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VIRTUAL HOMOLOGICAL SPECTRAL RADII
FOR AUTOMORPHISMS OF SURFACES

YI LIU

1. Introduction

Let S be a connected compact orientable surface. By an automorphism of S,
we mean an orientation-preserving homeomorphism f : S → S. For any automor-
phism f of S, the homological spectral radius is defined to be the spectral radius
of the induced linear automorphism of f on the first homology of S with com-
plex coefficients, namely, the greatest modulus for all the complex eigenvalues of
f∗ : H1(S;C) → H1(S;C). Given any connected finite cover S̃ of S, we say that an
automorphism f̃ : S̃ → S̃ lifts f if the following diagram of maps commutes:

S̃
f̃ ��

cov.
��

S̃

cov.
��

S
f �� S

In this case, the homological spectral radius for f̃ is said to be a virtual homological
spectral radius for f .

Given any automorphism f of a connected compact orientable surface S, it is
evident that any virtual homological spectral radius for f is greater than or equal
to 1, and less than or equal to the exponential of the mapping-class entropy of
f . In general, the mapping-class entropy of f is defined to be the infimum of the
topological entropy for all the surface automorphisms that are isotopic to f ; the ex-
ponential of that quantity is known to be the dilatation of the pseudo-Anosov part
of f , with respect to the Nielsen–Thurston classification (see [Koj, Corollary 10]).
It is shown by C. T. McMullen that any virtual homological spectral radius for a
pseudo-Anosov surface automorphism f is strictly less than the dilatation if the in-
variant foliations for f have prong singularities of odd order [McM13]. Whereas it is
generally impossible to recover the mapping-class entropy using virtual homological
spectral radii, it is anticipated that nontriviality of the mapping-class entropy may
be detected. This leads to the following well-known conjecture due to McMullen
(first raised as a question for pseudo-Anosov automorphisms; see [Kob12]).

Conjecture 1.1. Given any automorphism f of a compact connected orientable
surface S, there exists a virtual homological spectral radius for f which is strictly
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greater than 1 if and only if the mapping-class entropy of f is strictly greater than
0.

Initial progress toward showing the conjecture is true was made by T. Koberda,
who shows that any isotopically nontrivial surface automorphism possesses a vir-
tual homological eigenvalue other than 1 [Kob12]. The Nielsen–Thurston type of
any given surface automorphism is also known to be determined by some decid-
able virtual homological action [Kob12,KM]. For pseudo-Anosov automorphisms of
surfaces with nonempty boundary, A. Hadari shows that some virtual homological
action must have infinite order [Had15]. A criterion for the existence of virtual
homological eigenvalues outside the unit circle is provided by H. Sun, in terms of
Mahler measure of multivariable Alexander polynomials [Sun17].

The goal of this paper is to confirm Conjecture 1.1.

Theorem 1.2. The statement of Conjecture 1.1 holds true.

In the literature, there already exist many interesting works which study virtual
properties of fibered 3–manifolds through surface automorphisms, or vice versa,
such as [CSW,CLR,Kob14,Mas]. Every irreducible compact 3–manifold with empty
or tori boundary and of positive simplicial volume is known to be finitely covered
by a fibered one (see [Ago13, Theorem 9.2], [Wis, Corollary 16.10], and [PW18,
Corollary 1.3]). Combining with other known implications of Conjecture 1.1 (see
[Sun17, Theorem 1.2], [SW, Conjecture 6.1], and [Le, Theorem 5]), we obtain the
following consequences of Theorem 1.2.

Corollary 1.3. Every irreducible compact 3–manifold with empty or tori bound-
ary and of positive simplicial volume admits a regular finite cover whose mul-
tivariable Alexander polynomial is not constant zero and has Mahler measure
strictly greater than 1.

Corollary 1.4. Every irreducible compact 3–manifold with empty or tori bound-
ary and of positive simplicial volume admits a finite cover whose first integral
homology contains nontrivial torsion.

In particular, Corollary 1.4 answers affirmatively [Sun15, Question 1.8] (see also
[AFW, Question 7.5.3]). For closed hyperbolic 3–manifolds, the existence of virtual
homological torsion is a theorem due to H. Sun [Sun15] (compare [LS]). In that
case, Sun actually shows that any finite abelian group can be realized as a direct
summand of the first homology of some finite cover. Corollary 1.4 works for more
general 3–manifolds, but tells less about the pattern of the virtual homological
torsion part.

In the rest of this section, we discuss our proof of Conjecture 1.1. The essential
case is when the surface is closed and when the automorphism is pseudo-Anosov.
We study pseudo-Anosov automorphisms of closed surfaces through their mapping
tori. From this perspective, periodic trajectories of the suspension flow play an
important role in connecting the topological and the dynamical aspects. We develop
some early work of D. Fried [Frd82a,Frd83] on homology directions in the case of
pseudo-Anosov suspension flows, and relate it more closely with finite covers and
essential submanifolds in 3–manifold topology. The framework of our main proof
is inspired by recent works of A. Hadari [Had18,Had15] (see Remark 4.5). Virtual
specialization techniques for hyperbolic 3–manifolds, as developed by D. Wise [Wis],
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VIRTUAL HOMOLOGICAL SPECTRAL RADII 1169

and I. Agol, D. Groves, and J. Manning [Ago13,AGM,GM], lie at the heart of our
main proof.

It is not particularly easy to outline our actual proof of Conjecture 1.1 at this
point, as the proof evolved from several intuitive ideas into a sophisticated final
form. In what follows, we provide an overview of the structure of this paper, and
then illustrate some key ingredients by considering a related sample problem. A
description of our actual strategy can be found in Section 4, immediately after we
state our main working criterion (Theorem 4.3). We put it there because Section
4 is the actual beginning of our proof of Conjecture 1.1.

Organization of this paper. This paper can be divided roughly into four parts,
as listed below. A reader who would like to see the intuitive ideas is suggested
to read through part I, only skipping the appendix to Section 2. Our complete
argument for proving Conjecture 1.1 (Theorem 1.2) occupies parts II–IV, which
relies on the preliminary materials of Section 2.

• Part I (Sections 1–3): Background and motivations. This part includes
an introduction to Conjecture 1.1, and an exposition of the key ideas in
their initial form. In Section 2, we review several natural structures on
mapping tori of pseudo-Anosov automorphisms. In Section 3, we investigate
a simplified situation to motivate our actual plan. This section also contains
a description of Fried’s work on homology directions.

• Part II (Section 4): Criterion and plan. For pseudo-Anosov automorphisms
of closed surfaces, we provide a criterion for the existence of a virtual ho-
mological eigenvalue outside the unit circle. The criterion is formulated in
terms of so-called homology direction hulls and Mahler measure of multi-
variable Alexander polynomials. Our strategy for proving Conjecture 1.1
is explained based on the criterion.

• Part III (Sections 5–8): Covering clusters and their homology direction
hulls. We revisit Fried’s work on homology directions and extend the the-
ory to the so-called covering cluster setting. In Section 5, we obtain the
polytope description of homology direction hulls through a Markov parti-
tion approach. In Section 6, we introduce what we call clusters and extend
the treatments of Section 5 to those objects. In Section 7, we introduce and
study reciprocal characteristic polynomials for clusters, which are analogous
to the multivariable Alexander polynomials for mapping tori. In Section 8,
we extend the above theory to covering clusters.

• Part IV (Sections 9–10): Core arguments of the main proof. We prove
Conjecture 1.1, based on the results of part II and part III. In Section 9,
we essentially prove Conjecture 1.1 for pseudo-Anosov automorphisms of
closed surfaces. This case is summarized in Lemma 10.1. In Section 10, we
derive the general case, and complete the proof of Conjecture 1.1 (Theorem
1.2).

Illustration of key ingredients. We explain a central problem that we address
in the course of our proof. This is roughly the first half of our core argument
(Section 9.1). We reformulate the problem below to avoid technical terms. For the
moment, the reader may simply take it as a method-oriented illustration. It should
become clearer in Section 3 how the problem is relevant to Conjecture 1.1.
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For any pseudo-Anosov automorphism f of a connected closed orientable surface
S, the mapping torus Mf is naturally equipped with a suspension flow. The homol-
ogy classes of the periodic trajectories is a collection of integral points in H1(Mf ;R).
The radial rays in H1(Mf ;R) through those points form a dense subset of a unique
closed linear cone C in H1(Mf ;R). Fried shows that C is convex polyhedral, and
has codimension 0 in H1(Mf ;R). In fact, C is dual to the fibered cone in H1(Mf ;R)
determined by the fibration with fiber S (see Section 3 for more details). For any
regular finite cover M ′ of Mf with a deck transformation group Γ′, there is a lifted
suspension flow on M ′, and the similarly defined cone C ′ in H1(M ′;R) is convex
polyhedral, of codimension 0, and is invariant under the induced action of Γ′. We
are interested in the number of the Γ′–orbits of 1–dimensional faces of C ′, namely,
the number of the extreme-ray orbits.
Problem 1.5. For any given positive integer n, construct some regular finite cover
M ′ of Mf , such that the cone C ′ has at least n extreme-ray orbits.
Outline of the solution. To construct M ′ by induction, we may assume that a reg-
ular finite cover M ′

n of Mf is given with at least n extreme-ray orbits in its cone C ′
n.

We construct M ′
n+1 with at least one more orbit in C ′

n+1. After choosing auxil-
iary basepoints, we may identify the fundamental group Π′

n of M ′
n as a finite-index

normal subgroup of the fundamental group Π of Mf . The periodic trajectories in
M ′

n can be thought of as conjugacy classes in Π′
n. For any quotient group G′

n of
Π′

n which contains a finite-index free abelian subgroup G′′
n, the preimage of G′′

n in
Π′

n is a finite-index subgroup Π′′
n, and there is a finite-index subgroup Π′

n+1 which
is contained in Π′′

n and normal in Π. Denote by M ′′
n and M ′

n+1 the corresponding
finite covers of Mf . The above construction is of course rather general. We have
to impose additional conditions on Π′

n → G′
n to make M ′

n+1 as desired.
Let us assume in addition that G′

n is infinite, and that the periodic trajectories
in M ′

n carried by ∂C ′
n (that is, representing homology classes of ∂C ′

n) are all sent
to conjugacy classes of finite-order elements in G′

n. Note that there are induced
surjective linear maps C ′

n+1 → C ′′
n and C ′′

n → C ′
n. The additional assumption

ensures that the preimage of ∂C ′
n in C ′′

n is sent to the origin under H1(M ′′
n ;R) →

H1(G′′
n;R). If all the extreme rays of C ′′

n were mapped into ∂C ′
n under C ′′

n → C ′
n,

then C ′′
n would be mapped to the origin under H1(M ′′

n ;R) → H1(G′′
n;R). However,

this is impossible because C ′′
n has codimension 0 in H1(M ′′

n ;R), and H1(M ′′
n ;R) →

H1(G′′
n;R) is surjective with positive-dimensional image. Therefore, some extreme

ray of C ′′
n must project a ray in the interior of C ′

n (plus the origin). It follows that
under the additional assumption, C ′

n+1 must have at least one more extreme-ray
orbit than C ′

n.
To construct some Π′

n → G′
n satisfying the additional assumption, we invoke the

deep fact that Π is word-hyperbolic, nonelementary, and virtually compact special
[Ago13]. Suppose that there are finitely many infinite-index quasiconvex subgroups
H ′

