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Abstract For a real analytic periodic function ¢ : R — R, an integer b > 2
and A € (1/b, 1), we prove the following dichotomy for the Weierstrass-
type function W(x) = Y, ., A"¢(b"x): Either W (x) is real analytic, or the
Hausdorff dimension of its graph is equal to 2 + log,, A. Furthermore, given
b and ¢, the former alternative only happens for finitely many A unless ¢ is
constant.

1 Introduction

We study the fractal properties of the graphs of Weierstrass type functions

W)= WY, @) =) a"¢(b"x), x €R, (1.1)
n=0

where b > 1,1/b < A < 1 and ¢(x) : R — R is a non-constant Z-periodic
Lipschitz function. The most famous example, with ¢ (x) = cos(2mwx), was
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introduced by Weierstrass, and it is a continuous nowhere differentiable func-
tion, see [10]. The graphs of Weierstrass-type and related functions are among
the most studied objects in fractal geometry since the birth of this subject, see
[5], [8, Section 8.2] and [6, Chapter 5], among many others.

The goal of this paper is to prove the following theorem.

Main Theorem Letb > 2 be aninteger, A € (1/b, 1) andlet ¢ be a Z-periodic
real analytic function. Then exactly one of the following holds:

(i) W is real analytic;
(ii) the graph of W has Hausdorff dimension equal to

D =2 +log, A. (1.2)

Moreover, given b and non-constant ¢, the first alternative only holds for
finitely many A € (1/b, 1).

Kaplanetal. [15] proved that in the case that ¢ is a trigonometric polynomial,
either W is a C! curve or the box dimension of the graph of W is equal
to D, without the assumption that b is an integer. Our theorem is a similar
dichotomy with box dimension replaced by Hausdorff dimension which is
much more difficult to compute. The price we pay here is the assumption that
b is an integer which enables us to approach the problem from dynamical
point of view. An immediate consequence is the following corollary which in
particular recovers the main theorem in [25].

Corollary 1.1 Letb > 2beaninteger, . € (1/b, 1) andletp(x) = cos(Qmx+
0), where 6 € R. Then the Hausdorff dimension of the graph of W is equal to
D.

Historical remarks. A map W as in (1.1) has the following remarkable prop-
erty

W(x) = ¢(x) + AW (bx), (1.3)

so the graph of W exhibits approximate self-affinity with scales » and 1/, and
it is natural to conjecture that the Hausdorff dimension of its graph is equal
to D. However, one has to be careful since the function W can be smooth for
certain choices of A, b, ¢. (This is easily seen: for any real analytic Z-periodic
function Wo and ¢(x) = Wo(x) — AWy (bx), one has Wy, (x) = Wo(x).)
The pioneering work of Besicovitch and Ursell [5] showed that the Hausdorff
dimension of a function of the form ) -, b, *¢ (b,x) is equal to 2—a provided
that b, 1/b, — oo and logb,+1/logb, — 1. (See [1] for recent advances
for maps of such modified form.) A map as in (1.1) is easily seen to be Holder
continuous of exponent 2— D which implies that the Hausdorff dimension of its
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graphis at most D. Many authors have studied the anti-Holder property of these
functions [15,22,23], with the strongest form given in [13], see Theorem 2.2.
This anti-Holder property implies that W is not differentiable and also that the
box and packing dimension of its graph are equal to D. Moreover, in [22], it
is proved that the Hausdorff dimension of the graph of such a W is strictly
greater one. In [20], it was shown that the Hausdorff dimension of W has a
lower bound of the form D — O(1/logb).

The first example of maps in the form (1.1) for which the graph is shown
to exactly have Hausdorff dimension D was given by Ledrappier [17]. Using
dimension theory for (non-uniformly) hyperbolic dynamical systems devel-
oped in [18] and a Marstrand type projection argument, Ledrappier proved
that the Hausdorff dimension of the graph of a Takagi function (taking b = 2,
¢ (x) = dist(x, Z) in (1.1)) is equal to D, provided that the Bernoulli convo-
lution ) |, +(2A)~" has Hausdorff dimension one. The last property, studied
first by Erdos [7], was shown by Solomyak [21,26] to hold for almost every
A € (1/2,1). Later it has been shown to hold for A outside a set of Haus-
dorff dimension zero in Hochman [12] and then for every A transcendental in
Varja [30] . Mandelbrot [19] conjectured that the Hausdorff dimension of the
graph of W is equal to D for ¢ (x) = cos(2mx) and all A € (1/b, 1). Pushing
Ledrappier’s approach further, this conjecture has been proved for integral b,
first for A close to 1 in [3] and then for all A € (1/b, 1) in [25], in which
a result of Tsujii [27] also played an important role. See also [16]. The case
¢ (x) = sin(2mx) has also been settled shortly after in [29].

It had been known much earlier that the Bernoulli convolution has Haus-
dorff dimension less than one when 2A is a Pisot number. So Ledrappier’s
approach has it limitation (as already pointed by himself). Built upon the cele-
brated breakthrough [12], it has been shown recently in [4] that the Hausdorff
dimension of the graph of Takagi functions equal to D for all A, via analysis
on entropy of convolutions of measures.

Let us mention that the box and Hausdorff dimensions of Weierstrass-type
functions with random phases were obtained in respectively [11] and [14]. See
also [24].

See [2] and also [6, Chapter 5] for more remarks on Weierstrass-type func-

tions.
Main findings. We shall now be more technical and explain the main findings
in this paper. Let Z_ denote the set of positive integers and let N denote the

set of nonnegative integers. Let A = {0, 1,...,b — 1}, Af = U,fO:I A" and
Y = A%+ Forj = jij2j3 - - € %, define
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. . [ X J1 J2 J
Y(x,J)=Y$b(x,J)=—Zy”¢ <b7+b7+bn—l +---+;”>, x € R,

n=I1

where

—1 11 1.5
V—EG(E,)- (1.5)

This quantity appeared in [17] as the slopes of the strong stable manifolds of
a dynamical system which has the graph of W/|o 1) as an attractor. In both the
approaches of [17] and [4], certain separation properties of these functions
Y (x, j) play an important role.

These functions Y (x, j) are indeed related to the Weierstrass-type function
in a more direct way. Using the identity (1.3) one can show that if W is
Lipschitz, then W/(x) = Y (x, j) holds for Lebesgue a.e. x € R and for any
Jj € X. In particular, we have Y (x,i) = Y(x,j) foralli,j € X in this case.
See Lemma 2.1.

Definition 1.1 Given an integer b > 2 and A € (1/b, 1), we say that a Z-
periodic C ! function ¢ (x) satisfies

e the condition (H) if

Y(x,j) —Y(x,i)£0, Vj#ieX,
e the condition (H*) if

Y(x,j)—Y(x,i)=0, Vj, ie X.

Surprisingly, nothing happens between these two extreme cases.

Theorem A Fix b > 2 integer and A € (1/b, 1). Assume that ¢ is Z-periodic
and C*, where k € {5, 6, ..., 00, w}. Then exactly one of the following holds:

(1) Wﬁ pisC K and ¢ satisfies the condition (H*);
(i1) W;ﬁ p is not Lipschitz and ¢ satisfies the condition (H).

To prove Theorem A, we introduce a concept called C*-regulating period
which is a real number ¢ for which W (x 4+ ¢) — W(x) is C¥. A key estimate
is that a positive C2-regulating period ¢ is bounded from below in terms of
the C2-norm of W (x + t) — W (x), provided that W is not-Lipschitz. This is
obtained from the anti-Holder property established in [13,15]. See Lemma 2.2.

The proof of the main theorem is then completed by the following theorem
and a theorem in [25].
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Theorem B [f a real analytic Z-periodic function ¢ (x) satisfies the condition
(H) for an integer b > 2 and ) € (1/b, 1), then

dimpy ({(x, Wy ,(x) | x € [0, D}) = D.

Theorem B is obtained by modifying the argument of [4] where the dimen-
sion of planar self-affine measures are studied which in particular shows that
the Hausdorff dimension of W is equal to D in the case ¢ (x) = dist(x, Z) and
b = 2. The strong separation property (H) and the real analytic assumption
compensate the non-linearity we have to face.

Indeed, let u denote the lift of the standard Lebesgue measure on [0, 1)
to the graph of W|o,1y. By [17], u and its projections mju along the strong
unstable manifold of a dynamical system F (which keeps the graph of W/|o 1)
invariant) are exact dimensional and that dim(rrju) is equal to a constant o for
typical j € X, see Sect. 3.1. We need to show that « = 1. The measure mju
can be decomposed into measures of similar form in smaller scales, see (3.5).
Assuming the contrary, we shall apply Hochman’s criterion on entropy increase
[12] to obtain a contradiction. An important step is to introduce a suitable
sequence of partitions for the space X of the transformations involved, see (3.8).
For the case ¢ = dist(x, Z), the set X is a subset of A; i, the space of affine
maps from R? to R, and a sequence of suitable partitions were constructed
in [4] using a rescaling-invariant metric in the space Aj . Although we do
not have such a metric in our nonlinear case, we deduce a strong separation
property of maps in X from the condition (H) under the assumption that ¢ is
real analytic, see Sect. 5. With this strong separation property, we construct a
sequence of partitions of X explicitly, see Sect. 6.

