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A proof of Furstenberg’s conjecture on the
intersections of ×p- and ×q-invariant sets

By Meng Wu

Abstract

We prove the following conjecture of Furstenberg (1969): if A,B ⊂ [0, 1]

are closed and invariant under ×p mod 1 and ×q mod 1, respectively, and

if log p/ log q /∈ Q, then for all real numbers u and v,

dimH(uA + v) ∩B ≤ max{0, dimH A + dimH B − 1}.

We obtain this result as a consequence of our study on the intersections of

incommensurable self-similar sets on R. Our methods also allow us to give

upper bounds for dimensions of arbitrary slices of planar self-similar sets

satisfying SSC and certain natural irreducible conditions.

1. Introduction

1.1. Background and history. This paper is concerned with Furstenberg’s

problem [15] about the intersections of Cantor sets. The Cantor sets under

consideration are dynamically defined, that is, they are either invariant sets

or attractors of certain dynamical systems. Let (X, f) be a dynamical sys-

tem where f : X → X is a measurable map on a compact metric space X.

Many important dynamical properties of f are displayed by its invariant sets.

Supposing that we are given two dynamical systems (X, f) and (X, g), it is

reasonable to expect that information about common dynamical features of f

and g can be obtained by comparing their respectively invariant sets. We are

particularly interested in systems (X, f) and (X, g) that are arisen from two

arithmetically or geometrically “independent” origins. In this case, one ex-

pects that the two systems should share as few common structures as possible

and thus an f -invariant set should intersect a g-invariant set in as small a set

as possible.
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Furstenberg has given in [15] some quantitative formulations of the above

philosophy. Let dim denote a dimension function for subsets of X (e.g. Haus-

dorff dimension). Following Furstenberg, we say that f and g are transverse if

dimA ∩B ≤ max{0, dimA+ dimB − dimX}

for all closed sets A and B that are f - and g-invariant, respectively. The

present work was motivated by a conjecture of Furstenberg concerning the

transversality of two arithmetically “independent” systems.

Two positive real numbers a and b are said to be multiplicatively indepen-

dent, denoted by a � b, if log a/ log b /∈ Q. For a natural number m ≥ 2, let

Tm : x 7→ mx mod 1 be the m-fold map of the unit interval. We use dimHA

to denote the Hausdorff dimension of a set A. Furstenberg conjectured that

two dynamics Tp and Tq with p � q are transverse. More precisely,

Conjecture 1.1 (Furstenberg, [15]). Assume that p � q. Let Ap, Bq ⊂
[0, 1] be closed sets that are invariant under Tp and Tq , respectively. Then for

all real numbers u and v,

dimH(uAp + v) ∩Bq ≤ max{0, dimHAp + dimHBq − 1}.

In this paper, we prove Conjecture 1.1. We point out that Conjecture 1.1

is closely related to another conjecture of Furstenberg about expansions of real

numbers in different bases, which is stronger and remains open. For x ∈ [0, 1],

we denote the orbit of x under the map Tm by Om(x) = {T km(x) : k ∈ N}.

Conjecture 1.2 (Furstenberg, [15]). If p � q, then for each x ∈ [0, 1]\Q,

we have

(1.1) dimHOp(x) + dimHOq(x) ≥ 1.

Suppose that p � q, Ap is a closed Tp-invariant set and Bq is a closed

Tq-invariant set, and dimHAp + dimHBq < 1. Then Conjecture 1.1 implies

that dimHAp ∩ Bq = 0, while Conjecture 1.2 predicts that Ap ∩ Bq ⊂ Q. In

this respect, Conjecture 1.2 is much stronger than Conjecture 1.1. It seems

that Conjecture 1.2 is still far out of reach of current methods. Nevertheless,

as observed already by Furstenberg, using Conjecture 1.1 one can obtain some

partial results towards Conjecture 1.2: the set of x ∈ [0, 1] that do not satisfy

(1.1) has Hausdorff dimension zero. See Theorem 9.4 for a detailed proof.

The aforementioned conjectures belong to the broad category of rigidity

problems about ×p and ×q dynamics, where there is a rich literature; see,

e.g., the survey paper of Lindenstrauss [25] and the references therein. The

study of rigidity properties between ×p and ×q dynamics (when p � q) was

initiated by Furstenberg in his landmark paper [14]. In that paper, Furstenberg

established the celebrated Diophantine result: if p � q, then the unit interval

itself is the only (infinite) closed set that is both Tp and Tq invariant. He has
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famously conjectured that the measure version of this should be also true: any

Borel probability measure on the unit interval invariant under Tp and Tq is a

linear combination of Lebesgue measure and an atomic measure supported on

finitely many rational points. The best partial result towards this conjecture

is due to Rudolph and Johnson [30], [23] who proved the conjecture under the

assumption of positive entropy. The research along this line has been fruitful

and influential, and it has led to deep advances in Diophantine approximation

and homogeneous dynamics (see [25]).

In another direction, Conjecture 1.1 can also be regarded as a problem

about slices of fractal sets. Note that the set (uAp + v)∩Bq is, up to an affine

coordinate change, the intersection of the product set Ap × Bq with the line

`u,v = {(x, y) : y = ux + v}. By a classical result of Marstrand [26], for any

Borel set E ⊂ R2 and each u ∈ R, Lebesgue almost every v ∈ R satisfies

dimHE ∩ `u,v ≤ max{0,dimHE − 1}.
In general, this is only an almost every result, and there could be exceptional

pairs (u, v) for which the above inequality fails. In most cases, the set of

exceptional (u, v) is quite difficult to analyze.

While explicitly determining the exceptional set is in general intractable,

for certain fractal sets with regular arithmetical or geometrical structures, it is

widely believed that the exceptional set should be very small and could only

be caused by some evident algebraic or combinatorial reasons. For Ap, Bq as

in Conjecture 1.1, the set Ap × Bq is such an example, for which it is clear

that certain lines parallel to the axes are exceptional for the slice result, and

Conjecture 1.1 predicts that these lines are the only exceptions.

There is a rich literature about generic slices of various fractal sets; see,

e.g., [26], [18], [24], [27], [6], [7], [2], [34]. However, very little is known about

specific slices, and there were few partial results concerning Conjecture 1.1

before the present paper. The first and perhaps also the best one is due to

Furstenberg [15, Th. 4]. His result states that under the assumption of the

conjecture, if dimB(u0A + v0) ∩ B = γ > 0 for some u0 6= 0, v0 ∈ R, then for

Lebesgue almost every u ∈ R, there is v such that dimH(uAp + v) ∩ Bq ≥ γ.

From the last assertion, it is not hard to deduce that in this case, we must

have dimHAp + dimHBq > 1/2; see [20, Th. 7.9] for the deduction. Thus,

under the assumption dimHAp+dimHBq ≤ 1/2, Furstenberg’s result confirms

Conjecture 1.1. We will return back to [15, Th. 4] in Section 4.2. We would like

to mention that the technique (namely, CP-process) Furstenberg introduced

and used in [15] is also important for the present work. It will be one of the

main ingredients for our proof of Conjecture 1.1.

Recently, Feng, Huang and Rao [12] studied affine embeddings between

incommensurable self-similar sets and, as a consequence, they showed that if

p � q, then for Tp-invariant self-similar set E and Tq-invariant self-similar
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set F , there exists a (non-effective) positive constant δ depending on E and F

such that the Hausdorff dimension of the intersection of F with each C1-diffeo-

morphic image of E does not exceed min{dimHE,dimH F} − δ. Later, Feng

[11] obtained some effective versions of the results of [12], but these effective

versions are still far from sufficient for proving Conjecture 1.1. Feng [11] also

constructed, for any s, t ∈ (0, 1) and ε > 0, a Tp-invariant set A of dimension s

and a Tq-invariant set B of dimension t that verify Conjecture 1.1 with a loss

of ε.

Finally, we note that the slice problem may be considered as “dual” to the

projection problem for fractal sets. In that direction, there is a dual version of

Conjecture 1.1, also due to Furstenberg and recently settled by Hochman and

Shmerkin [21] (some special cases by Peres and Shmerkin[29]), which asserts

that under the assumptions of Conjecture 1.1, for each orthogonal projection

Pθ from R2 to R with direction θ not parallel to the axes, we have

dimH Pθ(Ap ×Bq) = min{1,dimH(Ap ×Bq)}.

Recently, there has been considerable interest in the study of projections of dy-

namically defined Cantor sets; see, for instance, the survey paper of Shmerkin

[32] and the references therein for more details.

1.2. Statements of general results. We prove a more general statement

about intersections of regular homogeneous self-similar sets on R (see below

for the definition) under natural irreducibility assumptions. Conjecture 1.1

will be a consequence of this general result.

We first recall some relevant definitions. An iterated function system (IFS)

on Rd is a finite family {fi}mi=1 of strictly contracting maps fi : Rd → Rd. Its

attractor is the unique non-empty compact set X ⊂ Rd satisfying

X =
m⋃
i=1

fi(X).

The IFS {fi}mi=1 is called self-similar if each map fi is a similarity transforma-

tion. In this case, the attractor is called a self-similar set.

A self-similar IFS {fi}mi=1 defined on the line R is said to be regular and

λ-self-similar if it satisfies the following conditions:

(1) regular condition : there exists an open interval J such that fi(J) ⊂ J for

each i and fi(J) ∩ fj(J) = ∅ for i 6= j;

(2) λ-self-similar condition : there exists 0 < λ < 1 such that each fi is of the

form fi(x) = λx+ ti.

The attractor of a regular and λ-self-similar IFS will be called a regular λ-self-

similar set.

We use dimB to denote upper box-counting dimension.
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Theorem 1.3. Assume that α, β ∈ (0, 1) with α � β. Let Cα ⊂ R be a

regular α-self-similar set, and let Cβ ⊂ R be a regular β-self-similar set. Then

for all real numbers u and v, we have

dimB(uCα + v) ∩ Cβ ≤ max{0,dimHCα + dimHCβ − 1}.

If we compare Theorem 1.3 and Conjecture 1.1, we notice that in The-

orem 1.3, α, β are real numbers, and moreover we consider the upper box-

counting dimension of intersections.

From Theorem 1.3, we can deduce a slightly stronger result than what is

stated in Conjecture 1.1.

Theorem 1.4. Under the assumptions of Conjecture 1.1, we have for all

real numbers u and v,

dimB(uAp + v) ∩Bq ≤ max{0, dimHAp + dimHBq − 1}.

Remark 1.5. (1) One deduces Theorem 1.4 from Theorem 1.3 by using

the fact that if A ⊂ [0, 1] is a closed Tm-invariant set, then for any ε > 0,

there exist k ∈ N and a regular 1/mk-self-similar set ‹A such that A ⊂ ‹A and

dimHA ≥ dimH
‹A− ε. See Section 9 for the detailed proof.

(2) In Theorem 1.3, we only consider regular λ-self-similar IFSs, but it

also works for some other cases. For example, the same proof works if the

regular condition is replaced by the strong separation condition (SSC).

(3) Our approach is purely ergodic theoretical; it is quite flexible and can

be extended to more general settings. A natural generalization of Theorem 1.3

is to consider intersections of linear and non-linear IFS attractors. Under

certain natural circumstances, one should expect similar dimension bounds as

above for the intersections. We expect that our methods could be developed

further to treat these problems.

(4) Theorem 1.3 has consequences on problems of embeddings between

self-similar sets as studied in [12]. See Section 9 for details.

Our next result concerns slices of self-similar sets on the plane with irra-

tional rotation.

Let {fi}mi=1 be a homogeneous self-similar IFS on R2, where for fixed

λ ∈ (0, 1) and ξ ∈ [0, 1), each fi : R2 → R2 is defined by

fi(x) = λOξx+ ti,

with ti ∈ R2 and Oξ being the rotation matrix of angle 2πξ ∈ [0, 2π).

Theorem 1.6. Let X be a self-similar set corresponding to an IFS as

above. Suppose that ξ is irrational and the IFS {fi}i satisfies the strong sepa-

ration condition. Then

dimB(X ∩ `) ≤ max{0, dimHX − 1}
for any line ` of R2.
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Remark 1.7. The irrationality condition for ξ is necessary, as we can see

from the 4-corner 1/3-Cantor set (i.e., the product of the classical 1/3-Cantor

set C with itself): certain lines parallel to the x or y-axes intersect C × C in

a set that is a copy of C.

We note that Theorems 1.4 and 1.6 have been simultaneously and in-

dependently proved by P. Shmerkin [33] using completely different (additive

combinatorial) methods.

1.3. Strategy of the proof. Let us briefly describe our strategy for proving

Theorem 1.6. The proof of Theorem 1.3 follows the same strategy, but is a bit

more technical. For a set A ⊂ R2, we denote by Nδ(A) the minimal number of

balls of diameter δ needed to cover A.

Let X be a self-similar set satisfying the conditions of Theorem 1.6. Our

overall strategy is to show that whenever there exists a line `0 such that

dimBX ∩ `0 =: γ > 0, then we must have dimHX ≥ 1 + γ. To prove this, we

proceed to show that for any ε > 0 and all large enough n, there exist Eεn ⊂ X
and a set of angles F εn ⊂ [0, 2π) satisfying the following properties:
(1) N2−n(Eεn) ≤ 2nε;

(2) N2−n(F εn) ≥ 2n(1−ε);

(3) for each t ∈ F εn, there exists a line `t with angle t intersecting Eεn such that

infx∈X N2−n ((X ∩ `t) \B(x, r0)) ≥ 2n(γ−ε), where r0 = r(ε) > 0 is some

constant not depending on n.

