w
= (ev;’,. ®id) Ly, (L), 25 — 2w, 2w
= Lo(ev;, .Lf(w_g), 2 — Z])w zl)w(’) = £0(£T(w2 ,22 — zl)wgi), 2w
= ﬁT(w(l) Zz)ﬁi(wgi), 2w
Thus we’ve proved (4.35) when both sides “acton” £; (w(i) 2w, Write £; (w(i) 1) =

ZHGR ﬁi(w('))nz_" 1 Then by [Hua95] lemma 14.5 (see also [Guil7a] proposition

A.1), (4.35) holds when acting on E,(wg ))nw(f) for any wi ), e W, w e Wi,n €
R. By [Hua95] lemma 14.9 (see also [Guil7a] corollary A.4), vectors of the form

Li (wgi))nw(j) span the vector space W;;. Therefore (4.35) is proved. |

We are now ready to prove the adjoint version of Theorem 4.2.



814 B. Gui

Theorem 4.5. Choose W;, W;, Wy € Rep®(V), w®d e w;, wh e W;, and arg-valued
distinctz;,z; € § U such that z; is anti-clockwise to z j- Then the following diagram com-

mutes in the sense of braiding of intertwining operators.

we el Wi & W,
z:j(m,z,ﬁ £,T<W,z,-)T (4.37)
wiEwe —2 0 m R W,
Proof. Consider the diagrams
worw, el W; & Wi )R W,
E;(m,z,‘)l ﬁ;(W,ml
wmw B W, —2 L g B R W (4.38)

evi; ®idkl evy; ®id;®id ; Jv

Ri (w(j), zj)
Wk _— Wi X W;.
The first small diagram commutes due to Theorem 4.2, the second one commutes due to
the functoriality of R (equation (4.25)). Therefore the large diagram commutes, which
is equivalent to the commutativity of diagram (4.37) by Proposition 4.4. O

4.4. Smeared intertwining operators. We recall the definition and some of the basic
properties of energy bounded intertwining operators. See [Guil7a] chapter 3 for more
details. We first fix some notations. If A is an unbounded operator on a Hilbert space H,
we let Z(A) be the domain of A. If A is densely-defined and preclosed, we let A denote
its closure, and A* = A" its adjoint. If A and B are densely-defined with common
domain ¥ = Z(A) = Z(B), we say that B is the (clearly unique) formal adjoint of
A, and write B = AT, if forany &, € 2,

(A&[n) = (§|Bn).

If A, B are preclosed operators on H, we say that A commutes strongly with B,
if the von Neumann algebra generated by A, A" commutes with the one generated by

B, B". (See [Guil7a] section B.1 for more details.) Therefore, by our definition, two
bounded operators commute strongly if and only if they commute adjointly.

Definition 4.6. Let P, O, R, S be Hilbert spaces,and A : P - R,B: Q — S,C :
P — Q, D : R — S be unbounded preclosed operators. By saying that the diagram of
preclosed operators

(4.39)

P, 0
Al Bl (4.40)
D
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commutes strongly, we mean the following: Let H = P & Q @ R & S. Define un-
bounded preclosed operators R, S on H with domains Z(R) = 2(A)® Z2(B)d RIS,
2(8)=2(C)® Q@ Z(D) ® S, such that

REGN®x D) =000PAE® By (Ve e Z(A),neZ(B),x €R,c€S),
SEPNDxDs)=00CED0D DY (VEe€eP(C),neQ,xeP(D),sed).

(Such construction is called the extension from A, B to R, and from C, D to S.) Then
R and S commute strongly.

Now we return to the unitary VOA V and its unitary modules. For any W; € Rep"(V),
we let H; be the Hilbert space completion of W;. Then L is a preclosed operator
on H; with dense domain W;. Its closure Ly is clearly self-adjoint. We set H® =

ﬂnez>0 2((1 +Lo)"). Then as W; C HP®, H;° is a dense subspace of H;. Vectors in
H?° are called smooth.

Let W;, W;, Wi € Rep"(V). For any ), € V(l-kj) and any homogeneous vector
w® e W;, we write Y, (w®, x) = ZneR Vo (w®),x~"1 where each YV, (w®), is a
linear map from W; to Wy. For any a > 0, we say that )/, (w(i), x) satisfies a-th order
energy bounds, if there exist M, b > 0, such that for any n € R, w) € W;,

1 Ve (WD), w D<M+ [nD? (1 + Lo)w ). (4.41)

By [Guil7a] proposition 3.4, if w'?) is quasi-primary and ), (w'?), x) satisfies a-th order
energy bounds, then so does Y+ (w®, x).

We say that J, (w®, x) is energy-bounded if it satisfies a-th order energy bounds
for some a > 0. We say that V is energy-bounded if Y (v, x) is energy-bounded for any
homogeneous v € V. We say that a unitary V-module W; is energy-bounded if Y; (v, x)
is energy-bounded for any homogeneous v € V.

We now define smeared intertwining operators for energy bounded intertwining oper-
ators (cf. [Guil7a] section 3.2). Recall the discussion of arg-valued intervals in Sect. 3.1.
For any 1= (I,arg;) € J and f € C°°(I) we call f = (f arg;) a (smooth) arg-
valued function on S! with support inside T, and let C °°(I ) be the set of all such f
We set the complex conjugate of f to be f (f,arg D). If IcJe J then C°°(I) is
naturally a subspace of C°°(J) by identifying each (f, arg I) € COO(I) with (f, arg J).

Now if Y, € V( ) w® e W; is homogeneous, YV, (w¥, x) is energy-bounded,
T=(,arg 1) € J and f = (f,arg 1) € C°°(I ) , we define the smeared intertwining
operator Y, (w'?, f ) to be a bilinear form on W; ® W satisfying

i0
Vuw?, f) = / Vaw®, e £(e) - S—dp. (4.42)
arg; (1) 2

Then Yy (w®, ) maps W; into H3°. Regarding Yy (w®, £) as an unbounded operator

from H; to Hy with domain W;, ), (w(i ), f ) is preclosed, the closure of which contains
H;?O. Moreover, we have

Ya@®, HHE CHE,  Valw, ) HP € HE.
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In the following, we will always denote by Yy (w, f) the restriction of the closed op-
erator Yoy (w®, f) to the core HS°. Then the formal adjoint Ve (w D, £)T exists, which
is the restriction of Y, (w®, f )* to HRe.

We now give formulae for the rotation covariance of smeared intertwining operators.
Recall that we have an action of ¢ on J defined in Sect. 3.1. Forany t € Rand I € 7,
write éxp(itLo)] = J = (J, arg;). We define a linear map t(¢) : C°(1) — C>(J),
such thatforany f = (f, arg I),v(t) f = (x(¢) f, arg) satisfies v(r) f (¢'?) = f(e!@D)
(VO € R). Then using the proof of [Guil7a] proposition 3.15, one can easily show that

"0y, w®, Pe o = Y, w®, & Pu = De(r) ) (4.43)

for any homogeneous w() € W; with conformal weight Ao Set f/ (€% = % fe'?)
and f’ = (f’, arg I). Then we have another version of rotation covariance

(Lo, Vo, )] = Vaw®, (Ayoy — D F +if), (4.44)

where both sides of the equation act on H?O. (See also [Guil7a] proposition 3.15.)

Next we relate ), (w(i ), f )T with the smeared intertwining operator of YV, = y; Lt
was proved in [Guil7a] proposition 3.4 that if ), satisfies a-th order energy bounds, then
so does Vy+. Now, forany a € R, f € C°(I), we set e, f = (eq f,argl) € C°(I),
where e, f is the smooth function on S' defined by

oy | €9 f(e?) ifo e arg;(I)
eaf(e )—{O if€i0¢1 .
Then for any homogeneous w) € W;,
. ~ e—iJT Aw(,‘) . ~
Yo ®, P = 3 —— = Ver L0, emiz2a ., ) (4.45)

meZ>0

(cf. [Guil7a] proposition 3.9), recalling that A ) is the conformal weight of w(®.
We also have braiding of smeared intertwining operators (cf. [Guil 7a] corollary 3.13):

Proposition 4.7. Choose disjoint T, = j, and z; € I,z; € J with arguments
arg,; (z;), arg; (z;) respectively. Suppose Wi, W;, Wi, W,., Wy, W, are unitary V -modules,

ya. € V(itb‘,), Vg € V(jsk), Yo € V(). Vs € V(jtr), and for any
w® e Wi, wl) e W, the following braid relation holds:

Yaw®, z2) Vg, 2)) = Yy w7, 2)Vor 0, 20).
Thenifw®, wY are homogeneous, Yy (w'?, x), Vg WP, x), Vyr (w®, x), yﬂ,(w(j), x)
are energy-bounded, and [ € C°(I), 8 € C°(J), the following equation holds when

acting on H°:

Ve ®, DYV, 3) = Vg (w, Ve (w?, f).
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This proposition, together with relation (4.45), implies immediately the following
main result of this section. Note that by our notation, if W;, W; € Rep"(V), then H;; is
the Hilbert space completion of W;; = W; X W;, and H;’;’ is the subspace of smooth vec-
tors. Similarly, if we also have W € Rep"(V'), then H;y; is the Hilbert space completion
of Wixj = W; X Wi X W;, and H;’,% is its smooth subspace.

