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Abstract

The sparsity-based approaches have demonstrated promising performance in
image processing. In this paper, for better preservation of the salient edge
structures of images, we propose an ¢, + ¢,-norm based analysis model,
which requires solving a challenging non-separable £y-norm related minimiza-
tion problem, and we also propose an inexact augmented Lagrangian method
with proven convergence to a local minimum. Extensive experiments in image
smoothing, including texture removal and context smoothing, show that our
method achieves better visual results over various sparsity-based models and
the CNN method. Also, experiments on sparse view CT reconstruction further
validate the advantage of the proposed method.

Keywords: LO optimization, image smoothing and restoration, sparse view CT
imaging

(Some figures may appear in colour only in the online journal)

1. Introduction

Image smoothing and reconstruction are two critical and classical problems in computational
photography and image processing. In general, image smoothing is to enhance salient struc-
tures such that the image is further used on many other applications, including edge extraction,
image abstraction, pencil drawing and detail magnification [1-3]. Image reconstruction is to
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recover all the details of the ground truth image from the corrupted observations, such as
denoising, deblurring and medical computed tomography (CT) image reconstruction. In both
applications, the main challenge is to develop an effective approach that preserves the salient
edges while suppressing unrelated structures. To address the above problems, many models
have been proposed and have witnessed the success in some applications. Among these works,
regularization based models are representative ones, which can be formulated as solving the
following minimization:

min f(u, ug) + AR(u), (D

where uy and u are the input and output images, respectively, f denotes the data fidelity, R
denotes the regularization term and A is a positive constant that balances the above two terms.
One commonly used regularization is the so-called sparsity prior, e.g. £;-norm, {y-norm, and
their variants. Compared to the Tikhonov regularization which always results in a blur image,
the sparsity based methods better preserve the image edges and improves the visual quality
of images. One typical sparse regularization is the so-called Rudin—Osher—Fatemi model [4],
which promotes the sparsity of image gradients using ¢;-norm or ¢; ,-norm. Following the spirit
of this model, the ¢,-norm and its related convex sparse regularizations have been extensively
explored for improving the reconstruction results. Despite their numerical success in many
applications, the /;-norm based models cause bias on large coefficients which noticeably lower
the visual quality [5, 6]. Besides, Wu et al [7] have shown that the convex sparse prior has
difficulty in preserving the image contrast.

In order to overcome the above weaknesses of convex regularizations, many non-convex
models have been proposed such as £,-norm [8], smoothly clipped absolute deviations [5], and
minimax concave penalty [6]. Among these models, the {y-norm is the most straightforward
one, which is non-convex and non-smooth. In recent years, it has been successfully applied to
many tasks in image processing, e.g. image smoothing [1], segmentation [9], super-resolution
[10], deblurring [11, 12] and enhancement [13]. Specifically, the {y-norm of image gradients
that globally controls the sparsity of images has been applied in image smoothing [1], text
deblurring [11] and medical image reconstruction [14—16]. These ¢y-norm based models have
satisfactory performance for keeping the sparsity of images and preserving the image edges.
However, due to the discontinuity of £y-norm, it may generate undesired artifacts in the smooth
region, e.g. negligible edges, outliers, or sharp spots. To balance the sparsity and the smooth-
ness, we propose to impose an additional squared ¢,-norm in the original yp-norm based model.
Thus, our proposed model is to solve the following minimization:

min 7 0) + N| Wiy + 5| w3 @

where \, 5 > 0, W : R" — R"™ is a predefined transform. It is worth noting that the proposed
regularization is a non-convex relaxation of the elastic net [17] that encourages the group spar-
sity. In figure 1, the results demonstrate the advantages of the proposed model compared to
other regularization based models in image smoothing. The /;-norm based model blurs the
whole image, the elastic net and the ¢y-norm based models can not remove the noise as small
edges or spots still exist. However, our model simultaneously keeps the salient edges while
suppressing the noise and obtains better visual results.

Due to the existence of fy-norm, the minimization problem (2) is non-convex and non-
smooth. Thus, designing an efficient and convergent numerical algorithm for solving (2)
is a challenging problem. According to the choices of W, there are mainly two different
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Figure 1. Image smoothing. From left to right: original images, results of /,-norm based,
{.-norm based [17], £p-norm based [ 1] models and our method. The ¢,-norm based model
blurs images, the ¢, and £y, norm based models obtain higher sparsity, but are still strug-
gling to deal with the situation of existing large scale of noise or some outliers and sharp
spots. On contrast, our method yields superior results. Our method has less noise in
stripes and sandbeach, especially in the zoom-in areas.