From these estimates, one can deduce that dimBX ≥ 1 + γ. Since the self-

similar set X has equal Hausdorff and upper box dimensions, we get dimHX ≥
1 + γ; see Section 7.1.

To show the existence of the sets Eεn and F εn described above, we use

ergodic methods. We consider the dynamical system (X,W ) where W is the

inverse map of the IFS {fi}mi=1 on X; that is, the restriction of W on fi(X)

is f−1
i . Then W is expanding and rotating, for each k ≥ 1 the map W k

transforms a slice ` ∩ X into a finite family Lk(`) of slices and the angle of

each slice in Lk(`) is rotated by −kξ compared to that of `. For z ∈ `∩X, we

denote by S(`, z, k) the unique slice in Lk(`) containing W k(z).

Now, for any ε > 0, we would like to find a slice `∩X and a point z ∈ `∩X
such that there exists a set Eεn ⊂ X satisfying the following:
(i) N2−n(Eεn) ≤ 2nε;

(ii) the set F εn(z) := {−kξ mod 2π : W k(z) ∈ Eεn} satisfies N2−n(F εn(z)) ≥
2n(1−ε);

(iii) for MOST k ∈ {i ∈ N : W i(z) ∈ Eεn}, we have

(1.2) inf
x∈X

N2−n (S(`, z, k) \B(x, r0)) ≥ 2n(γ−ε),

where MOST means such k’s have relative density 1−ε in {i ∈ N : W i(z) ∈
Eεn}.
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To achieve this goal, we first construct an ergodic W -invariant measure ν with

positive entropy h(ν,W ) > 0 such that for ν-a.e. z, there exists some “good”

slice ` ∩X such that z ∈ ` ∩X and the estimate (1.2) holds for most k ∈ N.

Such a measure ν will be constructed in two steps. First, based on the initial

slice `0 ∩X with upper box dimension γ, we apply Furstenberg’s CP-process

machinery to create a rich family of “nice” measures µ that are supported on

slices of X, where “nice” roughly means that for µ-a.e. z on the supporting

slice `∩X of µ, (1.2) holds for most k ∈ N. Then a beautiful argument due to

Hochman and Shmerkin [22, Th. 2.1], which relates the small-scale structure of

a measure to the distribution of W -orbits of its almost every point, will enable

us to construct a W -invariant measure ν based on a “nice” measure provided

by Furstenberg’s CP-process. We show that this W -invariant measure ν admits

the desired properties.

After having constructed such a W -invariant (ergodic) measure ν, we ap-

ply our third ingredient, which is a general result in ergodic theory and a

consequence of Sinai’s factor theorem, to show that the space X can be parti-

tioned (up to a part of small ν-measure) into finitely many subsets ∪jAj such

that for ν-a.e. z and for each j, the set Eεn := Aj satisfies the above properties

(i) and (ii).

We would like to mention that if we could prove that the measure ν is

weak-mixing (or more precisely, the spectrum of the system (X,W, ν) does not

contain ξ), then it is easy to show that for any measurable set A ⊂ X with

N2−n(A) ≤ 2nε and ν(A) > 0, the set Eεn := A satisfies the required properties

(i) and (ii) for ν-a.e. z. But from the construction of ν, it seems difficult to

get any information about the mixing or spectral properties of ν. Instead,

we have Sinai’s factor theorem at our disposal, which provides us a Bernoulli

factor system of (X,W, ν) with the same entropy as that of ν, so we can first

establish the required properties in the factor system and then “transfer” the

results back to the original system (X,W, ν). We note that the application of

Sinai’s factor theorem in the study of the kind of problems considered in the

present paper seems new, and we hope that it may be useful for investigating

other related questions.

For proving Theorem 1.3, we follow in principle the same scheme as de-

scribed above, but instead of considering a single transformation on K =

Cα × Cβ, we consider a skew product U on K × [0, 1). The component of the

map U on K is induced by the inverse maps of the defining IFSs of Cα and

Cβ and has the effect that it transforms a slice `∩K into finitely many pieces

of slices whose slopes are changed in a way similar as the irrational rotation of

angle θ = logα/ log β comparing to that of ` ∩K.

There will be three main steps in the proof of Theorem 1.3, as for the

case of Theorem 1.6. First, assuming the existence of a slice `0∩X with upper
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box dimension γ > 0, we construct a CP-distribution that is supported on

“nice” slice measures (with dimension γ) on K. Then based on these “nice”

measures, we construct a U -invariant (ergodic) measure ν∞ whose marginal on

K satisfies some similar “nice slice” properties as that of ν; i.e., almost every

point with respect to the marginal of ν∞ lies on a “good” slice of K. After

the construction of such a measure ν∞, we proceed to the last step: apply our

ergodic theoretic result to the system (K×[0, 1), U, ν∞) and conclude the proof.

1.4. Organization of the paper. In Section 2 we present some general nota-

tion and collect some notions and basic properties of symbolic spaces, entropy,

dimension and dynamical systems. In Section 3 we recall the CP-process the-

ory. Sections 4–7 are devoted to the proof of Theorem 1.3. In Section 4 we con-

struct an ergodic CP-distribution that is supported on slice measures of Cα ×
Cβ. In Section 5 we define the skew-product U and construct the U -invariant

measure ν∞. In Section 6 we state and prove our general ergodic theoretic

result. In Section 7 we prove Theorem 1.3. In Section 8 we sketch the proof of

Theorem 1.6. In Section 9 we present an application of Theorem 1.3 on embed-

dings of self-similar sets, and we complete proofs of the remaining statements.

1.5. Acknowledgements. We gratefully acknowledge the helpful sugges-

tions of P. Shmerkin on the presentation of the material in Section 4. We also

wish to express our thanks to A. Algom, A. H. Fan, M. Hochman, E. Järvenpää,

M. Järvenpää, T. Orponen and V. Suomala for their useful comments on the

writing of the paper. We are particularly indebted to the anonymous referee

for a very through reading and many helpful suggestions that greatly improved

the presentation of the paper.

1.6. Summary of notation. For the reader’s convenience, we summarize

our main notation conventions in Table 1.

2. Notation and preliminaries

2.1. General notation and conventions.

• We use ]A to denote the cardinality of a set A. In a metric space, B(x, r)

denotes the closed ball of radius r around x.

• In this paper, a measure is always a Borel probability measure. The set of

all Borel probability measures on a metric space X will be denoted by P(X).

Usually, we will not mention the σ-algebra of a measurable space; sets and

functions are implicitly assumed to be Borel measurable when it is required.

• If X and Y are metric spaces, and f : X → Y is any measurable map, then

for any µ ∈ P(X), we define fµ as the push-forward measure µ ◦ f−1.

• The topological support of a measure µ is denoted by supp(µ); the restriction

of µ on a set E is denoted by µ|E .

• We use δx to denote the Dirac measure at a point x.

• We will use standard “big O” and “little o” notation.
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B(x, r) The closed ball of radius r around x

P(X) Space of probability measures on X

µ, ν, η, υ, ϑ Measures

P,Q Probability distributions (elements of P(P(X)))

µ|A Restriction of µ on A

D(µ, x), D(µ, x) Lower and upper local dimension of µ at x (§2.3)

D,A,F Partitions

Dn(Rd) (or Dn) Partition of Rd into n-th level dyadic cubes (§2.3)

Dn(x),A(x) The element of Dn (resp. A) containing x

N2−n(A) The number of elements of Dn intersecting A (§2.3.2)

Λ Alphabet set (finite)

σ Shift map, σ(x)n = xn+1

[a] Cylinder set corresponding to a ∈ Λn

µ[a] σn(µ|[a])/µ([a]) (§3.2)

H(µ,A) Shannon entropy (§2.3)

Atn Partition (Definition (5.3))

µA
t
n(z) Definition (5.4)

Table 1.

2.2. Symbolic space. In this subsection, we recall some classical notion for

symbolic spaces. Let Λ be a finite set that we call an alphabet set. Let ΛN be

the symbolic space of infinite sequences from the alphabet set. We endow ΛN

with the standard metric dρ with respect to a number ρ ∈ (0, 1):

(2.1) dρ(x, y) = ρmin{n:xn 6=yn}.

Then (ΛN, dρ) is a compact totally disconnected metric space.

We denote by Λ∗ =
⋃
n≥0 Λn the set of finite words (with the convention

that Λ0 = {∅}). For n ≥ 0, the length of a word u ∈ Λn, denoted by |u|, is

defined to be n. For u ∈ Λn, the n-th level cylinder associated to u is the set

[u] = {x ∈ ΛN : x1 · · ·xn = u}.

Every cylinder is a closed and open set. For x ∈ Λ∗ ∪ ΛN, we will use

xk1 = x1 · · ·xk

to represent the word consisting of the k first letters of x when k ≤ |x|. Define

the left-shift σ on ΛN by

σ((xn)n≥1) = (xn+1)n≥1.



716 MENG WU

2.3. Dimension and entropy. In this subsection, we recall some basic no-

tion and facts about dimension and entropy of measures (or sets). We use

dimHA and dimBA to denote the Hausdorff dimension and upper box-counting

dimension of a set A, respectively.

2.3.1. Dimension of measures. Let µ be a Borel measure on a metric

space. The lower (Hausdorff ) dimension of µ is defined as

dim∗(µ) = inf {dimHA : µ(A) > 0} .

Closely related to the lower dimension of µ is the lower local dimension, defined

at each x ∈ supp(µ) as

D(µ, x) = lim inf
r→0

logµ(B(x, r))

log r
.

Similarly, we can consider the upper limit and define the upper local dimension

D(µ, x) of µ at x. When D(µ, x) = D(µ, x), we say that the local dimension

of µ at x exists and denote it by D(µ, x). If the local dimension of µ exists

and is constant µ-almost everywhere, then µ is called exact dimensional and

the almost sure local dimension is denoted by dim(µ). For more details about

different definitions of dimensions of measures, we refer the readers to [8], [5],

[27], [9].

2.3.2. Partitions and entropy. Let µ be a Borel measure on a metric

space X. For a finite or countable partition A of X, the entropy of µ with

respect to A is

H(µ,A) = −
∑
A∈A

µ(A) logµ(A)

with the convention that 0 log 0 = 0. Here and in what follows, the logarithm

is in base e.

Next, we define entropy dimension of measures—first in the symbolic

space, then in the Euclidean space. In a symbolic space (ΛN, dρ), let Fn be

the partition of ΛN given by the n-th level cylinder sets {[u] : u ∈ Λn}. For

a set A ⊂ ΛN, we will use Nρn(A) to count the number of elements of Fn
intersecting A. For µ ∈ P(ΛN), we define the entropy dimension of µ by

dime(µ) = lim
n→∞

1

−n log ρ
H(µ,Fn)

if the limit exists; otherwise we consider the upper and lower entropy dimen-

sions dime(µ) and dime(µ) defined by replacing limit, respectively, by lim sup

and lim inf.
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Now, we define the entropy dimension on Euclidean space. For any n ≥ 0,

let Dn(Rd) be the collection of n-th level dyadic cubes of Rd, that is,

Dn(Rd) :=

{
d∏
i=1

[
ki
2n
,
ki + 1

2n
) : (k1, . . . , kd) ∈ Zd

}
.

Then Dn(Rd) is a partition of Rd. For a set A ⊂ Rd, we will use N2−n(A) to

count the number of elements of Dn(Rd) intersecting A. For µ ∈ P(Rd), the

entropy dimension of µ is defined as

dime(µ) = lim
n→∞

1

n log 2
H(µ,Dn(Rd))

if the limit exists; otherwise we consider the upper and lower entropy dimen-

sions. We will simply write Dn for Dn(Rd) when no confusion can arise.

The following lemma presents some relationships between different dimen-

sions of a measure.

Lemma 2.1. Let µ be a measure on Rd or ΛN. Then

dim∗(µ) ≤ dime(µ) ≤ dime(µ).

If µ is exact dimensional, then

dim∗(µ) = dim(µ) = dime(µ) = dime(µ).

Proof. Proofs for the Euclidean case can be found in [9]. The symbolic

case is analogous. �

2.3.3. Dimensions of product sets. We recall the following dimension for-

mula for dimensions of product sets.

Lemma 2.2 (Theorem 8.10 of [27]). Let E,F ⊂ Rd be non-empty Borel

sets. Then

dimHE + dimH F ≤ dimH(E × F ) ≤ dimB(E × F ) ≤ dimBE + dimBF.

2.4. Dynamical systems. In this subsection, we collect some basic notions

and properties of dynamical systems. We refer the reader to [38], [3], [4] for

more information.

2.4.1. Measure preserving dynamical system. By a Measure preserving

dynamical system (or dynamical system for short) we mean a quadruple

(X,B, T, µ), where X is a compact metric space, B is the Borel σ-algebra

on X, T : X → X is a Borel map and µ is a T -invariant measure. We shall

often omit B in our notation and abbreviate the system to (X,T, µ).

A dynamical system is ergodic if the only invariant sets are trivial, i.e.,

if µ(A∆T−1A) = 0, then µ(A) = 0 or µ(A) = 1. By the ergodic decomposi-

tion theorem, every T -invariant measure µ can be decomposed as mixtures of
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T -invariant ergodic measures: µ =
∫
µ(x)dµ(x), where for µ-a.e. x, µ(x) is a

T -invariant and ergodic measure, called an ergodic component of µ. We refer

the reader to [4, Ch. 4.2] for more information.

Another important notion in ergodic theory is weak-mixing. For the pre-

cise definition of weak-mixing and its many equivalent formulations, see [38]

and [4]. We will make use the following characterization of weak-mixing (see[4,

Th. 2.36]): a dynamical system (X,T, µ) is weakly mixing if and only if, for any

ergodic dynamical system (Y, S, ν), the product system (X × Y, T × S, µ⊗ ν)

is also ergodic.