Theorem 4.8. Choose W;, W;, Wy € Rep"(V), w® e w;, w) e W;, and disjoint
T, , Je j such that 1 is anticlockwise to J. Assume that w®, wY are homogeneous, and
Lilc(w®, x), L; |k (w?, x), lek(w(j), x), leik(w(j), x) are energy-bounded. Then
the diagram

R, 2)
00 J 00
_— _
Hk ij
Lw®.p| w7 | (4.46)
Rjw.2)

o0 o0
ik T > MLk

commutes adjointly, in the sense that both this diagram and the following diagram com-
mute:

R.(w(j)’g‘)
HY - HY
.ci<w~'>,f>ﬁ zxmmfﬂ : (4.47)
Rj(wd,2)

oo o
ik > k)
Proof. The first diagram commutes due to Theorem 4.2 and Proposition 4.7. The second
one commutes due to Theorem 4.5, Proposition 4.7, and relation (4.45). O

4.5. Conformal nets associated to VOAs. In this section, we discuss some relations be-
tween unitary VOAs and conformal nets as well as their modules. Let W; be a unitary
V-module. Then for any f = (f, arg I), the smeared vertex operator Y; (v, f) is inde-
pendent of the choice of arguments as Y; (v, z) is a meromorphic field. We thus write
Yi(v, f)as Yi(v, f). In particular, Yo = Y, and Y (v, f) is written as Y (v, f).

Condition I. The unitary VOA V is energy-bounded. Moreover, V is strongly local,
which means that for any disjoint I, J € J, homogeneous u,v € V, and f €
CX (1), g € C°(J), the closed operators Y (u, f) and Y (v, g) commute strongly.

Then by [CKLW18], there exists a (unique) conformal net A4y acting on Hy (the
Hilbert space completion of V. = W), such that for any I € J, Ay () is the von Neu-
mann algebra generated by all Y (v, f) and Y (v, f) (where v € V is homogeneous,
and f € C2°(I)). Moreover, the projective representation of Diff* (S 1) (and hence of
%) is integrated from the positive energy representation of the Virasoro algebra on V.
We call Ay the conformal net associated to V.

A unitary V-module W; is called strongly-integrable (cf. [CWX]), if W; is energy-
bounded, and there is a (unique) Ay-module (H;, 7;) € Rep(Ay), such that for any
I €J, feC>),and any homogeneous v € V, we have 7; (Y (v, f)) = Y; (v, f).
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We now show that the action of ¢ 4, on H; is integrated from the action of the Vi-
rasoro algebra on W;. For any n € Z we set e, € C®(S!) to be ¢,(¢!?) = ¢’ For
any f € C®(S 1y write f= ZneZ ane, where {a,} are the Fourier series of f, and set
T(f)=>,anLln—1 € VecC(Sl).Then T (f)isself-adjoint (namely,i 7 (f) € Vec(Sh))
when e_1 f is real. Recall that U and U; are respectively the representations of ¥4 on
Ho and 'H;.

Proposition 4.9. Let W; € Rep"(V) be strongly-integrable, and let H; be the corre-
sponding Ay -module. For any g € 9 4,,, if there exist f € ey - C° (S',R)and » € C
with |A| = 1 satisfying

g = EpUT (), 1Ty e Ga, € G x U(Ho), (4.48)

then U;(g) = re'Yi- 1),

Proof. Our strategy is to define a unitary representation U/ : 44, ~ 'H; satisfying the
claim of this proposition, and to show that U; equals the standard one U;.

Let W; = Wo @ W; = V @ W;. Then W; is strongly-integrable. By [TL99] the-
orem 5.2.1 (see also [CKLW18] theorem 3.4), there exists a (continuous) projective
representation 4; of ¢4 on H; such that for any f € e - C 2°(S!, R), the unitary oper-

ator ¢!¥i(": ) belongs to the equivalence class U;(€xXp(iT(f))) € PU(H,). Notice that
H; =Ho ® H; and

Vi I) = diag(e? ) o110y, (4.49)

Thus, for any gg € ¢ of the form éxp(i T (f)), any element of L{/(H;) belonging to the
equivalence class 4;(go) € PU(H;) takes the form diag(*Uo, ;) where Uy, U; are
unitary operators on Ho, H; respectively, and 2y is a representing element of U (go).
(Recall that U : 4 — PU(Hp) is integrated from the action of the Virasoro alge-
bra on V.) By Remark 2.5, ¢ is generated by elements of the form éxp(i T (f)) where
f ee -CX(S I R). (Here, we do not require f to be supported in some open in-
terval.) Thus the previous statement is true for any go € ¢. We now define a map
U' : 94, — U(H;) as follows. Choose any g = (g0, Vo) € Y4, C ¥ x U(Hy),
noting that 2y belongs to the equivalence class U(go). Then one can find a unique U;
such that diag(%Uo, ;) belongs to the equivalence class {;(go). We set U;(g) = ;. It
is easy to check that U] is a homomorphism of groups. We thus obtain a unitary repre-
sentation U i’ of 4 4, on H;. Moreover, if g is of the form (4.48), then, by (4.49), we have

Ul(g) = 1e'Yi0. 1) Therefore, to finish the proof, it remains to check that U; = Ul
By Remark 2.5, it suffices to show U/ (g) = U; (g) forany g = (EXp(iT (f)), re'Y 1))

satisfying I € J, f € e1-C2°(I, R), |A| = 1. This follows from the strong-integrability
of W;:

Ui(g) = i, 1(U(9)) = m; 1 (reT D) = 211D = Ul (g).
O

A more detailed study of the strong locality of VOA modules can be found in [CWX].
(See also [Tenl8] for related topics.) Here we give a criterion for strong integrability
which will be enough for applications to various examples. To begin with, we let C be
a full rigid monoidal subcategory of Rep" (V). In other words, C is a class of objects of
Rep" (V) satisfying the following conditions:
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(a) C contains the identity object V.
(b) If W; € C, then any subobject of W; is equivalent to an object of C.
(c) If W; e C, then its dual W5 is equivalent to an object of C.
(d) If W;, W; e Cthen W; X W; e C.
Definition 4.10. Assume that any unitary V-module in C is energy-bounded. If W; € C
and w¥) € W; is homogeneous, we say that the action w® ~ C satisfies the strong in-
tertwining property, if forany W;, Wy € C,and Y, € V(ikj), the following conditions
are satisfied:
(@) Vo (w®, x) is energy-bounded. . -
(b) For any homogeneous v € V, I € J, J € J which is disjoint from /, and
feC), g € CX(J), the following diagram of preclosed operators commutes
strongly:

Yj(v,g)

H; —8 s
ya<w(">,f>l ya(w“‘%fN)l : (4.50)
Yi(v.g)

Hr Hy

Let F be a set of objects of C. We say that F generates C, if any irreducible object
of C is equivalent to a subobject of a tensor product of elements in F. The following
theorem can be proved in a very similar way as [Guil7b] theorem 4.8.

Theorem 4.11. Let V be unitary and strongly local, C a full rigid monoidal subcategory
of Rep"(V), and F a set of irreducible objects in C. Assume that F generates C, and for
any W; € F, there exists anon-zero homogeneous w") € W; such thatw") ~ C satisfies
the strong intertwining property. Then any Wy € C is strongly integrable. Moreover, for
any W; € F,W;, W € C, )y € V(ikj), Te j J € J disjoint from I, and f €

C 20(7 ),y € Ay (J), the following diagram of preclosed operators commutes strongly.

i (y)
H; — N,
yﬂw”%f)l Valw®, ) l : (4.51)
7 (y)

Hr Hr

Note that Definition 4.10 does not rely on Conditions F and H. Indeed, if Cy is a
full rigid monoidal subcategory of Rep(V) whose objects are unitarizable, and if C is
the class of all unitary V-modules equivalent to some objects of Cp, then we can still
apply Definition 4.10 to C. Moreover, Condition H (restricted to C) will be a conse-
quence of strong intertwining property; see Remark 4.21 and Theorem 4.22. On the
other hand, under the assumption of Condition H, the strong intertwining property for
w® A C ' can be equivalently stated as follows; For any homogeneous v € V, and any
W; € C, I € J which is disjoint from I, and f € C°(I), g € C°(J), the following
diagram of preclosed operators commutes strongly:

V) (w.9)
Hj —— H,
LD, ;)l Lo, f)l : (4.52)

Yj(v.9)
Hij ———— Hij
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To see the equivalence of the two statements, note that condition (4.52) is clearly a
special case of the statement in Definition 4.10. Now assume condition (4.52). To prove
(4.50), we recall that ), can be identified with a morphism 7, € Homy (W; X W;, Wy)
in a natural way. Then Y, = T £;|; by equation (4.21). Since the two small diagrams
of preclosed operators in

Yi(v,8)
H; EEEEAGLIEN H;

£,-<w<“,f>l lz:,- w®, 7
Yij (v,
Hij ERUICTUIN Hij (4.53)

T l lTa

Y (v,
H, k(v,8) H,

commute strongly, we have the strong commutativity of the large diagram by Lemma
4.17, which is equivalent to the strong commutativity of (4.50).

We close this section with a density property. First, for each I € 7, we let Ay (1) oo
be the set of all x € Ay (1) such that xH?° C H;° and x*H;° C ‘H;° for any unitary
V-module W;. By [Guil7b] proposition 4.2, Ay (1) is a strongly-dense *-subalgebra
of Ay (I).

Proposition 4.12. Suppose that W; € F, w ) e W; is non-zero and homogeneous, and
(l) ~ C satisfies the strong intertwining property. Then for each W; € C and Ted,
vectors of the form L; (w(l) f)w(j) (where fe CSO(T) and w' € W;) spans a dense
subspace of H;j.
Proof. By|Guil7a] proposition A.3,foranyw € W;;andz € C*,if (w| L (w®, )wy =
0 for any homogeneous w) € W;, w'/) € W;, then w = 0. Since W; is irreducible, by
the proof of [Guil7a] corollary 2.15, if (w|L; (w(’) 2)w) = 0 for any homogeneous
w) e W;, then w = 0.