formulations. When W is a bijection, the problem (2) is equivalent to
: -1 Bz
min £ (W"v.0) + Aollo + 3 ol @)

where v = Wu. In this case, the ¢y-norm is separable, and iterative hard thresholding method
can be applied [18, 19]. This method achieves good performance in image reconstruction
[14, 16] and the global convergence to a local minimizer is established. However, when W
is not a bijection, two minimizations (2) and (3) are not equivalent, and the non-separable
structure in £yp-norm makes the problem more difficult. One solution is to solve a relaxed ver-
sion of (2) by adding a penalty term that penalizes the difference between the range space
of W and its sparsity. This relaxation reduces the non-separable structure to a separable form
such that the previous iterative hard thresholding methods can be applied. Besides, the alternat-
ing direction method of multipliers and its variants [12, 15], and the mean doubly augmented
Lagrangian method [20] are proposed for solving the non-separable ¢y-norm related mini-
mization. However, their analysis does not apply to the problem (2), and thus designing a
practical numerical algorithm for solving (2) with theoretical convergence analysis is a chal-
lenging problem. Recently, Chen et al [21] proposed an augmented Lagrangian method for
non-Lipschitz non-convex programming and proved the convergence under certain assump-
tions, but our model (2) does not satisfy these assumptions. Although the analysis in [21]
is not directly applicable to the model (2), their method provides some insights for solving
(2). Motivated by the provided general algorithm in [21], we propose an inexact augmented
Lagrangian method for solving (2), in which the alternating scheme [16] is applied to approx-
imately solve the subproblem. Moreover, we establish the convergence to a local minimum of
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(2) for the sequence generated by the proposed algorithm. In summary, the main contributions
of this paper are listed as follows.

e A new sparsity-based approach is proposed with a hybrid ¢y-norm and squared ¢,-norm
with successful applications to image smoothing and reconstruction. This model keeps the
salient edges by the sparsity regularization while not introducing unwanted artifacts.

e An inexact augmented Lagrangian method is proposed for solving the resulting non-
separable ¢y-norm related minimization. Moreover, we analyze the convergence of the
proposed algorithm and show the sub-convergence to a local minimizer when the gen-
erated sequence is bounded. To the best of our knowledge, this could be the first practi-
cal algorithm that contains the convergence proof for solving the non-separable ¢y-norm
related minimization problem.

e Experiments on texture removal and context smoothing show that our model outperforms
other sparsity-based methods, including a convolutional neural network (CNN) based
approach. Besides, the proposed method outperforms other regularization based methods
in terms of PSNR in sparse-view CT reconstruction.

The rest of the paper is organized as follows: in section 2, the proposed algorithm for solving
(2) is proposed with application to the image smoothing and CT imaging reconstruction; the
convergence analysis of the proposed algorithm is given in section 3; numerical experiments
on both image smoothing and CT reconstruction are presented in section 4 and finally, we
conclude in section 5.

2. Proposed approach

Before presenting our numerical method, we first introduce useful definitions for our analysis.
Given a point x and a set X, the distance from x to X is defined as

dist(x, X) = inf{||x — z|||z € X}. (€]

Definition 2.1. Let f : R" — R U {+00} be a function.

e The domain of f is domf = {x|f(x) < +oo}.

e fislower semicontinuous if lim inf f(x) > f(xo).
XX,

e fis properif f(x) > —oo for all x and domf # .

Definition 2.2. Let f be a proper and lower semi-continuous function.

e The Fréchet subdifferential of f is defined as

Of (x) = {u: lim inff Q=S W =y =x) o 0}, (5)

yory Iy — x|

if x € domf, and f (x) = 0 otherwise.
e The limiting subdifferential of f is defined as

Of(x) = {u:3x" = x, f(&H — f(x) and W € Of (x*) — u}. (6)

e x is a critical point of fif 0 € Jf(x).
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Algorithm 1. Inexact augmented Lagrangian method for solving (7).

1 Initialization: 1°,° = Wu®, 2%, po > 0,m,7 € (0, 1),y > 1,T > L, (u*,y°,2°)
and {Ek} C R+

2 fork=1toN do

3 find (uf, y*), such that

(", y*) ~ argmin L, (u,y,2"") (1)
uy

which satisfies (10).

2 p (Wi —yh)

if 7| Wik~ — o > (Wit —
Pk+1 = Pre

else

P41 < max(ypy, |2
4 end

5 Return: i

k+1 ||;+7-)

N

2.1. The inexact augmented Lagrangian method

By introducing an auxiliary variable y, the minimization (2) is equivalent to
. g
min f e uo) + Allyllo + FIIE sty = Wi ™

Throughout this paper, we use f(u) as f(u, up) for simplicity and assume that f(u) is lower
bounded, convex, smooth and its gradient V f(u) satisfies:

IVf @) = V@) < Llu—v], ¥ uo, )

where L > 0. Given p > 0, the augmented Lagrangian function of (7) is
s
Ly0,.2) = £ o) + 53+ Alyllo + (W = y.2) + W =13 ©)

The inexact augmented Lagrangian method updates the current estimate (u*~!, y*~!, 7¥) by the
following steps:

(Step 1). Update (i, y*) by solving min,, L,, (1, y,z*) approximately;

(Step 2). Update the multiplier X! = z5 + p (Wit — yb);

(Step 3). Update the penalty parameter p;,; by certain criterion.