An important class of dynamical systems that we will have occasion to

use are symbolic dynamical systems, in which X is the symbolic space ΛN and

T is the shift transformation σ, and µ is a shift-invariant measure. In the case

when µ is a product measure determined by a probability vector p = (pi)i∈Λ

on Λ, we call (ΛN, σ, µ) a Bernoulli shift.

A dynamical system (Y, S, ν) is a factor of (X,T, µ) if there exists a mea-

surable map π : X → Y , called the factor map, which is equivariant, i.e.,

π ◦ T = S ◦ π and πµ = ν.

Let (X,T, µ) be a dynamical system. A point x ∈ X is generic for µ if

1

N

N−1∑
n=0

δTnx → µ as N →∞

in the weak-* topology. It follows from the ergodic theorem that if µ is ergodic,

then µ-a.e. x is generic for µ.

2.4.2. Measure-theoretic entropy. The measure-theoretic entropy of a dy-

namical system (X,T, µ) will be denoted by h(µ, T ). We refer the reader to

[38], [3] for precise definition of entropy and related material.

For a finite measurable partition A of X, we write An =
∨n−1
k=0 T

−kA for

the coarsest common refinement of A, T−1A, . . . , T−(n−1)A. We call {An}n≥1

the filtration generated by A with respect to T . For each n ≥ 1 and x ∈ X,

An(x) is the unique element of An containing x. We use A∞ =
∨∞
k=0 T

−kA to

denote the σ-algebra generated by the partitions An, n ≥ 1. We say that A is

a generator for T if A∞ is the full Borel σ-algebra.

3. CP-processes

3.1. General theory. The CP-process theory was pioneered by Furstenberg

in [15], initially as a tool to investigate Conjecture 1.1. Recently, a more sys-

tematic study of CP-processes was initiated by Furstenberg [16], with further

developments by Gavish [17], Hochman [19], Hochman and Shmerkin [21] and

others. Let us first recall some basic concepts related to this theory in the

symbolic setting.
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Recall that P(X) is the set of all Borel probability measures on a metric

space X. A distribution is a Borel probability measure on P(X) (or even larger

spaces). Notice that distributions are measures on space of measures.

Fix a finite alphabet Λ. For 0 < ρ < 1, consider the symbolic space ΛN

endowed with the metric defined as (2.1). Let

Ω =
¶

(µ, x) ∈ P(ΛN)× ΛN : x ∈ supp(µ)
©
.

The CP-process theory studies the dynamical properties under the action

of magnification of measures.

Definition 3.1 (Magnification dynamics). We define the magnification op-

erator M : Ω→ Ω as

M(µ, x) = (µ[x1], σ(x)),

where µ[x1] = σ(µ|[x1])/µ([x1]).

It is clear that M(Ω) ⊂ Ω and M is continuous. For any distribution P on

Ω (i.e., P ∈ P(Ω)), we denote by P1 its marginal on the measure coordinate.

Definition 3.2 (Adaptedness). A distribution P on Ω is called adapted if

for every f ∈ C(P(ΛN)× ΛN),∫
f(µ, x)dP (µ, x) =

∫ Å∫
f(µ, x)dµ(x)

ã
dP1(µ).

In other words, P is adapted if, conditioned on the measure component

being µ, the point component x is distributed according to µ. In particular, if

a property holds for P -a.e. (µ, x) and P is adapted, then this property holds

for P1-a.e. µ and µ-a.e. x.

Definition 3.3 (CP-distribution). A distribution P on Ω is a CP-distribu-

tion if it is M -invariant and adapted. In this case, we call the system (Ω, P,M)

a CP-process.

A CP-distribution P is ergodic if the measure preserving system (Ω, P,M)

is ergodic in the usual sense. If it is not ergodic, then we can consider its ergodic

decomposition.

Proposition 3.4. The ergodic components of a CP-distribution are

adapted ; in particular, they are ergodic CP-distributions.

A proof of this result is indicated in the remark following Proposition 5.1

of [16]. See also [31, Prop. 22] and [19, Th. 1.3] for alternative proofs.

3.2. Dimension and generic properties of CP-processes. In this subsec-

tion, we list some useful properties of CP-processes that we will use later.

The first one concerns dimension information of typical measures for ergodic

CP-distributions.
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Proposition 3.5 (Theorem 2.1 of [16]). Let P be an ergodic CP-distribu-

tion. Then P1-almost every measure µ is exact dimensional with dimension

dimµ =
1

log ρ−1

∫
− log ν[x1]dP (ν, x) =

1

log ρ−1

∫ ∑
i∈Λ

−ν[i] log ν[i]dP1(ν).

For an ergodic CP-distribution P , we denote by dimP the almost sure

dimension of µ for a P -typical µ.

Several times we will use the following lemma, which is an immediate con-

sequence of the ergodic theorem and the adaptedness property of CP-processes.

We denote

(3.1) µ[xn1 ] = σn(µ|[xn1 ])/µ([xn1 ]).

Lemma 3.6. Let P be an ergodic CP-distribution. Then P1-a.e. µ gener-

ates P1 in the sense that for µ-a.e. x, we have

(3.2)
1

N

N−1∑
n=0

δ
µ
[xn

1
] → P1 weak-* as N →∞.

For a measure µ that generates P1 in the above sense, we say µ is generic

for P1. As a corollary of Proposition 3.5 and Lemma 3.6, we obtain the follow-

ing easy but useful properties concerning typical measures of CP-distributions

with positive dimension. Similar results have appeared in [22].

Proposition 3.7. Let P be an ergodic CP-distribution with dimP =

h > 0. For any ε > 0, there exists n0(ε) ∈ N such that for each µ that is

generic for P1 and for µ-a.e. x,

(3.3) lim inf
N→∞

1

N
]

®
1 ≤ k ≤ N : max

u∈Λn0(ε)
µ[xk1 ]([u]) ≤ ε

´
> 1− ε

and

lim inf
N→∞

1

N
]
{

1 ≤ k ≤ N : H(µ[xk1 ],Fn) ≥ n(h log ρ−1 − ε)
}

> 1− ε for all n ≥ n0(ε).
(3.4)

In particular, for P1-a.e. µ and µ-a.e. x, the above properties hold.

Proof. The proof is similar to that of [22, Lemma 4.11]. Fix any ε > 0.

By Proposition 3.5, P1-a.e. ν is exact dimensional with dimension h > 0, so ν

is non-atomic and using Lemma 2.1, we have

lim
n→∞

1

n
H(ν,Fn) = h log ρ−1.

Thus for P1-a.e. ν, there exists a finite integer n(ν) such that for each n ≥ n(ν),

(3.5) max
u∈Λn

ν([u]) < ε and H(ν,Fn) > n(h log ρ−1 − ε).
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It follows that there exist a set Eε of measures with P1(Eε) > 1−ε and a finite

n0(ε) ∈ N such that n0(ε) ≥ n(ν) for ν ∈ Eε. For any n ≥ n0(ε), let Enε be the

set of measures ν such that (3.5) holds. Then Eε ⊂ Enε and Enε is open. Since

µ generates P1, we have, for µ-a.e. x,

lim inf
N→∞

1

N

N−1∑
k=0

δ
µ
[xk

1
](E

n
ε ) ≥ P1(Enε ) > 1− ε.

The above statement holds for each n ≥ n0(ε), which is what we wanted to

show. �

Remark 3.8. In the above proof, we saw that properties (3.3) and (3.4)

hold for each pair (µ, x) satisfying (3.2).

4. Constructions of CP-distributions based on K = Cα × Cβ

Let us first recall the sets Cα and Cβ and some preliminary results about

them. Fix two real numbers 0 < β < α < 1 such that θ = logα/ log β is

irrational. Let Φ = {φi(x) = αx + λαi }mi=1 and Ψ = {ψj(x) = βx + λβi }lj=1 be

two regular self-similar IFSs on R. Let Cα be the attractor of Φ and Cβ be the

attractor of Ψ. Let K = Cα × Cβ.

In this section, assuming the existence of a slice `0 ∩ K with upper box

dimension γ > 0, we construct a family of ergodic CP-distributions having

dimensions at least γ and supported on measures that are supported on slices

of K. The construction of such CP-distributions is essentially due to Fursten-

berg [15]; we just reinterpret the material in our setting.

Since the IFSs Φ and Ψ satisfy the convex open set condition, there exist

open intervals Iα and Iβ with φi(Iα) ⊂ Iα (1 ≤ i ≤ m) and ψj(Iβ) ⊂ Iβ
(1 ≤ j ≤ l) such that

φi1(Iα) ∩ φi2(Iα) = ∅ for i1 6= i2 and ψj1(Iβ) ∩ ψj2(Iβ) = ∅ for j1 6= j2.

Let {Iiα}mi=1 be a partition of
⋃m
i=1 φi

Ä
Iα
ä

such that each Iiα is an interval that

may be open, closed or half open and whose interior is the same as that of

φi
Ä
Iα
ä
. Similarly, we choose such a partition {Ijβ}lj=1 for

⋃l
j=1 ψj

Ä
Iβ
ä
. Then

we define Sα to be the inverse map of Φ on
⋃
i φi(Iα), that is, the restriction of

Sα on Iiα is φ−1
i for 1 ≤ i ≤ m. Let Sβ be the inverse map of Ψ on

⋃
j ψj(Iβ).

We define two maps on (
⋃
i φi(Iα))× (

⋃
j ψj(Iβ)) by

ϕ1(x, y) = (Sα(x), y) and ϕ2(x, y) = (Sα(x), Sβ(y)).

Then K = Cα × Cβ is invariant under both maps ϕ1 and ϕ2. Given a line `

with slope u that intersects K, then ϕ1 transforms ` ∩ [0, 1]2 into finitely many

line segments, each with slope αu and ϕ2 transforms ` ∩ [0, 1]2 into finitely

many line segments, each with slope αu/β.
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Now suppose that there exists a line ` that intersects K in a set of upper

box dimension γ > 0. The same will be true for at least one of the lines of ϕ1(`)

and for one of the lines of ϕ2(`). We can continue in this way and finally we

will find a family L of infinitely many lines such that each line of L intersects

K in a set of upper box dimension γ. If the initial line ` has slope u with

u /∈ {0,∞}, then for each pair (n,m) ∈ N2 with n ≥ m, there exists a line in L

with slope uαn/βm. Since logα/ log β is irrational, the set {uαn/βm : n ≥ m}
is dense in (0,+∞) or in (−∞, 0) depending on whether u > 0 or u < 0.

In the rest of this paper, we always make the assumption that

there exists a line `0 with slope u0 ∈ (0,+∞)

such that dimB(`0 ∩K) = γ > 0.
(4.1)

Our ultimate aim is to show that, in this case, we must have dimHK ≥ 1 + γ.

For the case of negative slope u0, we apply a reflection to Cα to make the slope

positive.

In the rest of this section, we will follow Furstenberg [15] to construct an

ergodic CP-distribution (with dimension γ) on the space of measures that are

supported on slices of K with slopes in [1, 1/β]. In the end of Section 4.2, as

a direct application of this CP-distribution, we will give the proof of Fursten-

berg’s main result in [15, Th. 4]: under the assumption (4.1), for Lebesgue

almost all u ∈ (0,+∞), there exists a slice of K with slope u and Hausdorff

dimension ≥ γ.

4.1. Symbolic setting. Let Λα = {λαi }mi=1 and Λβ = {λβj }lj=1. Note that

Cα can be written as

Cα =

{ ∞∑
n=1

αn−1an : (an)n≥1 ∈ ΛNα

}
.

A similar representation holds for Cβ, replacing α by β and Λα by Λβ.

Write Λ = Λα × Λβ. Let X = ΛN. Recall that θ = logα/ log β. For each

t ∈ [0, 1) = R/Z, we construct a tree Xt ⊂ X = ΛN as follows. For s ∈ [0, 1),

write L(s) = Λ if s ∈ [0, θ) and L(s) = Λα × {λβ1} otherwise. We define

Rθ(s) = s− θ mod 1 for s ∈ [0, 1).

In the rest of this paper, we identify [0, 1) with R/Z; thus [0, 1) is compact and

Rθ is continuous on it.

Let

Xt =
∞∏
n=0

L(Rnθ (t)).

By definition, for x ∈ Xt, the shifted point σ(x) is an element of XRθ(t). On

each Xt we consider the metric dα (recall (2.1)).
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For s ∈ [0, 1), let Z(s) = {n ≥ 0 : Rnθ (s) ∈ [0, θ)}. We write the elements

of Z(s) in an increasing order as w1(s) < w2(s) < · · · . We define a projection

map πt : Xt → K by

πt ((an)n, (bn)n) =

( ∞∑
n=1

αn−1an,
∞∑
n=1

βn−1bwn(t)

)
.

Note that πt is a surjective map.

Let us record for later use some properties about Xt and πt in the following

lemma. We use covr(A) to denote the minimal number of balls of diameter r

needed to cover a set A. Recall also the notation Nαk(A) (see Section 2.3.2).

Lemma 4.1.

(1) If tk, t ∈ [0, 1) are such that tk → t and Rnθ (t) 6= θ for all n, then Xtk → Xt

(under the Hausdorff metric) and πtk → πt.

(2) There exists a constant C1 > 0 such that the maps πt are uniformly

C1-Lipschitz.

(3) There exists a constant C2 > 0 such that for all t ∈ [0, 1) and all A ⊂ Xt,

Nαk(A) ≤ C2 · covαk(πt(A)) for each k ∈ N.