Let W be the closure of the subspace spanned by all Li(w(()i), f)w(-/ ) (where )7 €
C°°(I) and w) e W) which contains all £; (w(l) f)n (where f € Cf°(1~) and n €
H?O) We shall show that its orthogonal complement W+ is trivial. Suppose that we can
prove that W+ is an Ay -submodule of H; i If W+ is non-trivial, then by [Guil7b] corol-
lary 4;4, there iia non-zero vector w € W-. So (w|L; (w(()i), f)w(j)) = Oforany w'/)
W;, f € CX(I). Then, by our definition of smeared intertwining operator (4.42), we
have (w|£i(w(()i), 2w = 0forany w"/) € W; andany z € I whose argument is taken
to be arg; (z). Thus by the first paragraph, we must have w = 0, which is a contradiction.

We now prove that WJ- is Ay-invariant. Let D* = {z € C : |z] < 1,z # 0}. Fix
any & € W=, For any f € C°°(I) ye Ay (U)o, 1 € H°° by the strong intertwining

property,
L, Pmig) = (Liw’, Hynlg) = 0.

By the positivity of L, the function

= (y- 2L, Pinle)
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is a multi-valued continuous function on D, analytic on its interior, and (by (4.43))
equals zero on a small interval of S! containing 1. Thus, by Schwarz reflection principle,

the function is always zero. Thus (ye”LOE (w(’) f)n|§ = 0 for any f € C°°(I~), n e
H°° t € R,y € Ay(I)x. By (4.43), we conclude that (yL; (w(l) f)n|$ = 0 for
any JeJd, f € CE’O(J), n e Hoo,y € Ay (I°) 0. Another application of Schwarz

reflection principle shows that (e/"L0ye /Lo £; (w(’) gy =0forany J € J, f €
CxXWJ),ne ’H;?O, L cc Iy e Ay(I1)oo, t € R. Thus, for any K € J whose size is

smaller than that of 7¢, we have (yﬁi(w(()i), f)n|§) = 0 for any Jeld, JTG CSO(JN), ne
’H‘;O, y € Ay (K)oso. Thus W+ is invariant under the action of Ay (K)o whenever K

has smaller size than /€. Thus W+ is Ay -invariant by the additivity of conformal nets
and by the fact that Ay (K)o is dense in Ay (K). O

4.6. Vertex categorical extensions. Let V be unitary and strongly local. Let C be a full
rigid monoidal subcategory of Rep” (V) as in the last section. We assume that F is a gen-
erating set of irreducible objects in C satisfying the conditions described in Theorem 4.11.
Then by that theorem, any unitary V-module Wy in C can be integrated to an Ay -module
Hy. We define a x-functor § : C — Rep(Ay) mapping each Wy € C to F(Wy) =

If Wi, Wy € C, and G € Homy (Wi, Wy), then §(G) € Hom 4, (Hx, Hy) is the clo-
sure of G if we regard G as a densely-defined linear operator from Hj to H; with
domain Wy. Then by [CWX] or by [Guil7b] theorem 4.3, § : C — Rep(Ay) is a fully-
faithful *-functor. We now equip §(C) with the braided C*-tensor categorical structure
(F(C), @, B) naturally equivalent to (C, X, B) under the *-functor §. So, for instance,
if W;,W; € C, we set H; @ H; = H;; (not to be confused with H; X H; defined
by Connes fusion) to be the Ay -module integrated from W;; i = = W; X W;. The braid
operator B; ; : H;; — Hj; is defined to be the closure of B; ; : W;; — Wj;

Definition 4.13. Let C be a full rigid monoidal subcategory of Rep"(V), W;, W; €
C. Choose homogeneous vectors w') e W;, w\/) e W;. We say that the actions

w® wl) v C satisfy the strong braiding Aproperty, if for any Wy € C, I.Ted
such that 7 is anticlockwise to J, fecCcX),g e C°°(J ), the following diagram of
preclosed operators commutes strongly:

Ri(wW, )
He — % 5
Lo, | Lwp) (4.54)

R; (w(j),g;)
Hiy —— Hikj

Theorem 4.14. (Construction of vertex categorical extensions) Assume that V satisfies
Conditions A-1. Let C be a full rigid monoidal subcategory of Rep" (V) whose objects
are energy-bounded, and let F be a set of irreducible V-modules in C, such that F
generates C. Suppose that for each W; € F we can find a non-zero homogeneous vector
w® e W;, such that the following conditions hold:

(a) For any W; € F, the action w?) ~ C satisfies the strong intertwining property.
(b) Forany W;, W; € F, the actions w® wl) ~ C satisfy the strong braiding property.
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Then objects in C are strongly integrable, and there exists a categorical local extension
E = (Ay, §(F), 3, 9) of Ay, which can be extended to a unique vector-labeled

closed categorical extension & = (Avy, §(©C), @, H). Moreover, & is conformal.
Proof. Foreach I € J,W; € F, we let $5;(I) = C®°(I) x Ay(I). Choose a =
(f.x) e C() x Ay(I) = $;(I). For each Wy € C, consider the left polar decompo-

sition £; |x (w®, f) = U H of the closed operator £; ¢ (w®, f) from Hy to Hix, where
U is the partial isometry (the phase) from Hy to H;x, and H is the self-adjoint operator
on Hj. We write the phase U as Uil (w®, £). Similarly, we let Vile(w?, f) be the
phase of R; [x(w®, f).

Now for any E(k) € Hj, we define

L(a, DE® = Ui[p(w?, Hme0)g®,  R(a, HE® = Vi [y (w®, HHme(x)e®.
(4.55)

We now verify that such construction makes &' = (Ay, §(F), &, H) a categorical
local extension of Ay. By the strong intertwining property and Theorem 4.11, the ac-
tions of L(a, I) and R(a, I) on Hy satisty L(a, I) € Hom g(¢)(Hk, Hix), R(a, I) €
Hom 4;¢y(Hk, Hii)- Isotony is easy to check. Since £; and R; are related by the braid
operator B3, so do their phases. So braiding is checked. Neutrality follows immediately
from the braiding and the coherence theorem of B. Functoriality follows from (4.24),
(4.25). The Reeh—Schlieder property and the density of fusion products follows from
Proposition 4.12. Finally, locality follows immediately from the strong braiding property.

Thus we’ve proved that £1°° = (Ay, F(F), &, H) is a categorical local extension.
By Theorem 3.15, there exists a unique vector-labeled closed categorical extension
& =(Ay, 30,3, H) containing &'°¢. By Theorem 3.13, & is conformal. O

Corollary 4.15. Assume that V and C satisfy the conditions in Theorem 4.14. Then
(C, K, B) is equivalent to a braided C*-tensor subcategory of (Rep(Ay), X, B) under
the x-functor §.

Proof. This follows immediately from Theorems 4.14 and 3.10. O

The construction (but not just the existence) of the conformal categorical extensions
in Theorem 4.14 is very important to us. We call them vertex categorical extensions. In
the following we give some criteria for the strong intertwining and braiding properties,
which are the crucial conditions required in Theorem 4.14. The following lemma can
be proved using results in [TL99] (see [Guil7a] theorem B.9)

Lemma 4.16. Let D be a self-adjoint positive operator on a Hilbert space H, and let

H® = ﬂn€Z>O 2D(D") be the dense subspace of smooth vectors in H. Suppose that

K, T are precl/osed operators on 'H satisfying the following conditions:

(a) D(K) = D(T) =H®, KH>*® C H®, TH*® C H*™.

(b) K is symmetric, which is equivalent to saying that K = K or K C K*.

(c) KTE = TKE forany & € H™.

(d) There exists m € Zxq, such that for any n € Zxq, we can find positive numbers
|K|n+lv |K|D,n+lv |T|n+m> such thatfor all& € Hoo,

I(1+ DY KE| < K|t ll(1+ DY &], (4.56)
I(1+ D)" (DK — KD)&|| < |K|pasil(1+ D) &], (4.57)
I(1+DY'TEN < T lnam I (1 + D)™ E]. (4.58)

Then K is self-adjoint, and T and K commute strongly.
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The above lemma can be applied to the situations where one of the two preclosed
operators A and B is symmetric. In the case that neither of them is symmetric, we need
to decompose A into its real and imaginary parts A = H +iK (where H and K are
symmetric), prove the strong commutativity of H, K with B, and finally show the strong
commutativity of A and B by linearity. However, to be rigorous, we have to first verify (at
least in our situations) that linear sums preserve the strong commutativity of preclosed
operators. This is achieved by the following very useful lemma.

Lemma 4.17. Let P(z1, - , zm) and Q(L1, - - - , &n) be polynomials of z1, . . ., Zm and
1, .-, &y respectively. Let D be a self-adjoint positive operator on 'H, and set H>® =
ﬂn€Z>0 2(D"). Choose preclosed operators Ay, ..., A, and By, ..., B, on H with

common invariant (dense) domain H™>. Assume that there exists ¢ > 0 such that
P A, e D commutes strongly with B for any r = 1,...,m,s = 1,...,n, and
t € (—e¢,¢). Assume also that the unbounded operators A = P(Ay, -+ .Ap), B =
Q(By, -+, By) (with common domain H®) are preclosed. Then A commutes strongly
with B.