Proof of Main Theorem By Theorems A and B, we know that either (i) or
(ii) holds. To show the last statement, we apply Theorem from [25], which
asserts that for A close to 1/b (i.e. y = % close to 1), the graph of Wﬁ » has
Hausdorff dimension D > 1. Assume by contradiction that there are infinitely

many A; € (1/b, 1) such that Wﬁ’b satisfies (i). Then y;, = 1/(Axb) € (0, 1)
are bounded away from 1. Moreover, by Theorem A,

Y) ,(x,000-) =¥, (x,100- ),

that is,

o0

Sy @ @/ — ¢ (D) =0 (1.6)

n=1

holds for y = y. For each x € R, the left hand side of (1.6) is a power
series in y with radius of convergence at least one. It has infinitely many zeros
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compactly contained in the unit disk. So, for every integer n > 1 and x € R,
¢'(x/b") = ¢'((x + 1)/b").
It follows that ¢’ is a constant, hence ¢ is a constant, a contradiction! O

Proof of Corollary 1.1 By the Main Theorem, it suffices to show that W is
not real analytic. Arguing by contradiction, assume that W is real analytic.
Let W(x) = ZneZ a,e* " pe the Fourier series expansion of the Z-periodic
real analytic function W. Then |a,| is exponentially small in |n|. However,
comparing the Fourier coefficients of both sides of the identity (1.3), we obtain
that aye = (A¥ 4 1)e’? /2 for all k > 1, absurd! O

Problems.

(1) Let b > 1 be non-integer, A € (1/b,1) and ¢(x) = cos(2mwx). Does
W = Wf » have a CK regulating period, 1 < k < oo? If the answer
is yes and T > 0 is a C* regulating period, then we can interpret the
graph of W/{jo, 7 as an invariant repeller of the smooth dynamical system
(x,y) = (bx mod T, (y—cos(2wx))/A+W(bx mod T)—W (bx))and
apply the corresponding dimension theory. If the answer is no, then it would
be interesting to study the oscillation of the functions W(x + T) — W(x)
forT > 0.

(2) Is the D-dimensional Hausdorff measure of the graph of W equal to zero,
even assuming b is an integer greater than one? It is well-known that
the graph of W|;, for any bounded interval J, has finite D-dimensional
Hausdorff measure.

In [22], the case ¢ (x) the Rademacher function and » = 2 were considered.
That is

1 if{x) 0, 1/2),
¢(x) = {_1 if {x} e [1/2, 1),

where {x} € [0, 1) denote the fractional part of x. In this case, it was
proved that the D-dimensional Hausdorff measure of the graph of W/ 1)
is a positive real number if and only if the Bernoulli convolution ) , £1"
is absolutely continuous with respect to the Lebesgue measure and its
density is in the class L®°. Tt is conceivable that for general ¢ and b, the
problem is related to the joint essential boundedness of the densities of
the occupation measures of W(x) — I'y(x), u € X. See Sect. 3 for the
definition of I'y,.

Organization. We prove Theorem A in Sect. 2. The rest of the paper is
devoted to the proof of Theorem B. In Sect. 3, we recall some results from the
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A Dichotomy for the Weierstrass-type functions 1063

Ledrappier—Young theory and state Theorem B’ which is a reduced form of
Theorem B. The rest of the paper is then devoted to the proof of Theorem B’
and an outline can be found at the end of Sect. 3.2.

2 The conditions (H) and (H*)

Throughout we fix an integer » > 2 and A € (1/b, 1). For a Z-periodic and
continuous function ¢ : R — R, define W = W¢ = W;ﬁ p asin (1.1).

Theorem 2.1 Assume that ¢ is Z-periodic and of class CX, where k €
{5,6, ..., 00, w}. Then exactly one of the following holds:

1) WisC k and ¢ satisfies the condition (H*);
(i) W is not Lipschitz and ¢ satisfies the condition (H).

Remark 2.1 At the cost of more technicality, the theorem can be proved under
the weaker assumption that k > 3.

The main idea of the proof is to analyze the regulating periods of W defined
as follows.

Definition 2.1 For each k € {1,2,...,00, w}, we say that r € R is a Cck-
regulating period of W = W if W(x + 1) — W(x) is a C* function. For
k € Z+, we put

Ex(t) = sup [(W(x +1) — Wx)P| < 0. (2.1)
xeR

It is easy to see that for a given k the set of all C¥-regulating periods of W
form an additive subgroup of R. If ¢ is C¥, then every number of the form
mb~", wheren € Z4 andm € Z, is aregulating period of W, which are called
trivial regulating periods. If W is C¥, then the subgroup is equal to R.

It is fairly easy to show that if W is Lipschitz and ¢ is C* then W is C*, and
the condition (H*) holds, see Lemma 2.1. Assuming that W is not Lipschitz,
we prove a lower bound of |#| in terms of E(¢) (Lemma 2.2) and show that
every C>-regulating period is rational (Corollary 2.1).

Assuming by contradiction that W is not Lipchitz and ¢ fails to satisfy the
condition (H). We show that violation of the condition (H) yields a non-trivial
regulating period of the form 1/p, where p is an integer greater than 1 and
co-prime with b. Given such an integer p, we define a renormalization (in Sect.
2.2) of ¢ as follows:

RP(¢) — chpeZHikx,

keZ
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1064 H. Ren, W. Shen

where ¢,, denotes the m-th Fourier coefficient of ¢. The properties that W¢

is not Lipschitz and ¢ does not satisfy the condition (H) are inherited by the

renormalization R, (¢) (Proposition 2.1). Hence we can repeat the procedure

infinitely often. However, this would imply that W is Lipschitz, a contradiction!
We start with the following easy observation.

Lemma 2.1 If W is Lipschitz and ¢ is C* for some k € 7., U{oo, w}, then W
isCkand Y (x,i) = Y(x,j) foralli,j € X.

Proof Assume W is Lipschitz. Then there exists a constant C > 0 such that
for Lebesgue a.e. x € R, W (x) exists and |W/(x)| < C. From W(x) =
¢(x) + AW (bx), we obtain that

W (x)=¢'(x)+y ' W (bx), a.e.

It follows that for a.e. xg € R, if (x_,);2, is a backward orbit of x¢ then for
any n > 0, W'(x_,) exists, |W'(x_,)| < C, and

W xopo1) = ¢ (opmt) + 7~ W ).
Therefore for any i, j € X,
Y(x,i)=Y(x,j) =W (x)

holds fora.e. x € R. Since Y (x, i) and Y (x, j) are C¥~! functions, this implies
that Y (x,i) = Y(x,j). As W(x) = W(0) + f(f Y (¢, 0)dz is the integral of a
Ck=1 function, W is C*. O

So we need to show that ¢ satisfies the condition (H) when W is not Lips-
chitz. We shall use the following result due to Hu and Lau, see [13, Theorem
4.1]. See also Kaplan et al. [15] for the case that ¢ is a trigonometric polyno-
mial.

Theorem 2.2 Assume that ¢ is Lipschitz but W is not Lipschitz. Then there
exists c > 0 and k > 0 such that for any § € (0, 1) and any x € R there exists
y € Rsuchthatc§ <y —x < §and |W(y) — Wx)| = k|y — x|% where
oa=2-—D.

2.1 Regulating periods
Lemma 2.2 (Key estimate) Suppose that ¢ is Lipschitz but W is not Lipschitz.

Then there exist constants ty > 0 and Co > 0 such that if t € R\{0} is a C*-
regulating period of W, then either |t| > to or E»(t)|t|P > Co.
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Proof Let c, k be as in Theorem 2.2 and let K > 0 be such that |W(x) —
W()| < K|x — y|* for all x, y € R. We may assume that 7 > 0. Let

f)=Wkx+1)— W)
and choose xg such that

|[W(xo +1) — W(xo)| = mgﬂé(lw(x +1) - W)l =:A.

Note that f'(xg) = 0. Write x; = xo + jt for each j € Z.
Claim. There exist constants {5 > 0 and C > 0 such that either t > ¢y or
A > Cr.

To prove this claim, fix a large positive integer m such that

m® > 2K /(kc%). (2.2)
Assume that ¢+ < 1/m. By Theorem 2.2, there exists y such that cmt <
y —xo9 < mtand |W(y) — W(xg)| > k|y — xo|%. Let m’ be minimal such that

Xp > y. Thencm < m’ < m, and

[W(xp) — W(xo)| = [W(y) — W(xo)| — [W(y) — W(xp)l
> kc*m*t* — Kt* > Kt“, (2.3)

where we have used (2.2) for the last inequality. On the other hand, by maxi-
mality of x¢, we have

m'—1
W (@) = Wxo) = | Y (W(xj) = Wixj)| <m'A <mA.
Jj=0
Together with (2.3), this implies that
A > Kt*/m. (2.4)

Thus the claim holds with 9 = 1/m and C = K /m.
Now let us assume that ¢ < fg, so that A > Ct®. Since f is periodic, this

implies that E := E3(¢) > 0. Let J = [‘/g—’tz]. Forany 0 < j < J, since

Fa) = fxo) = / : / £ ()dy dx,
x0 Jxo
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1066 H. Ren, W. Shen

we obtain

E E Coz
|f(xj) — f(xo)| < E(xj —x0)2 = Ejztz < _t <

A
f— 2 2 b

and hence | f(x;)| = A/2and f(x;) f(xo) > 0. Therefore, forall0 <k < J,

k—1
W) = Wxo)l = D 1f (el = kA /2.
j=0
Since
W (xs) — W(xo)| < Klxy —xol* < KT,
we obtain

A <2Kt¥)J'me (2.5)

Together with A > Ct“, this implies that J is bounded from above, hence
Et>~® > C for some positive constant C. O

Corollary 2.1 If¢ is Lipschitz but W is not Lipschitz, then every C?-regulating
period of W is rational.