The above inexact augmented Lagrangian method is a useful framework and can be applied
for solving the non-smooth and non-Lipschitz minimization problems [21]. To ensure the con-
vergence of the algorithm, we have to specify the accuracy required in (step 1) and the rule
for updating the penalty parameter p,. Following from the recent proposed method [21], we
obtain the new estimation (u**!, y**1) in (step 1) whenever the following condition is met:

dist(0, 9,y L, (u*, Y, 7)) < &, and L, "y, ) <T (10)

where €, > 0 is the tolerance and I" > 0 is an upper bound for the augmented Lagrangian
function ka(uk, yk, 7). We summarize our numerical method in algorithm 1.

2.2. Proximal alternative shecme for solving subproblem (11) in algorithm 1

In algorithm 1, there is a subproblem (11) which has to be solved approximately, i.e. the con-
ditions (10) hold. In this subsection, we aim at designing a numerical algorithm for solving
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the subproblem (11) that satisfies the termination condition within finite iterations, and thus
algorithm (1) is well defined. Let

P(u,y) = f () + §\|y||% + By wa k23 and ) =Allo.  (2)
where z = 7/ py. Then, the subproblem (11) at kth iteration is equivalent to
min H(u,y) = P(u,y) + (). (13)
sy

The problem (13) is a typical two-block non-convex problem in which the non-convex term is
separable. In recent years, the proximal alternating schemes [18, 22, 23] have been proposed
and show the success in image processing and machine learning. Thus, we adopt this method
for solving (13). More specifically, at kth step, we choose the initialization (*°, y**) as

(0, <) — w°,y"), if L, @'y >, (14
’ T ka(ukfl’ykfl’zk) <T.
Since Wu® = yO and I > Lpo(uo,yo,zo), we know
L, 0,50, %) < T (15)

Once the initial point is chosen, the iterative scheme is given as follows.

e Update u by fixing y. Since f is convex and smooth with respect to u, we know H(u, y) is
convex and smooth with respect to u. To update u*/*!, we choose a surrogate function H
as

H(u, y*), ifV2f + pWTW =0,

H(u, y*) = . : 4
Y H(u, y*9) + % lu—u*|)3,  otherwise,

(16)

where o; > 0. Itis easy to know H(-,y*7) is strongly convex and smooth, and thus admits a
unique minimizer. We update «*/*! by minimizing H approximately, i.e. given a tolerance
n; > 0, we accept u*/*! as long as

|V H@ 3092 < ;. (17)

As H is smooth and strongly convex, the termination condition (17) holds in finite
iterations when minimizing H.

e Update y by fixing u. Let yz; > 0, we adopt the proximal method to update y*/*!. Formally,
we need to solve the minimization:

min B y) -+ Sy = )5, (1)

It is easy to know the above problem is equivalent to

. B+ px + 1) oW Tt — 2y + i
min A + | — — , 19
in Ayl -+ (ZEAE )y - ARSI )
which has an analytical solution:
kj+1 _ 3 ked
ki _ gy pk(Wu 2) + pjy 20
y \/2)\/(5+pk+uj) ( ﬂ +pk + Nj ’ ( )

6
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Algorithm 2. Proximal alternating scheme for solving (11).

1 Inputs: A\, 3,0 < a < band {aj, ;1;} C (a,b) and {n;} C R,.

2 Initialization: Choose (1*°, y*9) according to (14).

3 while (10) is not satisfied do

4 subproblem-u:

5 Update /! ~ arg min, H(u,y*/) with ||V, H@ 1, y69)|| < n;
6 Subproblem-y:

7 Update y*/*! according to (20).

s end

o Return: uft! = 10 — AN ol — 1.0 — ykN,

where H is the so-called hard thresholding operator, i.e. H(x) = xif |x| > A and H,(x) =
0if x| < A
In summary, the detailed proximal alternating scheme for solving subproblem (13) is present
in algorithm 2.

2.3. Applications in image smoothing and CT imaging reconstruction

In this subsection, we apply algorithm 1 to image smoothing and CT imaging reconstruction. It
is known that the biggest computational bottleneck is solving the subproblem-u in algorithm 2
as f(u) is chosen from applications. We will show that in both image smoothing and CT
reconstruction the subproblem-u« can be solved efficiently.