Note that here P(Ay,---.A,) and Q(By,---, By) are understood in the obvi-
ous way, i.e., by substituting the operators into the polynomials. So, for instance, if
P(z1,22,23) = 22123 +z% then A = 24, A3+A%. Note also that an invariant domain of an
unbounded operator means that this domain is invariant under the action of this operator.

Proof. We first prove the special case when m = 1 and P(z1) = z1. Then A = A;. Let
M be the von Neumann algebra generated by A, A", and choose an arbitrary x € M.
Then it is not hard to show that for any & € C°(—e¢, ¢) satisfying fs h(t)dt =1, the

operator x; = fgs P xe=Pp(r)dr satisfies x, H® C H®, X H™® C H™ (see, for
example, the proof of [Guil7b] theorem 4.2), and that as & converges to the delta-function
at 0, xj, converges strongly to x. Now, by assumption, each x;, commutes strongly with
any By. Therefore, x4 B¢ = Byxj&, x; By = Byx;& for any £ € H™ and any s =
1,..., n. By the invariance of H°° under By, ..., B,, we have x, BE = Bx;&, x; B¢ =
Bx; & forany & € H>, whichimplies the strong commutat1v1ty of xj, and B (see [Guil7a]

section B.1). Since x;, converges strongly to x, x and B also commute strongly. Thus
‘A and B commute strongly. Note that for any ¢ € (—¢, ¢), e''P Ae=iD and By, . .., B,
satisfy a similar condition. Therefore ¢/'? Ae~/'P also commutes strongly with B.
Now for general m and P, we know from the last paragraph that A, commutes
strongly with e /P B¢’ forany r = 1,...,m and t € (—e, ¢). Therefore, by the last
paragraph again, B commutes strongly with A. O

Using the above two lemmas and the rotation covariance of smeared intertwining
operators (4.43), one can prove the following theorems.

Theorem 4.18. Let V be unitary and strongly local, C a full rigid monoidal subcategory
of Rep* (V) whose objects are energy-bounded. Choose W; € C, and a quasi-primary
vector w') € W;. If Li|x(w®, x) satisfies 1-st order energy bounds for any Wy € C,
then the action w) ~ C satisfies the strong intertwining property.

Proof. See either step 2 of the proof of [Guil7b] theorem 4.8, or the proof of the next
theorem. O

Theorem 4.19. Let V be unitary and strongly local, C a full rigid monoidal subcategory
of Rep*(V). Choose W;, W; e C, quasi-primary w @ e W;, and homogeneous w'/) e
W;. Ifforany Wy € C, L;|x (w(’), x) satisfies 1-st order energy bounds, and L j | (w9, x)
is energy bounded, then the actions w), w'") ~ C satisfy the strong braiding property.
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Proof. For each I~, J € J with T anticlockwise to f, and any f IS Cé?o(f), ge Cé?o(f),
consider the diagram

Rilkw.2)

He ———
Chw®. 7| Lilg@®.7| - (4.59)
Rk

Hix ———— Hixj

Set H = Hi ® Hij ® Hix ® Hixj and H® = HP & H,fj’ OHE D H?,f/., and extend
LileD, 1), Lilg @@, f) (esp. Rk, §), Rjlix(w?, §)) to a preclosed oper-
ator A (resp. B) on 'H (see Definition 4.6). Let H = (A +AT)/2 and K = (A— AT)/(Zi)
be symmetric operators on H with domains H*>°. By Lemma 4.16, Theorem 4.8, the
energy bounds conditions of intertwining operators, the adjoint formula (4.45), and Eq.
(4.44) which shows the energy bounds of [Lo, H] and [L¢, K], the preclosed operators
H and K commute strongly with B. Therefore, by (4.43) and Lemma4.17,A = H+iK
commutes strongly with B. O

We summarize the results of this section in the following theorem which will be
convenient for applications.

Theorem 4.20. Assume that V satisfies Conditions A-1. Let C be a full rigid monoidal
subcategory of Rep" (V) whose objects are energy-bounded, and let F be a set of irre-
ducible V-modules in C, such that F generates C. Suppose that for each W; € F we can
find a non-zero quasi-primary vector w?), such that whenever W;, W; eF, Wi eC, the
intertwining operators L; | (w¥, x) and Lilk (wP, x) satisfy 1-st order energy bounds.
Then objects in C are strongly integrable, and there exists a vertex categorical exten-
sion & = (Ay, F(C), @, B) of Ay. Consequently, (C, X, B) is equivalent to a braided
C*-tensor subcategory of (Rep(Ay), X, B) under the x-functor §.

Moreover, if W, W; € C, w® ¢ Wi, and w® e W, are homogeneous, and w® ~,
C,w®D ~ C satisfy the strong intertwining property, then the actions w'™, w® ~ C
satisfy the strong braiding property.

Proof. The claim of the first paragraph follows directly from what we’ve proved in
this section. We now prove the second half. For each I € J, f € C°(I), we con-
sider, for any Wy € C, the preclosed operator £h|k(w(h), f) from Hy to Hyy. Let
Lulk(w™, ) = HU be the right polar decomposition, and let H = f0+°° AdEL (L) be
the spectral decomposition of the positive operator H. Now choose an arbitrary A > 0,
andleta = (X, f). We define a bounded linear operator A(a, I) acting on any Hj (where
Wi € C), such that for any €% e Hy,

A(a, DE® = Ex() Lalkw®, HE®.

Then by the strong intertwining property of w® A~ C, A(a, IN) € Hom 4, (r¢) (Hk, Hax).
By the functoriality of £ and Theorem 4.19, (A, a, IN, ‘Hp) is a left operator (see Def-
inition 3.16) of the categorical local extension £°° = (Ay, F(F), &, ) constructed in
Theorem 4.14. . _ -

Similarly, for any J € J clockwise to I, any § € C°(J), and any Wy € C, we take

the right polar decomposition R, | (w,2) = H'U’, take the spectral decomposition
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H = [ udE; (1), choose an arbitrary o > 0, and let b = (u, g). Then there is a
right operator (B, b, J, H;) of &lcsuch that for any é(k) € Hy,

B(b, NE® = E () Rile(w®, g)g®.

Therefore, by Theorem 3.17, the diagram

E (Rl (w®,2)
k Hi

Ek()\)LHk(w(h)»f)l lEkl(A)Lh‘kl(w(h)»f)

E (R i (w®,2)
Hhk Mk

commutes adjointly for any A, u > 0. This proves the strong commutativity of the
diagram

Rilew®,g)
Hy ————————— Hy
Ly Ik(w(h),f)l l‘cll k(W™ f)
Rilnk (w®.3)

Hwe —————— Huu
for any W € C. Therefore w™, w® ~ C satisfy the strong braiding property. O

Remark 4.21. We remark that in Theorems 4.14 and 4.20, Condition H is not necessarily
needed. By all the other conditions and the strong intertwining property, we can prove
the positivity of the sesquilinear form A on V(l. tj) forany W;, W; € C, W, € £ using the
arguments in [Guil7a,Guil7b]. Thus C is a braided C*-tensor category, which is enough
to prove these theorems. Indeed, in [Guil 7b] we gave two criteria (conditions A and B in
Sect. 5.3) for the positivity of A, both concerning the (1-st order) energy bounds condi-
tions for intertwining operators. The reason these energy bounds conditions are required
is to guarantee the strong intertwining property, which is the essential property for prov-
ing the main results of that paper. Those results clearly hold if we replace the 1-st order
energy bounds condition with the more general strong intertwining properties.'® Thus,
let us summarize the positivity result in [Guil7a,Guil7b] in the following theorem.

Theorem 4.22. Assume that V satisfies Conditions A-F and 1. Let Cy be a full rigid
monoidal subcategory of Rep(V') whose objects are unitarizable and energy-bounded.
Let F be a set of irreducible V-modules generating Co, and fix for each W; € F a
unitary structure. Let C be the C*-category of all unitary V -modules equivalent to some
objects of Cy. Suppose for each W; € F we can find a non-zero homogeneous vector

18 [Guil7b] conditions A and B require that the homogeneous vectors are quasi-primary. This is not
necessary once we know the strong intertwining property. Indeed, the quasi-primary condition is used only in
the following two places: (1) If w is quasi-primary and Vy (w'D, x) satisfies 1-st order energy bounds, then
the adjoint intertwining operator Y (w (@ x) also satisfies 1-st order energy bounds, cf. [Guil7a] proposition
3.4. (2) The formula for the adjoint of generalized intertwining operators, cf. [Guil7b] corollary 5.7. Now
(1) is used only to prove the strong intertwining property. As for (2), it is not hard to write down the adjoint
formula for general homogeneous vectors using the non-smeared version of [Guil7a] equation (3.25) and
[Guil7b] remark 5.6. Therefore one can safely drop the quasi-primary condition once the strong intertwining
property is known.
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w® e W; such that w® ~ C satisfies the strong intertwining property. Then for any
Wi, Wy € C, W; € &, the sesquilinear form A on V(jtk)* is positive. As a consequence,
C becomes a unitary ribbon fusion category.

Here the notions of full rigid monoidal subcategories and generating sets of objects
are understood in the same way as in Sect. 4.5.