Proof Arguing by contradiction, assume that W has a C?-regulating period
t € R\Q. Then for each n > 1, ¢, := dist(nt, Z) is a non-zero C 2—regulating
period, and

E>(t,) = Ex(nt) < nEx (1),

so by Lemma 2.2, |£,| has a lower bound of the form Cn~!/?, where D > 1
and C > 0. This contradicts with Dirichlet’s theorem which asserts that for
each irrational real number # and any positive integer Q, there is an integer g
with 1 < ¢ < Q such that dist(g?, Z) < 1/Q. O

Lemma 2.3 Assume that ¢ is C* for some integer k > 2 and does not satisfy
the condition (H). Assume also that W is not Lipschitz. Then there is an integer
p > 1 such that (p, b) = 1, and such that 1/ p is a C*-regulating period of
w.

Proof Since ¢ does not satisfies the condition (H), there exist i, j € X with
i # j and such that Y (x,i) = Y (x, j). Without loss of generality, we may
assume that i1 # ji. Let r, = (i1 + i2b + --- + i,b""V)/b", 5, = (j1 +
job+ -+ jnb”_l)/b". Then r,, # s, for any n > 1. For each n, r,, — s,, and
t, := dist(r, — s,, Z) are C*-regulating periods of W.

@ Springer



A Dichotomy for the Weierstrass-type functions 1067

Claim. sup?® | Ex (1) < oc.
Indeed, for eachn > 1,

o
—Y B, =)y B x 4 1)
m=1

n o
=) Y G TxA ) + v Y v Y BT x4 o),
m=1 =1

—Y(B"x. ) =Y y"¢ B" " x + sm)

m=1
n o0
=D V"G x4 s) v Y v 6 B x + sur0),
m=1 =1

and hence

DoVTE G T x ) = )y B x4 5)

m=0 m=0

=" (Z v (b~ x + sp00) — Z v (b fx + sn+5)) , (2.6)

=1 =1
where rg = s = 0. Let
n n
Fo(x) =Y A" ®b"(x + 1) = D A"p(B" (x + 1))
m=0 m=0
=Wkx+r,)— Wk +s,).
Then

Fix) =)y "¢/ 0" (x +ra) — >y "¢ B (x + 1))

m=0 m=0
=y Y YT O A ram) — DX+ 5um))
m=0
DAl (AT B S ) B
=1

where the second equality holds because for any 0 < m < n, b"'r, =
Frnem,b"™sp = sy—, mod 1, and the last equality follows from (2.6). As
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1068 H. Ren, W. Shen

Ei(t,) = sup,cg |F,§k) (x)], it is bounded from above by a constant. The claim
is proved.

Note that 7, # 0, so by Lemma 2.2, #, is bounded away from zero. Now
take n; — oo so thatr,, — r and s,, — s. As the proof of the claim shows,
F lies in a compact family of C*=1 functions, so W (x +r) — W(x +s) is C*.
Therefore, t = dist(r — s, Z) = lim,; 500 ty; is @ C*-regulating period of W.
By Corollary 2.1, t € Q. Since #, is bounded away from zero and for n > m,

b"(ry, — sp) = (rp—m — Sp—m) mod 1 = +¢,_,, mod 1,

we obtain that b™ (r — s) ¢ Z for all integers m > 0. Therefore, ¢ does not
have a finite b-adic expansion. So we can write ¢ in the form q;/p; with
p1 > 1, (q1, p1) = 1 such that p; has a prime factor p with p 1 b. Since
% is a CK-regulating period, ’%1 = % . % is a C*-regulating period as well.
Furthermore, since (g1, p) = 1, there exists ¢ € N such thatcg; =1 mod p
and so c%‘ = % mod 1 is a C¥-regulating period, and by the periodicity of

W, we obtain that 1/p is a CX-regulating period of W. O

2.2 Renormalization

For each C? function ¢ : R — R of period 1 and any integer p > 1, let

§p¢(x) = Z ckpehikpx,

keZ

and

Rpp(x) = Y cxpe™ ™ =R, (x/ ),

keZ

where ¢y is the k-th Fourier coefficient of ¢. As ¢y = O(k™), ﬁqu(x) and
Rp¢ (x) are C 3 functions.
Let

P@P)={peZs:p=>1(p b)=1,1/pisaC3regulating period of W?}.

For each p € Z2(¢), we call R,¢ (resp. ﬁpqﬁ) a renormalization (resp. pre-
renormalzation) of ¢.

The main properties of the renormalization is stated in the following propo-
sition.

Proposition 2.1 Assume that ¢ is C°. Let p € P(¢p). Then the following
hold:
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(1) For Sp(¢) = ¢ — Ry, WSr? is C3 and

sup [(WSr?) (x)| < C,
xeR

where C > 0 is a constant depending only on ¢.
(2) W is Lipschitz if and only if WRr?® is Lipschitz.
(3) ¢ satisfies the condition (H) if and only if so does R ¢.
4 If g € P(Rp@) then pg € Z ().

We need a lemma to prove the proposition.

Lemma 2.4 (Rescaling) Let T be a C* function of period 1 for some k € 7.,

and let T(x) = ©(px), where p > 2 is an integer with (p, b) = 1. Then,

() tis a C*-regulating period of W7 if and only if % is a C*-regulating period
of WT.

(i) 7 satisfies the condition (H) if and only if so does T.

Proof 1t is straightforward to check that Wix) = WT(px) forall x € R, so
Wo(x + t/p) — Wix) = W (px +1t) — W (px).

The statement (i) follows. To prove (ii), we observe that for u;,v; €

{0,1,....0 =1}, j = 1,2,..., there exists u;,v; € {0,1,...,b — 1},

j=1,2,..., such that

piy +iob+ - iyb" ) =us +ush + -+ up,b”' mod b,
p(O1+ Db+ 0, N =vi+vab+ -+ v,b"1 mod b".

Vice versa, since (p,b) = 1, given uy,us,..., vy, v2,..., we can find
uy, uy, ..., 0, 02, ...so that the above properties hold. Moreover, ujus - - - =
vivy - -- ifandonly if étjutp - - - = V102 - - . Since

YE(x, dyiip ) — Yi(x, D1n---)

=pY (px,ujuz---) — Y (px,viva---)),
the statement follows. O

Proof of Proposition 2.1 (1) For eachm € Z, let a,, = fol W9 (x)e2mimxqx
be the m-th Fourier coefficient of W := W?(x). Then

1
/ (W(x + l/p) _ W(x)) e—Zm'mxdx — am(eZm'm/p —1).
0
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Since p € Z(¢), W(x + 1/p) — W(x) is C3, so that |a,, (e>""/P — 1)| =
O (m~3), which implies that

lim sup |m|3|a,| < oo. (2.7)
m—+o0
ptm

Next, let us show that for each m € Z,

L )
R,¢p —2mwimx _Jam lfp | m,
/0 WRr? (x)e dx = {o it ptm. (2.8)
Indeed,
1 » o0
R T 3 Dy
0 n=0keZ

Soif p 1 m then fol Wﬁ;'qb(x)e_z”imxdx = 0. Moreover, since (p, b) = 1, for
every p | m,

o0 o0
apy = Z Z)»"Ck Appr—m = Z Z e - Liprzm

n=0keZ n=0kepZ

(I
2/ WRr® (x)e=2mimx g x,
0

This proves (2.8).
Since W?(x) = WRr?(x) + WSr®(x), it follows that

1 .
S, —2mimx . 0 lfp | m,
[) Wer?(x)e dx = {Clm it ptm. (2.9)

By (2.7), it follows that the m-th Fourier coefficients of WSr? (x) is of order
lm|~3, which implies that WSr?(x)isa C! function. Asin Lemma 2.1, we have

(WS?) (x) = — 3% y™(S,p) (x/b"). Together with S,¢p = ¢ — Rep €
C3, this implies that WSr? is C3 . Since

(Sp®) N =1 cume™™ ™| <> |mep| =: Co < o0,

PTm meZ
sup, |[(WSr?) (x)| < Coy/(1 —y) =: C.
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(2) Since WRr? (x) = WRr? (px), WRr? (x) is Lipschitz if and only if so is
WRpo, By (1), We(x) — WR®(x) is Lipschitz. So the statement holds.

(3) Since WSP¢(x) = W(x) — WRP"’(x) is Lipschitz, by Lemma 2.1,
YS$rd(x,i) = Ysﬁ‘i’g, Jj) forany i, j € Z. So ¢ satisfies the condition (H) if
and only if so does R,¢. By Lemma 2.4 (ii), R),¢ satisfies the condition (H)
if and only if so does R ¢.

(4) Since R ¢ is C3, by Lemma 2.4 (i), pg € 2(R,¢). Since W9 is C3,
this implies that pg € Z(¢). O

We shall now complete the proof of Theorem 2.1.

Completion of proof of Theorem 2.1 If W is Lipschitz, then (i) holds by
Lemma 2.1. Assume now that W is not Lipschitz and let us prove that (ii)
holds. Arguing by contradiction, assume that ¢ does not satisfies the condition
(H). By Lemma 2.3, &2(¢) is not empty.

Given p € Z(¢), by Proposition 2.1, WRr? is not Lipschitz and Ry
does not satisfies the condition (H). So by Lemma 2.3, there is g € Z(R,¢).
By Proposition 2.1 (4), pq € Z(¢). By definition, p,q > 2, s0 pg > p.
Therefore, & (¢) is an infinite set. B

Let p1 < p2 < --- be the elements of &2. Then clearly WRn?(x) > 0
holds for all x € R. By Proposition 2.1 (1) and the mean value theorem, for
every x,y € Randk > 1,

WP (y) — WRnS () — WP (x) + WRn? (1))
= (WP (y) — WP (x)| < Clx — yl.