Image smoothing. Image smoothing aims at capturing or highlighting the important structures
while smoothing the unimportant contents. Two typical kinds of image smoothing tasks include
texture removal and context smoothing. In this case, u € RM*N>X3 A and N present the size of
image, the data fidelity f is chosen as f () = %|lu — uo||3. The subproblem (16) is reduced to

o L
min Gt ) = 2 — w3 + %an — ki 32, @1

as V2f(u) + pW'W =1+ p,W'W = 0. The first order optimality of (21) implies u*/+!
satisfies
U+ pWI W =g + oW M + 2). (22)

Using the fast Fourier transform, the analytical form of u*/*+1 is

et — (J'"(uo) +  FW) (F(2) + ]:(yk,j))>
F @)+ p F(W)* F(W)

(23)

CT imaging reconstruction. Medical CT images derive from x-ray radiation, which is harmful
to absorb excess capacity. For better medical diagnosis, we have to develop algorithms that can
reconstruct more accurate and clear images from sparse-view projection CT images. Once the
projection operator A is fixed, we choose f(u) = [[Au — uo||3, u € RV and the subproblem
(16) is

o~ . 1 — o .
min H(u,y*) = §||Au —uo)3 + %HWM -y =23 + 71||u —u™)3. @24
By the optimal condition of (24), we know u*/*! satisfies

ATA+ W' W + oDt = ATug + peW ' M + 2) + a . (25)

7
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Itis known that the conjugate gradient method can be applied for updating X/ approximately
such that the condition (17) holds.

3. Convergence analysis

This section firstly proves that the algorithm 1 is well defined, and then the generated sequence
converges to a KKT point of (7). Finally, we show that the KKT point of (7) is a local minimum
of (2) when W is a wavelet tight frame. Letrg = I’ — L, (u*, y**, z*) and A be the minimum
eigenvalue of V2 f(u) + pkWTW for all u, we have ry > 0 from (14) and A, > O from the
convexity of f. Moreover, define the increments of the consecutive steps as

A5 = oI — gk and ds,j = Yk YRt (26)

Lemma 3.1.  Let {(u,y)} be the sequence generated by algorithm 2. Then, there exists
some 0 < ¢1 < ¢ = max(Amin, @) such that

2 2
S . j N a .
H(uk,J’yk,j) _ H(ukqj+1 kj+1) S o <||dkj| ) _ é + EdejH%’ (27)

where 0 < a < inf{«;}, uj|j € N} as defined in algorithm 2.

Proof. By the mean value theorem, we have

Ami
H(v,y) = Hu,y) + (V. H(u,y), v — u) + ;“Hv—u\lﬁ, Y ou,v. (28)

If Amin > 0, we know u*/t! satisfies ||V, H@* /!, y%)|, <n
Applying (28), we have

S (i
; as H(u,y*) = H(u, y*).

H(uk,j’ykqj) > H(uk’j+1,yk’j) + <VMH(Mk’j+1), d’/jj> + %”dﬁj”%

. . . Ami .
> HH L) — g 4+ 2 )3
A . 2 772
= H@ !, k1)+ ( dkj ) —
H ” )\mm >\min

If Amin = 0, we know b/t satisfies |V, H(u !, y*9)|, < njand V?H = o/l Similarly, we
have

. . ~ . . ~ . . . o .
H(uk,J’yk,/) - H(uk,J’yk,/) > H(uk,j+1’yk,j) _ nj”dﬁ,juz + ?/Hd’/j-fng

2 ng
> H@ L) + (ld“ll ) ~ o
Qj

a@;j

Since aj > a, we choose ¢ = a if Ayin = 0 and ¢; = Apin if Amin > 0. Then, 0 < ¢; < c and
the above two inequalities imply

N2
H@", %) — H@ I, k’)>3<|u u"~f+‘||2—;7—f> —%. (29)

8



Inverse Problems 36 (2020) 115009 J Song et al

By the optimality condition of y*/!, we have
. . . . 15 : a i
H(uk,J—H’yk,]) _ H(uk,1+1,yk,1+1) > EJHd{”H% > EHd{wH%, (30)

as p; > a. Sum (29) and (30), we obtain (27). O

Telescoping the inequality (27), it has

Jj-1 -

Ny ¢ - i i i

HO) ~ B = Y 5 (1) - ”) Ty on
i=0

forall j € N. Since f is lower bounded, we know H is lower bounded by H. If _° n? < oo,
it has

k,O G k: i k.i 771
0o > H(u H>Z 5 <||d —) f||d 12 - Z . (32)

Thus, we have

ldy'lla —ni/¢1 —0 and [|dy'|]» >0, as i— oo. (33)

Lemma 3.2. Let {9, y")} be the sequence generated by algorithm 2. Then, there exist
¢y > 0 such that

dist(0, OHW !, Yy < ea(|di |2 + [ldy 1) + (34)
Proof. By elementary calculus, the subdifferential in (13) is

OHu.y) = <8yH(u,y)> - (pk(y — Wi—2)+ By + >\8|)’||o> G

Applying (35), we know
IV H@H
= (VL H@H YT — W H@S y9)) + V @S )|
< oW 08 =y D o + [V @ 5. (36)
If Amin > 0, it has ||V, H@bH yk7)|2 < n; from (17). If Apin = 0, it has
nj = (IVWH@ T Y| = [VH@S T ) + il —ub)),
> [V H@ T Y 2 = agl|dy |- (37)
Let pr = prAw and Ay be the maximum singular value of W, (36) and (37) imply
Vv, H kj+1 | kj+1 <5 dk,j b dk,j . 38
IVuH @5y 02 < pelldy? |2 + blldy |2 + ), (38)
as o; < b. Furthermore, from the optimality condition of (18), we know