(4) For all t ∈ [0, 1) and all A ⊂ Xt, we have dimHA = dimH πt(A).

Proof. We give the proof for parts (1) and (2), the other parts are obvious.

The first part follows from the fact that, if Rnθ (t) 6= θ for all n ≤ M , then for

all sufficiently large k, we have wn(tk) = wn(t) for all n ≤M , and this implies

that the first M generations of the trees Xtk and Xt coincide, and that πtk is

uniformly close to πt.

To prove part (2), it suffices to show that there is C1 (independent of t)

such that

C−1
1 αk ≤ βrk(t) ≤ C1α

k,

where rk(t) = ]{0 ≤ i ≤ k−1 : Riθ(t) ∈ [0, θ)}. This is equivalent to saying that

|rk(t)− kθ| is bounded by some uniform constant. To show this, we only need

to observe that rk(t) is the number of i ∈ {0, . . . , k− 1} such that there exists

an integer n with t − iθ ≥ n and t − (i + 1)θ < n. Thus −rk(t) is the largest

integer not greater than t−kθ, from which we deduce that |rk(t)−kθ| ≤ 2. �

Let `u,z denote the line through z with slope u. We define

F =
¶

(A, x, t) : t ∈ [0, 1), A ⊂ Xt is compact, x ∈ A, πt(A) ⊂ K ∩ `β−t,πt(x)

©
.

Note that for any line `β−t,z with t ∈ [0, 1), z ∈ K and any x ∈ π−1
t (z), we

have the set (π−1
t (K ∩ `β−t,z), x, t) ∈ F .

Lemma 4.2.

(1) If (A, x, t) ∈ F , then (σ(A ∩ [x1]), σ(x), Rθ(t)) ∈ F .



724 MENG WU

(2) Suppose that (Ak, yk, tk) → (A, x, t) and (Ak, yk, tk) ∈ F for each k. If

Rnθ (t) 6= θ for all n, then (A, x, t) ∈ F .

Proof. Note that for x′ ∈ Xt, we have πRθ(t)(σ(x′)) = Φt(πt(x
′)). Thus

we have

πRθ(t)(σ(A ∩ [x1])) = Φt(πt(A ∩ [x1])).

From this we deduce claim (1). Claim (2) is a consequence of part (1) of

Lemma 4.1. �

4.2. Construction of CP-distributions. Consider the space

Y = P(X)×X × [0, 1).

Note that Y is a compact space. We define a map M̂ on Y by

M̂(µ, x, t) = (µ[x1], σ(x), Rθ(t)).

The map M̂ can be viewed as an “extension” of the magnification operator M

in Definition 3.1. It is continuous on Y (where we consider the weak topology

on P(X)).

By the assumption (4.1) and the discussion preceding it, there exist some

t0 ∈ [0, 1) and a line ` with slope β−t0 such that dimBK ∩ ` = γ > 0. Let

E = π−1
t0 (K∩`). Then by parts (2) and (3) of Lemma 4.1, we have dimBE = γ

(in the space Xt0). Thus there exists a sequence nk ↗∞ such that

(4.2) lim
k→∞

logNαnk (E)

−nk logα
= γ.

We define a sequence of measures {µk}k on E by setting

µk =
1

Nαnk (E)

∑
u∈Λnk :[u]∩E 6=∅

δxu ,

where xu is some point in [u] ∩ E. Finally, let

Pk =
1

Nαnk (E)

∑
u∈Λnk :[u]∩E 6=∅

δ(µk,xu,t0)

and

Qk =
1

nk

nk−1∑
i=0

M̂ iPk.

By the construction of Pk, it is clear that for any f ∈ C(Y ), we have∫
f(µ, x, t)dPk(µ, x, t) =

∫ Å∫
f(µ, x, t)dµ(x)

ã
d(Pk)1,3(µ, t),

where we use (Pk)1,3 to denote the marginal of Pk on the first and third co-

ordinates. The same is true for Qk. Let us call a distribution P ∈ P(Y )

globally adapted if it satisfies the above identity. It follows from the definition

that if a property holds for P -a.e. (µ, x, t) and P is globally adapted, then this

property holds for P1,3-a.e. (µ, t) and µ-a.e. x. Clearly, for a globally adapted
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distribution, its marginal on the first two coordinates (µ, x) is adapted in the

sense of Definition 3.2. For each P ∈ P(Y ), we define

H(P ) =

∫
1

logα
logµ[x1]dP1,2(µ, x),

where P1,2 is the marginal of P on (µ, x). Let us calculate

H(Qk) =
1

nk

1

Nαnk (E)

∑
u∈Λnk :[u]∩E 6=∅

nk∑
i=1

1

logα
log

µk[u
i
1]

µk[u
i−1
1 ]

=
1

nk

1

Nαnk (E)

∑
u∈Λnk :[u]∩E 6=∅

1

logα
logµk[u] =

logNαnk (E)

−nk logα
.

It follows from (4.2) that

H(Qk)→ γ as k →∞.

Passing to a further subsequence we can assume that Qk → Q in P(Y ). Now

by continuity of M̂ , Q is M̂ -invariant; and since each Qk is globally adapted,

we deduce that Q is also globally adapted. Thus the marginal of Q on (µ, x)

is a CP-distribution. Since the map H is continuous on P(Y ), we have

H(Q) = lim
k→∞

H(Qk) = γ.

Let
Q =

∫
Q(µ,x,t)dQ(µ, x, t)

be the ergodic decomposition of Q. We define

(4.3) Eγ =
¶

(µ, x, t) ∈ Y : H(Q(µ,x,t)) ≥ γ
©
.

Then we have Q(Eγ) > 0, and for Q-a.e. (µ, x, t) ∈ Eγ , the marginal of Q(µ,x,t)

on the first two coordinates, denoted by Q
(µ,x,t)
1,2 , is an ergodic CP-distribution

with dimension H(Q(µ,x,t)) ≥ γ. Note that for the adaptedness of Q
(µ,x,t)
1,2 , we

have used Proposition 3.4.

Let

ΞF =
⋃

(A,x,t)∈F
P(A)× {x} × {t}.

Lemma 4.3. The distribution Q is supported on ΞF . In particular, this

holds for Q-a.e. ergodic component of Q.

Proof. We need to prove that for Q-a.e. (µ, x, t), we have (supp(µ), x, t)

∈ F . Since Q is a weak limit of Qk and each Qk is supported on ΞF , it follows

that Q is supported on triples of the form

(µ, x, t) = lim
k→∞

(µk, xk, tk)

with (supp(µk), xk, tk) ∈ F . Now, since the marginal of Q on the third coor-

dinate is an Rθ-invariant measure on [0, 1), it must be the Lebesgue measure.
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Thus for Q-a.e. (µ, x, t), we have Rnθ (t) 6= θ for all n. From this, part (2) of

Lemma 4.2 and the fact that supp(µ) ⊂ lim infk→∞ supp(µk), we deduce that

(supp(µ), x, t) ∈ F . �

We finish this subsection by giving the proof of the following result of

Furstenberg [15, Th. 4] by using the CP-distributions {Q(µ,x,t)
1,2 }(µ,x,t) we con-

structed above.

Theorem 4.4 (Furstenberg, [15]). Assume that (4.1) holds. Then for

Lebesgue almost every u ∈ (0,+∞), there exists a line ` with slope u such that

dimH ` ∩K ≥ γ.

Proof. By the discussion preceding assumption (4.1), we only need to show

that for Lebesgue almost every u ∈ [1, β−1], there exists a line ` with slope u

such that dimH ` ∩K ≥ γ. Let Q, Eγ ,ΞF be as above. We choose an element

(µ, x, t) ∈ Eγ such that the ergodic component Q(µ,x,t) is supported on ΞF and

its marginal Q
(µ,x,t)
1,2 is an ergodic CP-distribution (with dimension at least γ).

Thus for Q(µ,x,t)-a.e. (ϑ, y, s), ϑ is a measure with dimension at least γ. Again,

since the marginal of Q(µ,x,t) on the third coordinate is an Rθ-invariant measure

on [0, 1), it must be the Lebesgue measure. Hence for Lebesgue almost every

s ∈ [0, 1), there exists (ϑ, y) such that (ϑ, y, s) ∈ ΞF and dimϑ ≥ γ. From the

definition of ΞF and part (4) of Lemma 4.1, we deduce that there exists a line

` with slope β−s such that dimH ` ∩K ≥ γ. �

5. A skew product U on K × [0, 1)

and a class of U-invariant measures

In the previous section, we constructed a family of ergodic M̂ -invariant

distributions {Q(µ,x,t)}(µ,x,t)∈Eγ whose marginals on the first two coordinates

are ergodic CP-distributions having dimensions at least γ and supported on

measures that are supported on slices of K. In Section 5.1, we will define a

skew product on K × [0, 1), which can be regarded as the geometric version

of the shift map σ on Xt (t ∈ [0, 1)), and we study some partitions generated

by U . In Section 5.2, we will construct a family of U -invariant measures such

that each of them is a certain form of superposition of measures distributed

according to Q(µ,x,t) with some (µ, x, t) ∈ Eγ . In Section 5.3, we will study

some further properties of such a U -invariant measure.

5.1. The transformation U and some basic properties. For each t ∈ [0, 1),

we define a map Φt : K → K by

(5.1) Φt(x, y) =

(Sα(x), Sβ(y)) if t ∈ [0, θ),

(Sα(x), y) otherwise.
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Note that, by the discussion about Sα and Sβ at the beginning of Section 4,

we have the following result.

Lemma 5.1. If ` is a line with slope β−t (t ∈ [0, 1)) that intersects K ,

then Φt(`) consists of a finite number of lines, each of which has slope β−Rθ(t).

We consider the following transformation U : K × [0, 1) → K × [0, 1)

defined as a skew product:

U(z, t) = (Φt(z), Rθ(t)).

Recall that Φt is defined by (5.1) and Rθ is the irrational rotation map defined

by Rθ(t) = t− θ mod 1.

Let us write Unt (z) for the first component of Un(z, t). Then it follows

from the definition of U that we have

Unt (z) = ΦRn−1
θ

(t) ◦ · · · ◦ ΦRθ(t) ◦ Φt(z) = (Snα(z1), S
rn(t)
β (z2)) for z = (z1, z2),

where rn(t) := ]{0 ≤ k ≤ n− 1 : Rkθ(t) ∈ [0, θ)}.
In the following, we define a sequence of refining partitions of K × [0, 1),

which is generated by U . First, recall that {Iiα}mi=1 and {Ijβ}lj=1 are, respec-

tively, partitions of
⋃m
i=1 φi(Iα) and

⋃l
j=1 ψj(Iβ); see the beginning of Section 4.

We take C = {[0, θ), [0, 1) \ [0, θ)} as a partition of [0, 1). Let

(5.2) B1 = {Iiα ∩ Cα}mi=1 × {I
j
β ∩ Cβ}

l
j=1 × C

be our first level partition of K × [0, 1). Then for n ≥ 2, let

Bn =
n−1∨
k=0

U−k(B1).

For later use, let us give some more details about the partitions {Bn}n.

For n ≥ 1, let

Cn =
n−1∨
k=0

R−kθ (C).

Recall that the map Ukt is defined via the relation Uk(z, t) = (Ukt (z), Rkθ(t)).

For n ≥ 1 and t ∈ [0, 1), let

Atn =
n−1∨
k=0

(Ukt )−1
Ä
{Iiα ∩ Cα}mi=1 × {I

j
β ∩ Cβ}

l
j=1

ä
.

Note that by the fact Unt (z) = (Snα(z1), S
rn(t)
β (z2)), we have

(5.3) Atn =

(
n−1∨
k=0

S−kα
Ä
{Iiα ∩ Cα}mi=1

ä)
×
(
n−1∨
k=0

S
−rk(t)
β

Ä
{Ijβ ∩ Cβ}

l
j=1

ä)
.

Thus by the definition of {rk(t)}k, we have Atn = At′n if t and t′ both belong to

a same element of Cn. By the definition of U , it is not hard to check that each
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element of Bn has the form A × C with some C ∈ Cn and A ∈ Atn for some

t ∈ C.

As usual, for all z ∈ K, we write Atn(z) for the unique element of Atn
containing z. For any measure ν ∈ P(K) and z ∈ supp(ν), we write

(5.4) νA
t
n(z) = Unt

Ç
ν|Atn(z)

ν(Atn(z))

å
.

Note that if ν ∈ P(`∩K) for some line ` with slope β−t, then νA
t
n(z) ∈ P(`′∩K)

for some line `′ with slope β−R
n
θ (t). Recall also the notation µ[xn1 ] (see (3.1)).

In what follows, the boundary of Atn should be understood as relative to the

space K.

Lemma 5.2.

(1) Let t ∈ [0, 1) and x ∈ Xt. If πt(x) is not at the boundary of Atn(πt(x)),

then the set πt([x
n
1 ]) coincides with Atn(πt(x)) ∩ K except possibly at the

boundary points of Atn(πt(x)).

(2) Let (µ, x, t) ∈ ΞF . If µ is non-atomic, then for µ-a.e. x and n ≥ 1, we

have

(5.5) πRn
θ

(t)

Ä
µ[xn1 ]

ä
= (πtµ)A

t
n(πt(x)).

Proof. The part (1) is clear; we only need to prove (2). By definition, πtµ

is a measure supported on some slice of K with the form K ∩ `β−t,z for some

z ∈ K. It is clear that, for all n ≥ 1 and each element A of Atn, the support of

πtµ intersects the boundary of A in at most two points. Since µ is non-atomic,

it follows that πtµ gives zero measure to the boundary of A. Thus for µ-a.e. x

and n ≥ 1,

πt(µ|[xn1 ]) = πtµ|Atn(πt(x)).