5. Examples and Applications

In this chapter, we apply the main results in the previous chapter (mainly Theorems
4.14 and 4.20) to various examples. Let us assume that V is a unitary regular VOA
of CFT type. Here “regular” means that any weak V-module is completely reducible
[DLMO5]. Then V satisfies Conditions A—F by a series works of Huang and Lepowsky
[HL95a,HL95b,HL.95¢c,Hua95,Hua05a, HuaO5b, Hua08a, Hua08b]. Examples of such
V include unitary Virasoro VOAs (minimal models), unitary affine VOAs (WZW mod-
els), and lattice VOAs (cf. [DLM95]). For these examples, all semisimple representations
are unitarizable. (See [FQS84,Wang93] for unitary Virasoro VOAs, [Kac94,FZ92] for
unitary affine VOAs, and [FLM89] or [LL12] for lattice VOAs.) Therefore Condition G
holds for these examples. Unitary Heisenberg VOAs also satisfy Conditions A—G. In-
deed, the convergence of products of intertwining operators (Condition C) can be checked
directly using the explicit construction of intertwining operators (the well known “vertex
operator” construction). One can also compute by hand the tensor categorical structures
of their representation categories using the braid and fusion relations obtained in [DL93].
A detailed discussion will be given later in this chapter. Condition I also holds for all
these examples: see [BS90] section 2 for Virasoro, affine, and Heisenberg VOAs; see
[TLO4] chapter VI for lattice VOAs (see also [Guil8] theorem A.6).

In the following, we will verify the strong intertwining property and the strong braid-
ing property for many of these examples. As discussed in Remark 4.21, the positivity
of the sesquilinear form A, and hence the unitarity of the relevant braided ribbon fusion
categories are consequences but not assumptions of these analytic properties.

5.1. Unitary Virasoro and affine VOAs. Suppose that V is a unitary Virasoro VOA
L(c,0) (¢ < 1), or a unitary affine VOA L4(l,0) at level [ € Zx(, where g is a
complex simple Lie algebra of type A, C, or G». Then by the works of [Loke94]
(for Virasoro VOAs), [Was98] (for type A affine VOAs), [Guil8] (for type C and G,
affine VOAs), there exists a set F of irreducible unitary V-modules, such that for any
W; € F, Wy € Rep"(V), and any lowest weight vector w') € W; (which is automati-
cally quasi-primary), the intertwining operator £; | (w®, x) satisfies 1-st order energy
bounds. (Indeed, except for type G, affine VOAs, the 0-th order energy bounds hold.)
In the case V = L(c,0) where ¢ = 1 — ﬁ (m = 2,3,4,...), we can choose
F = {L(c, h12), L(c, ha2)}, where foreach r = 1,2,....m — 1,s = 1,2,...,m,

hys = % is the highest weight of L(c, h,5). If V. = L4(l,0) and g is of
type A, C, G, one can choose L (/, [J) to be the smallest (in the sense of the dimension of
the lowest weight subspace) non-vacuum irreducible V-module, and let 7 = {L(I, 1J)}.
Thus, by Remark 4.21 or by [Guil7b] theorems 6.7 and 7.8, the sesquilinear form A
is always positive, and Rep"(V) is a unitary fusion category. By [Gal12] theorem 3.5,

Rep" (V) admits a unique unitary ribbon structure (which, by [Guil7b] section 7.3, is
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defined by the twist e2imLoy, By [HuaO8b], the S-matrix is non-degenerate. Therefore
Rep" (V) is a unitary modular tensor category.

Now apply Theorem 4.20, we see that §(Rep"(V)) is closed under Connes
fusion X, and the braided C*-tensor category (F(Rep"(V)), X, B) is equivalent to
(Rep*(V), X, B). Therefore (F(Rep”(V)), X, B) is a unitary braided fusion category,
which admits a unique unitary ribbon structure. We thus conclude that F(Rep"(V)) is
equivalent to Rep" (V) as a unitary modular tensor category.

Finally we determine the category §(Rep"(V)). For a general unitary regular V of
CFT type, itis widely believed that §(Rep"(V)) is the category Rep** (Ay ) of semisimple
Ay -modules. In the case that V' is one of the examples mentioned above, this conjecture
can actually be proved. Indeed, if V is a unitary minimal model, then by [Wang93], one
has a complete classification of irreducible V-modules. By [Xu0Oa] theorem 4.6 and
[KLO04] corollary 3.3, irreducible Ay -modules were also classified, and one easily sees
that V and Ay have the same number of equivalence classes of irreducible representa-
tions. (See also [KL04] the discussions before corollary 3.6.) One thus concludes that
F(Rep"(V)) = Rep*(Ay).

Now assume that V' is a unitary affine VOA L (I, 0), the strong integrability of all rep-
resentations of which has already been shown. Then by [Hen19] theorems 26 and 27 (with
g = slp excluded), or the first theorem any [Zel15] theorem 2.16, any semisimple Ay -
module H; can be integrated from an irreducible positive energy representation of g. Such
‘g-module can be extended uniquely to a unitary V-module W; such that ¥; (X (—1)RQ),, =
X(n)(¥Yn € Z, X € g). By [CKLW18] theorem 8.1, Ay is generated by operators of the
form Y (X (—1)2, f). Therefore, by strong integrability, the V-module W; integrates to
‘H;. Thus the conjecture is proved in this case. We conclude the following:

Theorem 5.1. Let V be a unitary Virasoro VOA L(c,0) (¢ < 1), or a unitary affine
VOA L4(l,0) where g is a complex simple Lie algebra of type A, C, or G,. Then any
unitary V-module is strongly integrable, Rep**(Ay) is closed under Connes fusions,
and (Rep**(Ay), X, B) and (Rep“(V), X, B) are equivalent as unitary modular tensor
categories under the x-functor §.

An important question in algebraic quantum field theory is to prove the complete
rationality [KLMO1] of conformal nets corresponding to rational chiral conformal field
theories. The first non-trivial examples of completely rational conformal nets are those
associated to unitary affine VOAs (WZW-models) of type A by [XuOOb]. The complete
rationality of ¢ < 1 Virasoro nets was proved in [KL04]. Now, with the help of the above
theorem, we have the following expanded list of completely rational WZW-nets.

Corollary 5.2. If V is a unitary affine VOA of type A, C, or G, then the conformal net
Ay is completely rational.

Proof. By the previous theorem, Rep®(Ay) is a fusion category since this is true for
Rep" (V). Thus the strong rationality of Ay follows from [LX04] theorem 4.9. O

If V.= L4(l,0) is a unitary affine VOA of type B or D, a partial result can be
obtained. Write g = s0,, where n > 5. The smallest non-vacuum irreducible V-module
Ly (I, 1) (the one corresponding to the vector representation of g) unfortunately does
not generate the whole tensor category Rep" (V). One also needs to include the spin
representations, in which case the linear energy bounds conditions of intertwining op-
erators are not guaranteed. Set 7 = {L4(/, [)}. Then the tensor category C generated
by F is the tensor subcategory of single-valued V-modules. Here an Lg(/, 0)-module
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W; is called single-valued if the action of g on the lowest weight subspace of any irre-
ducible component of W; can be integrated to a representation of SO (n) (but not just its
covering space Spin(n)). By [TL04] theorem VI.3.1 and [Guil8] theorem 3.3, for any
lowest weight vector w@ e Lg(l,0) = W and any Wi € Rep"(V), the intertwining
operator L] (w(D) , x) satisfies O-th order energy bounds. Therefore, by Theorem 4.20,
we have the following equivalence theorem.

Theorem 5.3. Let V be a unitary affine VOA of type B or D, and let C be the tensor
category of unitary single-valued V -modules. Then any object in C is strongly integrable,
the category §(C) of all Ay-modules which can be integrated from objects in C is closed
under Connes fusions, and (§(C), X, B) and (C, X, B) are equivalent as unitary ribbon
fusion categories under the x-functor §.

We remark that we can prove the strong integrability of any (not necessarily single-
valued) representation W; of V in a slightly weaker sense: there exists an Ay -module
(H;, m;) such that 7; (Y (X (=D, f)) = Yi(X(—1)), f) whenever X € g, €
J.f € CX), and Y(X(—1)Q, f) is symmetric (see [Guil7b] remark 5.8). This
is due to the fact that any Y; (X (—1), x) satisfies 1-st order energy bounds, so that the
smeared vertex operators of which are intertwined strongly by any energy bounded
intertwining operators (see [Guil7a] proposition 3.16). Since, by [CKLW 18] theorem
8.1, operators of the form Y(X(—1)S2, f) (where f € C2°(I)) generate Ay (I) for
each I, m; is uniquely determined by Y;. So we can define a fully faithful *-functor
T : Rep"(V) — Rep(Ay).

However, it will be much harder to show that the whole modular tensor category
Rep" (V) is equivalent to its image in Rep(Ay) (i.e., Rep** (Ay)) under the x-functor §.
The difficulty lies in that, due to lack of 1-st order energy bounds, we don’t know how to
prove the strong braiding property for the intertwining operators whose charge spaces are
double-valued representations (say, the spin representations). A possible way to tackle
this problem is through conformal inclusions: one tries to realize V as a unitary VOA
extension of another unitary rational VOA U, such that there exists a generating set of
irreducible U-modules whose intertwining operators satisfy 1-st order energy-bounds.
Then one can construct the vertex category extension of Ay, which can be shown to be
restricted to the one of Ay (notice that the tensor category of V is smaller than that of U).
The equivalence of Rep" (V) and Rep** (Ay ) as ribbon categories can therefore be proved.
(Indeed, we will use this method to treat lattice VOAs in subsequent sections.) A general
theory of categorical extensions for VOA extensions will be developed in future works.

5.2. Unitary Heisenberg VOAs. Heiserberg VOAS are not rational as they have infinitely
many equivalence classes of irreducible representations. But it is still interesting to study
their tensor categories and categorical extensions, mainly because of their relations to
Lattice VOAs (which are rational). The main purpose of this section is to prove that
all intertwining operators of a unitary Heisenberg VOA satisfy the strong intertwining
and braiding properties. This result will be used in the next section to construct vertex
categorical extensions for even lattice VOAs.