0 € p O = Wt — 2) + By XY o 4 08T = ). (39)

9
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Combing (39) with (35), we know p jdf,’j € O,HukT, yki+T) "and thus

dist(O, DH 1,y )) < [V HR 1,y 50 |3 + g

< (B + D)\ |2 + bl|d |2 + nj,

as pu; < b. By choosing ¢; = px + b, the inequality (34) holds. (]
Theorem 3.3. Let {(u",y*)} be the sequence generated by algorithm 2. Suppose the toler-
ance {nj} satisfies Zjil 77]2 < crg where ¢ = max(Amin, @). Then, for any €, > 0, there exists
a finite Ny € N such that

dist(0, OH "N, y*N )y < e and  H(uANe, y*Ney < T (40)

Proof. From (31), it has

| =

2
L<HW, YY) + 1o <T (41)
1

o

j—1
HQM M) S H@, 50+
i=0

as Hw*0, yk0) = L, (u*, y*0, 7). Combining (33) with (34), it has

lim sup dist(0, OH (X1, ykitTy)

Jjo0
< lim (2 + 14)7]2) +m; = 0, 42)
which implies (40) holds. O

Since H(u,y%J) = L, (ukJ, ykJ, 74), the termination condition (17) is met in finite itera-
tions, and thus the algorithm 1 is well defined.

In the next, we will prove the convergence property of algorithm 1. We firstly write the KKT
point of (7). That is, a point (i, y) is called a KKT point of (7) if there exists z such that

0=V fw+W'z, 0€By—z+|yllo, Wu—y=0. (43)

Define

lp(Wu — ) + 213 — lz]3

o, y,2) = f(u) + gllyH%Jr oy

(44)

Then, we know L,(u,y,z) = ¢,(u,y,z) + r(y) where r(y) is defined in (12). Motivated by the
analysis in [21], the convergence results of algorithm 1 are established as follows.

Theorem 3.4. Let {(u*,y*,7")} be the sequence generated by algorithm 1 and assume
klim ex — 0. Then, the following statements hold.
—00
(a) klim Wuk — vk = 0.
500
(b) If {(*,y*,75)} is bounded, there exists an accumulation point (u*,y*) of {(u*,y*)} such
that (u*,y*) is a KKT point of (7).

Before proving theorem 3.4, we first calculate the limiting subdifferential of A||y||o.

10
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Lemma 3.5. Let r(y) = \||y||o. Then, we have
Or(y) = (Or ) ..., 0ra) ", (45)
where Ori(y;) = {0} if y; # 0 and Or(y;) = R ify; = 0.

Proof. Asr(y) = ", ri(y) = >.i; |vilo, thus dr(y) = dri(y,) x Ora(y,) X -+ - X Iru(y,).
If y; # 0, since ri(y;) = 1 for all y; # 0, we know 9r;(y;) = {0}. If y, = 0, for any u € R,
we have

i(x) = ri(y) —u(x —y; N

Jim g ) 0D —ube=y) el mur (46)
120,070 |x| =000 x|

Thus, dr;(0) = dr:(0) = R. O

Now, we are ready to prove theorem 3.4.
Proof. Lets* = Wu* — y*. We prove (i) by considering two cases of {p;}.
(a) {pi} is bounded. By the update scheme of {p,} in algorithm 1, there exists some kq such
that for all k > ko, it has |[s*||, < n[|s*"!||». Since € (0, 1), we know s* — 0 as k — oo.
(b) {p;} is unbounded. By the update scheme of {p,}, {p;} is updated by infinite times.

Let {p;.pj,. ...} denote all elements in {p;} and 7 = {ji, jo,..., } be arranged in an
increasing order. Then, it has {p;,} — oo and

pi=pj» Ve <i<ji, 21, 47)

pj, = max(yp;j,_1, |23, (48)
Define j(k) = max{j € J|k > j} forall k > j,. By the update scheme of dual variable {#},
we know
k—jo—1
d =g =0 i Y SO (49)

i=0

Moreover, we have ||sZOF 1|, < n|[s/®OT||, forall 0 < i < k — Jj(k) — 1. Together with (49)
and the fact that {p,} is increasing, it has

k—jll)—1 .
HZ"Hz 1122%]12 i) IIZN‘)IIz L
+ s @ < =5+ —— |22, (50)
Pk s Pjk) Z Pjk) I —n
Since pj) = max(ypja-1, [2V4F7), it is easy to know [[ZV]2/pje < p T and it
implies
k)
17702 o 4 & = oo (51)
Pk

Meanwhile, by the termination condition (10),ithas ¢, @® | yI® 210y 1 1 (30) < T which
implies i

J(k) ” J(k) HZ

—2. (52)
P;(k)

O
Pl(k)

< i (F f(uj(k)) Hyj(k)HZ (yj(k))>
P

1
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Let k — oo in (52), we know |[s{®[|, — 0 as f(u) is bounded below, {pj } — oo and (51).
Thus, let k — oo in (51), it has B

124112
Pk

—+0, as k— oo. (53)

Similarly, as ¢, (u¥, y*, 2°) + r(y*) < T, it has

k2
Z
s+ =

Pk

2 o B2 k 124113
<2 (r-suh- G- o) + EE. (54)

k

2

As fis bounded below and {p;} — oo, (54) implies s* — 0 as k — oc.