1, . . . , H
′
s of Π′

n with the following property. For every periodic trajectory γ
in M ′

n carried by ∂C ′
n, the corresponding conjugacy class in Π′

n has nonempty
intersection with some H ′

i. Then we can apply Wise’s Special Quotient Theorem
[Wis, Theorem 12.7] to obtain a nonelementary, word-hyperbolic, virtually compact
special quotient Π′

n → G∗
n, such that the image of every H ′

i is finite (see also the
argument of Lemma 9.4 for some technical clarification). In particular, G∗

n has
virtually positive first Betti number, so there exists an infinite virtually free abelian
quotient G∗

n → G′
n. Then Π′

n → G′
n is as desired.
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VIRTUAL HOMOLOGICAL SPECTRAL RADII 1171

It remains to construct a collection of subgroups H ′
i as above. We describe our

construction as follows. We take a Markov partition R of S with respect to f ,
and obtain the associated transition graph Tf,R, which is a finite directed graph.
In terms of symbolic dynamics, the dynamical cycles of Tf,R (that is, the directly
immersed loops) encode the periodic trajectories of Mf . There is a naturally in-
duced regular finite cover T ′

n of Tf,R, whose dynamical cycles encode the periodic
trajectories of M ′

n. With this combinatorial data, we are able to construct a finite
collection of (irreducible) subgraphs V ′

1 , . . . , V
′
s of T ′

n, whose dynamical cycles al-
together encode, and only encode, the periodic trajectories carried by ∂C ′

n. (Each
V ′
i encodes some of the periodic trajectories carried by a closed face of C ′

n.) Be-
sides, there is an induced map T ′

n → M ′
n, which is canonical up to homotopy. To

speak properly of fundamental groups, fix auxiliary basepoints of T ′
n and V ′

i , and
join them by a path. Then the subgroup H ′

i is constructed as the image of the
composite homomorphism π1(V ′

i ) → π1(T ′
n) → Π′

n. The detail of this construction
is the content of part III (Sections 5–8). The constructed subgroups H ′

i are qua-
siconvex of infinite-index in Π′

n. The basic reason is that they lie in the kernel of
some nonfibered cohomology class ψ′

i in H1(M ′
n;Z) ∼= Hom(Π′

n,Z). In fact, ψ′
i can

be chosen on the boundary of the fibered cone in H1(M ′
n;R) that is dual to C ′

n in
H1(M ′

n;R). �

If we take a covering Q′
i → M ′

n that corresponds to H ′
i in the above construction,

the group-theoretic conditions on H ′
i can be translated as follows. Every Q′

i is a
geometrically finite hyperbolic 3–manifold of infinite volume, and moreover, every
periodic trajectory γ carried by ∂C ′

n lifts to some Q′
i → M ′

n. One may think of
each Q′

i as π1–injectively immersed submanifolds of M ′
n, so the periodic trajectories

in M ′
n carried by faces of C ′

n are freely homotopic to loops in these submanifolds.
Intuitively, each Q′

i holds together a collection of periodic trajectories, which are
encoded by an irreducible subgraph of the covering transition graph. In a suitable
sense, Q′

i is also minimal with such property.
This interpretation inspires us to introduce clusters,1 which formalizes the above

construction (see Section 6). The above Q′
i are examples of covering clusters, as

they arise in a regular finite cover of Mf .
In dynamical and homological aspects, (covering) clusters behave very much like

(covering) pseudo-Anosov mapping tori. For example, the periodic trajectories in
clusters also give rise to codimension–0 convex polyhedral cones in the first real
homology. Moreover, we can extract further interesting clusters from closed faces
of a cluster’s cone. All the clusters form a finite partial-order system, parallel to the
system of irreducible subgraphs of the transition graph. This feature is particularly
useful in the second half of our core argument, because we can start from the
simplest clusters and build up inductive arguments.

Just as the Thurston norm is related to the dual fibered cone of a pseudo-Anosov
mapping torus, the Alexander norm is related to a convex polyhedral cone in the
first real homology, possibly of positive codimension. The picture is described in
Section 3 with more details. Upon suitable interpretation, the second half of our
core argument (Section 9.3) is essentially about solving a problem analogous to
Problem 1.5 for the cone related to the Alexander norm. The construction is based

1The name does not suggest a connection with cluster algebra, or any other homonymous
concepts in existing mathematics.
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1172 YI LIU

on the result of the first half. It invokes separability of quasiconvex subgroups in
virtually special word-hyperbolic groups.

Change of language. Whereas homological convex polyhedral cones are quite
intuitive for an expository purpose, they are not always the most convenient to
work with. (For example, arguing with such objects would make the exposition of
Sections 4 and 7 unnecessarily complicated.) For this reason, we only talk about
those objects in part I (Sections 1–3). In parts II–IV (Sections 4–10), we adopt some
systematically introduced terminology, which is more direct for our arguments. The
reader may consult Section 3 for switching between different perspectives.

2. Mapping tori of pseudo-Anosov automorphisms

In this preliminary section, we review pseudo-Anosov automorphisms of closed
orientable surfaces from the perspective of their mapping tori. We collect facts that
are relevant to our discussion, and set up notation that we adopt. Our general ref-
erences include Fathi–Laudenbach–Poénaru [FLP] for Thurston’s work on surfaces,
Jiang [Jia83] for Nielsen’s fixed point theory, and Turaev [Tur01] for combinato-
rial torsions. In the literature, it is very common to assume that the surface is
connected. We restrict ourselves to connected surfaces for this section. However,
disconnected surfaces arise naturally when we consider finite covers of mapping tori,
so we introduce an extension of our terminology to facilitate subsequent discussion.
This is Convention 2.3.

Let f be a pseudo-Anosov automorphism of a connected closed orientable surface
S. In other words, S is required to have genus at least 2, f : S → S is an orientation-
preserving homeomorphism, and moreover, there exist a constant λ > 1 and a pair
of measured foliations (F s, μs) and (F u, μu) of S with the property

f · (F u, μu) = (F u, λμu) and f · (F s, μs) = (F s, λ−1μs).

The constant λ is usually called the stretching factor of f . The measured foliations
(F s, μs) and (F u, μu) are called the stable and the unstable measured foliations
of f , respectively. The underlying invariant foliations are transverse to each other,
except at finitely many common singular points. At each singular point, both of
the invariant foliations have a k–prong singularity, for some and the same positive
integer k ≥ 3.

The mapping torus Mf of f can be constructed as the quotient of the product
S × R by the equivalence relation (x, r + 1) ∼ (f(x), r). (Caution: here we fol-
low the dynamicists’ convention rather than the topologists’ convention (x, r) ∼
(f(x), r + 1).) There exists a distinguished (forward) suspension flow

θt : Mf → Mf ,

which is parametrized by t ∈ R. It is naturally induced by the parametrized forward
flow on S×R of constant unit velocity in the R direction, namely, (x, r) �→ (x, r+t).
The product fibration of S×R over R, (x, r) �→ r, induces a distinguished fibration
of Mf over the circle R/Z and a distinguished inclusion of S as a fiber of Mf , via
the composite map S → S × {0} → S × R → Mf . Therefore, the fibration map
Mf → R/Z represents a distinguished primitive cohomology class

φf ∈ H1(Mf ;Z),
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VIRTUAL HOMOLOGICAL SPECTRAL RADII 1173

as we naturally identify H1(Mf ;Z) ∼= [Mf ,R/Z]. In other words, φf is the first
integral cohomology class that is the Poincaré dual of [S] ∈ H2(Mf ;Z). The co-
homology class φf induces a distinguished Z–grading of the commutative group
algebra ZH1(Mf ;Z)free, where H1(Mf ;Z)free stands for the quotient of H1(Mf ;Z)
by the submodule of torsion elements H1(Mf ;Z)tors. To be precise, any element
h ∈ H1(Mf ;Z)free is assigned with a degree φf (h) ∈ Z, as we naturally iden-
tify H1(Mf ;Z) ∼= Hom(H1(Mf ;Z)free,Z). Then any homogeneous element in
ZH1(Mf ;Z)free of φf–graded degree m ∈ Z is a Z–linear combination of finitely
many degree–m elements in H1(Mf ;Z)free.

Major algebraic topological information about Mf can be extracted from the
homological action of f . We can read off the homology and the cohomology of
the mapping torus Mf from the following split short exact sequences of integral
modules:

(2.1) 0 �� Cofix
(
H1(S;Z) f∗−→ H1(S;Z)

)
�� H1(Mf ;Z)

φf �� Z �� 0

and

(2.2) 0 �� Z
1�→φf �� H1(Mf ;Z) �� Fix

(
H1(S;Z) f∗

−→ H1(S;Z)
)

�� 0.

Here Fix(f∗) stands for the submodule of H1(S;Z) which is fixed under the induced
action f∗ of f , and Cofix(f∗) stands for the quotient of H1(S;Z) by the submodule
generated by all the elements h − f∗(h) for all h ∈ H1(S;Z). The single variable
Alexander polynomial of Mf dual to the primitive cohomology class φf , denoted
as Δφf

Mf
(t), is determined by the reciprocal characteristic polynomial of the first

homological action f∗ : H1(S;Z) → H1(S;Z), namely:

Δφf

Mf
(t) .= detZ[t] (1− t f∗) .

Here the dotted equal symbol stands for an equality in the integral Laurent poly-
nomial ring Z[t, t−1] up to a unit, namely, a factor of the form ±tn with n ∈ Z.
Modulo the indeterminacy, Δφf

Mf
is a monic palindromic polynomial of degree b1(S).

The φf–graded degree of the multivariable Alexander polynomial Δ#
Mf

is also
determined on the homological action level. In this paper, the multivariable Alexan-
der polynomial of Mf refers to the order of the finitely generated ZH1(Mf ;Z)free–
module H1(M#

f ;Z), where M#
f stands for (any fixed model of) the maximal free

abelian covering space of Mf , on which H1(Mf ;Z)free acts by deck transformations.
The order of any finitely generated module over a Noetherian unique factorization
domain (UFD) is known as the generator of the smallest principal ideal that con-
tains the zeroth elementary ideal of that module, well defined up to a unit. By
slightly abusing the notation, we denote the multivariable Alexander polynomial of
Mf using any of its representatives

Δ#
Mf

∈ ZH1(Mf ;Z)free.

Throughout this paper, we treat abelian groups as multiplicative groups, rather
than additive groups, whenever we talk about their group algebras (such as
H1(Mf ;Z)free in ZH1(Mf ;Z)free).

The φf–graded degree of Δ#
Mf

refers to the degree difference between the high-
est and the lowest homogeneous part of Δ#

Mf
, with respect to the φf–grading of
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ZH1(Mf ;Z)free. In other words, if Δ#
Mf

has a representative
∑

h ahh, where h

ranges over H1(Mf ;Z)free and where ah ∈ Z is nonzero for only finitely many h, the
φf–graded degree of Δ#

Mf
is defined as max{φf (h) : ah �= 0}−min{φf (h) : ah �= 0}.

This degree is clearly independent of the representative chosen. The φf–graded
degree of Δ#

Mf
is completely determined by the Euler characteristic of S and the

first Betti number of Mf :

(2.3) degφf

(
Δ#

Mf

)
=

{
−χ(S) if b1(Mf ) > 1,
−χ(S) + 2 if b1(Mf ) = 1.

(See [FV11, Theorem 10] or [Tur01, Theorem 14.12].)
The multivariable Alexander polynomial Δ#

Mf
itself reflects a deeper level of the

dynamics of f . It is intimately related with the periodic points and their indices.
This is more precisely Theorem 2.2 below. We need some notation to state it.