Since the left hand side converges to |W?(y) — W?(x)| as k — oo, we obtain
[W?(y) — WP(x)| < Clx — y| forall x, y € R. It follows that W = W? is
Lipschitz, a contradiction! O

3 Preliminaries for the proof of Theorem B

In the remainder of the paper, we shall prove Theorem B. So fix an integer
b > 2and A € (1/b, 1) and assume that ¢ is a Z-periodic analytic function
which satisfies the condition (H). We start with recalling some basic facts from
the Ledrappier—Young theory.

A probability measure w in a metric space X is called exact-dimensional if
there exists a constant « > 0 such that for w-a.e. x,

. logw(B(x,r))
Iim —— =«
r—0 logr
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In this case, we write dimw = «. By the mass distribution principle, this
implies that for any Borel subset E of X with w(E) > 0, we have dimg (E) >
o, where dim g (E) denotes the Hausdorff dimension of the set E.

3.1 Ledrappier’s Theorem

Let u denote the pushforward of the Lebesgue measure in [0, 1) to the graph
of W by x — (x, W(x)). To complete the proof of Theorem B, it suffices to
show that dim(u) > D, since it is well-known that W (x) is a C%~D function
and hence the Hausdorff dimension of its graph is at most D.

The graph of W/|o,1) is invariant under the dynamical system

F:[0,)xR—[0,1) xR, (x,y) — (bx mod l’quﬁ(x)>
and p is an invariant probability measure. The Ledrappier—Young’s dimension
theory of dynamical systems applies in this setting, which relates the dimension
of u with its projection along some dynamical defined flows. We shall now
recall the results obtained in Ledrappier [17].

As before let A = {0,1,...,b —1}andlet & = AZ+ Leto : £ — %
denote the shift map (i1is - - -) +> (i2i3 - - - ). Let v denote the even distributed
probability measure on A and let vZ+ denote the product (Bernoulli) measure
on X.

For eachi € A, define

x+i X +i

Define the ‘inverse’ of F as
G : [Oa 1) X R X E - [0’ 1) X R X 27 (X,)’»i) = (gil(x’ y),U(i))

Then
=
p=y l;giu. (3.2)
Direct computation shows that

1 1 1
Dgil(x’ y) (Y()C,i)) = E <Y((x =+ l])/b, G(i))) ’
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So Dg;,gi, , - & contracts the vector (1, Y (x, 1)) at the exponential rate
—logb. Let

Ti(x) = /x Y(t,i)dt.
0

Soforeach y, x — y+Tj(x) is the integral curve of the vector filed (1, Y (x, i))
which passes through (0, y). Foreachi € X, this defines a foliationin [0, 1) xR
whose leaves are “parallel” to each other. Fori € X, define

mi(x,y) =y —Ti(x), (x,y)€[0,1) xR. (3.3)

So mj is the projection of (x, y) into the line x = 0 along the foliation {y +
[i(x)}yer. We call 7 the flow projection function with respect to i.

The following result is a part of [17, Proposition 2] which serves as our
starting point to calculate the Hausdorff dimension of the graph of W.

Theorem 3.1 If¢ : R — Risa Z-periodic continuous piecewise C function,
then

(1) w is exact dimensional,
(2) there is a constant o € [0, 1] such that for vZ+-a.e.j € %, L IS exact
dimensional and dim(mju) = a.

3)
dim(u) =1+ (D — Da. (3.4)

Therefore, Theorem B is reduced to the following

Theorem B’ Fix an integer b > 2 and . € (1/b, 1). Assume that ¢ is a real
analytic Z-periodic function which satisfies the condition (H). Then o = 1,
where o is the constant in Theorem 3.1.

3.2 A transition formula
We shall follow the strategy in [4], built on [12], to prove Theorem B’. For

i=iyp---iy, € A", write g = gj, o &, o - -- g;,. By iterating the formula
(3.2), we obtain

uzbinz gilt

ieA”
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and hence for each j € X, mju decomposes into measures on small scales as
1
T = o Z TTj o gill. (3.5
ieAn

This resembles the case of self-similar/self-affine measures, as the maps 7jg;
satisfies the following transition rule, which implies that each of the measure
in the right hand side of (3.5) is a translated rescaling of a measure of the form

nillgecall that A* = UZOZI A", Foreachi=1ijis---i, € A¥ set|i| = n and
i =ipip_1---11. (3.6)
Lemma 3.1 Foranyj e ¥ andi € A¥,
73 8i (6, y) = 2 (x, 3) + 733 0, 0). (3.7)

Proof By induction it suffices to consider the case i = i € A. According to
definition, we have

x+i x+i

x+l o0

:Ay+¢<x+l) / Zy¢(bn+—+ —I—%)a’s

=iy + k/ yqﬁ/(—)du
0

. u i J
+K/ Z” e <bn+1 Tt En)du Frs 0.0

To apply the argument in [4], we need to show the following:

(i) Most of the measures in the right hand side of (3.5) has certain entropy
porous property. This will be done in Sect. 4 and is similar to the corre-
sponding part of [4].

(i) Maps in the space

X={mjogi|ieX, ie A"} (3.8)

satisfy a suitable separation condition. This will be done in Sect. 5 and our
argument uses essentially the real analytic assumption on ¢. This separation
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property enables us to define a sequence of suitable partitions of X in Sect.
6.

After these preparations, the proof of Theorem B’ will be given in Sect. 7.

3.3 Entropy of measures

We shall recall definition and basic properties of entropy of measures which
is a basic tool for the proof of Theorem B’.

Consider a probability space (2, B, ). A (countable) partition Qis a count-
able collection of pairwise disjoint measurable subsets of 2 whose union is
equal to Q. We use Q(x) to denote the member of Q which contains x. If
w(Q(x)) > 0, then we call the conditional measure

w(ANQKX))

wQ(x)(A) = wy q(A) = »(Q(x))

a Q-component of w. We define the entropy

H,Q =Y -0(Q)log,(Q),
0eQ

where the common convention 0 log 0 = Ois adopted. Given another countable
partition P, we define the conditional entropy as

H.QP) = Y  o(P)Hwpr. Q.

PeP,w(P)>0
When Q is a refinement of P, i.e., Q(x) C P(x) for each x € Q, we have
H(w,QP)=H(w,Q) — H(w, P).

We shall consider the case where there is a sequence of partitions @Q;, i =
1,2, ..., such that Q4 is a refinement of Q;. In this situation, we shall write
wy,i = Wy q;> and call it a i-th component measure of . For a finite set I of
positive integers, suppose that for each i € /I, there is a random variable f;
defined over (2, B(Q;), w), where B(Q;) is the sub-o-algebra of 8 which is
generated by Q;. Then we shall use the following notation

1
Pici(Br) = Pit; (B)) i= o= ) o (By),

iel
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where B; is an event for f;. If f;’s are R-valued random variable, we shall also
use the notation

1

Eicr(fi) = Efy () = o7 ) JE(f).

iel
For example, we have
H(w, Qm—l—n |Qn) = ]E(H(a)x,na Qm+n)) = Ei:n(H(wx,h Qi—l—m))-

These notations were used extensively in [12] and [4].

In particular, we shall often consider the case 2 = R and 8B the Borel
o-algebra. Let £, denote the partition of R into b-adic intervals of level n,
i.e., the intervals [j/b", (j + 1)/b"), j € Z. Let Z(R) denote the collection
of all Borel probability measures in R. For an exact dimensional probability
measure w € Z(R), its dimension is closely related to the entropy, as shown
in the following fact which is [28, Theorem 4.4]. See also [9, Theorem 1.3].

Proposition 3.1 If w € Z(R) is exact dimensional, then
. .1
dim(w) = lim —H(w, L,).
n—oon

These notations P; ¢ (B;), E; <y (f;) will also apply to the case where Q = X,
B is the collection of all subsets of X, and w is a discrete measure.

In the following, we collect a few well-known facts about entropy and
conditional entropy, which can be found in [12, Section 3.1].

Lemma 3.2 (Concavity) Consider a measurable space (2, 8B) which is
endowed with partitions Q and P such that P is a refinement of Q. Let w, '
be probability measures in (2, B). The for any t € (0, 1),

tHw,Q+ (1 —-)HW,Q <H(lw+ (1-1o,Q),
tHw,PIQ + (1 -—tH(@,PQ) < Hitw+ (1 — o', P|Q).

Lemma 3.3 Let w € P(R). There is a constant C > O such that for any affine
map f(x) =ax +c, a,c € R, a # 0 and for any n € N we have

|H(fw, Lytiog, 1) — H(w, Ly)| < C.

Lemma 3.4 Given a probability space (2, B, w), if f, g : 2 — R are mea-
surable and sup, |f(x) — g(x)| < b™" then

|H(fw, Ly) — H(gw, L)) = C,
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where C is an absolute constant.

4 Entropy porosity

This section is devoted to analysis of entropy porosity of the projected measures
mji. This property will be used in applying Hochman’s criterion to obtain
entropy growth under convolution.

Definition 4.1 (Entropy porous) Let w € &(R). We say that w is (4, §, m)-
entropy porous from scale n to nj if

1
P <ZH(¢%,-, Liym) <h+ 5) >1-36.

The main result of this section is the following Theorem 4.1. Before the
statement of the theorem, we need to introduce a notation.
Notation. For each integer n > 0, let 71 be the unique integer such that

A< pm <l 4.1)

In particular, 0= O With this notation, there is a constant Cy > 0 such that
forany je X,ie A" and any m € N,

|H (jgitts Loym) — H (i, Ln)| < Co. (4.2)

Indeed, by Lemma 3.1, wjgju is equal to the pushforward of 7jjiu by a map
Alilx 4 ¢, for some ¢ € R. So the statement follows from Lemma 3.3.
Theorem 4.1 Fix anintegerb > 2and A € (1/b, 1). Assume that ¢ : R — R
is a Z-periodic piecewise C* function such that W = W)(f),b is not a Lipschitz
function. Then for any e > 0, m > M(e), k > K(e,m) andn > N (e, m, k),
the following holds: For anyj € X andu € Al teN,

C . Tj&u8iyiy-iy M is (a, €, m) — entropy B
v({t-(zuz )62'porousfromscalet+n+1t0t+n+k >1-e

We shall follow the argument in [4, Section 3] to prove this theorem. In
particular, we shall use (3.5) to decompose a measure j/4 as a convex com-
bination of measures of the form mjgj/u.