Let {(u*, y*) }rcx be a convergent subsequence of { (¥, y*)} and assume that {(u¥, y*) }rexc —
{(u*,y*)}. By statement (i), we have s* = Wu* — y* = 0. Moreover, from the termination
condition (10), we know there exists £ = (&5, &))" where

&= VI + W'+ p W Wik =y = Vfwh) + Wi, (55)
& € By =+ 20 o + o0 — Wity = Byt + M|yl — . (56)
such that Hngz < €. Since {7} is bounded, there exists a subsequence K; C K such that

{Z*"1}k, converges to some z*. Denote Z = {i|y; # 0} and Z¢ = {i|y; = 0}. As {)*}x, = )",
there exists some ko such that y¥ # 0 for all kg < k € K; and i € Z. Let yr = {y;|i € T}, as

I¥llo = =iy [vilo» then & can be written as & = (&}, & )
&, = Bt — 2 + 20illo = BYr — 71, (57)
_fﬂ € Byke — 2 + 20|15 fo. (58)

Since {¢;} — 0, ithas {&}, &}, — 0. Then, letk — oo and k € K; in (23) and (57), we know
Viu)+W'z2=0 and Bys—2z;=0. (59)

For all i € Z¢, by lemma 3.5, we know z; € AJ||y}||o which implies 2. € \O||y%||o. Together
with (59) and the fact s* = Wu* — y* = 0, we conclude that (1", y*) satisfies (43) and thus is a
KKT point of (7). ([l

Remark 1. 'We make the following remarks for theorem 3.4.

e The boundedness requirement of {z*} can be relaxed to {z%. } as ||By% — Z&||, — 0 and
Yo —yhask— oo and k € K.
o Let W= (W}, WJ)T, the system in (59) can be reduced to

Wiedpe = =V ") — By (60)

Since yze = 0, zJ can be arbitrary chosen as long as the system (60) is satisfied. It is known
that the system (60) has at least one solution if V f'(u*) 4+ [y} lies in the range space of
W which implies (u*, y*) satisfies the KKT equation (43). One sufficient condition is W7,
has full of column rank.

12
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In the next, we will show that the KKT point (%, y*) is a local minimizer of (2).

Theorem 3.6. Let {(u*,y*,7")} be the sequence generated by algorithm 1 and W be a
wavelet tight frame and assume klim e — 0. If {uk, y*, Z*} is bounded, then there exists an
—00

accumulation point u* of {u*} such that u* is a local minimizer of (2).

Proof. Let (u*,y*,z") be an accumulation point of {(#, y*,z*)}. By theorem 3.4, we know
(u*,y*,7%) satisfies the KKT system (43). Moreover, as W is a wavelet tight frame, we have
WTW = I, then the KKT system implies

0€Bu* +Vfu)+ AW oyl and Wu*—y =0 (61)
Define Z = {ily; # 0} and W = (W], W},)". Lemma 3.5 implies

W'ally*|lo = {Wev|v € REI}, (62)

and Wzu* # 0 and Wzeu* = 0. We will prove that W' 8||y*|lo C O(||Wu*||o). Since Wzu* # 0,
there exists a neighborhood N of u* such that Wzu # 0 for all u € N. Define S = {u|Wrcu =
0}, we have ||Wu||o = ||Wu*|loifu € NN Sand ||Wulo > |Wu*|o + 1ifu € N\S. Therefore,
for all v € W'9||y*|jo, we have

[Wyllo = [[Wulo — (v,y —u")

lim inf
Vot U ly — w2
—(Wiv,y —u*
— liminf _WVERY—U) (63)
y—u* yFut yeS Hy —u* H2

as u* € S. This implies W' 3||y*|lo C O(||Wu*||o) € 8(||Wu*||o). By (61), we know
0 € Bu” + Vf(u) + A0(|Wu'[|o), (64)

which means u* is a critical point of (2). Using theorem 3.1 in [24] extended from theorem 3.6
in [25], we have u* is a local minimizer of (2). O

4. Numerical experiments

In this section, we evaluate the performance of our algorithm on image smoothing and CT
imaging reconstruction. We compare our method with classical ¢,-norm, ¢,-norm [17], £y-
norm [1] based models and the deep CNN [26]. Our results reveal that the proposed method can
achieve higher sparsity and reduce more unnecessary details while keeping the main structure.
All the experiments are implemented in MATLAB using a laptop equipped with a 2.6 GHz
2-core processor and 16GB memory.