Note that for t ∈ [0, 1) and x ∈ Xt, we have

Un(πt(x), t) = (Unt (πt(x)), Rnθ (t)) = (πRn
θ

(t)(σ
n(x)), Rnθ (t)).

Combining the above conclusions, we obtain (5.5). �

5.2. Construction of a class of U -invariant measures. This subsection is

devoted to the construction of a class of U -invariant measures. We will first

define these measures and then show that they are U -invariant.

Let Q be the M̂ -invariant distribution constructed in Section 4.2. Recall

that Q =
∫
Q(µ,x,t)dQ(µ, x, t) is the ergodic decomposition of Q. By the ergodic

theorem, for Q-a.e. (µ, x, t), the triple (µ, x, t) generates Q(µ,x,t) in the sense

that

(5.6)
1

N

N−1∑
n=0

δM̂n(µ,x,t) → Q(µ,x,t) as N →∞
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in the weak-* topology. Consider the map G : ΞF → P(K × [0, 1)) defined by

G(µ, x, t) = πtµ× δt.

Then G is continuous. It follows from (5.6) that for Q-a.e. (µ, x, t),

(5.7)
1

N

N−1∑
n=0

G(M̂n(µ, x, t))→
∫
GdQ(µ,x,t) as N →∞.

Recall that by the definition of M̂ , we have

(5.8) M̂n(µ, x, t) =
Ä
µ[xn1 ], σn(x), Rnθ (t)

ä
.

We use Q1,3 and Q
(µ,x,t)
1,3 to denote, respectively, the marginals of Q and

Q(µ,x,t) on the first and third coordinates. Recall the definition of Eγ (see

(4.3)).

Lemma 5.3. For Q1,3-a.e. (µ, t) and µ-a.e. x with (µ, x, t) ∈ Eγ , we have

(5.9)

1

N

N−1∑
n=0

(πtµ)A
t
n(πt(x))×δRn

θ
(t) → ν(µ,x,t) :=

∫
πsϑ×δs dQ(µ,x,t)

1,3 (ϑ, s) as N →∞

in the weak-* topology.

Proof. First, we claim that for Q-a.e. (µ, x, t) ∈ Eγ , the measure µ is non-

atomic. To see this, recall that for Q-a.e. (µ, x, t) ∈ Eγ , the triple (µ, x, t)

generates Q(µ,x,t), and the marginal Q
(µ,x,t)
1,2 is an ergodic CP-distribution with

positive dimension. Let us fix any such (µ, x, t) ∈ Eγ . Then (µ, x) generates the

marginal Q
(µ,x,t)
1,2 , and it follows from Proposition 3.7, (3.3) (and Remark 3.8)

that µ is non-atomic.

Now, combining (5.7), (5.8), (5.4) and part (2) of Lemma 5.2, we get (5.9)

for Q-a.e. (µ, x, t) ∈ Eγ . Since Q is globally adapted, we deduce that (5.9)

holds for Q1,3-a.e. (µ, t) and µ-a.e. x such that (µ, x, t) ∈ Eγ . �

We saw in the above proof that formula (5.9) actually holds for Q1,3-a.e.

(µ, t) and µ-a.e. x with H(Q(µ,x,t)) > 0, but we will not use this fact.

The rest of this subsection is devoted to the proof of the following.

Proposition 5.4. For Q1,3-a.e. (µ, t) and µ-a.e. x with (µ, x, t) ∈ Eγ ,

the measure ν(µ,x,t) is U -invariant.

Our idea for the proof of Proposition 5.4 is inspired by [22, Th. 2.1] where

it is shown, for a Borel map T of a compact metric space X, how to relate the

small-scale structure of a measure υ ∈ P(X) to the distribution of T -orbits of

υ-typical points.
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The proof of Proposition 5.4 relies on three lemmas. For any (z, t) ∈
K × [0, 1), we define a sequence of measures

ηN (z, t) =
1

N

N−1∑
n=0

δUn(z,t), N ≥ 1.

The first lemma shows that, for a given measure υ ∈ P(K), when restricted

on the elements of Bk, k ≥ 1, the measures ηN (z, t) and the Cesàro averages of

υA
t
n(z) × δRn

θ
(t) are asymptotically the same for υ-a.e. z.

Lemma 5.5. Let υ ∈ P(K). For any t ∈ [0, 1), k ≥ 1 and each B ∈ Bk,

we have

lim
N→∞

1

N

N−1∑
n=0

Ä
1B(Un(z, t))− υAtn(z) × δRn

θ
(t)(B)

ä
= 0 for υ-a.e. z.

Proof. Fix k ≥ 1. Let B ∈ Bk. Recall that we can write B = A× C
with some C ∈ Ck and A ∈ At′k for some t′ ∈ C. Then 1B(Un(z, t)) =

1A(Unt (z))1C(Rnθ (t)) and υA
t
n(z) × δRn

θ
(t)(B) = υA

t
n(z)(A)1C(Rnθ (t)). Observe

that by the definition of υA
t
n(z), we have

υA
t
n(z)(A) = Eυ(1A ◦ Unt |Atn)(z).

Let fn(z) = Eυ(1A ◦ Unt |Atn)(z)1C(Rnθ (t)) − 1A(Unt (z))1C(Rnθ (t)). Note

that fn is bounded uniformly in n. We only need to prove that

lim
N→∞

1

N

N−1∑
n=0

fn(z) = 0

for υ-a.e. z. For this, it is sufficient to show that for certain k′ ≥ 1 and each

p = 0, . . . , k′ − 1, we have limN→∞
1
N

∑N−1
n=0 fnk′+p(z) = 0 for υ-a.e. z.

Now, for each n ≥ 1, we have Eυ(fn|Atn) = 0. By the definition of the

partitions {Atn}n (see (5.3)), it is clear that there exists k′′ ∈ N such that for

all s, s′ ∈ [0, 1) and all n ≥ 1, Asn+k′′ refines As′n . Because of this and since

A ∈ At′k , the map 1A ◦Unt is Atn+k′-measurable for k′ = k+k′′. Thus {fnk′+p}n
is a sequence of bounded martingale differences for the filtration {Atnk′+p}n,

from which we deduce that their Cesàro averages converge to 0 for υ-a.e. z;

see [10, Th. 3 in Ch. VII.9]. �

Lemma 5.6. For Q1,3-a.e. (µ, t) and µ-a.e. x with (µ, x, t) ∈ Eγ , we have

that for any k ≥ 1 and each B ∈ Bk,

(5.10) lim sup
N→∞

1

N

N−1∑
n=0

(πtµ)A
t
n(πt(x)) × δRn

θ
(t)((∂B)(ε)) = o(1) as ε→ 0,

where E(ε) denotes the ε-neighborhood of a set E.
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Proof. By the global adaptedness of Q, we only need to show (5.10) for

Q-a.e. (µ, x, t) ∈ Eγ .

Fix k ≥ 1, and let B ∈ Bk. Recall that B = A × C with C ∈ Ck and

A ∈ Atk for some t ∈ C. Observe that we have

(∂B)(ε) ⊂
Ä
K × (∂C)(ε)

ä⋃ Ä
(∂A)(ε) × [0, 1)

ä
.

Thus it is sufficient to show that for Q-a.e. (µ, x, t) ∈ Eγ ,

(5.11) lim sup
N→∞

1

N

N−1∑
n=0

δRn
θ

(t)((∂C)(ε)) = o(1) as ε→ 0

and

(5.12) lim sup
N→∞

1

N

N−1∑
n=0

(πtµ)A
t
n(z)((∂A)(ε)) = o(1) as ε→ 0.

The statement (5.11) is clearly true. Actually, since θ is irrational, for any

t ∈ [0, 1), the limsup in (5.11) is a limit and it is bounded by the Lebesgue

measure of (∂C)(ε) that is o(1) when ε→ 0.

Now, let us prove (5.12). In the proof of Lemma 5.3, we have seen that for

Q-a.e. (µ, x, t) ∈ Eγ , (µ, x) generates an ergodic CP-distribution Q
(µ,x,t)
1,2 with

positive dimension. It follows from Proposition 3.7, (3.3) (and Remark 3.8)

that for any ε > 0, there exists n0(ε) ∈ N such that

(5.13) lim inf
N→∞

1

N
]

®
1 ≤ k ≤ N : max

u∈Λn0(ε)
µ[xk1 ]([u]) ≤ ε

´
> 1− ε.

Now, recalling πRk
θ
(t)(µ

[xk1 ]) = (πtµ)A
t
k(πt(x)) and using part (3) of Lemma 4.1,

we deduce that for any ε > 0, there exists δ(ε) > 0 such that

(5.14) lim inf
N→∞

1

N
]

®
1 ≤ k ≤ N : sup

y∈K
(πtµ)A

t
k(πt(x))(B(y, δ(ε))) ≤ ε

´
> 1− ε.

By definition, all elements in Atn have uniformly bounded eccentricities1 (less

than 1/β). On the other hand, the measure (πtµ)A
t
n(πt(x)) is supported on

some slice of K with slope between 1 and 1/β. Hence there exists an absolute

constant depending only on β such that for any A ∈ Atn, the intersection of the

support of (πtµ)A
t
n(πt(x)) with (∂A)(ε) is included in two balls of diameter less

than ε times this constant. Combining this fact with (5.14), we get (5.12). �

1The eccentricity of a rectangle is the ratio of the lengths of the longest and shortest side.

Here we are actually referring to the eccentricity of the convex hull of Atn but not itself, since

Atn is in general a Cantor set.
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The following lemma says that the measures ηN (z, t) and the Cesàro av-

erages of (πtµ)A
t
n(πt(x))×δRn

θ
(t) are asymptotically the same for typical (µ, x, t)

in Eγ .

Lemma 5.7. For Q1,3-a.e. (µ, t) and µ-a.e. x with (µ, x, t) ∈ Eγ , we have

ηN (πt(x), t)→ ν(µ,x,t) as N →∞

in the weak-* topology.

Proof. By the definition of {Bn}n, it is clear that maxB∈Bn diam(B)→ 0

as n → ∞. So the partitions {Bn}n generate the Borel σ-algebra of K ×
[0, 1). Now by this fact and Lemma 5.5, it is well known that for proving

Lemma 5.7 we only need to show the following: for Q1,3-a.e. (µ, t) and µ-a.e.

x with (µ, x, t) ∈ Eγ , whenever ηNk(πt(x), t) → υ along some Nk → ∞, then

υ(∂B) = 0 for each B ∈ Bn and all n ≥ 1. For this, we use Lemma 5.6. Fix any

n0 ≥ 1 and B ∈ Bn0 . For any ε > 0, let fε ∈ C(K × [0, 1)) be such that 1∂B ≤
fε ≤ 1(∂B)(ε) . Since maxB∈Bk diam(B) → 0 as k → ∞, for n large enough we

can find a finite family {Bi} ⊂ Bn such that (∂B)(ε) ⊂ ∪iBi ⊂ (∂B)(2ε). Now

if ηNk(πt(x), t)→ υ, then by Lemma 5.5 and Lemma 5.6, we have

∫
fεdυ = lim

k→∞

1

Nk

Nk−1∑
n=0

fε(U
n(πt(x), t))

≤ lim sup
N→∞

1

N

N−1∑
n=0

(πtµ)A
t
n(πt(x)) × δRn

θ
(t)(∪iBi)

≤ lim sup
N→∞

1

N

N−1∑
n=0

(πtµ)A
t
n(πt(x)) × δRn

θ
(t)((∂B)(2ε))

= o(1) as ε→ 0.

This implies that υ(∂B) = 0. �

We are now ready to prove Proposition 5.4.

Proof of Proposition 5.4. By Lemma 5.7, for Q1,3-a.e. (µ, t) and µ-a.e.

x with (µ, x, t) ∈ Eγ , ν(µ,x,t) is a measure according to which certain orbit

{Un(z, t)}n equidistributes. Thus for proving the U -invariance of ν(µ,x,t), we

only need to show that it gives zero measure to the set of discontinuities of U .

This is an immediate consequence of the fact that the discontinuities of U are

contained in the set
⋃
B∈B1 ∂B, since in the proof of Lemma 5.7 we have shown

that ν(µ,x,t) gives zero measure to this set. �



FURSTENBERG’S INTERSECTION CONJECTURE 733

5.3. Further properties of a U -invariant measure ν∞. From now on, let

us fix an element (µ0, x0, t0) ∈ Eγ such that Q
(µ0,x0,t0)
1,2 is an ergodic CP-dis-

tribution with dimension ≥ γ and the measure

ν∞ := ν(µ0,x0,t0) =

∫
πsµ× δt dQ(µ0,x0,t0)

1,3 (µ, t)

is U -invariant.

Applying Proposition 3.7 to the ergodic CP-distribution Q
(µ0,x0,t0)
1,2 we get

that for any ε > 0, there exists n0(ε) ∈ N such that for Q
(µ0,x0,t0)
1 -a.e. µ and

µ-a.e. x,

lim inf
N→∞

1

N
]

®
1 ≤ k ≤ N : max

u∈Λn0(ε)
µ[xk1 ]([u]) ≤ ε

and H(µ[xk1 ],Fn) ≥ n(γ logα−1 − ε)
´
> 1− 2ε for all n ≥ n0(ε).