For any positive integer m ∈ N, denote by Perm(f) the set of the m–periodic
points of f . For any p ∈ Perm(f), we denote by

(2.4) indm(f ; p) ∈ Z

the m–periodic point index of f at p.
The particular definition of periodic point index is not so much important in this

paper, because explicit formulas are available for pseudo-Anosov automorphisms.
However, we recall the following description for the reader’s convenience. For any
fixed point p ∈ S of f , let U ⊂ S be an open neighborhood of p, and let ϕ : U → C
be a local coordinate chart with ϕ(p) = 0. Denote by ∂Dε ⊂ C the circle of
radius ε centered at 0. Denote by gε : ∂Dε → ∂Dε the “Gaussian” map gε(z) =
ε · (z − (ϕ ◦ f ◦ ϕ−1)(z))/|z − (ϕ ◦ f ◦ ϕ−1)(z)|. As f has only isolated fixed points,
gε is defined for all sufficiently small ε > 0. The fixed point index of f at p can be
defined as the mapping degree of gε. It depends only on (f, p) when ε is sufficiently
small. For any m ∈ N, an m–periodic point of f refers to a fixed point p ∈ S of
fm. The m–periodic point index of f at an m–periodic point p refers to the fixed
point index of fm at p. There are generalized versions that work in more general
settings; see Remark 2.1 for some information.

As f is pseudo-Anosov, it is known that indm(f ; p) can be expressed explicitly
in terms of either of the invariant foliations. For any p ∈ Perm(f) of a k–prong
singularity, k ≥ 3, we have indm(f ; p) = 1 − k if fm preserves every prong of the
foliation, or otherwise indm(f ; p) = 1. For any p ∈ Perm(f) which is regular, we
have indm(f ; p) = −1 if fm preserves any orientation of the leaf through p, or
otherwise indm(f ; p) = 1. To put this together, the m–periodic index indm(f ; p)
equals 1 minus the number of the prongs at p which are invariant under fm. Here
we treat the regular case as an artificial 2–prong singularity. (See Remark 2.1 for
some references.)

Remark 2.1. For continuous self-maps of compact PL spaces in general, the fixed
point index is a (nonzero) integer associated to any (essential) fixed point class (see
[Jia83] for an expository introduction). For the standard form of a pseudo-Anosov
automorphism, which we have been considering, every essential fixed point class
corresponds to a unique fixed point (see [JG, Corollary 2.3] and [Jia83, Chapter
I, Definition 4.1]). The index formula for pseudo-Anosov periodic points as we
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VIRTUAL HOMOLOGICAL SPECTRAL RADII 1175

explained above can be found in [JG, Lemma 2.1] (see the two types (p, 0)+ and
(p, k)+, p � k, for the interior fixed point case thereof).

For any m–periodic point p ∈ Perm(f), we associate a closed path γm(f ; p) of Mf

based at p, which is formed by running along the suspension flow for m time units.
Namely, γm(f ; p)(t) = θt(p) for all t ∈ [0,m]. Therefore, the free abelianization
class
(2.5) [γm(f ; p)] ∈ H1(Mf ;Z)free
satisfies φf ([γm(f ; p)]) = m with respect to the grading by φf . Note that (2.5) and
(2.4) are both invariant for m–periodic points of the same f–iteration orbit.

With the above notation (2.4) and (2.5), we introduce the multivariable Lefschetz
zeta function of f using the expression

(2.6) ζ#
f = exp

⎛⎝∑
m∈N

∑
p∈Perm(f)

indm(f ; p)
m

· [γm(f ; p)]

⎞⎠ ,

where exp(a) stands for the formal series
∑∞

k=0
ak

k! . We consider ζ#
f as, a priori,

a formal series living in the positive-half completion of the commutative group
algebra QH1(Mf ;Z)free with respect to the φf–grading.

Theorem 2.2. Let S be a connected closed orientable surface of genus at least
2, and let f be a pseudo-Anosov automorphism of S. Denote by Mf the mapping
torus of f and by φf ∈ H1(Mf ;Z) the cohomology class of the distinguished
fibration of Mf over the forward oriented circle R/Z. Then the multivariable
Alexander polynomial Δ#

Mf
of Mf can be computed by the following formula:

Δ#
Mf

.=

{
ζ#
f if b1(Mf ) > 1,
ζ#
f · (1 − t)2 if b1(Mf ) = 1.

In either case, the right-hand side is a finite sum of terms in H1(Mf ;Z)free with
integral coefficients. Hence the dotted equality symbol stands for an equality in
ZH1(Mf ;Z)free up to a unit. In the case b1(Mf ) = 1, the notation t stands for
the generator of H1(Mf ;Z)free with φf (t) = 1.

In fact, the formula in Theorem 2.2 can be derived from well-known connections
between twisted Alexander polynomials, twisted Reidemeister torsions, and twisted
Lefschetz zeta functions. An exposition of its proof is included in the appendix at
the end of this section, for the reader’s reference.

We mention another formula for the multivariable Lefschetz zeta function in
terms of the primitive periodic trajectories. To any (unparametrized and basepoint-
free) primitive periodic trajectory γ of the suspension flow, we associate two positive
integers,
(2.7) pn(γ), po(γ) ∈ N,

as follows. For any periodic point p ∈ S, the set of prongs at p is partitioned into
orbits, with respect to the action of the smallest power of f that fixes p. Given any
primitive periodic trajectory γ, take a periodic point p ∈ γ ∩S. We define pn(γ) to
be the number of prongs at p, using either of the invariant foliations. (Count pn(γ)
as 2 for any regular periodic point.) We define po(γ) to be the number of prongs in
any prong orbit at p, as explained above. Note that the choice of the periodic point
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or the prong orbit does not affect the numbers pn(γ), po(γ). We also observe that
po(γ) always divides pn(γ), since pn(γ)/po(γ) equals the number of prong orbits
at any periodic point in γ ∩ S.

The following formula can be derived by some obvious manipulation of the ex-
pression (2.6):

(2.8) ζ#
f =

∏
γ primitive

(1 − [γ])−1
(
1 − [γ]po(γ)

)pn(γ)/po(γ)
,

where (1−a)−1 stands for the formal series
∑∞

k=0 a
k and where the infinite product

is taken over all the primitive periodic trajectories γ.
In fact, the factors in (2.8) that involve a primitive periodic trajectory γ cor-

respond to the exponential of those summands in (2.6) that involve the periodic
points in γ ∩ S. The m–periodic point set Perm(f) has empty intersection with
γ ∩ S if φf (γ) does not divide m. Otherwise, Perm(f) contains γ ∩ S. In the latter
case, for any p ∈ γ ∩ S, the m–index indm(f ; p) equals 1 − pn(γ) if φf (γ) × po(γ)
divides m, or 1 otherwise. The cardinality of γ ∩ S equals φf (γ). From the above
observations, we see that the sum of those summands in (2.6) that involve periodic
points of γ ∩ S is given by∑

m∈N

∑
p∈Perm(f ;γN)

indm(f ; p)
m

· [γm(f ; p)]

= φf (γ) ·

⎛⎝∑
j∈N

1
j × φf (γ)

· [γ]j −
∑
j∈N

pn(γ)
j × φf (γ) × po(γ)

· [γ]j×po(γ)

⎞⎠
= − log(1 − [γ]) + pn(γ)

po(γ) · log
(
1 − [γ]po(γ)

)
,

where Perm(f ; γN) stands for the intersection of Perm(f) with γ ∩ S, and where
log(1−a) stands for the formal series

∑∞
k=1

ak

−k . Take the product over all primitive
periodic trajectories γ, then we obtain (2.8).

In this paper, we frequently need to extend the terminology of this section to the
covering setting. We pose the following Convention 2.3 for subsequent reference.
Most facts of this section can be suitably generalized (for example, see Lemma
4.8). However, to avoid confusion, we do not assume any unstated generalizations
throughout this paper.

Convention 2.3. Let f be a pseudo-Anosov automorphism of a connected closed
orientable surface S. Denote by Mf the mapping torus of f , by φf ∈ H1(Mf ;Z)
the distinguished cohomology class, and by θt : Mf → Mf the suspension flow with
the distinguished parametrization.

(1) Suppose that M̃ is any connected finite covering space of the mapping torus
Mf . Denote by θ̃t : M̃ → M̃ the lifted parametrized suspension flow. Let S̃
be the preimage of the distinguished fiber S in M̃ , and let f̃ : S̃ → S̃ be the
restriction of θ̃1 to S̃. By declaring M̃ as a covering mapping torus over
Mf , we agree to identify M̃ with the mapping torus Mf̃ by the canonical
homeomorphism so that θ̃t matches with the distinguished parametrized
suspension flow of Mf̃ .
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(2) Note that for a covering mapping torus M̃ as above, the distinguished
fiber S̃ is an orientable closed surface, possibly disconnected with finitely
many components. The lifted automorphism f̃ is an orientation-preserving
homeomorphism of S̃ which permutes the components cyclically and tran-
sitively. We agree to extend our usual terminology about pseudo-Anosov
automorphisms to this setting. The measured foliations are understood via
pull-back, with the stretching factor unchanged. The distinguished coho-
mology class φ̃ in H1(M̃ ;Z) is understood as the pull-back of φf , which
is dual to S̃. Note that φ̃ is not necessarily primitive, but has divisibility
b0(S̃).

Appendix to Section 2. In this appendix, we provide a proof of Theorem 2.2
based on results of [Tur01] and [Frd83]. Let S be a connected closed orientable
surface of genus at least 2, and let f be a pseudo-Anosov automorphism of S.

We start by relating the multivariable Alexander polynomial Δ#
Mf

with the mul-
tivariable Reidemeister torsion τ#(Mf ). We mention a quick definition of the latter
for the reader’s reference. Given any connected finite cell complex X, and for any
dimension i ∈ Z, the ith multivariable Alexander polynomial X is defined to be
the order of the ZH1(X;Z)free–module Hi(X#;Z), denoted by any representative
Δ#

X,i ∈ ZH1(X;Z)free. The notation X# stands for the maximal free abelian cover
of X as before. (It is customary to use i = 1 as the default dimension, so Δ#

Mf

agrees with Δ#
Mf ,1.) Under the hypothesis Δ#

X,i �= 0 of all i, the multivariable
Reidemeister torsion of X can be characterized as the following alternating prod-
uct:

τ#(X) =
∏

i odd Δ#
X,i∏

i even Δ#
X,i

.

It lives in the field of fractions Frac(ZH1(X;Z)free) up to a unit of ZH1(X;Z)free.
By convention, we assign τ#(X) to be 0 if the hypothesis does not hold. Note that
for any particular i ∈ Z, we have Δ#

X,i �= 0 if and only if Hi(X#;Z) ⊗ZH1(X;Z)free
Frac(ZH1(X;Z)free) = 0; see [Tur01, Remark 4.5 (2)]. The multivariable Reide-
meister torsion is actually naturally invariant under homotopy equivalence of finite
cell complexes [Tur01, Theorem 11.3 and Corollary 11.4]. (Note that this invariant
is called the Alexander function in [Tur01, Section 11.2].) Therefore, it makes sense
to speak of the multivariable Reidemeister torsion for any topological space that is
homotopy equivalent to a connected finite cell complex.