4.1. Image smoothing

Image smoothing aims at smoothing the unwanted regions while keeping the salient structures,
which is the basic process for salient object detection, image segmentation, image restoration,
etc. In this part, we set W as the gradient operator V and we test two kinds of image smooth-
ing tasks: texture removal and context smoothing. All the test images come from [1, 26, 27].
The regularization term with ¢,-norm, £,-norm, and ¢,-norm are chosen as benchmarks. More
precisely, we implement ¢,-norm and ¢y-norm model by setting A\ = 0 and S = 0 respectively.
For the /,-norm model, we also apply our algorithm to solve the convex model by replacing
the ¢p-norm with ¢;-norm. Furthermore, the deep CNN based method [26] is also compared.

13
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Figure 2. Performance on texture removal. From left to right: original images, results
of ¢y-norm, /,-norm [17], {p-norm [1], CNN [26], and ours, respectively. Our method
can remove unnecessary edges and is outstanding in texture removal.

In our model, parameters A and 3 in our proposed model are used for leveraging the effect of
£y and £>-norm, where \ is critical to control the level of structure coarseness, [ is a balanced
parameter. Generally, we set A = 0.01 and S = X\ in smoothing problem. Especially, we set
B = 10 for the case of existing large scale of noise, and we set 3 = 100\ for texture removal.
Additionally, we use the KKT conditions or the following stopping criteria as termination
¥ — Wik, < 10719,
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A ETH"HEE "'I

Figure 3. Performance on context smoothing. From left to right: original images, results
of ¢y-norm, ¢,-norm [17], {y-norm [1], CNN [26] and ours, repectively. Our method is
good at sparsity approximation while preserving the salient edges.

Figure 2 shows the results of texture removal. The ¢,-norm based model blurs the texture; the
£.-norm based model dims the texture, but still looks hazy; the ¢y-norm based model removes
most texture, but remains lots of unnecessary edges, and plenty of sharp edges and spots have
remained. It is noticed that our proposed model is better than many other sparsity-based bench-
marks at the situation of texture removal. In our model, the /,-norm is helpful to remove sharp
gradients, and the /y-norm maintains sparsity. Moreover, our model is comparable to the deep
CNN model, and even slightly better in some cases.

15
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Figure 4. Original modified Shepp—Logan phantom with the marked ROIs.

Figure 3 shows the results of context smoothing. The £,-norm and the ¢y-norm based
method, our method, and the CNN based methods all present higher sparsity than the ¢,-norm
based images, yet differences remain. In the case of background smoothing, our results of the
female model images demonstrate the advantages over the ¢,-norm based model. Compared
to the /p-norm based model, our model removes more trivial outliers and sharp spots, espe-
cially the outliers and amount of noise in the zoom-in areas, e.g., the background of the last
two images. In the case of edge-preserving, as the second image shows, our method obtains
higher sparsity in the ocean while keeps the edge-preserving of parachute. Besides, our model
achieves better visual results than CNNs. In summary, compared with the existing sparsity
promising models, our proposed model can not only achieve higher sparsity, but also be able
to remove large scale of noise, trivial outliers, spots and unnecessary edges. Moreover, our
method is competitive with deep learning based method.

4.2. CT imaging from lower dose —sparse view reconstruction

In clinical practice of CT imaging, it is necessary to reduce the x-ray dose which is harmful to
patients. One typical approach is to reconstruct the CT images from only a small set of projec-
tions, which is known as the sparse view reconstruction. In this section, both simulation and
real data are tested. We first choose the modified Shepp—Logan phantom [28] as the simulated
data, and then we choose a CT slice of a patient’s chest as the clinical one, which comes from
‘Low Dose CT Grand Challenge’*. In this section, we choose W as the Haar wavelet tight frame
and compare it with canonical filtered back-projection (FBP) method and regularization based
methods including ¢»-norm, elastic model(denoted as the £,-norm) and £y-norm. Similar as the
case in image smoothing, the /-norm and /,-norm based models are solved by algorithm 1,
the {yp-norm model is solved by the algorithm in [1]. From the reconstruction results, typical
regions-of-interest (ROIs) are chosen for qualitative comparison. Also, the quantitative com-
parison for the reconstruction is measured by the peak signal-to-noise ratios (PSNR) value

4Which is provided by Dr. Cynthia McCollough, the Mayo Clinic, the American Association of Physicists in
Medicine, and supported by Grants EBO17095 and EBO17185 from the National Institute of Biomedical Imaging
and Bioengineering.
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Figure 5. Performance on ‘Shepp—Logan’ images restoration. From top to bottom: 30
projections, 30 projections + noise, 45 projections and 45 projections + noise. From
left to right: results of FBP, ¢, norm, ¢, norm [17], ¢y norm [1], and ours, respectively.

which is defined as:

(65)

MN max — Ymin 2
PSNR(u, it) = 10 loglo( oy — 1 2>,

lu — a3

where i denotes the truth image, uyax, Umin denote the maximal and minimal pixel value of u,
M and N are the sizes of the image.
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Table 1. Reconstruction results on PSNR: our method obtains the highest PSNR values.