Heisenberg VOAs share many similarities with affine VOAs, as the former are
affinizations of (obviously non-semisimple) abelian Lie algebras. The main differences
are that the levels add no constraints on Heisenberg VOAs, and that all (positive) levels
are equivalent. So we may well assume that the level [ = 1. In the following we summa-
rize some key features of the tensor categories of Heisenberg VOAs. A detailed account
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of the representation theory of Heisenberg VOAs (as well as Lattice VOAs) can be found
in [LL12] chapter 6. [DL93] lays down the foundation of the tensor product theory for
representations of Heisenberg VOAs. A brief exposition of this theory can be found in
[TZ11]. These works were written in the language of formal variables. In particular,
the braid and fusion relations of intertwining operators were written in the form of the
Jacobi identity for “generalized vertex algebras”. A translation of these results in the
language of complex variables was provided in [Guil8] chapter A, where a discussion
of the energy-bounds condition is also included.

Let V = Ly(1, 0) be the unitary Heisenberg VOA for a unitary finite-dimensional
complex abelian Lie algebra f). Here “unitary” means that f is equipped with an inner
product (-|-) and an anti-unitary involution *. Let hr = {X € h : X* = —X]} be the
real Lie algebra for f. The real inner product (-|-) on i hr induces a natural isomorphism
between ihg and its dual vector space (ihr)*. The equivalence classes of irreducible
unitary V-modules can then be identified with (ihr)* ~ ihg in the following way: For
any A € ibg, we have an irreducible positive energy representation Wj = Lp (1, A) of
the affinization H of 0, such that «(0)w, = («|r)w, for any lowest conformal-weight
vector wy, and any o € h."° Ly (1, 1) can be extended uniquely to a unitary V-module.

. . . . W,
For any A, u, v € ihr, The fusion rule N)‘f# = dim V(AVM) = dim V(WAWH) equals
1 when v = A + pu, and O otherwise. We therefore have W), X W, ~ W,,,. If

v = A+u, there is a distinguished non-zero type ( AUM) intertwining operator )} u defined

using the well-known ““vertex operator” construction exp ( Y on=0 @x")Y(v, X) exp
A(n)

(— Dons0 Sex " ) with which the braid and fusion relations are easy to express. To sim-
plify our notations, we let )V, act on any possible W, as the intertwining operator )} w

By [DL93] theorem 5.1, for any X, i, v € ibg, w® e w,, wt ¢ Wy, w® W,, we
have the fusion relation

Vi, 2V, (™, 22)w™ = Vi P (w®, 21 — 2)w™, 2)w®  (5.1)

for any z1,z2 € C* satisfying 0 < |z1 — 22| < |z2| < |z1| and argz; = argzy =
arg(z1 — z2), and the braid relation

Viw®, 2V wW, 2)w™ = 7MWY, (w2 Y (P, 2w (5.2)

whenever z1, zo € S! and z; is anticlockwise to z5.

The energy bounds condition for the intertwining operators of V was essentially
proved in [TLO4] chapter VI. A brief explanation of the proof can be found in [Guil8]
chapter A. Here we only summarize the results that will be used later: Forany A, u € ibgr

and homogeneous w® e wy, yﬁf (w()‘), x) is energy bounded. If, moreover, w™ has
lowest conformal dimension, and (A|A) < 1, then yﬁf(u}(“, x) satisfies O-th order
energy bounds.

Now we can easily construct the vertex categorical extension for V. Set F = {W, =
Ly(1,2) : (A|A) < 1}, which clearly generates Rep" (V). For each W), € F, we choose

a non-zero lowest weight vector w® € W,. Then Yy (w®, x) satisfies 0-th order (and
hence 1-st order) energy bounds. Now Theorem 4.20 implies the following theorem.

Theorem 5.4. Let V = Ly (1, 0) be a unitary Heisenberg VOA. Then any irreducible
unitary V-module is strongly integrable, the category §(Rep®(V)) of all Ay-modules

19 From the perspective of infinite dimensional Lie algebras, wj is called a highest weight vector.
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which can be integrated from semisimple unitary V-modules is closed under Connes fu-
sions, and the braided C*-tensor categories (§(Rep*(V)), X, B) and (Rep“(V), X, B)
are equivalent under the x-functor §.

We now prove the strong braiding property for intertwining operators of V. By
the second half of Theorem 4.20, it suffices to check the strong intertwining property.
Choose A, € ibgr and disjoint /, J € J. Then for any homogeneous w® e W,
f e CX(),and g € CX(J),a € b satisfying that ¥ (x(—1)2, g) is symmetric,
Lemma 4.16 tells us that Y (a(—1)<2, g) is self-adjoint, and the smeared intertwining
operator yjjf (w®, f), when regarded as an unbounded operator on H;, ® H,, with do-
main H{° @ H;°, commutes strongly with the preclosed operator diag(¥; (a(—=1)£2, g),
Y (a(=1)2, g)) = Yigu(a(—1)S2, g) (see also [Guil7a] proposition 3.16). By strong
integrability, Yy g, (¢(—=1)R2, g) = mygu (Y (a(—1)$2, g)). By [CKLW18] theorem 8.1,
Ay (J) is generated by all such Y (a(—1)R2, g). Therefore yﬁf (w®, F) commutes
strongly with m)g,(y) for any y € Ay(J). The strong intertwining property for
w™ ~ Rep“(V) hence follows. By Theorem 4.20, we have the strong braiding property
for any w™®, w® e Rep" (V). Note that we can identify £ (w™, x) with Y (w™, x),
and identify Ry (w™, x) with ei”(“|“)3}u(w(“), x) when acting on any W,. The strong
braiding property can therefore be written in the following equivalent form:

Theorem 5.5. Let V = Ly(1, 0) be a unitary Heisenberg VOA. Thenfor any A, IR
le, any homogeneous vectors w* e W,\ w e Wi, any intervals T, T € J with

T anticlockwise to J and any f € COO(I) COO(J) the following diagram of
preclosed operators commutes strongly.

Vuw™.2)
H\) u—> HU'HL
yx(wwﬁl lyx(w“),f) (5.3)
WY (w7
H)ﬂ.u ! v+

5.3. Lattice VOAs. In this section, a unitary Heisenberg VOA Ly (1, 0) is denoted by
U, and the symbol V will be reserved for a lattice VOA. Let Y be an even lattice in i hr
satisfying rank(Y') = dim(ihr), and let Y° be the dual lattice of Y. Then the unitary U-
module V = @,y Ly(1, @) can be extended to a unitary VOA structure by choosing

amape: Y° x Y° — S satisfying
@0 =1, el B+y)eB,y)=c Be@+p,y) (Ya,B,y e,
e, p)=(=D"PeB,a) (Yo, e )

(see [LL12] remark 6.4.12 for the existence of such ¢€), and setting, for each o, u €
Y, w® e Ly(l,a), w'™ e Ly(1, ),

Y (@, v)w™ = e, 1) Vo™, x)wh. 54

where )/, is as in the last section. Then (V, Y) becomes a VOA, called the lattice VOA
for Y. By [Miy04] proposition 2.7 or [DL14] theorem 4.12, V is unitary. As T C T°,
we have a quotient map [-] : T° — Y°/Y,A +— [A]. Then for each A € Y°, the
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unitary U-module Wp;) = €D, ¢,y Ly (1, ) can be extended to an irreducible unitary
V-module (W], Yp) by letting Y37 (w®, x)w® equal the right hand side of (5.4) for
anyax € Y, uer+T, w@® ¢ Ly(1, @), w e Ly (1, ). Moreover, any irreducible
V-module arises in this way ( [LL12] theorem 6.5.24). We thus have a bijection between
T°/Y and the equivalence classes of irreducible (unitary) V-modules.

Intertwining operators of V can be described as follows (cf. [DL93] proposition

12.2). Forany Ag, wo, vo € Y°, welet V( AOJV‘ELO]) be the vector space of type ( AO[”(ELOJ) =

(WMV(;[;?’:W) intertwining operators of V, and let N [[)‘j 0}[ 1y D€ the fusionrule dim V ([ AO[]”(ELO]) .

Then N u ] equals 1 when vp — A9 — o € Y, and equals O otherwise. There-

fore Wiy, & Winel = Wiagauol- A distinguished type (5. [0l

[20] [ro]
y[‘j;’]*[jjg' written simply as ));,], can be chosen to satisfy that forany AL € Lo+ Y, u €

o+, w™ e Ly(1, 1), w™ € Ly(1, ),

) intertwining operator

_€(h, e — o, A)e W0l

. (Y] ()
eCh, 1t — 10) V', yw. (5.5

Mgt (w®, x)w®

Thus the energy-boundedness of V-intertwining operators follows from that of U-
intertwining operators.

We now prove the strong braiding property of intertwining operators of V. First we
need a lemma.

Lemma 5.6. Let A, B be preclosed operators on a Hilbert space H with common in-
variant domain 9. Let { py } be a collection of projections on H satisfying \/ , pa = id7y.
Assume that for any o, po 9 C 9D, py commutes strongly with A, B, and the restrictions
of A, B to pyH (with common domain py, %) commute strongly. Then A and B commutes
strongly.

Note that since p, commutes strongly with A and AZ, p, P C 2, we have Ap, D =
PaAD C pa 2, and similarly Bp, P C pyP. Therefore the restrictions in this lemma
make sense.