(5.15)

Here we use Q
(µ0,x0,t0)
1 to denote the measure marginal of Q

(µ0,x0,t0)
1,2 . Now,

using part (3) of Lemma 4.1, we deduce that for any ε > 0 there exist δ(ε) > 0

and n1(ε) ∈ N such that for Q
(µ0,x0,t0)
1 -a.e. µ and πtµ-a.e. z,

lim inf
N→∞

1

N
]

®
1 ≤ k ≤ N : sup

y∈K
(πtµ)A

t
k(z)(B(y, δ(ε))) ≤ ε

and H((πtµ)A
t
k(z),Dn) ≥ n(γ log 2− 2ε)

´
> 1− 2ε for all n ≥ n1(ε).

(5.16)

In particular, the above property also holds for Q
(µ0,x0,t0)
1,3 -a.e. (µ, t) and

πtµ-a.e. z. On the other hand, since the measure ν∞ has the form
∫
πtµ ×

δt dQ
(µ0,x0,t0)
1,3 (µ, t), selecting a pair (z, t) according to ν∞ can be done by first

selecting a pair (µ, t) according to Q
(µ0,x0,t0)
1,3 and then selecting a point z ac-

cording to πtµ.

It follows from the above discussions that we have

Proposition 5.8. The measure ν∞ satisfies the following property :

(5.17)

For any ε > 0, there are δ(ε) > 0 and n1(ε) such that for ν∞-a.e.

(z, t), we can find µ ∈ P(X) such that πtµ ∈ P(` ∩K) for some

line ` with slope β−t and (5.16) holds for πtµ and z.

In particular, almost every ergodic component of ν∞ still satisfies this property.

In the rest of this paper, we choose an ergodic component of ν∞ that

satisfies property (5.17) and still denote it by ν∞. We have thus proved the

following:
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Theorem 5.9. There exists a U -invariant ergodic measure ν∞ that sat-

isfies property (5.17).

6. An ergodic theoretic result

This section is devoted to the proof of the following theorem in ergodic

theory. Recall that a sequence {xk}k∈N ∈ [0, 1) is called uniformly distributed

(UD) if for any sub-interval J of [0, 1), we have

lim
N→∞

N−1] {0 ≤ k ≤ N − 1 : xk ∈ J} = L(J).

Theorem 6.1. Let (X,T, µ) be an ergodic dynamical system. Let A be

a generator with finite cardinality, and let {An}n be the filtration generated

by A with respect to T (see Section 2.4.2). Suppose that µ(∂A) = 0 for each

A ∈ An and all n ≥ 1. Let ξ be an irrational number. For any ε > 0, there

exists n2 = n2(ε) ∈ N such that for each n ≥ n2, we can find a disjoint family

{Ci}N(n,ε)
i=1 of measurable subsets Ci ⊂ X satisfying the following properties :

(1) We have µ (
⋃
iCi) ≥ 1− ε.

(2) For each 1 ≤ i ≤ N(n, ε), we have ] {A ∈ An : Ci
⋂
A 6= ∅} ≤ enε.

(3) There exists another disjoint family {‹Ci}N(n,ε)
i=1 of measurable subsets ‹Ci⊂X

such that for each 1 ≤ i ≤ N(n, ε), we have Ci ⊂ ‹Ci and µ(Ci) ≥
(1− ε)µ(‹Ci), and moreover, for µ-a.e. x the sequence¶

Rkξ (0) ∈ [0, 1) : k ∈ N and T k(x) ∈ ‹Ci©
is UD. Here Rξ is the irrational rotation map defined by Rξ(t) = t − ξ

mod 1.

Remark 6.2. The conclusion of the theorem holds without the condition

that the generator A has finite cardinality, but we will not use this fact. As-

suming the condition on A will make the proof shorter.

We will use Sinai’s factor theorem in the proof of Theorem 6.1.

Theorem 6.3 (Sinai’s factor theorem). Let (X,T, µ) be an ergodic dy-

namical system. Then any Bernoulli shift (ΣN, σ, ν) with h(ν, σ) ≤ h(µ, T ) is

a factor of (X,T, µ).

For definitions of Bernoulli shift and factor, see Section 2.4. In the above

version of Sinai’s factor theorem, we include the case when h(µ, T ) = 0 —

in this case the theorem is obviously true since every Bernoulli shift with zero

entropy is a trivial one-point system (the product measure ν is a Dirac measure

at a fixed point) that is trivially a factor of (X,T, µ). The original version of

Sinai’s factor theorem [36], [37] was stated for invertible systems, but it also

implicitly applies to non-invertible ones. (For the proof, see also [28].)



FURSTENBERG’S INTERSECTION CONJECTURE 735

For the rest of this section, we fix an ergodic dynamical sys-

tem (X,T, µ) satisfying the hypothesis of Theorem 6.1 and let

(ΣN, σ, ν) be a Bernoulli shift with h(ν, σ) = h(µ, T ).

It follows from Sinai’s factor theorem that there exists a factor map π :

X → ΣN such that

π ◦ T = σ ◦ π and ν = πµ.

By Rohlin’s disintegration theorem, there exists a system of conditional mea-

sures (µy)y∈ΣN of µ with respect to π satisfying the following properties:

(1) for ν-a.e. y, µy is a Borel probability measure supported on π−1(y);

(2) for every µ-measurable B ⊂ X, the map y 7→ µy(B) is ν-measurable and

µ(B) =

∫
ΣN
µy(B)dν(y);

(3) moreover for ν-a.e. y, the measure µy can be obtained as the weak-* limit

of limr→0 µπ−1(B(y,r)), where µπ−1(B(y,r)) is defined by

µπ−1(B(y,r))(A) =
µ
(
π−1(B(y, r))

⋂
A
)

µ (π−1(B(y, r)))
.

For a proof of the above version of Rohlin’s disintegration theorem, see [35].

The proof of Theorem 6.1 relies on two lemmas. Recall that {An}n is the

filtration associated to the generator A and, for x ∈ X, An(x) is the unique

element of An containing x.

Lemma 6.4. Suppose that µ satisfies the hypothesis of Theorem 6.1. Let

ν and (µy)y∈ΣN be as above. For any δ > 0, we have

(i) there exist a measurable set Aδ ⊂ X with µ(Aδ) > 1− δ and n′ ∈ N such

that for each x ∈ Aδ ,

(6.1) µπ(x)(An(x)) ≥ e−nδ for all n ≥ n′;

(ii) for any n ≥ 1, there exist a measurable set Bn
δ ⊂ ΣN with ν(Bn

δ ) > 1− δ
and r = r(δ, n) > 0 such that for each y ∈ Bn

δ and each A ∈ An, we have

(6.2)
µ
(
π−1(B(y, r))

⋂
A
)

µ (π−1(B(y, r)))
≥ (1− δ)µy(A).

Proof. (i) Since (ΣN, σ, ν) is a factor of (X,T, µ) with h(ν, σ) = h(µ, T ), it

follows from the conditional Shannon-McMillan-Breiman Theorem [3, Th. 3.3.7]

that for µ-a.e. x,

lim
n→∞

logµπ(x)(An(x))

−n
= 0.
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By Egorov’s theorem, there exist a measurable set Aδ ⊂ X with µ(Aδ) > 1− δ
and n′ ∈ N such that for each x ∈ Aδ,

logµπ(x)(An(x))

−n
≤ δ for all n ≥ n′.

This is exactly (6.1).

(ii) Fix any n ≥ 1. By hypothesis, µ(∂A) = 0 for all A ∈ An. The same

holds for µy for ν-a.e. y. Recall that by Rohlin’s disintegration theorem, for

ν-a.e. y, µy is the weak-* limit of µπ−1(B(y,r)) as r → 0. Thus, by Portmanteau’s

theorem, we deduce that for ν-a.e. y and for all A ∈ An,

lim
r→∞

µ
(
π−1(B(y, r))

⋂
A
)

µ (π−1(B(y, r)))
= µy(A).

Then we can again apply Egorov’s theorem to obtain a measurable set Bn
δ ⊂ ΣN

with ν(Bn
δ ) > 1 − δ and r = r(δ, n) > 0 such that for each y ∈ Bn

δ and each

A ∈ An, we have (6.2). �

The following result is an easy consequence of the mixing property of the

Bernoulli shift (ΣN, σ, ν).

Lemma 6.5. For any measurable set B ⊂ ΣN with ν(B) > 0, the sequence¶
Rkξ (0) : k ∈ N and T k(x) ∈ π−1(B)

©
is UD for µ-a.e. x ∈ X .

Proof. Since the Bernoulli shift (ΣN, σ, ν) is weak-mixing, for any irra-

tional rotation system ([0, 1), Rξ,L), the product system

(ΣN × [0, 1), σ ×Rξ, ν × L)

is ergodic (see Section 2.4.1). We claim that if B ⊂ ΣN is measurable with

ν(B) > 0, then the set ¶
Rkξ (0) : k ∈ N and σk(y) ∈ B

©
is UD for ν-a.e. y ∈ ΣN. To see this, note that by the ergodic theorem, for

ν-a.e. y and L-a.e. t, the sequence {xn(y, t)}n :={Rkξ (t) : k∈N and σk(y)∈B}
satisfies limN→∞N

−1]{1 ≤ n ≤ N : xn(y, t) ∈ J} = L(J) for each dyadic in-

terval J ∈ Dk([0, 1)), k ≥ 1. This clearly implies that the sequence {xn(y, t)}n
is UD. Since Rkξ (t) = Rkξ (0) + t in [0, 1), we deduce that {xn(y, 0)}n is UD for

ν-a.e. y, as claimed.

On the other hand, since (ΣN, σ, ν) is a factor of (X,T, µ) with factor

map π, we have for µ-a.e. x ∈ X,

{k ∈ N : T k(x) ∈ π−1(B)} = {k ∈ N : σk(π(x)) ∈ B}.

Combining this with the above claim, we get the desired result. �
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Proof of Theorem 6.1. Fix ε > 0. Let δ > 0 be a small constant which we

will choose later. Let Aδ and n′ =: n2 be the set and the number provided by

Lemma 6.4(i). Then we have∫
ΣN
µy(Aδ)dν(y) = µ(Aδ) > 1− δ.

From this, we deduce that there exists δ1 > 0, with δ1 = o(1) when δ → 0,

so that the following holds: we can find a measurable set B1 ⊂ ΣN with

ν(B1) > 1 − δ1 such that for each y ∈ B1, we have µy(Aδ) > 1 − δ1. For

instance, we can take δ1 =
√
δ.

Fix any n ≥ n2. Let Bn
δ and r be the measurable set and the number

provided by Lemma 6.4(ii). Note that we have ν(Bn
δ ) > 1 − δ. Let B2 =

B1 ∩Bn
δ . Then we have ν(B2) > 1− δ − δ1. For each y ∈ B2, let

E(y, n) =
¶
A ∈ An : π−1(y) ∩Aδ ∩A 6= ∅

©
.

By the definition of Aδ, if x ∈ Aδ, then µπ(x)(An(x)) ≥ e−nδ. It follows that

for each A ∈ E(y, n), we have µy(A) ≥ e−nδ. Since µy is a probability measure,

we deduce that ](E(y, n)) ≤ enδ for each y ∈ B2.

Now, let us consider the following collection of balls of ΣN:¶
B(y, r) ⊂ ΣN : y ∈ B2 and ν(B(y, r)) > 0

©
.

Since we use an ultra-metric in ΣN, the above collection is actually finite. Let

us enumerate its elements by {Bi}N(n)
i=1 . Note that Bi’s are disjoint balls. For

each 1 ≤ i ≤ N(n), let us define‹Ci = π−1(Bi) and Ci = π−1(Bi)
⋂Ñ ⋃

A∈E(y,n)

A

é
,

where y is some point in B2 such that B(y, r) = Bi. Now we can make our

choice of δ. In the following we fix δ small enough such that

δ ≤ ε and (1− δ − δ1)(1− δ)(1− δ1) ≥ 1− ε.

Let N(n, ε) := N(n). We claim that the families {Ci}N(n,ε)
i=1 and {‹Ci}N(n,ε)

i=1

satisfy properties (1), (2) and (3) in Theorem 6.1.

We first verify property (2). We have seen that ](E(y, n)) ≤ enδ for each

y ∈ B2. By the definition of Ci and the assumption δ ≤ ε, this clearly implies

property (2).

Now, we verify properties (1) and (3). Observe that An is a partition of

X, thus by definition of E(y, n) we have for y ∈ B2,

π−1(y) ∩Aδ ⊂
⋃

A∈E(y,n)

A.
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Note that by the choice of B1, we have

µy
Ä
π−1(y) ∩Aδ

ä
= µy(Aδ) > 1− δ1

for each y ∈ B1. From these two facts, we deduce that if y ∈ B2 ⊂ B1, then

(6.3) µy

Ñ ⋃
A∈E(y,n)

A

é
≥ 1− δ1.

On the other hand, recall that each y ∈ Bn
δ satisfies (6.2) for all A ∈ An. Using

this and the fact B2 ⊂ Bn
δ , we deduce from from (6.3) that for each y ∈ B2,

we have

µ

Ñ
π−1(B(y, r))

⋂Ñ ⋃
A∈E(y,n)

A

éé
≥ (1− δ)(1− δ1)µ

Ä
π−1(B(y, r))

ä
.

Combining this with the definitions of Ci and ‹Ci and the choice of δ, we get

µ(Ci) ≥ (1− δ)(1− δ1)µ(‹Ci) ≥ (1− ε)µ(‹Ci)
for each 1 ≤ i ≤ N(n, ε). Note also that

µ
Ä
∪i‹Ciä = µ

Ä
∪iπ−1(Bi)

ä
= ν (∪iBi) ≥ ν(B2) ≥ 1− δ − δ1.