4.1 Uniform continuity across scales

Following [4], we say that a measure w € Z(R) is uniformly continuous
across scales if for every ¢ > 0 there exists § > 0 such that for any x € R and
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r € (0, 1], we have
w(B(x,68r)) <ew(B(x,r)). 4.3)

A family M of measures in & (R) is called jointly uniformly continuous across
scales if forevery ¢ > O there exists § > 0 such that (4.3) holds forany w € M,
any x € R and any r € (0, 1].

Lemma 4.1 Under the assumption of Theorem 4.1, for any € > 0 there exists
8 = 6(e) > 0 such that for anyj € ¥ and any y € R,

min (B(y,9)) < e.

Proof Arguing by contradiction, assume that this is false. Since the family of
probability measures ju is compact in the weak star topology, it follows that
there exists j € ¥ and yp € R such that ju has an atom at yo. This means
that the set

X ={x€[0,1): W(x) = Tj(x) + yo}

has positive Lebesgue measure. Let x( be a Lebesgue density point of X and let
J,, be the b-adic interval of level n which contains xg. Then |J, N X|/|J,]| — 1
asn — oQ.

Leti, € A,n=1,2,..., be such that b"x¢ € [i, /b, (i, +1)/b) mod 1.
Leti, = i1ip---i,. Then for each n, gj, maps [0, 1) x R onto J, x R. By
Lemma 3.1,

migi, (x,y) = A'mj, (x, y) + mjgi, (0, 0),
where j, = ij. Note that g;, (x, W(x)) = (S,(x), W(S,(x)), where

in+in_itb+---+iib" ! x
Sa(0) = —— + o

So foreachx € [0,1) andn > 1,

MW (x) =T, (x)) = A"mj, (x, W(x)) = mj(gi, (x, y)) — mjgi, (0, 0)
= 1(Sp(x), W(Sn(x)) — mjgi,(0,0)
= W (S (x)) — Tj(Su(x)) — m;8i,(0, 0).

Put y, = (yo — 7jgi,(0,0))/A", where yo is as in the first paragraph of the
proof. Then

W(x) = Tj,(x) = yn & W(Sa(x)) = Tj(Sp(x)) = yo & Sul(x) € X,
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SO
{x €[0,1): W(x) =Tj,(x0) + yu}l = [X O Ll /[l — 1,

asn — o0. The sequence y, is bounded, since W (x) and I'j, (x) are uniformly
bounded in n € N, x € [0, 1). Let n be a subsequence such that jnk — Joo
and y,, — Yoo in respectively X and R. Then for Lebesgue a.e. x € [0, 1),
W(x) € Tj_ (x) + yoo. By continuity, it follows that W (x) = I'j (x) + yeo is
a C! function, a contradiction! O

Proposition 4.1 Under the assumption of Theorem 4.1, the family of measures
{mj}jes is jointly uniformly continuous across scales.

Proof 1t suffices to prove that there is k > 0 such that for any j € X, any
x € Rand any r € (0, 1],

1
Tiu(B(x, kr) < Ean(B(x, r)). 4.4)

To thisend, let § = §(1/2) > 0 be given by the previous lemma and let M > &
be a constant such that mju is supported in [—M, M] for each j € X. Put
k =A8/(3M). Given r € (0, 1), choose n = n(r) € N such that

3M < 27" <307 M.

Note that A\7""xr < § < M. We shall show that for eachi =iir---i, € A",

1
Tigin(B(x, kr)) < EﬂjgiM(B(X, r)). (4.5)
Once this is proved, (4.4) follows from (3.5).

To prove (4.5), we first apply Lemma 3.1 and obtain x (i) = (gi)_1 x)eR
such that for any R > 0,

migiit(B(x, R)) = myju(B(x (i), A" R)).
If |x()| = 2M, then B(x (i), A~ "kr) is disjoint from [— M, M] since A "'xr <
M. Thus the left hand side of (4.5) is zero and hence the inequality holds.
Assume now that |x(i)| < 2M. Then
B(X(i), )"_nr) D [_M’ M]a
so the right hand side of (4.5) is equal to 1/2. On the other hand,

B(x(i), 2 "kr) C B(x(i), d).
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Thus the left hand side of (4.5) is at most 1/2 and hence the inequality holds.
0

Corollary 4.1 o > 0.

Proof By Proposition 4.1, there is § > 0 such that mju(B(y,8")) =<
27" mju(B(y, 1)) forany j € X,n € Z4 and y € R. It follows that

log i (B(y,
Jim sup og i (B(y, r)) > o

-1
2,6 > 0.
r—0 logr ?

Thus « > 0. O

4.2 Entropy porosity of ;u

In this subsection we complete the proof of Theorem 4.1.

Lemma 4.2 Foranye > 0,m > M(e),n > N(g, m),

1
inf V" ({ieA” to—e < —H(mip, Ln) <C¥+8}) >1—e.
JET m

Proof Denote h,,(j) = %H (i, Ln). Let us first show that &, is continuous
in j € X. Indeed, the supports of supp(rju) are uniformly bounded and j —
mju is continuous in the weak star topology. Since 7ju has no atom, for any
I € Ly, j > mju(l) is continuous. Thus

1 1
—H(mjp, L) =— Y h(mn)

1eLy, 1€[0,1]

is continuous in j, where a(t) = t log,, % is a continuous function in [0, c0).
Since h,, converges to o v+

measure, 1.e.

-a.e., the sequence {A,,} also converges to « in

<]

satisfies v+ (2,,) — 1 as m — o00. So there exists M(¢) such that when
m > M(g), V2 () > 1 —g/2.

Fix such an m > M (¢). As 2, is an open subset of X, there exists N :=
N (m, €) such that the union Xy of the N-th cylinders completely contained
in ©Q,, has vZ+-measure greater than 1 — ¢. Foreachn > N, X,, D Xy. The
lemma follows. ]

1
Q= {j eX: ‘ZH(an’LM) -«
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We shall need the following two lemmas which are respectively Lemma 3.7
and Lemma 3.10 in [4].

Lemma 4.3 For any ¢ > O, there exists § > 0 such that the following holds.
Let m,? € Nand k > k(m, £) be given, and suppose that t € Z(R) is a
measure and B > 0 is a constant such that for a (1 — §)-fraction of 1 <
t <k, we can write T as a convex combination T = poty + Zi>1 piTi, T; €
PR), po < 8 so as to satisfy the following three conditions

(1) LH(ti, Ligm) = B, i > 1.
(2) diam(supp(z;)) < b=0+0, i > 1.

(3) t(I) < 8t(J) whenever I C J are concentric intervals, |I| = b=*|J| =
p—t+0)

Assume further that }%H(r, L) — /3‘ < 8. Then t is (B, &, m)-entropy porous
from scale 1 to k.

Lemma 4.4 For every ¢ > 0 there exists § > 0 with the following property.
Letl € Nandm > m(g, L), and let T € 2 (R) be a measure such that t(I) <
%t(]) whenever I C J are concentric intervals, |I| = b~t|J| = 2b~*+0
for every k € N. Let n > n(m, £) and suppose that T is (o, &, m)-entropy
porous from scalesny tony = ny+n. Then forany f(x) = ax+c, a € R\{0}
and ¢ € R, ft is (a, &, m)-entropy porous from scales n1 — [log, |a|] to
ny — [log, lall

Lemma 4.5 Under the assumption of Theorem 4.1, for any ¢ > 0, there exists
8 > Osuchthatifm > M (¢) andk > K (e, m) and if |1 H (mjie, Li) — | < 3,
then wju is (a, &, m)-entropy porous from scale 1 to k.

Proof Assume without loss of generality that mju is supported in [0, 1] for all
j € X.Fixe > 0. Let § > 0 be so small that the conclusion of Lemma 4.3
holds and § < 2«. Let 8 = o — §/2 > 0. By Proposition 4.1, there exists
£ € N, such that for any j € X, we have

1)
mul) < Smin(J) (4.6)

whenever I C J are concentric intervals with 1 > [I| = b~¢|J|.
By Lemma 4.2, when m > M(e) and n > N (e, m), we have

. . 8 1 1)
vViflie A" ta — — < —H(mjju, L) <a+—¢ | >1-6. (47
6 m 6

Increasing M (¢) if necessary, we may assume that M (¢) > 6 max(Co, £)/$,
where Cy is as in (4.2).
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Fix m > M(¢e) and assume k > K (e, m) := N(e, m)/§. Let us show that
for any N(e,m) < n < k, and for t = n — ¢, the measure T = mju can be
written in the form ) p; 7; with the properties (1)-(3) in Lemma 4.3.