Proof. For each n we set Hy = poH, Zo = pa?, and let A|3, be the preclosed oper-
ator on H,, with dense domain &, satisfying Al & = A& forany & € Z,. Then, using
the strong commutativity of p, and A, one easily checks that m is the restriction of
Apgy to Hy. To put it simply, we have m = Apy. Let A = UH be the left polar
decomposition of A with U the phase of A. Then by the uniqueness of polar decomposi-
tions, A|z, also has polar decomposition A|y, = Upqy - Hpe. Define B¢, in a similar
way, and let B = U’H’ be the left polar decomposition of B. Then we also have the
polar decomposition B|y, = U’ py - H' po of B|7,,. Now we choose x (resp. y) to be an

arbitrary element in the von Neumann algebra generated by A, A (resp. B, E*). Then,
since A|x, commutes strongly with B|z,, by assumption, we see that xp, commutes
with ypy. As [x, py] = [y, pa] = 0, we have xy& = yx& for any £ € H,. Since o
is arbitrary, we actually have the commutativity of x and y, which therefore proves the
strong commutativity of A and B. O

Theorem 5.7. Let V be the VOA for a non-degenerate even lattice Y C ihgr. Then for
any ho, o, vo € Y°, any homogeneous vectors w1 e W), wltol € Wy, any
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intervals T, J € J with T anticlockwise to J, and any f € CSO(T), ge Cfo(f), the
following diagram of preclosed operators commutes strongly.

Ripg) (w01.8)
Hpg ————  Hiwlipol
5lk01(w“0]>fN)l lﬁuoj(w“o],f) (5.6)
Ripg) (w018

Hirglvel ——— Hiroliwolirol

Proof. We first prove the special case where there exist A € Ag+7Y and i € o+ Y such
that wl*l € W, = Ly(1, 1), wl*o!l € W, = Ly(1, p). Write w® = wltol w® =
wlol. Identify Mpag)tv1. Hivglisols Hirolvoliuol With Hiagevol: Hivoruols Hirgruo) T€-
spectively. (There is no need to choose canonical identifications.) Set H = Hjy,) @
Hing+r0] ® Hivgruo) ® Higvpeuo) and extend Ly (wl0), f) (resp. Ry (wll, ) to
apreclosed ope.rator A (.rf:sp. B) on’H with domain H> = H & HT L DH 1101 P
H i 4vgtpo) 28 in Definition 4.6.

Notice that, for example, Hy+vy] = ®v6u0 +1 Hi+v, where we recall that Hj4, is
the Ay -module integrated from the U-module Wy, = Ly (1, A+v). Therefore, for each
v € vo+ Y, we have a projection p, of H onto the subspace K\, = H, @ Hj+» B Hy+p B
Hj+v+y of H. Then its smooth subspace KC7° satisfies O° = p, H*. Moreover, it is easy
to see that p, commutes strongly with A and B. Thus, by Lemma 5.6, it suffices to verify
the strong commutativity of A and B when restricted to each /C,,. But by our knowledge
of the fusion rules of U, it is clear that the strong commutativity of the preclosed operators
Ali, and B|i, (with common invariant domain KS°) is equivalent to that of diagram
(5.3), which is already proved by Theorem 5.5. Thus this special case is proved.

Now, in the general case, a homogeneous vector wl*l € Wi,y (resp. w0l € Wy, ))
can be written as a finite sum of homogeneous vectors of the form w™® e W; (where
A€ X+ T) (resp. w e W, (where u € o+ ) ). Thus the strong braiding property
follows from rotation covariance (4.43) and Lemma 4.17. |

We note that when one of Ag, 1¢ is O, the above theorem says nothing but the strong
intertwining property for the intertwining operators of V. When both X, o are 0, this
theorem says that V is strongly local. If we combine this theorem with the results in
Sect. 4.6, we immediately have the following theorem:

Theorem 5.8. Let V be a (unitary) even lattice VOA. Then V is strongly local, and
any unitary V-module is strongly integrable. The sesquilinear form A defined on each
vector space of intertwining operators of V is positive(-definite). Hence Rep“(V) is a
unitary modular tensor category. Let §(Rep"(V)) be the category of all Ay-modules
integrated from objects in Rep® (V). Then F(Rep" (V) is closed under Connes fusions,
and (§(Rep"(V)), K, B) and (Rep" (V), K, B) are equivalent as unitary modular tensor
categories under the x-functor §.

Hence, once we know that all semisimple .4y -modules arise from integrating uni-
tary V-modules, we have the equivalence of unitary modular tensor categories
(Rep™(Ay), ¥, B) >~ (Rep"(V), K, B).

6. Relation to DHR Superselection Theory

In this chapter, we show that the representation category Rep(.4) of a conformal net .4
is equivalent to the braided C*-tensor category DHR ;,(A) of DHR (Doplicher—Haag—
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Roberts) endomorphisms of A localized in an arbitrary open interval Iy € 7. We first re-
view the DHR theory for conformal nets developed in [DHR71,DHR74,FRS89,FRS92].

First, we define a universal C*-algebra C*(A) following [Fre90]. Let Co(.A) be the
free x-algebra generated by all A(Z) (I € J). Then any .A-module (H;, ;) € Rep(A)
can be naturally extended to a Cy(A)-module, also denoted by 7;. Define a C*-seminorm
[IIl on Co (A) satistying || Al|= supsy, crep(a) I7i (A) | forany A € Co(A), and let C*(A)
be the completion of Cy(A) under this norm. Then any representation H; of .4 can be
extended uniquely to a representation of C*(.A) on H;.
DHR endomorphisms

By an endomorphism p of C*(A), we always mean that p is a continuous unital
x-endomorphism. In the following, we fix an open interval Iy € J. We say that an
endomorphism p is localized in Iy, if the restriction of p to A(Ij) is the identity em-
bedding id : A(I5) <> C*(A). If, moreover, for any /1, I € J satisfying Io U I} C I,
there exists a unitary U € A(I) such that Ad(U) o p is localized in I}, we say that
p is transportable. The category of transportable endomorphisms localized in Iy is
denoted by DHRy,(A). Each p € DHRy,(A) is associated with a canonical (locally
normal) representation (H,, ,) of A, which satisfies H, = Ho (as Hilbert spaces) and
o(x) = wo(p(x)) forany I € J, x € A(I).

For any p1, p» € DHR,(A), we define the Hom space

Hom(p1, p2) ={T € A(lp) : Tp1(A) = po(AT (YA € C*(A)}.

Then 7(T') € Hom 4(H,,, Hp,). Conversely, by Haag duality and the fact that p1, o2
are localized in Iy, any element in Hom 4(H,,, H,,) arises in this way. We therefore
have a natural identification Hom(p1, p2) = Hom 4(H,,, Hp,)-

The tensor (fusion) product X of any p;, p» € DHR, (A) is defined to be the compo-
sition of the two endomorphisms p; X p» = p3 0 p1 = p2p01. If R € Hom(py, p3), S €
Hom(p3, p4), then one can easily verify that Sp>(R) € Hom(p2 01, p403). We therefore
set the tensor product of R and Stobe R® S = p4(R)S = Sp2(R). We set the identity
object of End(C*(A)) to be the identity endomorphism of C*(.A). Associativity isomor-
phisms are defined in the natural way. Then DHR,(A) becomes a C*-tensor category.
The braid operator €(p1, p2) € Hom(p2p1, p102) is defined by choosing disjoint open
intervals I, I C Iy such that I, is anticlockwise to I in Iy, choosing Uy, U, € A(1p)
such that Ad(U;) o p; and Ad(U3) o py are localized in I and I respectively, and
defining the statistic operator

e(p1, p2) = p1(UU[Uzp2(Uy). (6.1)

This operator is independent of the particular choice of Uy, Uz, I1, I>. Using ¢ to define
braiding, one has a C*-braided tensor category (DHR,(A), K, ¢).
The *-functor & : Repj; (A) — DHR,(A)

To show the equivalence of Rep(.A) and DHR,(A), it will be more convenient to
consider a slightly different tensor category Repj; (A) equivalent to Rep(.A). Let L and R
denote the left and the actions in the Connes categorical extension of A. For any Te j s
we say that a vector £ € H;([) is unitary, if the map L(&,1) = Z(&, 1) : Ho — H;
is unitary. Existence of a unitary vector in H; (/) follows from the fact that A(/€) is a
type III factor. We let U4; (1) denote the set of all unitary vectors in H; ().

Lemma 6.1. For any £ € Ui (I), H; € Rep(A), the map L(¢,T) : H; — H; R'H; is
unitary.
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Proof. Tt is easy to see that the action of L(§, I)*L(é I) on H; equals
(L, I)*L(S I)|H0) = id;. Therefore L(&, I)*L(S I)|H is an 1sometry Now

choose any J € J clockwise to I. Then vectors of the form L(&, )R(n, J)x© =
R(n, J)L(é D x© (where n € H;(J), x©@ € Ho) span a dense subspace of H; K H,.
Thus L(&, 1 ) is unitary when acting on ;. O

Now we fix an arg function arg;, of Iy, and let 76 = (I, arg;, ). Define a new
category Repj; (A) whose objects are (H;, &) where H; € Rep(A),& € Ui(lp). If
(Hi, &), (Hj,n) € RepTO(A), we let the Hom space be Hom((H;, &), (H;,n) =
Hom 4 (H;, H ;). We define a tensor (fusion) bifunctor X, such that

(Hi, &) B (Hj.m) = (i R H;, LE, Ton),

where we notice that L (£, Z))n € Uixj(lp) by Lemma 6.1. Tensor products of mor-
phisms, and all the structural isomorphisms (associativity, braiding, etc.) are defined us-
ing those of Rep(.A), disregarding all the unitary vectors. The identity object is chosen to
be (Ho, 2). ThenRepy, (A) is clearly abraided C*-tensor category equivalent to Rep(A).