Thus again by the choice of δ, we obtain

µ (∪iCi) ≥ (1− δ)(1− δ1)µ
Ä
∪i‹Ciä ≥ (1− δ − δ1)(1− δ)(1− δ1) ≥ 1− ε.

It remains to show that the sequence¶
Rkξ (0) ∈ [0, 1) : k ∈ N and T k(x) ∈ ‹Ci©

is UD on [0, 1). This is implied by Lemma 6.5. �

7. Proof of Theorem 1.3

The following result is essential for proving Theorem 1.3. It is a con-

sequence of property (5.17) of ν∞ and an application of Theorem 6.1 to the

system (K× [0, 1), U, ν∞). Recall that Π1 is the projection from K× [0, 1) to K

and N2−n(A) denotes the number of n-level dyadic cubes intersecting a set A.

Proposition 7.1. For any ε > 0, there exist r0 = r0(ε) > 0 and n3 =

n3(ε) ∈ N such that for each n ≥ n3, the following is true: for ν∞-a.e. (z, t),

we can find a measure ν ∈ P(K), a measurable set D ⊂ K× [0, 1) and a subset

N ⊂ N satisfying the following properties :

(1) the measure ν ∈ P(` ∩K) for some line ` with slope β−t;

(2) n−1 logN2−n(Π1(D)) ≤ ε;
(3) for each k ∈ N , Uk(z, t) ∈ D;

(4) L
(
{Rkθ(t) : k ∈ N}

)
≥ 1 − ε, where L denotes the normalized Lebesgue

measure on [0, 1) (i.e., L([0, 1)) = 1);
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(5) for each k ∈ N ,

inf
y∈K

1

n log 2
H
Ä
νA

t
k(z)|B(y,r0)c ,Dn

ä
≥ γ − ε

1
2 .

Recall that νA
t
k(z) is defined as (5.4), and it is supported on some slice

`′ ∩ K with slope β−R
k
θ (t). Recall also that η|E denotes the restriction of a

measure η on E; see Section 2.3.2 for the definition of entropy.

For the proof of Proposition 7.1, we need two elementary lemmas. For

F1 ⊂ F2 ⊂ N, we define the upper density of F1 in F2, denoted d(F1, F2), as

d(F1, F2) = lim sup
N→∞

]{F1 ∩ [0, N − 1]}
]{F2 ∩ [0, N − 1]}

.

Similarly, we define the lower density d(F1, F2) of F1 in F2. If d(F1, F2) =

d(F1, F2), then we say the density of F1 in F2 exists and denote it by d(F1, F2).

Lemma 7.2. Let {xk}k∈N ⊂ [0, 1) be a sequence that is UD. Suppose that

F ⊂ N. Then

L
Ä
{xk : k ∈ F}

ä
≥ d(F,N).

Proof. Let E = {xk : k ∈ F}. If L(Ec) > 0, then for any ε > 0, we can

find finitely many intervals {Ji}i ⊂ Ec such that L(∪iJi) > L(Ec) − ε. Now

since {xk}k∈N is UD, we have

L(∪iJi) = lim
N→∞

N−1]{1 ≤ k ≤ N : xk ∈ ∪iJi}

= 1− lim
N→∞

N−1]{1 ≤ k ≤ N : xk /∈ ∪iJi} ≤ 1− d(F ). �

Lemma 7.3. Let η ∈ P(Rd) and 0 < δ < 1. If supy∈Rd η(B(y, δ)) ≤ ε,

then for n ∈ N with 2−n ≤ δ, we have

inf
y∈Rd

H(η|B(y,δ)c ,Dn) ≥ H(η,Dn)− C1nε
1
2

for some constant C1 depending only on d.

Proof. We will use the elementary fact that if µ is a finite (not necessarily

probability) measure on a metric space X, then for any finite partition A =

{Ai}ki=1 of X, we have

(7.1) H(µ,A) ≤
∑
i

µ(X)

k
log

k

µ(X)
= µ(X) log k + µ(X) log

1

µ(X)
,

with equality only if µ(Ai) = µ(X)/k for each i.

Recall that Dn is the collection of n-th level dyadic cubes of Rd. Fix any

y0 ∈ Rd. Let A = {w ∈ Dn : w ∩ B(y0, δ) 6= ∅} and E = ∪w∈Aw. Note that

since 2−n ≤ δ, for some constant C ′ = C ′(d), we have diam(E) ≤ C ′δ and E
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can be covered by less than C ′ balls of diameter δ, thus η(E) ≤ C ′ε. Now to

conclude the proof we only need to notice that

H(η|B(y0,δ)c ,Dn) ≥ H(η,Dn)−H(η|E ,A)

and by (7.1),

H(η|E ,A) ≤ η(E) log ]A+ η(E) log
1

η(E)
≤ C1nε

1
2

for some constant C1 = C1(d). �

Now we are ready to prove Proposition 7.1.

Proof of Proposition 7.1. Fix any ε > 0. Recall that by Theorem 5.9, the

measure ν∞ is ergodic and satisfies property (5.17). Let r0(ε) := δ(ε), where

δ(ε) is the constant appearing in property (5.17).

Recall that B1 is the partition of K × [0, 1) defined in (5.2). Since B1 is

a generator with finite cardinality and ν∞(∂B) = 0 for each B ∈ Bn, n ≥ 1

(see the proof of Lemma 5.7), we can apply Theorem 6.1 to the system (K ×
[0, 1), U, ν∞). Let n2(ε) be the integer provided by Theorem 6.1. Let

n3(ε) := max{n2(ε), n2(ε)
logα−1

log 2
, n1(ε)},

where n1(ε) is the integer appearing in (5.17).

We fix any n ≥ n3(ε). Let ñ = bn log 2
logα−1 c+1, where bxc denotes the integer

part of x. By the choice of n3(ε), we have ñ ≥ n2(ε). Then by Theorem 6.1,

we can find a disjoint family {Ci}N(ñ,ε)
i=1 of measurable subsets Ci ⊂ K × [0, 1)

satisfying the following properties:

(i) we have ν∞(
⋃
iCi) ≥ 1− ε;

(ii) for 1 ≤ i ≤ N(ñ, ε), we have ]
{
E ∈ Bñ : Ci ∩ E 6= ∅

}
≤ eεñ;

(iii) there exists another disjoint family {‹Ci}N(ñ,ε)
i=1 of measurable subsets ‹Ci ⊂

K × [0, 1) such that for each 1 ≤ i ≤ N(ñ, ε), we have Ci ⊂ ‹Ci, ν∞(Ci) ≥
(1− ε)ν∞(‹Ci) and for ν∞-a.e. (z, t), the sequence

(7.2)
¶
Rkθ(t) ∈ [0, 1) : k ∈ N and Uk(z, t) ∈ ‹Ci©

is UD.

Now, it follows from the above property (iii) and property (5.17) that the

following set

A′ :=


(z, t) : the sequence (7.2) is UD for each 1 ≤ i ≤ N(ñ, ε) and there

exists µ = µz,t such that πtµ ∈ P(l ∩K) for some line l with

slope β−t and (5.16) holds for πtµ and z.
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has full ν∞-measure. For 1 ≤ i ≤ N(ñ, ε), let

H(Ci, z, t) =
¶
k ∈ N : Uk(z, t) ∈ Ci

©
and

H(‹Ci, z, t) =
¶
k ∈ N and Uk(z, t) ∈ ‹Ci© .

Let A′′ be the set of (z, t) such that for each i,

d(H(Ci, z, t),N) = ν∞(Ci) and d(H(‹Ci, z, t),N) = ν∞(‹Ci).
Recall that for a subset F of N, d(F,N) denotes the density of F in N. By

ergodicity of ν∞, A′′ also has full ν∞-measure. Let A = A′ ∩A′′. Then we still

have ν∞(A) = 1.

Now, let us pick any (z, t) ∈ A. In the following, we will find a measure

ν ∈ P(K), a measurable set D ⊂ K × [0, 1) and a subset N ⊂ N satisfying

properties (1)–(5) in the statement of Proposition 7.1.

Note that since A ⊂ A′, (z, t) ∈ A′. It follows that there exists µ = µz,t
such that πtµ ∈ P(` ∩K) for some line ` with slope β−t and (5.16) holds for

πtµ and z. Let

ν = πtµz,t.

Recall that r0(ε) = δ(ε) and n ≥ n3(ε) ≥ n1(ε), where δ(ε) and n1(ε) are the

constant and the integer appearing in property (5.16). Thus by (5.16), the set

A(ν, z, t) :=

®
k ∈ N : sup

y∈K
νA

t
k(z)(B(y, δ(ε))) ≤ ε

and H(νA
t
k(z),Dn) ≥ n(γ log 2− 2ε)

´
has lower density at least 1 − 2ε in N. On the other hand, by the above

property (i), the density of
⋃N(ñ,ε)
i=1 H(Ci, z, t) in N is at least 1 − ε. Note

also that the H(Ci, z, t)’s are disjoint. It follows that there exists at least

one 1 ≤ i0 ≤ N(ñ, ε) such that the lower density of A(ν, z, t) ∩H(Ci0 , z, t) in

H(Ci0 , z, t) is at least 1− 3ε. Let

D = Ci0 and N = A(ν, z, t) ∩H(Ci0 , z, t).

Since H(Ci0 , z, t) has density at least (1 − ε) in H(‹Ci0 , z, t), we deduce that

the lower density of N in H(‹Ci0 , z, t) is at least (1 − 3ε)(1 − ε). Now, since

(z, t) ∈ A′, the sequence¶
Rkθ(t) ∈ [0, 1) : k ∈ H(‹Ci0 , z, t)©

is UD in [0, 1). From Lemma 7.2, we obtain

L
(
{Rkθ(t) : k ∈ N}

)
≥ (1− 3ε)(1− ε) ≥ 1− 4ε.
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Let us now consider the projection Π1(D). By the above property (ii), we have

]
{
E ∈ Bñ : D ∩ E 6= ∅

}
≤ eεñ.

It follows that

]
{
A ∈ Π1(Bñ) : Π1(D) ∩A 6= ∅

}
≤ eεñ.

Recall that each element of Π1(Bñ) is in At
ñ

for some t ∈ [0, 1). By definition,

it is clear that each element in At
ñ

can be covered by C2 balls of diameter αñ,

where C2 is a constant depending only on the geometry of R2, α and β. By

the choice of ñ, we have αñ ≤ 2−n. Thus we get

n−1 logN2−n(Π1(D)) ≤ C3ε

for some constant C3 depending only on R2, α and β. It remains to show

property (5) of Proposition 7.1. For this, we use the fact that for each k ∈ N ,

the measure νA
t
k(z) satisfies the inequalities in the definition of A(ν, z, t) and

apply Lemma 7.3 to νA
t
k(z) to get

inf
y∈K

1

n log 2
H
Ä
νA

t
k(z)|B(y,r0(ε))c ,Dn

ä
≥ γ − C4ε

1
2

for some constant C4 depending only on R2, α and β. Note that to effectively

apply Lemma 7.3 we need to assume that n ≥ n3(ε) was chosen large enough

so that 2−n ≤ r0(ε). For this we may replace n3(ε), if necessary, by a larger

number, which we continue to denote by n3(ε), such that 2−n3(ε) ≤ r0(ε). Let-

ting C = max{C3, 4, C
2
4}, we get that the chosen ν,D and N satisfy properties

(1)–(5) of Proposition 7.1 provided that in (1)–(5) we replace ε by Cε. To

complete the proof, we only need to replace r0(ε) and n3(ε) by r0(ε/C) and

n3(ε/C), respectively. �

7.1. Proof of Theorem 1.3. Recall that we initially assumed (4.1) and we

need to prove dimHK ≥ 1 + γ. Since K = Cα × Cβ, dimHCα = dimBCα and

dimHCβ = dimBCβ, by Lemma 2.2, dimHK = dimBK. Thus it suffices to

show that dimBK ≥ 1 + γ.

Fix a small ε > 0. Let r0 = r0(ε) and n3 = n3(ε) be as in Proposition 7.1.

Fix any large n ≥ n3. Choose a point (z, t) ∈ K × [0, 1), a measure ν ∈ P(K),

a measurable set D ⊂ K × [0, 1) and a subset N ⊂ N satisfying properties

(1)–(5) of Proposition 7.1.

We claim that for any k ∈ N ,

inf
y∈K

1

n log 2
logN2−n

Ä
supp

Ä
νA

t
k(z)
ä
\B(y, r0)

ä
≥ γ − o(1)

as ε→ 0 and n→∞.
(7.3)

The claim is just a consequence of property (5) and the elementary formula (7.1).
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Note that since ν ∈ P(` ∩K) for some line ` with slope β−t, νA
t
k(z) is a

measure supported on some other slice `′ ∩ K with slope β−R
k
θ (t). Note also

that for each k ∈ N , we have Π1(Uk(z, t)) ∈ Π1(D) and the support of νA
t
k(z)

intersects Π1(D).

Let us summarize the consequences of properties (1)–(5): For any ε > 0,

there exist a set F = {Rkθ(t) : k ∈ N} ⊂ [0, 1) with L
Ä
F
ä
≥ 1− Cε and a set

D1 = Π1(D) ⊂ K with n−1 logN2−n(D1) ≤ Cε such that for each s ∈ F , there

exists a line ` = `s with slope β−s intersecting D1 and satisfying

(7.4)

inf
y∈K

1

n log 2
logN2−n (` ∩K \B(y, r0)) ≥ γ − o(1) as ε→ 0 and n→∞.