Indeed, since m > 6Cq/$8, by (4.2), forany i € A;’,

T om

c

1 1
‘—H(ﬂjgiﬂ, Lyym) — —H (i, Lin)
m m

So (4.7) implies that the set

| 1)
I, = {1 eA”: _H(T[jgiM,Lm—i—n) > o — _}
m 3

has cardinality greater than (1 — S)b’A’. We define 71, 12, . . . to be equal to 7 g
withie I,,pr=pr=---= b and define pg = 1 —#I,,lf’a and tp to be
the average of mjgju for those i € Aﬁ\In. Then T = pgto + p171 + - -+ and
po < 6. Moreover,

(1) Foreachi =1,2,...,
1 1 )
—H(ti, Liyw) = — (H(ti, Lyigm) —0) >a— - =B.
m m 2

(2) Since we assume that all the 7ju are supported in [0, 1] and A< pn
by definition of 77, by Lemma 3.1, each of ty, 1o, - - - is supported in an
interval of length b=" < b= (+0,

(3) The property (3) follows from (4.6).

Since

1 1

by Lemma 4.3, we obtain that 7 is (B, &, m)-entropy porous from scale 1 to k,
hence it is («, €, m)- entropy porous from scale 1 to k. O

Proof of Theorem 4.1 By Lemma 3.1,
Ti8w8iin-iz = Aﬁ+|w‘ﬂiﬁ...ilw*j + Constant.

So by Lemma 4.4, it suffices to prove that whenm > M(e), k > K (e, m) and
n> N(e,m,k), foranyh € X,
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v({ie = mii, i is (o, &,m)
—entropy porous from scale 1 to k}) > 1 — €. (4.8)

Given ¢ > 0, let 8, M (¢) and K (e, m) be given by Lemma 4.5. For this § > 0,
by Lemma 4.2, when k > K(§) and n > N (6, k),
)
< —}) >1-3.
2

Therefore, whenm > M (), k > max(K (e, m), K(8)) andn > N(6, k), (4.8)
holds. O

1
v ({1 eEX: I%H(”iﬁiﬁ—l”’ilh'u“’ L) —«a

5 Transversality

In this section, we deduce from the condition (H) some quantified estimates.
These estimates will be used to construct a sequence of partitions .Eff of the
space X in the next section which in turn is used in the last section to prove
Theorem B. The main result of this section is summarized in the following
theorem.

Theorem 5.1 Suppose that a real analytic Z-periodic function ¢ (x) satisfies
the condition (H) for some integer b > 2 and A € (1/b, 1). Then there exist
positive integers £y, Qo and a constant py > 0 with the following property.
Foranyu, v € £ withu, # v,,

sup [T, (x) — [(x)| > pob~ 20", (5.1)
x€[0,1)
and
sup inf |F,’,(x) — F;(x)l > po sup |F;(x) — F;(x)l. (5.2)
leLy, xel xel0,1]
1C[0,1)

For the proof, we observe that for any integer £ > 0, the family Fl(,k), uex,

is compact with respect to the topology of uniform convergence in R. Together
with the condition (H), this implies the maps in

Fn={Tu—Ty:u, #vyandu; =v;forl < j < n} (5.3)
are uniformly separated with constants depending on n. In order to quantify

the dependence of the constants in n, we shall use the following fact frequently,
which can be checked directly by definition of I':
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Ifu= (up)o |, V=o€ Xanduy =vi,uy =02, ...,Up_1 =
Vy—1 but u, # v,, where n € Z, then for any k > 1,
n—1 n—2
&, _ (Y (k) xAup 4 up_yb
l—‘LI,V()C) = (F) ran—l(“)’anfl(v) ( bn_l ) (54)

where I'yy = 'y — I'y.

Definition 5.1 For an integer k > 0, we say that a map v : [a,b) — Ris
k-regular if ¥ is C¥ and

sup |y ® @) <2 inf |y® ).
x€la,b) x€la,b)

Lemma 5.1 There exists a constant €1 > 0 and a positive integer Q| such
that for any f € 91,

sup | f'(x)| > er, (5.5)
x€[0,1]

and for any x € [0, 1], there exists k € {1,2, ..., Q1} such that
FARIC =" (5.6)

Proof This lemma follows from the fact that ¥ is compact with respect to
the topology of uniform convergence in the C* sense for each k € Z, . More
precisely, if (5.5) fails, then there exists f,, € #1 such thatsup, g 1 | f ()| <
1/m. Passing to a subsequence we may assume that there exists f € ] such
that sup, c(o.17 1./, () — f'(x)| = 0. Then f’(x) = 0 forall x € [0, 1]. Since
f(0) = 0, this implies that f(x) = 0 for all x € [0, 1]. By real analyticity of
f, f = 0. However, ¥ does not contain the zero function by the condition
(H), a contradiction.

Similarly, if (5.6) fails, then there exists f;, € 1 and x,,, € [0, 1] such that
|fn(1k)(xm)| < 1/m,foreachm = 1,2,...and k = 1,2, ..., m. Passing to
a subsequence, there exists xg € [0, 1] and f € ¥ such that x,, — xo and

maxyeqo.17 10 (x) — f®(x)] = 0asm — oo, foreach k = 1,2,.... It
follows that £®) (xo) = 0 for all k > 1. As f is real analytic and f(0) = 0,
this implies that f = 0, a contradiction. O

Lemma 5.2 Let g1, Q1 be as in Lemma 5.1. There exist £ € N such that for
any f € Fpon=1,2,..,andany I € Ly withI C [0,1), f : I — Ris
k-regular and

n—1
sup | F P (x)] > e (Vbl_k>

xel
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forsomek € {1,2,..., O1}.

Proof For n = 1, there is a constant C; > 0 such that for each f € 77,
|f(k+1)(x)| <Ciforanyk =1,2,..., Q1 and any x € [0, 1). Then choose

¢ such that b~01 < 32%11 For every I € Ly, let x; denote the center of /. By

Lemma 5.1, there exists k € {1, 2, ..., Q1} such that | f® (x;)| > &1, hence

inf fO@) = 1P = Cillly2 =21 P @n))/3,

sup | f® )| < 1 fR x| + Crl11/2 < 4P xpl/3,

xel
SO

sup | f % (o)l < 2inf | O ()],

xel

Thus f : I — Ris k-regular and sup, ; [FOx)| > €.
For general n, this follows from (5.4). Indeed, there is u1, us, ..., u,—1 and
amap f; € ¥ such that

X Aup -+ un—1b”_2>

flay=y"f ( e

For any I € Ly, thereis J € L, such that

X+ up+ oty b2
xel = e J.
bnfl

Since f] is k-regular in J for some k € {1,2, ..., Q1}, f is k-regular in [ for
the same k. O

Lemma 5.3 Forany integerk > 1, there exist §y > 0and ty > 0 such that the
following holds. Let ¥ : [0, 1) — R be a C* function such that | ® (x)| > 1
forall x € [0, 1). Then there exists a subinterval J of [0, 1) such that |J| > &
and |Y'(x)| > ¢ forall x € J.

Proof We prove by induction on k. The starting step k = 1 is trivial. Now
assume that the lemma is true for k < m, m > 2. Let us prove it for the case
k = m. Assume without loss of generality that that ¥ ™~1(1/2) > 0. We
distinguish two cases:

Case 1. ¥ (x) > 1 for all x € [0, 1). Then y™"~D(x) > J forall x €
[3/4, 1). Consider the function ¢(x) = 4™ ((x +3)/4). Then o~V (x) > 1
for all x € [0, 1). By the induction hypothesis, there is a subinterval J,,_1 of
[0, 1) such that |J,,_1| > 8,,—1 and |¢'(x)| > T for all x € J,_1. Put
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Jn={(x+3)/4:x € Jp_1},8n =8n_1/4and 7,, = (1/4)"'7,,_;. Then
[Jn| > 8 and [Y/(x)| > 1, for all x € J,,.

Case 2. y'™(x) < —1 for all x € [0, 1). Then ¥ D(x) > zlt for all
x € [0, 1/4). Then we apply the induction hypothesis to the map ¢(x) =
4™y (x /4) and complete the proof as in Case 1. O

Lemma 5.4 Assumethat f : [a, b) — Risk-regularfor some positive integer
k. Then there exists 6y > 0, pr > 0 depending only on k and an interval
J Cla, b) with |J| > 8;(b — a) such that

inf | f/(x)| > px sup |f'(x)].
xel x€la,b)

Proof We may assume that for each 1 < k' < k, f : [0,1) — R is not
k’-regular, i.e.

sup |40 >2 inf
x€[0,1) x€[0,1

) TR (5.7)

for otherwise we may work on k’ instead of k. Without loss of generality, we
may also assume that [a, b) = [0, 1) and

sup |f® )| = 1.

O<x<l1

(Otherwise, we consider A| f(A2x + ¢) instead of f for suitable choices of
A1, A2 > 0 and ¢ € R.) By the mean value theorem,

1 D) — fEDy) < e —yl <1

for each x, y € [0, 1). By (5.7), we have sup, .9 1) |f(k_1)(x)| < 2. But then
by the mean value theorem again

2P0 — fEP ) <200 —y[ <2

holds forall x, y € [0, 1]. Once again by (5.7), we obtain SUPe0,1) |f(k_2) €3]]
< 4. Repeating the process,

sup | f'(x) — f(y)] <2871
x,y€[0,1)

On the other hand, by k-regularity, | f®) (x)| > 1/2forallx € [0, 1). Applying
Lemma 5.3 to 2 f(x), there exists §y > 0, 1z > 0 and an interval J with
|J| > 8 such that | f/(x)| > ¢ /2 for all x € J. The lemma follows by taking
ox = /2K + o). O
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Proof of Theorem 5.1 By Lemmas 5.2 and 5.3, we obtain the first inequality.
By Lemma 5.2 and Lemma 5.4, we obtain the second inequality. O

6 The partitions L;" of the space X

In this section, we construct a nested sequence of partitions LgY of the space
X in (3.8) and prove a few key properties of these partitions. The separation
properties given in Theorem 5.1 play a central role in the proofs.