Images FBP I le lo Ours

Proj.30 17.30 2035 28.15 28.08 33.42
Proj.30n  17.29 20.35 28.11 28.00 33.18
Proj.45 20.62 2148 3092 36.38 44.69
Proj.45n  20.60 22.19 30.88 3622 44.07

Figure 6. Original medical image with the marked ROI.

4.2.1. Simulated data. The transformation A in simulated data is the discretized version of
radon transformation [29]. We considered 30 and 45 sparse projection views and set A =
0.0001, 5 = A for the modified Shepp—Logan phantom. Additionally, we also consider the
noisy measurement case for 30 projection and 45 projection views with 20% Gaussian noise.
As shown in figure 4, two ROIs are selected for visual comparison.

The reconstruction results are shown in figure 5 and table 1. It is obvious that our method
obtain better results than those from the ¢,-norm, ¢y-norm and /.-norm based models. More
precisely, the FBP method leads to a bunch of trivial noise or spots, the ¢, and /,-methods
obtain blurring reconstructions, the /y-method generates obvious noisy artifacts from 30 pro-
jections, and over smooth features appear in 45 projections (e.g. the tiny dots in the red square).
Moreover, for CT imaging from the noisy sparse projection views, our method also has the the
best performance among all the methods in these numerical simulations.

4.2.2. Clinical data. We evaluate our method on CT images with the x-ray projection of
sparsely sampled 15, 30, 45 and 60 views and compare them with the same baselines. We set
A = 0.01, 8 = 20\ in our CT image restoration model. Except for comparing the visual results
between original CT image and the reconstructed images, two ROIs (the big blue squareRes
and the small right red square Rygn) and a profile line (green line) to compare the PSNR are
selected for further demonstration as shown in figure 6.

Figure 7 shows the reconstruction results from ¢, ¢;, {,-norm and our ¢y + ¢,-norm. Models
with /p-norm have higher sparsity than ¢, and /,-norm. When comparing with the ¢, method,
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Figure 7. Performance on medical CT images restoration. From left to right: results of
FBP method, ¢, norm, ¢, norm [17], ¢y norm [1], and ours, respectively.

the visual superiority of our method is not obvious. The zoom-in ROl in figure 7 shows that our
method slightly outperforms the ¢y regularized model. In order to see the particular priority,
we compare the profile line to show the specific pixel values on each reconstructed images and
ROIs. Figure 8 shows the original profile line and the reconstructed profile line of each method
in each projection. It is obvious that the red lines (ours) are closer to the grey lines(truth) and
are more flatten and sparser than others, especially in projection of 15 and 30.
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(a) Proj-15 (b) Proj-30
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Figure 8. Performance on reconstruction of scanlines in projection of 15, 30, 45 and 60
views: the red lines (ours) obtain higher sparsity and are more close to the gray lines
(groundtruth), especially in projection of 15 and 30 views.

Additionally, table 2 illustrates that our method obtains the highest PSNR value in every
example. In particular, the PSNR values of our results are 0.1-1.0 dB larger than the results
from the ¢, regularized model. As a whole, figure 8 and table 2 verify that our model is appli-
cable to CT reconstruction from lower dose and superior to other sparse regularization based
methods.

5. Conclusion

In this paper, we propose a hybrid sparsity-based analysis model for image smoothing and CT
imaging reconstruction. Thanks to the combination of ¢y-norm and the ¢,-norm, our model
balances the sparsity and smoothness when representing the ground truth image. To solve
the resulted non-separable /y-norm related minimization, an inexact augmented Lagrangian
method is proposed with proved convergence to a local minimum. Moreover, our experiments
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Table 2. Reconstruction results on PSNR: our method obtains the highest PSNR values
in both global (full image) and details (region Riefe and Ryighc)-

Images FBP 0y I lo Ours

Proj.15-full 13.05 1852 20.85 2097 21.19
Proj.15-Rief 16.15 1858 19.94 20.17 20.70
Proj.15-Rigne  16.87  20.66 23.26 23.24  23.36
Proj.30-full 17.79 2134 2550 25.83 2593
Proj.30-Riee 21.34  20.60 2473 2530 26.32
Proj.30-Rigne  21.90 2423  27.17 2731 27.62
Proj.45-full 21.17  23.74 2980 3022 30.43
Proj.45-Riee  24.86 2296  29.01 2991 30.71
Proj.45-Rigne  24.53  26.07 30.51 30.99 31.40
Proj.60-full 2378 2543 3228 3245 3292
Proj.60-Riee ~ 27.06 2559 33.00 3343 33.96
Proj.60-Rigne  27.67 2776 33775 34.66 34.71

validate the advantages of our proposed model when comparing with other sparsity-based
models.
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