Now, let us consider the set K̃ := K − D1 = {w − v : w ∈ K, v ∈ D1}. It

follows from the above summarized property that for any t ∈ F , we can find

some line ` = `′t with slope β−t satisfying (7.4) and passing through an n-th

level dyadic cube containing the origin. From this, it is easy to check that we

have

logN2−n(K̃)

n log 2
≥ 1 + γ − o(1) as ε→ 0 and n→∞.

It is a well-known fact that for each d ≥ 1, there exists a constant C(d)

such that N2−n(A + B) ≤ C(d)N2−n(A)N2−n(B) for any A,B ⊂ Rd. Since

n−1 logN2−n(D1) = o(1), it follows that

logN2−n(K)

n log 2
≥ 1 + γ − o(1) as ε→ 0 and n→∞.

This implies dimB(K) ≥ 1 + γ.

8. Proof of Theorem 1.6

For proving Theorem 1.6, we follow the same scheme as in the proof of

Theorem 1.3. We only give a sketch of the proof.

Let X be a self-similar set satisfying the conditions of Theorem 1.6. Sup-

pose that there exists a slice `0∩X with upper box dimension γ > 0. Our aim

is to show that we must have dimHX ≥ 1 + γ.

Construction of CP-distributions based on `0 ∩X . We will first construct

an ergodic CP-distribution Q with dimension at least γ such that Q1-almost

every measure is supported on a slice of X.

We first recall some notation. Let F = {fi(x) = λOξx+ ti}mi=1 be the IFS

generating X. Recall that λ ∈ (0, 1), ti ∈ R2 and Oξ is the rotation matrix of

angle 2πξ ∈ [0, 2π) with ξ irrational.
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Write Λ = {ti}mi=1. Consider the symbolic space ΛN endowed with the

metric dλ (recall (2.1)). Let Π : ΛN → X be the projection map defined as

Π((xn)n) =
∞∑
n=1

λn−1On−1
ξ xn.

Then X = Π(ΛN). Note that since F satisfies the strong separation condition,

the map Π is bi-Lipschitz. Let M : P(ΛN)×ΛN be the magnification operator

defined as

M(µ, x) = (µ[x1], σ(x)).

Recall that for some line `0, we have dimBX∩`0 = γ. Let A = Π−1(X∩`0).

Since Π is bi-Lipschitz, the upper box dimension of A is also γ. Thus there

exists a sequence nk ↗∞ such that

lim
k→∞

Nλnk (A)

−nk log λ
= γ.

Similarly as in Section 4.2, we define a sequence of measures {µk}k on A:

µk =
1

Nλnk (A)

∑
u∈Λnk :[u]∩A 6=∅

δxu ,

where xu is some point in [u] ∩A. Then we set

Pk =
1

Nλnk (A)

∑
u∈Λnk :[u]∩A 6=∅

δ(µk,xu) and Qk =
1

nk

nk−1∑
i=0

M iPk.

Let Q be an accumulation point of {Qk}k. Then Q is M -invariant and adapted,

and thus it is a CP-distribution. Moreover, it has dimension

H(Q) =

∫
1

logα
logµ[x1]dQ(µ, x) = γ.

One can also show that the measure component of Q is supported on mea-

sures that are supported on slices of X. Up to replacing Q by one of its

ergodic components with dimension ≥ γ, we may assume that Q is an ergodic

CP-distribution with dimension at least γ and that Q is supported on measures

that are supported on slices of X.

The transformation W on X and a W -invariant measure ν. Let W be

the inverse map of the IFS F on X; that is, the restriction of W on fi(X) is

f−1
i . Then W is expanding and rotating, and it transforms a slice l ∩X into

finitely many pieces of slices with the angle of each of the transformed slices

being rotated by −ξ comparing to that of the initial slice l.

We use An to denote the partition of X given by

{Π([u]) : u ∈ Λn}.
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For any measure η ∈ P(X) and x ∈ supp(η), we write

ηAn(x) = Wn

Ç
η|An(x)

η(An(x))

å
.

Consider the map G : P(ΛN)× ΛN → P(X) defined by

G(µ, x) = Πµ.

Then G is continuous. Applying the ergodic theorem to the CP-distribution Q,

we get for Q-a.e. (µ, x),

1

N

N−1∑
n=0

G(Mn(µ, x))→
∫
GdQ as N →∞.

By the definition of M , we have G(Mn(µ, x)) = (Πµ)An(x). Thus for Q-a.e.

(µ, x),

1

N

N−1∑
n=0

(Πµ)An(x) →
∫

ΠµdQ as N →∞.

Now, with similar arguments as in the proof of Proposition 5.4, we can prove

that the measure ν :=
∫

ΠµdQ is actually W -invariant. Furthermore, by pro-

ceeding analogously as in Section 5.3, we can show that ν satisfy a similar

property as (5.17): for any ε > 0, there exist δ = δ(ε) > 0 and n0 = n0(ε) ∈ N
such that for ν-a.e. z ∈ X, there exists µ ∈ P(ΛN) with Πµ ∈ P(l ∩ X) for

some line l and

lim inf
N→∞

1

N
]

®
1 ≤ k ≤ N : sup

y∈K
(Πµ)Ak(z)(B(y, δ)) ≤ ε and

H((Πµ)Ak(z),Dn) ≥ n(γ log 2− ε)
´
>1− ε for all n ≥ n0.

(8.1)

Up to taking an ergodic component, we may also assume that ν is ergodic.

Applying the ergodic theoretical result to the system (X,W, ν), and con-

clusion. Now, we apply Theorem 6.1 to the system (X,W, ν) and proceed as

in Section 7 to finally conclude that dimB(X) ≥ 1 + γ. Since X has equal

Hausdorff and upper box dimensions, we get dimHX ≥ 1 + γ.

9. Embeddings of self-similar sets and proofs

of the remaining statements

In this section, we first present and prove an application of Theorem 1.3

in the study of affine embeddings of self-similar sets, and then we complete the

proofs of the remaining statements: Theorem 1.4 and the claim that Conjec-

ture 1.2 holds outside a set of Hausdorff dimension zero.
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9.1. Embeddings of self-similar sets. Let Φ = {φi(x) = αix + ai}mi=1 and

Ψ = {ψi(x) = βjx + bj}lj=1 be two self-similar IFSs on R. We denote their

attractors by XΦ and XΨ, respectively. The problem of affine embeddings of

self-similar sets was studied in [12]. The following conjecture is a special case

of [12, Conj. 1.2].

Conjecture 9.1. Let Φ,Ψ be the self-similar IFSs defined above. As-

sume that XΨ is not a singleton and Φ satisfies the SSC and dimHXΦ < 1.

If there exist real numbers v, u 6= 0 such that uXΨ + v ⊂ XΦ, then for each

1 ≤ j ≤ l, there exist rational numbers ri,j ≥ 0 such that βj =
∏m
i=1 α

ri,j
i .

Some special cases of Conjecture 9.1 have been proved in [12], and more

recently in [1], [13]. As a corollary of Theorem 1.3, we show that Conjecture 9.1

holds under the assumption that Φ is homogeneous.

Corollary 9.2. Under the assumptions of Conjecture 9.1, suppose fur-

ther that Φ is homogeneous : there exists 0 < α < 1 such that αi = α for each

1 ≤ i ≤ m. Then the conclusion of Conjecture 9.1 holds, i.e., log βj/ logα ∈ Q
for each 1 ≤ j ≤ l.

Proof of Corollary 9.2. We first prove the conclusion under the assump-

tion that XΨ satisfies the SSC. Fix any j0 ∈ {1, . . . , l}. We will show that

log βj0/ logα ∈ Q. Choose any j ∈ {1, . . . , l} \ {j0}, and let X1 be the attrac-

tor of the homogeneous self-similar IFS {ψj0 ◦ψj , ψj ◦ψj0}. Since XΨ satisfies

the SSC, the same holds for X1. Note that X1 ⊂ XΨ, and thus by hypothesis

we have uX1 + v ⊂ XΦ. We claim that log(βj0βj)/ logα ∈ Q. Otherwise, by

Theorem 1.3 (and part (2) of Remark 1.5), we would have

dimH(uX1 + v) ∩XΦ ≤ max{0,dimHX1 + dimHXΦ − 1} < dimHX1,

which contradicts the fact (uX1+v)∩XΦ = uX1+v. Similarly, we can consider

the IFS {ψj0 ◦ ψ2
j , ψ

2
j ◦ ψj0} and deduce that log(βj0β

2
j )/ logα ∈ Q. Then we

get log βj0/ logα ∈ Q.

Now we consider general XΨ. Fix any j1 ∈ {1, . . . , l}. We will show that

log βj1/ logα ∈ Q. Since XΨ is not a singleton, there exists j ∈ {1, . . . , l}
such that ψj1 and ψj have different fixed points. From this we deduce that for

large enough n, the IFS {ψnj1 , ψ
n
j } satisfies the SSC. Let X2 be the attractor

of this IFS. Then we have uX2 + v ⊂ XΦ. From this and what we have

just proved, we deduce that log βnj1/ logα ∈ Q, which in turn implies that

log βj1/ logα ∈ Q. �

9.2. Proofs of the remaining statements. We first complete the proof of

Theorem 1.4. Following Furstenberg, we call C ⊂ R a p-Cantor set if it is the

attractor of a certain IFS F = {x/p + i/p}i∈Λ for some Λ ⊂ {0, . . . , p − 1}.
Clearly, each p-Cantor set is a regular 1/p-self-similar set.
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Proposition 9.3. Let A ⊂ T = [0, 1) be a Tm-invariant closed set. Then

for any ε > 0, there exist k ∈ N and an mk-Cantor set ‹A such that A ⊂ ‹A and

dimHA ≥ dimH
‹A− ε.

Proof. Let us denote by Dmk the set of k-th level m-adic intervals of

T = [0, 1), i.e., Dmk =
¶

[i/mk, (i+ 1)/mk) : 0 ≤ i ≤ mk − 1
©

. Let Nm−k(A)

be the number of elements in Dmk intersecting A. It is a classical result, due

to Furstenberg [14], that any Tm-invariant closed set has equal Hausdorff and

box dimensions. Thus we have

dimHA = lim
k→∞

logNm−k(A)

k logm
.

Let us fix a large enough k such that
logN

m−k (A)

k logm ≤ dimHA + ε. We consider

the IFS

F =

ß
1

mk
x+

i

mk
: 0 ≤ i ≤ mk − 1 and [i/mk, (i+ 1)/mk) ∩A 6= ∅

™
.

Since A is Tm-invariant, it is also T km-invariant, from which we deduce that A is

a sub-attractor of F , i.e., A ⊂ ⋃f∈F f(A). Let ‹A be the attractor of F . Then ‹A
is a mk-Cantor set and A ⊂ ‹A. Now, it remains to show dimHA ≥ dimH

‹A−ε.
For this, we only need to notice that ‹A satisfies the open set condition, and it

is well known that its Hausdorff dimension is
logN

m−k (A)

k logm . By the choice of k,

we get the desired result. �

Proof of Theorem 1.4. Let A⊂T be closed and Tp-invariant, and let B⊂T
be closed and Tq-invariant, with p � q. Fix any ε > 0. By Proposition 9.3,

for some large k and l, there exist a pk-Cantor set ‹A and a ql-Cantor set ‹B
such that A ⊂ ‹A, dimHA ≥ dimH

‹A − ε, B ⊂ ‹B and dimHB ≥ dimH
‹B − ε.

Now, from the hypothesis p � q we deduce that pk � ql, thus we can apply

Theorem 1.3 to the sets ‹A and ‹B to get

dimB(u‹A+ v) ∩ ‹B ≤ max{0, dimH
‹A+ dimH

‹B − 1}.

From this we deduce that

dimB(uA+ v) ∩B ≤ max{0,dimHA+ dimHB − 1}+ 2ε.

Since ε is arbitrary, we get the desired result. �

We now show that Conjecture 1.2 holds outside a set of Hausdorff dimen-

sion zero.

Theorem 9.4. If p � q, then the set of x ∈ [0, 1] that do not satisfy

dimHOp(x) + dimHOq(x) ≥ 1

has Hausdorff dimension zero; in fact it is a countable union of sets with upper

box dimension zero.
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Proof. Let E =
¶
x ∈ [0, 1] : dimHOp(x) + dimHOq(x) < 1

©
. We need to

show that the set E is a countable union of sets with upper box dimension

zero.

In the following, by a Tm-invariant set we always mean a Tm-invariant and

closed set of [0, 1]. Let

F1 =
¶

(A,B) : A is a Tp-invariant set, B is a Tq-invariant set

and dimHA+ dimHB < 1
©

and

F2 =
¶

(‹A, ‹B) : ‹A is a pk-Cantor set, ‹B is a ql-Cantor set

and dimH
‹A+ dimH

‹B < 1, k, l ∈ N
©
.

By Proposition 9.3, for each pair (A,B) ∈ F1, there exists (‹A, ‹B) ∈ F2 such

that A ⊂ ‹A and B ⊂ ‹B. Thus we have

E ⊂
⋃

(A,B)∈F1

A ∩B ⊂
⋃

(Ã,B̃)∈F2

‹A ∩ ‹B.
Now, note that for each k ∈ N, there are only finitely many pk-Cantor sets and

finitely many qk-Cantor sets. Thus the cardinality of F2 is at most countable.

Since p � q, we have pk � ql for any k, l ∈ N. Thus by Theorem 1.3, for each

(‹A, ‹B) ∈ F2, we have

dimB(‹A ∩ ‹B) ≤ max{0, dimH
‹A+ dimH

‹B − 1} = 0.

Hence E is contained in a countable union of sets with upper box dimension

zero. �
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