For (connected) closed 3–manifolds, the multivariable Reidemeister torsion is
known to be completely determined by the multivariable Alexander polynomial.
See [Tur01, Theorem 14.12] for the general formula. For mapping tori, the relation
is explicitly as follows:

(2.9) τ#(Mf ) .=

{
Δ#

Mf
if b1(Mf ) > 1,

Δ#
Mf

· (1 − t)−2 if b1(Mf ) = 1,

where t stands for the generator of H1(Mf )free with φf (t) = 1 in the b1(Mf ) = 1
case.

To calculate τ#(Mf ), we make some auxiliary choices and introduce some no-
tation as follows. Choose an auxiliary element t ∈ H1(Mf ;Z)free with φf (t) = 1
(if b1(Mf ) > 1). Denote by K the kernel of φf : H1(Mf ;Z)free → Z, which can
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be identified as the free abelian group Cofix(f∗ : H1(S;Z) → H1(S;Z))free of rank
b1(Mf )− 1. We identify the group algebra ZH1(Mf ;Z)free canonically as the Lau-
rent polynomial ring (ZK)[t, t−1] over the commutative group algebra ZK.

Choose an auxiliary cell decomposition of S and a cellular map f ′ : S → S that
is homotopic to f . Then the mapping torus Mf ′ of f ′, defined as S× [0, 1]/ ∼ with
(x, 1) ∼ (f(x), 0) for all x ∈ S, is furnished with a canonical cell decomposition.
This cell decomposition of Mf ′ is induced from the product cell decomposition of
S × [0, 1]. The image of S × {0} is a distinguished copy of S′ embedded in Mf ′ ,
and every connected component of the preimage of S′ in M#

f ′ is invariant under
K and covers S′ with deck transformation group exactly K. Choose a preimage
component S̃′ of S in M#

f ′ .
The integral cellular chain complex (C•(Mf ′), ∂•) has a canonical direct-sum

decomposition

C• (Mf ′) = C•,0 (Mf ′) ⊕ C•−1,1 (Mf ′) ,

where the direct summands are spanned by cells of the form e×{0} and e× (0, 1),
respectively. Choose orientation and ordering for the cells of Mf ′ so that they
form a basis of C• (Mf ′). The integral cellular chain complex (C•(M#

f ′ ), ∂•) is a
finitely generated free (ZK)[t, t−1]–module on each dimension. Moreover, there is
a canonically induced direct-sum decomposition

C•
(
M#

f ′

)
= C•,0

(
M#

f ′

)
⊕ C•−1,1

(
M#

f ′

)
.

Choose an auxiliary lift ẽ for each cell e of S′ to S̃′, and lift the adjacent cell
e × (0, 1) ⊂ Mf ′ to the unique cell adjacent to ẽ (on the suspension-flow forward
side). Then, over the ordered basis formed by the lifted oriented cells, chains of M#

f ′

of each dimension are represented as column vectors, and the boundary operators
are represented as matrices over (ZK)[t, t−1]. With respect to canonical direct-sum
decomposition of C•(M#

f ′ ) the matrices take the following block form:

∂1 =
[
∗ tF̃ ′

0 − 1
]
, ∂2 =

[
∗ 1− tF̃ ′

1
0 ∗

]
, ∂3 =

[
∗

tF̃ ′
2 − 1

]
,

where F̃ ′
0, F̃

′
1, F̃

′
2 are square block matrices with entries in ZK. It follows from

[Tur01, Theorem 2.2] and the homotopy invariance that the multivariable Reide-
meister torsion can be computed by

(2.10) τ#(Mf ) .= τ#(Mf ′) .=
det(ZK)[t]

(
1− tF̃ ′

1
)

det(ZK)[t]
(
1− tF̃ ′

2
)
· det(ZK)[t]

(
1 − tF̃ ′

0
) ,

understood as an equality in (QK)[t, t−1] up to a unit.
The right-hand side of (2.10) lives also in the formal series ring (QK)[[t]] (and

indeed, in the multiplicative subgroup 1 + (QK)[[t]]t). It satisfies the following
equality in (QK)[[t]]:

(2.11)
det(ZK)[t]

(
1 − tF̃ ′

1
)

det(ZK)[t]
(
1− tF̃ ′

2
)
· det(ZK)[t]

(
1− tF̃ ′

0
) = exp

(∑
m∈N

L#
m(f ′)
m

)
,
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where exp(a) stands for the formal series
∑∞

k=0
ak

k! . The terms L#
m(f ′) are defined

by the expression

(2.12) L#
m(f ′) =

(
trZK

((
F̃ ′

2
)m)

− trZK
((

F̃ ′
1
)m)

+ trZK
((

F̃ ′
0
)m))

· tm,

in (ZK)[t] for all m ∈ N. (For other choices of the auxiliary component S̃′, or
the basis of C•(M#

f ′ ), the matrices F̃ ′
• change only by conjugation with diagonal

matrices of diagonal entries in {±1}K, so the terms L#
m(f ′) depend only on f ′.)

As we have identified (ZK)[t] ∼= ZH1(Mf ′ ;Z)free ∼= ZH1(Mf ;Z)free, the terms
L#
m(f ′) may also be regarded as homogeneous elements of ZH1(Mf ;Z)free of degree

m, with respect to the φf–grading. They can actually be interpreted as a certain
version of multivariable periodic Lefschetz numbers. In particular, they ought to
be naturally homotopy invariant and satisfy an index formula, in terms of periodic
point indices when f has only isolated fixed points (or in terms of indices for periodic
orbit classes in general). Indeed, we have the identity

(2.13) L#
m(f ′) =

∑
p∈Perm(f)

indm(f ; p) · [γm(f ; p)],

in ZH1(Mf ;Z)free for all m ∈ N.
The identity (2.13) is essentially a special case of Fried’s equivariant Lefschetz

formula [Frd83, Theorem 1.1]. We explain the adaptation for the reader’s refer-
ence. The forward suspension flow θs : Mf ′ → Mf ′ is a continuous family of con-
tinuous self-maps of Mf ′ parametrized by s ∈ [0,+∞), and is defined as θs(x, r) =
((f ′)�r+s	(x), r+s−�r+s�), where points of Mf ′ are uniquely represented by their
coordinates in S × [0, 1). Denote by θ#

s : M#
f ′ → M#

f ′ the lifted forward flow such
that θ#

0 is the identity. Note that θ#
s commutes with action of the deck transfor-

mation group H1(Mf ;Z)free for all s ∈ [0,+∞). Let f̃ ′ : S̃′ → S̃′ be the restriction
of the composite map t−1 ◦ θ#

1 : M#
f ′ → M#

f ′ to S̃′.
The self-map f̃ ′ of S̃′ is equivariant with the deck transformation action of K.

The integral chain modules C•(S̃′) are identified with C•,0(M#
f ′ ), and the matrices

of the induced action of (f̃ ′)m with respect to the chosen basis are exactly (F̃ ′
•)m

for all m ∈ N. For any deck transformation h ∈ K, we obtain a subset Fix(f ′; f̃ ′, h)
of Fix(f ′), defined as the image of Fix(h−1 ◦ f̃ ′) under the covering projection
S̃′ → S′. It follows from fixed point theory that the subsets Fix(f ′; f̃ ′, h) are
mutually isolated closed subsets of S′, and are nonempty for at most finitely many
h ∈ K. There is a well-defined index ind(f ′; Fix(f ′; f̃ ′, h)) ∈ Z, which is 0 unless
Fix(f ′; f̃ ′, h) is nonempty. The equivariant Lefschetz formula of [Frd83, Theorem
1] asserts∑

h∈K

ind
(
f ′; Fix

(
f ′; f̃ ′, h

))
· h = trZK

(
F̃ ′

2
)
− trZK

(
F̃ ′

1
)

+ trZK
(
F̃ ′

0
)
,

so for m = 1, (2.12) is transformed into

L#
1 (f ′) =

∑
h∈K

ind
(
f ′; Fix

(
f ′; f̃ ′, h

))
· ht.

Working with (f ′)m, (f̃ ′)m instead of f ′, f̃ ′ for any m ∈ N, we obtain

(2.14) L#
m(f ′) =

∑
h∈K

ind
(
(f ′)m; Fix

(
(f ′)m; (f̃ ′)m, h

))
· htm
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for all m. The right-hand side of (2.14) is in fact naturally invariant under homo-
topy (as also pointed out by [Frd83, Section 1]), so we can replace f ′ with f on
the right-hand side of (2.14) (identifying H1(Mf ;Z)free ∼= H1(Mf ;Z)free). Note
that the involved terms are also defined for f instead of f ′. Since f has only
isolated periodic points, the indices become a sum of indices at periodic points.
To be precise, that a periodic point p ∈ Perm(f) lies in Fix(fm; f̃m, h) means
by definition t−m · [γm(f ; p)] = h, or equivalently, [γm(f ; p)] = htm. Moreover,
ind(fm; Fix(fm; f̃m, h)) equals the sum of indm(f ; p) for all p ∈ Perm(f) with
[γm(f ; p)] = htm. Therefore, we obtain

L#
m(f ′) =

∑
h∈K

ind (fm; Fix (fm; fm, h)) · htm

=
∑

p∈Perm(f)

indm(f ; p) · [γm(f ; p)]

for all m ∈ N, which establishes (2.13).
Plug (2.13) into the right-hand side of (2.11). Comparing with (2.6), we obtain

(2.15) ζ#
f =

det(ZK)[t]
(
1− tF̃ ′

1
)

det(ZK)[t]
(
1 − tF̃ ′

2
)
· det(ZK)[t]

(
1− tF̃ ′

0
) ,

in (QK)[[t]]. We point out that (2.15) actually follows directly from [Frd83, Section
2, Theorem 2]. Our above derivation only unwraps the proof thereof with notation
in our context.

The proof of Theorem 2.2 is complete by joining the formulas (2.9), (2.10), and
(2.15).

3. A motivational picture

In this supplementary section, we elaborate some idea behind our actual proof of
Theorem 1.2. We review some works of Thurston [Thu86] and Fried [Frd82a] on the
Thurston norm, fibered cones, and homology directions. See also [FLP, Exposé 14]
for an exposition on these topics. We also mention some work of McMullen [McM02]
on the Alexander norm. Our exposition of this section is specialized to the case
of pseudo-Anosov mapping tori. We illustrate the idea in a simple, hypothetical
situation. In fact, we prove Proposition 3.1, which serves as a prototype of a main
criterion (Theorem 4.3) that we use for proving Theorem 1.2. We discuss how it
leads to our actual plan of proof at the end of this section.

This section is written mostly for an introductory purpose. A reader who has
seen norms on the cohomology of 3–manifolds might find the conceptual picture
instructive for understanding the rest of this paper. To avoid confusion, let us
make it clear that our actual proof of Theorem 1.2 is formally independent of the
arguments or the notation appearing in this section.

Let f be a pseudo-Anosov automorphism of a connected closed orientable surface
S. Denote by Mf the mapping torus of f and by φf the distinguished cohomology
class of Mf .