Throughout we fix an integer b > 2 and A € (1/b, 1) and we assume that
¢ : R — R is a real analytic Z-periodic function that satisfies the condition
(H).

Recall that by Lemma 3.1, for any j € ¥ and i € A,

migi(x, y) = Al(y — Ti(x)) + 7£i(0, 0).

So each member of X can be written in the form A’ (y — ¥ (x)) + ¢, where
t e N,c e Rand ¢ (x) € C*(R) with ¥(0) = 0. We shall call [i| the height
of the map 7jgi. Define 7 : X — N x RM+! by

My+y@) +e— (t, w(ﬁx lﬁ(%),---, v (1), C>,

where M = b% and ¢ comes from Theorem 5.1.

Definition 6.1 For each integer n > 1, L;,\’ consists of non-empty subsets of
X of the following form

TlUN XL x X x Iy x J),

where t € N, 1, Ip,..., Iy € L,,J € £"+[”0gb1/ﬂ' The partition L())(
consists of non-empty subsets of X of the following form

T T} xRx---xRx J),
where 1 € N, J € Li10g, 1/3]-

Lemma 6.1 There exists A > 0 such that any i > 0, each element of Lf(
X

contains at most A elements of L7, ;.

Proof When i > 1, the statement holds with A = bM*!. Since [(x) is
uniformly bounded in [0, 1), j € X, for each r € N, there are only finitely
many members of L‘IY whose elements have height #. So enlarging A, we can
guarantee that the statement holds also for the case i = 0. O
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Lemma 6.2 There exists R > O such that if wjg, and mjgy belong to the same
element ofL;Y, wherej € X, u,v € A;’, and i > 1, then for any x € [0, 1)
and y € R,
|7jgu(x, ¥) — migy(x, )| < Rb~ "+,
Proof By definition of the partition .Llf\, , we have
I7i£u(0, 0) — migy(0,0)| = O~ ")
and
|Curj(k/M) = Tysjk/M)| < b7
for each 1 < k < M. Note that the last inequality also holds for k = 0 since
then the left hand side is equal to 0. For each I € L, with I C [0, 1) there
exists 0 < k < M suchthat I = [k/M, (k+ 1)/M). Thus
. / / —i
;1;1; |Fu*j(x) — Fv*j(x)l <2b™'M,

since by the mean value theorem,

1
. / /

k+1 k+1 k k _
e TR — 'y ) [yxj i — 'y i <2b™".
By Theorem 5.1, it follows that
sup [ Tjej () — Dy ()| < 200 ' Mb ™", (6.1)
x€[0,1)
hence
sup [Tusj(x) — Tyrj(x)] < 2y ' Mb™". (6.2)
xe[0,1)
Since
Tjgu(x, y) — wigv(x, y)
= _)\n(ru*j(x) — Iy#j(x)) + 7jgu(0, 0) — mjgy(0, 0)
the lemma follows. O

@ Springer



A Dichotomy for the Weierstrass-type functions 1089

Lemma 6.3 There exists a constant C € Z such that for anyu #v € A",
n =1 andj € %, L3, (tgu) # L, (18-

Proof Choose C € Z. such that
pob™ Q0" > 2,00_1 Mb=C"
holds foralln > 1. Since u and v are distinct elements of A”, by Theorem 5.1,

sup IF:I*j(x) - F;*j(x)| > pob~ Q0" > 2,00_1Mb_C".
x€[0,1)

As in the proof of (6.1), we see that gy and 7jgy cannot belong to the same
element of L)én. O

For a discrete probability measure 7 in the space X and a Borel probability
measure p in R, let . denote the Borel probability measure in R such that
for any Borel subset of R,

nu(A) =nx n({(¥,x) e X xR :¥(x) € A}).

Lemma 6.4 For any ¢ > 0, there exists p > 0 and 5, > 0 such that the
following holds if i and k are sufficiently large. If n is a probability measure
supported in an element of L;\, such that each element in the support of n has
height n and such that

1
%H(n, L)) > e

then

) 2]
V! ({u IS ;H(ﬂ-((sgu(O,O))’-Ei+k+n) > 5*}) > p.

Proof Let M| = bt where £ is as in Theorem 5.1 and assume i > Lo. It

suffices to prove that for each integer 0 < T < b’ ~%~!  there exists at least
one element x of

;o
XT={7+L:051<M1,jeZ}
b M

such that

(6.3)

1 g
%H(U-S(x,W(x))v Litvkin) > 0
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Indeed, once this proved, the desired estimate holds with §, = ¢/(2M1) and
p=1/M.

Soletus fix T. Write X; = + e
Define F : supp(n) — RM1, by

,0<j < M andletzJ (XJ’W(-XJ))

1

FW) = (YE0), VG, ..., ¥Y@u—1)).
Claim. There exists a constant C such that
RMi ~
(77 Lz-l—k) (Fn ‘£t+k+n) +C.

To prove this claim, take I € .El k4n 1t suffices to show that the car-
dinality of the set {J € £l+k|J N F~Y(I) # Wand J N supp(n) # B} is

uniformly bounded. For any v e supp(n) with F(W™) e I, m = 1,2,
write W (x, y) = A (y — [y (x)) + c¢™ Foreach 1 < j < My,

(v2E) - v0@E)) - (¥2E ) - vOE )| = 0~ H),

which means that

ATy — Tyn) &) — (Mo — Tyo) &j—D)| = O (b=Fk+m)y,
ie.
|(Tye — Tyn) &) — (Tyo — Fy) Gj—)| = O (b=+R).
Therefore,

dnf _I0ye () = Dy (0] = O(b~Hh),

XE[Xj,l,Xj

For each element L of L, whichis containedin [0, 1) thereexists 1 < j < M,
such that [x;_1,x;) C L. So

inf [T (1) = Ty (0] = 0=,
By Theorem 5.1, it follows that

sup (Fu(z) — u(l)) x)| = O(bf(iﬂc)).
x€[0,1]
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Since I'j(0) = 0 for each j € X, we obtain that

sup [Ty (x) — Dy (X)] = O (b~ TRy,
xel0,1)

In particular, AT ‘(Fu(z) — Fu(l)) (f])’ = O(b_(i+k+n)). Since
vAE) - vV E)) = -2 (Tye — Tyn) G) +¢@ — D,
we also obtain that

}C(Z) _ C(l)‘ — O(b_(i+k+n)),

By definition of Lﬁk, we conclude the proof of the claim.

Define F; : supp(n) — R, by

Fi(¥) = ¥(@)).

Then
" y Mi—1
H( Fn, L]iR+kI+n) = H( s F_I(L]I'R-Fkl-i-n)) = H( . \/ Fj_l(-CiJrkJrn))
j=0
Mi—1 Mi—1
< Y H(n Fi'(Livksw) = Y H(0.8%, Liviin):
j=0 j=0
The claim implies that for at least one Z; we have
1 £ C
—-H(n.53,, Li > — — —.
X (77 Zj -£z+k+n) =M kM,
So (6.3) follows provided that k is sufficiently large. O

7 Proof of Theorem B’
In this section, we shall apply Hochman’s criterion on entropy increasing to

complete the proof of Theorem B’. The basic idea is to introduce a discrete
measure

Co1
0) = i D by € PX)

ieA?

@ Springer



1092 H. Ren, W. Shen

for each n € Z and analyze the entropy of 0}; with respect to the partitions
£X and also the entropy of

T :03,.;L

with respect to the partitions .£;.

7.1 The entropy of 0},

We start with analyzing the entropy of 6; with respect to the partitions L;Y .

Lemma 7.1 For vZ+-a.e.je %,

1
lim H(@J,L()) = hm H(nju L) =a.

n—oon

Proof Define m,,w : £ — R2 by m,()) = giip-i;(0,0) and (i) =
lim,, , o 7, (i). Then 7, — 7 = O(b™"), and hence wjm, — mjmr = O(b™").
Therefore,

H (i, L) = H (mymv™, £,) = H(xgmn™, L) + 0 ().

Forv-a.e.j € X, lim,,— %H(nju,, L) =a,so

1
lim —H (njm,v, L) = a.
n—oon

Since H(G,J;, LB\') = H(mjm,v, L,), the lemma follows. O
Lemma 7.2 There exists C € Z such that for eachj € X, we have

logb
log(1/1)°

Proof By Lemma 6.3, there exists C € Z such that foralln > 1 and any two
distinct i, k € Al , mjgi and mjgk lie in distinct elements of L . Therefore

lim H<t9,{,.£ >=

n—oon

H(Gn, L)C(n) = nlogb. Since lim,,_, o n/n = log, 1/, the lemma follows. O

From now on, we fix j € X so that the conclusion of Lemma 7.1 holds. We

shall write 0, = 6. Let
1 [loghb
&) = — T o > 0. (7.1)
C \log ~
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7.2 Decomposition of entropy

In the following lemma, we decompose the entropy of 6, and mju into small
scales.

Lemma 7.3 For any t > 0, there exists Co(t) > 0 such that if k,n are
positive integers with n > Co(7)k, then

! X | Xy — b ! X
aH(Qna LC”LL()) =< E0§i<Cn %H((en)\l‘,ia 'Li—i-k) + T, (72)
1 1
aH(JTj,LL, Lc+ynlLn) = E(g)llsi<cn [%H((en)\ll,iwua £i+k+n|-£i+n)i| - T.