We now define a x-functor & : Rep,NO(.A) — DHRy,(A). Choose any (H;,£) €
Repz (A). An endomorphism p; = B(H;, &) can be defined as follows (cf. [Fre90]).
Choose any I € J, and choose I C I such that I; U Iy can be covered by an open
interval J. We choose arg functions of /; and J such that Iz 1s Io cJ. (In fact the arg
functions are irrelavent here since we will only deal with left actions on the vacuum
module.) Choose an arbitrary &; € U; (7). Then the action of L (&1, IlfL(S, Ip) on Hy
lies inside End 4(y¢)(Ho) = A(J€)" = A(J). Regard L(&1, I1)*L(£, Io) as an element
in A(J) and write it as U (&1, &), we thus define

pi s Al) — C*(A),
x> U@ELE" x-UE$).

Such p; is independent of the particular choice of /1 and &1, and can be extended to a
transportable endomorphism of C*(A) localized in .

In the case that I U I is not dense in S I we can choose an open interval K € J
covering I U Iy, and it is not hard to show that for any x € A([),

pi (x) = L&, To)*mi (x) L€, Tp), (6.2)

where L(&, Z)) is acting on Hyp. This formula and the Haag duality End 4(x<)(Ho) =
A(K®) = A(K) implies p; (A(I)) C A(K). In particular, p; (A(ly)) C A(ly). We also
notice that p; is determined by its values on A (/) for all small /, since this is true for
(Hyp; , mp;). Thus we can always use relation (6.2) to characterize p; .

Now if (H;, &), (Hi, ') € Repj;(A) and F € Hom4(H;, Hyr) = Hom((H;, §),
(H;, €")), we define

G(F) = L&, 0)* - F - L, Tp)
with L (&, TE)) and L(§, Z)) acting on Hy. That &(F) € A(lp) follows from Haag du-

ality. Write p; = B(H;, &), py = B(H;r, §'). Then using (6.2), one can easily verify
B(F)pi(x) = pir(x)B(F) for any x € A(I) where I € J is small enough such that
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I U Iy is not dense. Therefore &(F) € Hom(p;, p;7). Thus we’ve defined the functor &.
It is obvious that & is fully faithful and *-preserving.

Equivalence of the braided C*-tensor categories

‘We now show that & : Rep;o (A) — DHRy,(A) is an equivalence of braided C*-tensor
categories. That & preserves the monoidal structures is verified by the following propo-
sitions.

Proposition 6.2. Chooseany (H;, &), (H, n) € Repj; (A). Then B((H;, §)X(H;, ) =
S(H;, &) K B(H;, n).

Proof. Choose any I € J such that I U Iy is non-dense. Then we choose TeJd
clockwise to Iy and disjoint from I. Write p; = &(H;,£),p; = 05(71,; n). Then
piXp;j=pjpi.On theNOther hand, (H;, §) W (H;, n) = (H; XH;, L, Ip)n). We let
p=6(H; XH;, L&, Ip)n). We want to show p = p;p;.
Choose any x € A(I). Then by Proposition 3.6,
p(x) = L(L(E, To)n, To)mir; () L(L(E, To)n, To)
= L(n, lo)*L(&, lo)*mimj (x)L(&, Io)L(n, Io)- (6.3)
Now choose &1 € U;(J), n1 € U;(J). Then we have
i (x) = R(E1, DxR(EL D™,
7j(x) = ROy, J)xR(n1, J)*,
7im;(x) = R(n, J)R(Er, HxR(Er, J)*R(m, J)*.

Using these relations and (6.3), and apply locality (condition (f) of Definition 3.1), we
have

p(x) = L(n, I)*L(. I0)*R(n1, HRE ., J) - x - REr, D* R, N*LE, Tp)L(n. Tp)
= L(n, T0)*R(n, NILE, T0)* R, T) - x - Ry, DY*LE, )Ry, 1Y*L(n, To)
= L(n, Io)*R(m, ))L(E, To)*m; (x)L(E, To)R(n1, ))*L (1, Io)
= L(n, 10)*R(n1, )pi )Ry, * L, To) = L(n, Io)*;(pi (x))L(n, Io)
= p;(pi(x)).

O

Proposition 6.3. If F € Hom((H;, ), (H;»,§')), G € Hom((H;, n), (K, n')), then
B(FRG)=06(F)Q6(G).

Proof. Write
R=6(F)=LE . Ip)" F-LE ).
S=6(G)=L®, 10)" - G- L, I).
Then
R®S=25Sp;(R)=L(, 1) -G-L(n, To) - pj(L(E, Tp)* - F - L(, Ip))
=L@, 10)* - G- L(n, o) - L(n, To)*m; (L(£", To)* - F - L(¢, o)) L(1, Io)
=L, 10)*- G -7; (L&', To)* - F - L(, 10))L(n, To). (6.4)
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Now choose any Je j clockwise to IN(), and any n; € U;(J). Then using locality and
the functoriality of the right actions (condition (b) of Definition 3.1),

7 (L& T0)* - F - L& 1o)) = Ry, HLE, To)* - F - L&, o) R(ny, D)
= L&, T0)*R(n., J) - F - R(py, D*L(E, Ty)
= L&, To)*(F ®id))R(n1, HR (1, DY* L(E, To)
= L, Io)"(F ®id))L(&, Ip) (6.5)

when acting on H ;. Substitute this result into the right hand side of (6.4), and apply
Proposition 3.6 and the functoriality of the left actions, we get

R®S=L{,1)* G- L& 1o)*(F ®id;)L(E, o) L(n, I)
= L, I)*L(E, Tp)*(id; ® G)(F ® id )L (&, To)L(n, Io)
= L(L(E', To)n', 10)*(F ® G)L(L(&, To)n, To).
which clearly equals B(F ® G). O

Proposition 6.4. Forany (H;, &) € RepINO(A), the isomorphismst; : (H;, §)X(Ho, 2) —

(Hi,§) and b; : (Ho, Q) W (H;, §) — (H;, §) satisfy &(;) = 1 = &(b)).

Proof. Under the identifications (H;, &) X (Ho, ) = (H; W Ho, L(&, E))Q) =(H;, &)

and (Ho, Q)X (H;, &) = (HoXH;, L(2, Ip)E) = (H;, &), both ff; and b; are id;. Thus

their images under & are 1. O
Finally, we check that & preserves the braid structures.

Proposition 6.5. We have &(B) = . More precisely, forany (H;, &), (H;, n) € Rep;E)(A),
ifwe let p; = &(H;, &), pj = &(Hj, n), then B[B; ;) = e(p;i, pj).

Proof. By the fact that B; ; and £(p;, p;) intertwine the tensor products of morphisms,
and by Proposition 6.3, to verify &(B; ;) = e(p;, p;),itsuffices toreplace (H;, &), (H;, n)
with some unitarily equivalent objects. Therefore, we may assume that § € Uf; (I1), n €
U;(I2) where Iy, I C Ip and I is anticlockwise to /1. Then p; and p; are localized in
I1, I, respectively. It follows that p; 0 pj = p; o p; and &(p;, p;) = id.

On the other hand, recall that (H;,&) X (H;,n) = (H; X H;, L(§, I~1)71) and
Hj,m X (H;, &) = (H; XH;, L(n, I~2)$). Then, by Proposition 3.6,

®(B: ;) = LIL(. D&, To)'Bi ;L(L(E. T, To)
= L. T)*L(n, D)*Bi ;L. T)L(n, D),
which, by Proposition 3.7, equals
L& )L, D)*L(p, D)LE, ) = id.
This proves &(B; ;) = (i, p;j). O
Combine all these propositions together, we arrive at the following conclusion.

Theorem 6.6. The braided C*-tensor categories (Repy, (A), X, B) and (DHR 1, (A), ¥, ¢)
are equivalent under the x-functor &. Moreover, the functorial (i.e. natural) unitary iso-
morphism &(H;, §) RG(H;, n) — G((H;, §) W (H;, n)) realizing this equivalence is
the identity operator.
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Remark 6.7. We sketch another way of proving the equivalence of DHR/,(A) and
Rep(.A) as follows. One can define a fully-faithful essentially-surjective *-functor € :
DHR/,(A) — Rep(A) such that for each object p of DHR,(A), €(p) is the represen-
tation (H,, 7r,) mentioned at the beginning of this chapter: H, = Ho and 7, = 7 o p.
A morphism F € Hom(p1, p2) can be regarded as a morphism between representa-
tions. We let €(F) = F. Note that &(p1) X &€(p2) = H,, X H,, is not identical to
E(p1 X p2) = Hp,op, - However, there is a well-known unitary isomorphism between
these two .4-modules (cf. [Con94] section 5.B), which, in our context, is defined by

Yooyt Hpy W Hpy = Hppopy
L(mo(x)R, Io)mo(y)Q > 7o(p2(x)y)2  (Vx.,y € A(p)).

It is not hard to check that the W defined for each p1, p; is a functorial map preserving
the monoidal and braid structures of the two categories as in Theorem 3.10. (See the
end of [HPT16] section 2.1 for the precise definition of the equivalence of two braided
(C*-)tensor categories.) In particular, as in the proof of Proposition 6.5, to check that W
preserves the braidings, it suffices to consider the case that p; and p; are localized in
I, I> C Iy respectively where I is anticlockwise to /.
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