Denote by ‖ · ‖Th the Thurston norm for the mapping torus Mf . Recall that
for any connected compact orientable 3–manifold N with empty or tori bound-
ary, ‖ · ‖Th is a seminorm on the real vector space H1(N ;R), and takes nonnega-
tive integral values on the integral lattice H1(N ;Z). When N is closed and con-
tains no essential spheres or tori, ‖ · ‖Th is nondegenerate (and hence a norm).
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(See [Thu86].) In particular, this applies to the pseudo-Anosov mapping torus Mf

(see [AFW, Chapter 1]).
Let BTh be the unit ball of ‖·‖Th in H1(Mf ;R). It is a compact convex polyhedron

(also known as a polytope). It is symmetric about the origin and of codimension
0 in H1(M ;R). The dual ball B∗

Th refers to the subset of H1(Mf ;R), such that
x ∈ B∗

Th holds if and only if |ψ(x)| ≤ 1 holds for all ψ ∈ BTh. (One may recognize
B∗
Th as the unit ball of the norm on H1(Mf ;R) dual to ‖ · ‖Th.) By duality, the

i–dimensional faces of B∗
Th correspond bijectively to the codimension–i faces of BTh.

Denote by CTh(φf ) the fibered cone that contains the distinguished cohomology
class φf . Recall that CTh(φf ) can be constructed as the maximal open subset of
H1(Mf ;R) that contains φf , such that the restriction of ‖ · ‖Th to the closure of
CTh(φf ) is linear. An integral cohomology class ψ ∈ CTh(φf ) ∩ H1(Mf ;Z) can be
characterized by the property that ψ is dual to an embedded closed subsurface
which is transverse to the suspension flow everywhere and oriented in the flow
direction. The closure of CTh(φf ) in H1(Mf ;R) is a convex polyhedral cone formed
by radial rays. (See [Thu86] or [FLP, Exposé 14] for an exposition.)

The dual cone C∗
Th(φf ) refers to the subset of H1(Mf ;R), such that x ∈ C∗

Th(φf )
holds if and only if ψ(x) > 0 holds for all ψ ∈ CTh(φf ). It follows that C∗

Th(φf ) is a
convex polyhedral closed cone. As f is pseudo-Anosov, the dual cone C∗

Th(φf ) can be
characterized as the smallest scaling-invariant convex closed subset of H1(Mf ;R)
that contains all the homology classes of periodic trajectories of the suspension flow
[FLP, Exposé 14]. We also mention that the radial rays in C∗

Th(φf ) correspond to
the homology directions of the suspension flow. For any smooth nonsingular flow on
a compact smooth manifold, a homology direction is roughly an accumulation point
of normalized homology classes determined by long and nearly closed trajectories,
as introduced by Fried [Frd82a].

The objects BTh,B∗
Th, CTh(φf ), C∗

Th(φf ) are related as follows. The fibered cone
CTh(φf ) determines a unique top-dimensional open face of BTh, such that CTh(φf ) is
the union of the rays through that face with the origin deleted. This top-dimensional
face is dual to a unique vertex vf of B∗

Th. In fact, vf is determined by the property
‖ψ‖Th = ψ(vf )

for all ψ ∈ CTh(φf ) (see [Thu86]). We identify the tangent space TvfH1(Mf ;R) of
H1(Mf ;R) at vf naturally with H1(Mf ;R). Then the tangent vectors at vf that
point into B∗

Th form a cone, which is exactly C∗
Th(φf ) under the identification.

There is a similar picture regarding the Alexander norm ‖ · ‖A for the mapping
torus Mf , as we describe below. For any ψ ∈ H1(Mf ;R), ‖ · ‖A is defined to be the
ψ–degree of the multivariable Alexander polynomial Δ#

Mf
. Namely,

‖ψ‖A = max{ψ(h) : ah �= 0} − min{ψ(h) : ah �= 0},
where

∑
h ahh ∈ ZH1(Mf ;Z)free is any representative of Δ#

Mf
. In general, ‖ · ‖A is

a seminorm. If b1(Mf ) > 1, the comparison
‖ψ‖A ≤ ‖ψ‖Th

holds for all ψ ∈ H1(Mf ;R), by McMullen [McM02], and the equality holds if ψ
equals φf , by (2.3). (For b1(Mf ) = 1, one simply obtains ‖φf‖A = ‖φf‖Th + 2 =
b1(S) by (2.3).)

Denote by BA the unit ball of ‖ · ‖A. Define the dual ball B∗
A in H1(Mf ;R) by the

property that x ∈ B∗
A holds if and only if |ψ(x)| ≤ 1 holds for all ψ ∈ BA. Under
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the assumption b1(Mf ) > 1, it follows from the above norm comparison that B∗
A is

contained in B∗
Th, and moreover, the norm equality for φf implies that the vertex

vf of B∗
Th dual to the fibered face determined by φf is also a vertex of B∗

A . Let
CA(φf ) be the open cone of H1(Mf ;R) over the top-dimensional face of BA that is
dual to vf . Let C∗

A (φf ) be the closed cone of tangent vectors of H1(Mf ;R) at vf
which points into B∗

A . We naturally consider C∗
A (φf ) as a closed cone in H1(Mf ;R)

as before.
The dual ball B∗

A is a polytope (possibly of positive codimension) in H1(Mf ;R)
and symmetric about the origin. In fact, it follows from the definition that B∗

A agrees
with the Newton polytope of the multivariable Alexander polynomial Δ#

Mf
, up to

an integral translation of H1(Mf ;R) (as an affined linear space). Therefore, BA is
a (possibly noncompact) convex polyhedron in H1(Mf ;R), symmetric about the
origin. The cones C∗

A (φf ) and CA(φf ) are both convex polyhedral. For b1(Mf ) > 1,
the logarithmic multivariable Lefschetz zeta function log ζ#

f is related to C∗
A (φf )

like Δ#
Mf

to B∗
A . (In fact, Theorem 2.2 implies that C∗

A (φf ) is the smallest scaling-
invariant convex closed subset of H1(Mf ;R) that contains all the homology classes
in the formal series expansion of log ζ#

f with nonzero coefficients.)
The following proposition is an application of the convex polyhedral cones and

balls as mentioned above.

Proposition 3.1. Let f be a pseudo-Anosov automorphism of a connected closed
orientable surface S. Identify ZH1(Mf ;Z)free as a multivariable polynomial ring
Z[z±1

1 , . . . , z±1
n ].

Suppose that there exist at least −χ(S) + 1 closed cone faces of the closed cone
C∗
Th(φf ), mutually disjoint except at the origin, and suppose that the intersection of

each of them with the closed cone C∗
A (φf ) contains a ray. Then (any representative

of) the multivariable Alexander polynomial Δ#
Mf

is not a product of monomials
and cyclotomic polynomials evaluated on monomials.

Proof. We observe that the corners of C∗
Th(φf ) and C∗

A (φf ) at their vertices are
isomorphic to the corners of B∗

Th(φf ) and B∗
A (φf ) at the vertex vf , respectively. In

particular, C∗
Th(φf ) contains C∗

A (φf ), as B∗
Th(φf ) contains B∗

A (φf ). Then the condition
implies that C∗

A (φf ) has at least −χ(S)+ 1 closed faces which are mutually disjoint
except at the origin. It follows that B∗

A has at least −χ(S)+1 edges (1–dimensional
faces) adjacent to the vertex vf .

Assume on the contrary that Δ#
Mf

is represented by a multivariable Laurent
polynomial ±w0P1(w1) · · ·Pr(wr), where wi are monomials zei,11 · · · zei,nn and Pi are
cyclotomic polynomials. We observe that the Newton polytope of each Pi(wi) is a
segment in H1(Mf ;R) joining the origin and wi. Note that B∗

A is isomorphic to the
Newton polytope of Δ#

Mf
. Since φf has a unique minimum point vf on B∗

A , we obtain
degφf

(Pi(wi)) > 0 for all i (otherwise the Newton polytope of P1(w1) · · ·Pr(wr)
would have a closed face of positive dimension on which φf is minimized). Then
we estimate r ≤ degφf

(P1(w1)) + · · · + degφf
(Pr(wr)) ≤ degφf

(Δ#
Mf

) ≤ −χ(S).
However, it follows that the Newton polytope of w0P1(w1) · · ·Pr(wr) has at most
−χ(S) edges adjacent to the vertex vf . This is a contradiction. �
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Under the assumptions of Proposition 3.1, it can be implied that some finite
covering and automorphism lift (S′, f ′) of (S, f) has a homological spectral radius
> 1. This follows directly from Kronecker’s theorem [EW, Theorem 3.10] and a
criterion of Sun [Sun17, Theorem 1.2]. (The former tells us that Δ#

Mf
has Mahler

measure > 1, while the latter relates this property with the existence of a virtual
homological eigenvalue outside the unit circle.)

We make some comments concerning our actual proof of Theorem 1.2. Whereas
Proposition 3.1 supplies a sufficient condition for virtual spectral radii > 1, the
condition may very often fail to hold. We loosen the condition (with some refor-
mulation) to obtain a more realistic criterion, which works in the covering setting.
This leads to Theorem 4.3. The generalized criterion roughly asks for a regularly
covering mapping torus Mf̃ with a deck transformation group Γ as follows. With
respect to the induced action of Γ, the dual cone C∗

Th(φf̃ ) should have at least
−χ(S)+1 closed cone face orbits, mutually disjoint except at the origin, and more-
over, each of those orbits should meet C∗

A (φf̃ ) nontrivially. Proving the generalized
criterion is mostly about convex geometry of multivariable Laurent polynomials,
or their formal logarithms. This will become clear in Section 4 upon some suitable
interpretation. Making use of the criterion, however, requires a systematic gener-
alization of Fried’s original work [Frd82a] on homology directions to the covering
setting, and also to a more technical cluster setting that we come up with. One
way to present our generalization of Fried’s work is to deal with covering clusters
directly. Another possible option is to redo the basic case, in a reasonably self-
contained, sufficiently detailed, and easily extendable manner, and then, to specify
necessary modifications for the general setting. In this paper, we take the latter
approach, as it might be more accessible to a general reader. We point out related
existing works in remarks for the reader’s reference.

4. A criterion for nontrivial Mahler measure

In this section, we provide a criterion for a regularly covering pseudo-Anosov
mapping torus to have a multivariable Alexander polynomial with nontrivial Mahler
measure (Theorem 4.3). We state the criterion after introducing some terminol-
ogy (Definition 4.1), which is repeatedly used in subsequent sections. We explain
our strategy for proving Conjecture 1.1 after stating Theorem 4.3. The proof of
Theorem 4.3 forms the body of this section.

Definition 4.1. Let f be a pseudo-Anosov automorphism of a connected orientable
closed surface S. Denote by Mf the mapping torus of f and by φf the distinguished
cohomology class of Mf .

(1) Denote by P(H1(Mf ;R)) the projectivization of H1(Mf ;R), whose points
are considered to be the real 1–dimensional linear subspaces of H1(Mf ;R).
Denote by A(Mf , φf ) the complement of the (projective) hyperplane
P(Ker(φf )). We furnish A(Mf , φf ) with the naturally induced affine linear
space structure. A projective point l ∈ A(Mf , φf ) is called a periodic ho-
mology direction for Mf if l contains the real homology class of a periodic
trajectory γ of the suspension flow. The homology direction hull for Mf ,
denoted as

D(Mf , φf ) ⊂ A(Mf , φf ),
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is defined to be the affine linear convex hull of all the periodic homology
directions.