(7.3)

Proof Using Lemma 6.1 and arguing in the same way of [12, Lemma 3.4], we
have

1 X | pX 6 1 X k
aH(Qn, Lc,,|-£()) = E0§i<Cn [EH((Gn)\II,i» ‘£i+k) + 0 ; .

Therefore, when n/ k is large enough, (7.2) holds. Similarly, we also have

1 1 1
EH(”J'M, LicrvnlLn) = Cn 0<,Z<:Cn [zH(”jM, -£i+k+n|-£i+n)j| - T.

Note that ju = (6,).1. By concavity of conditional entropy, we have

H(mje, LivknlLivn) = H(On) .1ty Litk+n|Litn)
> E% (H () w.i-tt, Litisnl Litn))-

Thus (7.3) holds. |

7.3 Proof of Theorem B’

To conclude the proof of Theorem B’, we shall further decompose the entropy
Qug.ink = %H([(en)\llo,i]-ﬂv LitisnlLitn)

into smaller scales and compare it with
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D inp = /lep Liviaen)d @) w, i (¥)
Q\I‘O,l,n,k = b; Z Xk ( 8ulbs Litk+n n)\W,i ’

uc Al
for each Wy in the support of 6,.

Lemma 7.4 Foranyt > 0, the following holds provided that k > K(t). For
any Vg in the support of 6,

Quyink = Qg ink — T (7.4)

Proof By concavity of conditional entropy, the left hand side of (7.4) is at
least

1 1
= f (—H<‘Ifguu,£i+k+nu:,-+n>) dn (W),
bi Jx \k

ucAl

where n = (0,)y,,;. For each ¥ in the support of n and eac_h u e Af,
the measure Wgyu is supported in an interval of length O (b~(+™), hence
HWgyu, Lit,) is uniformly bounded. The lemma follows. ]

The following lemma will be proved in the next section, using Hochman’s
criterion on entropy increase.

Lemma 7.5 (Entropy increasing) Assume o < 1. For every ¢ > 0, there exist
3+(¢) > 0 and Ky(¢) > 0 such that for each k > K> (¢) there exists I>(k, €)
with the following property. Assume i > I(k, €). If WYy is in the support of 6,
and

1
ZH (@) v L8y = e,
then

Owp.ink = Owp,ink + 3x(8).

Lemma 7.6 For any t > 0, k > K3(t) and n > Ni(t, k), the following
holds:

[ ~
E0§i<cn(Q\I/,i,n,k) > (¢ —1)(1 —1).
Proof First, we notice that
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j ~ 1
o ccnQuini) =5 D = Z f —H(Wgut, Litn+)d6 (W)

Cn o zen bl e
1 1
- a Z ; Z b Z H(ﬂ.]gvgul" Litn+k)
0=i<Cn ™ yeqi veAl
1 1
- a Z ) Z %H(ﬂjgwﬂ, Litntk)-
0<i<Cn we A+

By Lemma 4.2, for each k > M(7/2), the following holds for all n large
enough:

A U |
Jlél£ piti ({w e AT . %H(rrw*j,u,Lk) > o — ‘[/2}) >1-r1.

By Lemmas 3.1 and 3.3, forw € Al |H (wwejpn, Li) — H(wjgwit, Livnio)l
is uniformly bounded. So when £ is large enough, the above displayed inequal-
ity implies that

P O |
Jlé‘l£ pitn ({w e AT %H(njgw,u,, Livntr) > o — r}) >1-—r1.

The lemma follows. m]

Proof of Theorem B’ Arguing by contradiction, assume that « < 1. Let g9 be
given by (7.1) and ¢ = g¢/2. Let 6, = 84(g0/2) be given by Lemma 7.5 and
let T € (0, &4) be a small constant to be determined. Fix

k > max(Ki(z), K2(¢), K3(7)),
where K (7) is given by Lemma 7.4, K> (¢) is given by Lemma 7.5 and K3(7)

is given by Lemma 7.6. Assume that # is large enough. Then the left hand side
of (7. 2) tends to &9 > 0. By Lemma 6.1, for any i > 0, any .[jX -component 1

of 9,,, +H(n, L 1) 18 bounded from above by a constant. Thus

1

is bounded from below by a positive constant 2p. By Lemma 7.5,

Ik, €)
Cn

§:= ]P)0<1<Cn (Quink > Ouwink+ 85) > & — > p.
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Therefore, by Lemmas 7.6 and 7.4,

Egnfi<Cn (Quiink) = Egngi<cn (é\lllnk) +86,—(1-8)t
>@—1)—-1)+85 —(1-8)t.

Choosing T > 0 small enough, we obtain

Eoi—cn (Qu.ini) = o + pby/2.

However, asn — o0, the left hand side of (7.3) converges to «, a contradiction!
O

7.4 Proof of the entropy increasing lemma

In the rest of this section, we shall prove Lemma 7.5. The following is a
version of Hochman’s entropy increasing criterion, see [12, Theorem 2.8] and
[4, Theorem 4.1].

Theorem 7.1 (Hochman) For any ¢ > 0 and m € 7. there exists § =
8(e,m) > O such that fork > K(e,5,m), n € N, and t,0 € R), if

(1) diam(supp(t)), diam(supp(0)) < b™",

(2) tis (1 — &, 5§, m)-entropy porous from scales n to n + k,

(3) tHO, Lusk) > &
then

1 1
;H(G * T, Lyyr) > EH(T’ Lyyi) + 6,

where % denotes the convolution.

For n := (6,)y,,; as in Lemma 7.5, we decompose 7. as follows:

|
= > ngun.

uc Al

We first show that the entropy of each term in the right hand side can be
represented by entropy of convolutions of line measures.

Lemma 7.7 There is a constant C1 > 0 and for each t > 0 there exists K (t)
such that when k > K(t), i > C\k, the following holds:

1 1
A -guit, Litktnl Livn) — 7 1 ((1:8g,0.0)) * (Wogut), Litktn)| < T
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Proof Write zo := gu(0,0) = (x0,y0). Define F,G : supp(n) X
supp(gup) — R by

F(W,2) =¥(2), G(¥,z)=W(z0) + Wo(z) — Wo(z0)-

Note that F(n x guyt) = n.guit and G(n X guu) is a translation of the convo-
lution of 1.5;, and W¢.guu. By Lemma 6.2, 1.6, is supported in an interval
of length O(b~*™). The same is also true for Wo.guM, and hence for the
measure G(n x guu). It follows that H(G(n X guit), Li+n) is bounded from
above by a constant. Thus it is enough to show that

F(W,7) — G(, z) = O (b~ tktm)

under the assumption that i / k is large enough. )
To this end, write W(x, y) = A"(y — I'y(x)) + ¢ and Wp(x, y) = A" (y —
Iy, (x)) 4+ co. Then for z = (x, y), we have

~ X0
[F(W.2) — G, )] = 47| / (Yy — Yy)()ds| = b - O(1x — xol).

~ logh .
Note that [x — xo| < b~ = O(b~ ™). So when i/k is sufficiently large,
Ix — xo| = O(b~+R), and hence |F (¥, z) — G(V, z)| = O(b~E+ktm)y o

The measure 71.8¢,(0,0) plays the role of 6, and Wogyu plays the role of 7 in
Hochman’s theorem. Lemma 6.4 shows that for a definite amount of u, 7.8, (0
has definite entropy.

Proof of Lemma 7.5 First, by concavity of conditional entropy,

1 5 1
FHO, Liviein| Livn) 2 b7 Zﬁ L H-gutt, Livicsn| Livn)-
ucA’
By Lemma 7.7, for any t > 0,
1 1 1
O Lisken Lien) = > T H (18500 * (Vgur), Lisksn) = T

ueAl

(7.5)

holds for each W in the support of n, provided that k is large enough and
i > C1k. By [12, Corollary 4.10], increasing K () if necessary, we have

1 1
7 1 ((0-8g,0.0) * (Vgup), Litiin) = 7 (Yeun, Litktn) — 7, (7.6)
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for any ¥ and u.

Next, let us prove the following
Claim. There exist p, 6§, > 0 and for each k large enough, there exists I (¢, k)
such that the following holds when i > I (¢, k). For each W € supp(n), there

is a subset Q¥ of Al with vi(QY) > p such that for u € QY we have an
entropy growth:

1 1
7 H(18,0.0)) * (Weup). Lisien) = o H(Wgupt. Liien) + 0. (71.7)

Take & = min(l — «, &4, p), where 8, = 8.(¢) and p = p(e) are as in
Lemma 6.4. So the set

|
Qo = {u e A zH(’?-‘Sgu(O,O)’ Lititn) > 5}

satisfies v;(Qo) > p, provided that i, k are large enough. By Theorem 4.1,
there exists m, and for each k large enough there exists I; such that when

i > I, for any W in the support of 1, we have v;(Q;I') >1-— %, where

Qf = fue Al Wguuis (@ £/2,m)
— entropy porous from scale n +i ton + k + i}.

Thus vf(Q‘y) > p/2, where QY = Q}I’ N . As we have seen before, for

any u € A, the measures 1.8¢4(0,0) and Wgyu are supported in intervals of
length O (b~+™). Applying Theorem 7.1 (with & in the place of &, i + n in
the space of n), we complete the proof of the claim.

Let us now complete the proof of Lemma 7.5. By (7.6) and (7.7), we have

1 1 1 1
— Y CHOgutt Livin) = = D 7 HWgups, Litiin) + pdo — 7.
b k bt k

ueA ueAl
By (7.5), this gives us
1 1 1
CHOL Livien| L) = — Y 2 HWguit, Livktn) + pdy = 27.
b =k
uc Al

Integrating over W with respect to n gives us

1 ~ pé
EH(H-M, £i+k+n|£i+n) = Q\llo,i,n,k + TO,
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provided that we had chosen t small enough. O
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