(2) We say that a subset E of D(Mf , φf ) is semiextreme if there is some con-
vex function A(Mf , φf ) → R and if E consists of the maximum points
of the function restricted to D(Mf , φf ). For any semiextreme subset E
of D(Mf , φf ), the E–part of the multivariable Lefschetz zeta function is
defined as

ζ#
f [E] = 1 +

∑
u over E

coef
(
ζ#
f ;u

)
· u,

where the summation is taken over all u ∈ H1(Mf ;Z)free with φf (u) > 0
and Ru ∈ E, and where coef(ζ#

f ;u) ∈ Q stands for the coefficient of the
multivariable Lefschetz zeta function ζ#

f at u in the formal series expansion
(see (2.6)). We consider ζ#

f [E] as living in the φf–graded forward-half com-
pletion of QH1(Mf ;Z)free. For any semiextreme subset E of D(Mf , φf ),
we say that E is dominant if it satisfies

ζ#
f [E] �= 1.

(3) More generally, for any connected finite cover M̃ of Mf , the homology di-
rection hull D(M̃, φ̃) for M̃ and dominant semiextreme subsets of D(M̃, φ̃)
are defined in the same way as above, by declaring M̃ as a covering mapping
torus with the distinguished cohomology class φ̃ according to Convention
2.3.

Remark 4.2.
(1) The complement of any projective hyperplane in a real projective n–space is

naturally an affine linear n–space (that is, a homogeneous space isomorphic
to Rn furnished with the action of affine linear transformations). In real
affine linear spaces, it makes sense to speak of convex subsets. A (closed)
convex polyhedron in a real affine linear space refers to a closed convex
subset whose sides (namely, maximal convex subsets on the boundary) are
locally finite. A compact convex polyhedron is a polytope. From the de-
scriptions in Section 3, we know that the homology direction hull D(Mf , φf )
agrees with Fried’s set of homology directions, and is actually a polytope.
(It is projective linearly isomorphic to the cross-section of the dual cone
C∗
Th(φf ), or its reflection about the origin, with a generic affine hyperplane

of H1(Mf ;R).) The polytope description of the homology direction hull is
reproved in Theorem 5.14 for the purpose of further generalization (see also
Remark 5.15).

(2) For any polytope in a real affine linear space, one may check that a semiex-
treme subset is just a union of (various-dimensional) closed faces. Vertices
are extreme in the usual terminology of convex geometry. We introduce
the notion of semiextremity mostly because our argument for Theorem 4.3
does not require a polytope description of the homology direction hull.

(3) For any covering mapping torus, every deck transformation must preserve
the distinguished cohomology class, so it acts on the homology direction
hull by an affine linear isomorphism.

Theorem 4.3. Let f be a pseudo-Anosov automorphism of a connected closed
orientable surface S. Let M̃ be any connected regular finite cover of the mapping
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VIRTUAL HOMOLOGICAL SPECTRAL RADII 1185

torus Mf with deck transformation group Γ. Declare M̃ as a covering mapping
torus over Mf (Convention 2.3).

Suppose that the homology direction hull for M̃ contains −χ(S) + 1 or more
mutually disjoint Γ–invariant dominant semiextreme subsets. Then the Mahler
measure of the multivariable Alexander polynomial Δ#

M̃
of M̃ satisfies

M
(
Δ#

M̃

)
> 1.

Corollary 4.4. Under the same hypothesis as of Theorem 4.3, and in the same
notation, there exist a connected finite cover S′ of the surface S and an automor-
phism lift f ′ of f to S′, and moreover, the homological spectral radius of f ′ is
strictly greater than 1.

Corollary 4.4 follows from Theorem 4.3 and a characterization of Sun [Sun17,
Theorem 1.2]. See Subsection 4.1 for a brief review of Mahler measure. In fact, it
can be shown that provided with any covering mapping torus M̃ by Theorem 4.3,
a covering mapping torus M ′ for Corollary 4.4 is given by a generic abelian finite
cover of M̃ . When M̃ is taken to be Mf , Theorem 4.3 says essentially the same
thing as Proposition 3.1.

Theorem 4.3 suggests the following strategy for proving Conjecture 1.1. After
some known reductions, it suffices to prove the essential case for any pseudo-Anosov
automorphism f of a closed orientable surface S. Then we look for a regular finite
cover M̃ of the mapping torus Mf which satisfies the hypothesis of Theorem 4.3.
Our plan consists of two steps. First we find some regular finite cover M ′ of Mf

so that the homology direction hull D(M ′, φ′) possesses at least −χ(S)+ 1 distinct
orbits of vertices, which are not necessarily dominant. Then we find some further
regular finite cover M̃ , such that the preimage of the vertex orbits are invariant
dominant semiextreme subsets of D(M̃, φ̃). Note that the covering projection in-
duces an affine linear projection D(M̃, φ̃) → D(M ′, φ′), so the preimage of any
vertex orbit is a union of disjoint closed faces which is invariant under deck trans-
formations. To carry out the plan, we must establish the polytope description of
the homology direction hull, and moreover, we must understand the topological,
dynamical, or geometric contents of closed faces. In particular, effective calculation
for the multivariable Lefschetz zeta function needs to be developed and behavior
under finite coverings needs to be investigated. These materials are prepared in
Sections 5, 6, 7, and 8. Following the two-step plan (with a little technical modifi-
cation), we produce the desired M̃ by Theorem 9.1 in Section 9.

Remark 4.5. In [Had15], Hadari outlines a proof to show that every pseudo-Anosov
automorphism of a compact orientable surface with boundary has virtually infinite
order, and that the same holds for fully irreducible automorphisms of finitely gener-
ated free groups. Hadari’s approach inspires Theorem 4.3 (compare [Had15, Corol-
lary 2.6]) and our strategy for Conjecture 1.1. In particular, we point out that
our dominance condition for semiextreme subsets of the homology direction hull is
essentially similar to Hadari’s notion of enfeoffed vertices [Had15, Definition 2.19]
(compare Lemma 4.9).

Note that the automorphisms considered by Hadari are homologically trivial,
possibly after passing to a finite iteration. So the first step of our two-step plan
is a trivial fact there (see [Had15, Proposition 2.9]). However, for general pseudo-
Anosov automorphisms the first step requires significantly more work (compare
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Proposition 9.2). The second step in our setting also requires a different proof,
since lower central series are no longer suitable for the induction argument (compare
Proposition 9.6).

The rest of this section is devoted to the proof of Theorem 4.3. Most of the
proof is purely algebraic about multivariable Laurent polynomials, using standard
techniques. We refer the reader to Everest–Ward [EW] for the algebraic generalities.
The only essential input from topology appears in Lemma 4.11, where indices are
counted according to conjugacy classes of periodic points.

4.1. Mahler measure of multivariable Laurent polynomials. For any com-
plex Laurent polynomial in n variables q(z1, . . . , zn) ∈ C[z±1

1 , . . . , z±1
n ] other than

zero, the (multiplicative) Mahler measure of q is defined by the expression

(4.1) M(q) = exp
(

1
(2π)n

∫ 2π

0
· · ·

∫ 2π

0
log

∣∣q (eiθ1 , . . . , eiθn)∣∣ dθ1 · · · dθn
)
.

The integral is known to converge absolutely so the value of M(q) is real and
positive. By convention we set M(0) = 0. It is also known that M(q) ≥ 1 if q is
nonzero and over Z. For a complex polynomial q(t) = Dtn

∏l
i=1(t− bi) in a single

variable t, where bi �= 0, the Mahler measure can be computed explicitly by the
Jensen formula:

(4.2) M(q) = |D| ·
l∏

i=0
max(1, |bi|).

See [EW, Chapters 1 and 3].
Given a finitely generated free abelian group, it makes sense to speak of the

Mahler measure for multivariable Laurent polynomials over the complex group
algebra. This is obvious by treating a basis of the free abelian group as extra
independent variables. The resulting value of the Mahler measure is invariant
under change of bases and multiplication by monomials with unit coefficients. In
particular, it is valid to speak of the Mahler measure for multivariable Alexander
polynomials, such as our Δ#

Mf
. We give a characterization for a polynomial in t

over Z[Zn] with the constant term 1 to have Mahler measure 1.

Lemma 4.6. Denote by Λ the complex group algebra C[Zn]. For any polynomial
q(t) over Λ with the constant term 1, denote by (Lm(q) ∈ Λ)m∈N the unique
sequence determined by the following equation in the formal series completion
Λ[[t]]:

(4.3) log q(t) =
∑
m∈N

Lm(q)
m

· tm,

where log(1 − z) =
∑∞

k=1
zk

−k .
Suppose that q(t) is a polynomial over the subalgebra Z[Zn] of Λ with the con-

stant term 1. If the Mahler measure satisfies M(q) = 1, then for all m ∈ N the
following inequality holds:

‖Lm(q)‖1 ≤ degt(q).
Here degt stands for the degree of the polynomial with respect to t, and ‖ · ‖1
stands for the standard �1–norm on Λ, namely, ‖

∑
x axx‖1 =

∑
x |ax|, where the

summations are taken for all x ∈ Zn.
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VIRTUAL HOMOLOGICAL SPECTRAL RADII 1187

Proof. We identify Λ with C[x±1
1 , . . . , x±1

n ]. By Kronecker’s theorem [EW, Theorem
3.10], any multivariable integral Laurent polynomial p ∈ Z[x±1

1 , . . . , x±1
n , t±1] with

Mahler measure M(p) = 1 is a product of monomials and cyclotomic polynomials
evaluated on monomials. If q(t) is a polynomial in t over Z[x±1

1 , . . . , x±1
n ] with the

constant term 1, and with M(q) = 1, we conclude that q(t) must factorize in Λ[t]
as a product

q(t) = q1(t) × · · · × qk(t),

where each qj ∈ Λ[t] takes the form 1 − μxtl for some monomial x = xl1
1 · · ·xln

n ,
some power l ∈ N, and some root of unity μ ∈ C.

By the definition of Lm, we have the formula

Lm(q) = Lm(q1) + · · · + Lm(qk)

for all m ∈ N. Moreover, for each factor qj(t) = 1 − μxtl and for all m ∈ N, we
evaluate explicitly that Lm(1−μxtl) equals lμm/lxm/l if l divides m, or 0 otherwise.
This yields the estimate

‖Lm(qj)‖1 ≤ l = degt(qj)

for each factor qj and for all m ∈ N. Therefore, for all m ∈ N, we have

‖Lm(q)‖1 ≤
k∑

j=1
‖Lm(qj)‖1 ≤

k∑
j=1

degt(qj) = degt(q),

as asserted. (Compare the proof of Proposition 3.1.) �

Lemma 4.7. Adopting the same notation as of Lemma 4.6, suppose that q(t) is a
polynomial over Λ with the constant term 1. If q(t) is not the constant polynomial
1, then there exists some positive integer mq ∈ N such that the inequality

Lm(q) �= 0

holds in Λ for all positive integral multiples m of mq.

Proof. Suppose q(t) = 1 + c1t + · · · + cd−1t
d−1 + cdt

d, where cj ∈ Λ, and cd �= 0.
We assume q(t) �= 1 so the degree d is nonzero. We obtain a recurrence relation in
Λ:

(4.4) Lm+d(q) + c1Lm+d−1(q) + · · · + cd−1Lm+1(q) + cdLm(q) = 0

for all m ∈ N. It also holds for m = 0 if we define L0(q) = d by convention.
This can be seen by a standard formal splitting argument, that is, working with
q(t) = (1 − λ1t) × · · · × (1 − λdt) in a splitting field over Λ. For all m ∈ N, we
observe Lm(q) = −(λm

1 + · · · + λm
d ). The left-hand side of (4.4) equals the sum of

−λm+d
i q(1/λi) for i = 1, . . . , d, which is 0 because q(1/λi) are all 0.
We also observe that Lm(q) can be expressed as a polynomial function of

c1, . . . , cd with coefficients in Z. To be precise, denote by σi the ith elementary
symmetric polynomial in d indeterminants and by pi the ith power sum polynomial
in (the same) d indeterminants. As a classical fact in polynomial algebra, there
are universal polynomials sm over Z in m indeterminants, such that the Newton–
Girard identity sm(σ1, . . . , σm) = pm holds regardless of d or the indeterminants in
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sm and pm. (See [MS, §16], and Problem 16-A thereof for an explicit formula for
sm.) Then we work out explicitly that

Lm(q) = −pm(λ1, . . . , λd) = −sm(σ1(λ1, . . . , λd), . . . , σm(λ1, . . . , λd))
= −sm(−c1, c2, . . . , (−1)mcm),

setting cj = 0 for all j > d.
Denote by A the Z–subalgebra of Λ generated by the coefficients c1, . . . , cd ∈ Λ.

Then for all m ∈ N, Lm(q) are indeed elements of A and (4.4) holds in A.
As A is an integral domain algebraically finitely generated over Z, there exists a

maximal ideal m of A so that A/m is a field of some positive characteristic p, and
moreover, we may require

dcd �≡ 0 mod m.

In fact, for the special case when A is contained in Z[Zn] ∼= Z[t±1
1 , . . . , t±1

n ], one may
construct the maximal ideal m of A as follows. First take a ring homomorphism
Z[t±1

1 , . . . , t±1
n ] → Z[τ−1

1 , . . . , τ−1
n ], such that each ti is sent to some nonzero τi ∈ Z.

Choose τi suitably so that cd(t1, . . . , tn) has nonzero image cd(τ1, . . . , τn). Next
take a suitable congruence quotient Z[τ−1

1 , . . . , τ−1
n ] → Z/pZ, requiring the prime

p ∈ N not to divide any τi, or d, or the nominator of cd(τ1, . . . , τd). Then by
composition we obtain a quotient A → Z/pZ and the maximal ideal m is given by
the kernel. The general case is not necessary for proving our main theorem but it
is a well-known fact in commutative algebra (see [Rat, Chapter 7, Theorem 7.6.6]).
Note that A/m is finite because it is a finitely generated field over Z/pZ.

By the recurrence relation (4.4), the residual sequence (Lm(q) mod m)m∈N must
be eventually periodic, since every d consecutive terms determine all their succeed-
ing terms and since there are at most |A/m|d possible patterns for them. Every
d consecutive terms also determine all their preceding terms, by (4.4) and by the
required invertibility of cd mod m in A/m, so the residual sequence must be periodic
starting from the term L0(q) mod m. Take mq ∈ N to be any positive period of the
residual sequence. Then for all m ∈ N divisible by mq, we have

Lm(q) ≡ L0(q) = d mod m.

By the required invertibility of d mod m in A/m, we conclude that Lm(q) �= 0 holds
in A, and hence in Λ, for all positive integral multiples m of mq. �

4.2. Dominant semiextreme subsets. Let Mf be the mapping torus of a
pseudo-Anosov automorphism of a connected closed orientable surface S of genus
at least 2. Let M̃ be a connected regular finite cover of Mf with the deck trans-
formation group denoted by Γ. Declare M̃ as a covering mapping torus Mf̃ over
Mf (Convention 2.3). Denote by S̃ the distinguished fiber of Mf̃ . Denote by
φf̃ ∈ H1(Mf̃ ;Z) the distinguished cohomology class of Mf̃ , which has divisibility
b0(S̃).

Choose a homology class t ∈ H1(Mf̃ ;Z)free with φf̃ (t) = b0(S̃), and choose
a basis for the Z–submodule of H1(Mf̃ ;Z)free annihilated by φf̃ . We identify
henceforth the complex group algebra CH1(Mf̃ ;Z)free with a Laurent polynomial
ring Λ[t, t−1] over another multivariable Laurent polynomial ring Λ = C[Zn], where
n = b1(Mf̃ ) − 1.
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Lemma 4.8. Suppose b1(Mf̃ ) > 1. Then the multivariable Lefschetz zeta function
ζ#
f̃

is a polynomial in t over the subalgebra Z[Zn] of Λ with the constant term 1
and of degree −χ(S̃)/b0(S̃). In fact, it is a representative of the multivariable
Alexander polynomial Δ#

Mf̃
.

Proof. Choose a connected component S̃0 of S̃. We observe χ(S̃) = b0(S̃) · χ(S̃0).
For b = b0(S̃), denote by f̃0 : S̃0 → S̃0 the restriction of the iterated automorphism
f̃ b to S̃0. We observe that the mapping torus of f̃0 gives rise to the same mapping
torus as M̃ , only with the suspension flow running b times as fast as before. This
also means φf̃ = b · φf̃0

in H1(M̃ ;Z). Identify these mapping tori topologically. It
follows that ζ#

f̃0
is the same as ζ#

f̃
. In fact, Perm̃(f̃) is nonempty only if m̃ equals

mb for some m ∈ N, and in that case,
∑

p∈Perm̃(f̃) indm̃(f̃ ; p) · [γm̃(f̃ ; p)] equals b

times
∑

p∈Perm(f̃0) indm(f̃0; p) ·[γm(f̃0; p)]. Then the asserted properties follow from
Theorem 2.2 and (2.3), applied to f̃0. To be precise, we see that the φf̃0

–degree of
ζ#
f̃0

equals −χ(S̃0). On the other hand, ζ#
f̃0

is a polynomial in t over Z[Zn] where
the φf̃0

–degree of t equals 1. So ζ#
f̃0

, or equally ζ#
f̃

, is a polynomial in t over Z[Zn]
of degree −χ(S̃0), which equals −χ(S̃)/b0(S̃). �

By comparing the expression (2.6) for f̃ and the formal series expansion (4.3)
for log ζ#

f̃
, we obtain

∑
m∈N

Lm

(
ζ#
f̃

)
m

· tm =
∑
m̃∈N

⎛⎜⎝ ∑
p∈Perm̃(f̃)

indm̃(f̃ ; p)
m̃

· [γm̃(f̃ ; p)]

⎞⎟⎠ .

The homogeneous part of the φf̃–degree m · b0(S̃) yields the following explicit
relations for all m ∈ N:

(4.5) Lm

(
ζ#
f̃

)
tm = 1

b0(S̃)
·

⎛⎜⎝ ∑
p∈Perm̃(f̃)

indm̃(f̃ ; p) · [γm̃(f̃ ; p)]

⎞⎟⎠ ,

where m̃ equals m · b0(S̃). For any semiextreme subset E of the homology direction
hull D(Mf̃ , φf̃ ), we introduce the E–part Lm(ζ#

f̃
;E) for Lm(ζ#

f̃
) as determined by

the relation

(4.6) Lm

(
ζ#
f̃

;E
)
tm = 1

b0(S̃)
·

⎛⎜⎝ ∑
p∈Perm̃(f̃ ;E)

indm̃(f̃ ; p) · [γm̃(f̃ ; p)]

⎞⎟⎠ .

Here m̃ stands for m · b0(S̃), and Perm̃(f̃ ;E) stands for the set of the m̃–periodic
points of f̃ with the property that the [γm̃(f̃ ; p)] lie in the linear cone over E.

Lemma 4.9. Suppose b1(Mf̃ ) > 1. Then for any dominant semiextreme subset E
of D(Mf̃ , φf̃ ), there exists some positive integer mE ∈ N such that the inequality

Lm

(
ζ#
f̃

;E
)
�= 0

holds for all positive integral multiples m of mE.
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Proof. We claim that there exists a dominant semiextreme subset K of D(Mf̃ , φf̃ )
which is contained in E and which is witnessed by some linear function k on
A(Mf̃ , φf̃ ). The latter condition means that K is the set of maximum points of
k restricted to D(Mf̃ , φf̃ ). If one assumed the polytope description of D(Mf̃ , φf̃ )
and the characterization of the semiextreme subset in that case (Remark 4.2), one
would know that E is a union of closed faces, and must contain at least one domi-
nant closed face K, so the claim would be clear. To prove the claim by definition,
take a witnessing convex function for the semiextreme subset E, namely, a con-
vex function h : A(Mf̃ , φf̃ ) → R that is maximized over D(Mf̃ , φf̃ ) exactly on E

(Definition 4.1). As E is dominant, there exists some witnessing direction l0 ∈ E,
namely, a projective point Ru ∈ P(H1(Mf̃ ;R)) given by some u ∈ H1(Mf̃ ;Z)free
with the properties coef(ζ#

f̃
;u) �= 0 and φf̃ (u) > 0 (Definition 4.1). Take a linear

function k : A(Mf̃ , φf̃ ) → R with the properties k(l0) = h(l0) and k(l) ≤ h(l) for
all l ∈ D(Mf̃ , φf̃ ). It is clear that the maximum-point set for k is a subset K of E
which contains l0. So K is as claimed.

Take any K as claimed above. The claimed witnessing linear function k induces
a real-valued new grading for Λ[t], namely, degk(xtm) = k(Rxtm) for all x ∈ Zn and
m ∈ N. The K–part ζ#

f̃
[K] is the leading part for ζ#

f̃
with respect to the k–grading,

and it is a polynomial in Λ[t] other than the constant polynomial 1. It follows that
Lm(ζ#

f̃
[K]) = Lm(ζ#

f̃
;K) holds for all m ∈ N (see (4.3) and (4.6)). By Lemma

4.7, there exists some mE ∈ N, and Lm(ζ#
f̃

[K]) �= 0 holds for all positive integral
multiples m of mE . For all such m, we obtain the inequality Lm(ζ#

f̃
;K) �= 0, and

hence the asserted inequality Lm(ζ#
f̃

;E) �= 0. �

Remark 4.10. Under the assumptions of Lemma 4.9, ζ#
f̃

[E] is also a polynomial in
Λ[t] with constant term 1. We point out the following relation:

Lm

(
ζ#
f̃

[E]
)

= Lm

(
ζ#
f̃

;E
)

+ om(E).

Here om(E) ∈ Λ stands for some Laurent polynomial of the form
∑

x axx, where
ax �= 0 holds only if xtm lies in the linear cone over D(Mf̃ , φf̃ ) \ E. The correc-
tion term om(E) is uniquely determined by the sequence (Lm(ζ#

f̃
;E))m∈N, and it

disappears when E is convex and semiextreme.

Lemma 4.11. Suppose b1(Mf̃ ) > 1. Then for any Γ–invariant dominant semiex-
treme subset E of D(Mf̃ , φf̃ ), there exists some positive integer mE ∈ N such that
the estimate ∥∥∥Lm

(
ζ#
f̃

;E
)∥∥∥

1
≥ 1

b0(S̃)
· |Γ|

holds for all positive integral multiples m of mE. Here ‖·‖1 stands for the standard
�1–norm on Λ, and |Γ| stands for the cardinality of the deck transformation group
Γ.

Proof. As E is semiextreme and dominant, we obtain some mE ∈ N as asserted
by Lemma 4.9. In particular, for every m̃ ∈ N divisible by mE · b0(S̃), there exists
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some periodic homology direction lm̃ ∈ E such that the inequality∑
p∈Perm̃(f̃ ;{lm̃})

indm̃(f̃ ; p) �= 0

holds. Here Perm̃(f̃ ; {lm̃}) stands for the set of m̃–periodic points for f̃ with
[γm̃(f̃ ; p)] ∈ lm̃ (see (4.6), (2.5), and (2.4)). Note that for all p ∈ Perm̃(f̃ ; {lm̃}),
the homology class [γm̃(f̃ ; p)] does not vary. Let S̃0 be a component of S̃. Since
every periodic trajectory intersects the components of S̃ in cyclical order, we have
the relation

1
b0(S̃)

·

⎛⎜⎝ ∑
p∈Perm̃(f̃ ; {lm̃})

indm̃(f̃ ; p)

⎞⎟⎠ =
∑

p∈Perm̃(f̃ ; {lm̃})∩S̃0

indm̃(f̃ ; p).

Denote by Γ0 the subgroup of Γ that preserves S̃0, which is normal of index b0(S̃).
We observe the following estimate:∣∣∣∣∣∣∣

∑
p∈Perm̃(f̃ ; {lm̃})∩S̃0

indm̃(f̃ ; p)

∣∣∣∣∣∣∣ ≥ |StabΓ0({lm̃})|.

This follows from the fact that
∑

p∈Perm̃(f̃ ;{lm̃})∩S̃0
indm̃(f̃ ; p) is a nonzero integer

divisible by |StabΓ0({lm̃})|, because indm̃(f̃ ;−) is constant over any StabΓ({lm̃})–
orbit of m̃–periodic points in Perm̃(f̃ ; {lm̃}). As E is Γ–invariant, for all positive
integral multiples m of mE , the �1–norm of Lm(ζ#

Mf̃
;E) can be estimated by

∥∥∥Lm

(
ζ#
Mf̃

;E
)∥∥∥

1
≥ |OrbΓ({lm̃})| ·

∣∣∣∣∣∣∣
∑

p∈Perm̃(f̃ ;{lm̃})

indm̃(f̃ ; p)
b0(S̃)

∣∣∣∣∣∣∣
≥ |OrbΓ0({lm̃})| · |StabΓ0({lm̃})| = |Γ0| = |Γ|/b0(S̃),

where m̃ stands for m · b0(S̃). Here OrbΓ({lm̃}) stands for the Γ–orbit of lm̃ in E,
which coincides with the Γ0–orbit. This establishes the asserted estimate. �

4.3. Proof of Theorem 4.3. We continue to adopt the assumptions at the begin-
ning of Subsection 4.2. Suppose that there exist sufficiently many mutually disjoint
Γ–invariant dominant semiextreme subsets, say E1, E2, . . . , Es ⊂ D(Mf̃ , φf̃ ) for
some s > −χ(S), according to the assumption of Theorem 4.3. In particular,
observe b1(Mf̃ ) > 1.

For each Ei, let mi ∈ N be the positive integer as asserted by Lemma 4.11.
Then for any m ∈ N divisible by the least common multiple of m1,m2, . . . ,ms, we
estimate∥∥∥Lm

(
ζ#
f̃

)∥∥∥
1
≥

s∑
i=1

∥∥∥Lm

(
ζ#
f̃

;Ei

)∥∥∥
1
≥ s · |Γ|

b0(S̃)
> −χ(S) · |Γ|

b0(S̃)
= − χ(S̃)

b0(S̃)
.

This yields the strict comparison∥∥∥Lm

(
ζ#
f̃

)∥∥∥
1
> degt

(
ζ#
f̃

)
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for infinitely many m ∈ N, by Lemma 4.8. Therefore, we obtain the asserted Mahler
measure estimate for the multivariable Alexander polynomial Δ#

Mf̃
of the covering

mapping torus Mf̃ :

M
(
Δ#

Mf̃

)
= M

(
ζ#
f̃

)
> 1,

by Lemmas 4.6 and 4.8. This completes the proof of Theorem 4.3.

5. Mapping tori from a perspective of Markov partitions

In this section, we study mapping tori for pseudo-Anosov automorphisms of
closed orientable surfaces using an auxiliary Markov partition. In particular, we
recover Fried’s description of the homology direction hull as a polytope (Theorem
5.14 and Remark 5.15). The approach of this section is extended to the cluster ver-
sion and the covering version in subsequent sections. We remind the reader that the
real task of this section is to reorganize relevant materials, and to expose necessary
details, so as to produce a basic piece of text to be updated in subsequent sections.
Related works and original ideas in the literature are collected and discussed in
Section 5.4.

Throughout this section, we assume that S is a connected closed surface and
that f : S → S is a pseudo-Anosov automorphism (see Section 2).

5.1. Markov partitions for pseudo-Anosov automorphisms. We recall some
terminology from [FLP, Exposé 10]. With respect to the pair of invariant foliations
(F s,F u) of the pseudo-Anosov f , a (good) birectangle refers to an embedded
compact rectangular region whose product structure is inherited from the invariant
foliations. In other words, a birectangle is the image R ⊂ S of an inclusion [0, 1] ×
[0, 1] → S such that for any x ∈ [0, 1] the vertical segment {x} × [0, 1] is contained
in a finite union of leaves or singular points of F s, and that for any y ∈ [0, 1] the
horizontal segment [0, 1] × {y} is compatible with F u in the same fashion. In this
paper, we keep the above arrangement convention so that birectangles are vertically
stretching and horizontally shrinking under the pseudo-Anosov automorphism f .
Note that any vertical or horizontal segment must be contained in a unique leaf,
unless it is a side of the birectangle. Moreover, any side of the birectangle contains
at most one singular point of the invariant foliations. This is because for invariant
foliations of pseudo-Anosov automorphisms, there are no leaves connecting pairs of
singular points [FLP, Exposé 9, Lemma 9.17].

A Markov partition of S with respect to f is a finite partition of S into birectan-
gles with respect to f . Moreover, every birectangle of the partition is the vertical
juxtaposition of finitely many horizontal blocks, which are mapped under f onto
vertical blocks in mutually distinct birectangles of the partition. To be more precise,
a Markov partition is a finite collection of birectangles

(5.1) R = {R1, . . . , Rk} ,

with all of the following properties:
• For any p ∈ S, there is some Ri that contains p, which is unique if p lies in

int(Ri).
• For any p ∈ int(Ri) ∩ f−1(int(Rj)), we have

f (F u(p,Ri)) ⊂ F u(f(p), Rj) and f−1 (F s(f(p), Rj)) ⊂ F s(p,Ri).
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VIRTUAL HOMOLOGICAL SPECTRAL RADII 1193

• For any p ∈ int(Ri) ∩ f−1(int(Rj)), we have
f (F s(p,Ri)) ∩Rj = F s(f(p), Rj) and f−1 (F u(f(p), Rj)) ∩Ri = F u(p,Ri).

Here the notation F s(p,Ri) stands for the component containing p of the inter-
section between Ri and the leaf of F s through p, and other similar notation is
understood likewise. (The assumptions agree with [FLP, Exposé 10].) Note that
any int(Ri) ∩ f−1(int(Rj)) is necessarily connected. When it is nonempty, we call
Ri ∩ f−1(Rj) a horizontal block in Ri, and f(Ri) ∩Rj a vertical block in Rj .

It is known that every pseudo-Anosov automorphism admits a Markov partition
[FLP, Exposé 10, Proposition 10.17].

5.2. Objects derived from a Markov partition. Fix a Markov partition R of
any given connected closed orientable surface S with respect to a given pseudo-
Anosov automorphism f . We derive combinatorial objects at three different levels:
the flow-box complex Xf,R is a polyhedral complex obtained by gluing up ab-
stract flow boxes, which remembers all the information of the triple (S, f,R); the
transition graph Tf,R is the directed graph presentation of the induced symbolic
dynamical system, as usual, which forgets about the topology of S; and the space
of projective currents Pf,R is an affine linear polytope whose rational points are all
the projectivized abelianized directed multicycles of the transition graph. Below we
construct these objects concretely, and obtain descriptions about their key features.

5.2.1. The flow-box complex.

Definition 5.1. Suppose that R is a Markov partition of a closed orientable surface
S with respect to a pseudo-Anosov automorphism f . The flow-box complex Xf,R
associated to (f,R) is defined to be the compact polyhedral complex constructed
by the following procedure:

• Take an abstract disjoint union of the birectangles R1 � · · · �Rk of R, and
for every ordered pair (Ri, Rj), if int(Ri)∩ f−1(int(Rj)) is nonempty in S,
take a product Rij × [0, 1] with Rij = Ri ∩ f−1(Rj). Identify Rij × {0}
with the subset Rij of Ri and Rij × {1} with the subset f(Rij) of Rj , in
the obvious canonical fashion. The resulting compact polyhedral complex
is recorded as the declared Xf,R.

The distinguished subsets of the flow-box complex Xf,R parametrized by Ri

and Rij × [0, 1] are called the abstract birectangles and the abstract flow boxes,
respectively. By an abstract flow segment we mean a forward directed segment in
Xf,R of the form {p}× [0, 1] as contained in some abstract flow box Rij × [0, 1]. An
abstract trajectory therefore refers to an immersed oriented 1–submanifold of Xf,R
obtained by concatenating a sequence of directly consecutive abstract flow segments
(possibly infinitely many and with repetition). An abstract periodic trajectory is
moreover an immersed oriented loop (unparametrized and with no basepoint).

Note that there are five mutually exclusive intrinsic types of points in any ab-
stract birectangle: interior (I), side horizontal (SH), side vertical (SV), corner own-
left (KL), and corner own-right (KR).2 Using a parametrization [0, 1]× [0, 1] of the
abstract birectangle, these types are given by the subsets (0, 1)×(0, 1), (0, 1)×{0, 1},
{0, 1} × (0, 1), {(0, 0), (1, 1)}, and {(0, 1), (1, 0)}, respectively. The type of an ab-
stract flow segment is given by its endpoint types, the possibilities being SV to any,

2Imagine two Go players sitting at the bottom and the top facing each other.
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I to I, KL to KL, KR to KR, or any to SH, and hence twelve in all. It follows that
any abstract periodic trajectory must visit the abstract birectangles of the flow-box
complex in only one type of point. Therefore, we have five types of abstract periodic
trajectories in total, which are again I, SH, SV, KL, and KR. We call the interior
type ordinary, and the remaining four types exceptional.

There is a canonical quotient map
(5.2) qf,R : Xf,R → Mf ,

which we call the zipping map. The zipping map includes every abstract birectangle
Ri of Xf,R into the distinguished fiber S of Mf , and projects every abstract flow
box Rij × [0, 1] onto the flow box θ[0,1](Rij). Here θt : Mf → Mf stands for the
distinguished suspension flow parametrized by t ∈ R.

Lemma 5.2. The flow-box complex Xf,R is connected. All primitive abstract
periodic trajectories of Xf,R are embedded and mutually disjoint, and only finitely
many of them are exceptional.

Proof. The connectedness of Xf,R is a consequence of the ergodicity of pseudo-
Anosov automorphisms. In fact, for any pair of birectangles Ri, Rj ∈ R, there
exists some n ∈ Z, such that fn(int(Ri))∩ int(Rj) is nonempty. This is because the
open subset

⋃
m∈Z

fm(int(Ri)) ⊂ S is invariant under f and hence must be dense
in S; see [FLP, Exposé 9, Proposition 9.18]. In particular, any pair of abstract
birectangles can be connected through an abstract trajectory path (that is, a path
in Xf,R obtained by concatenating abstract flow segments directed-consecutively).
So Xf,R is connected.

For any point of an abstract birectangle, if the point occurs as the initial point
for two distinct abstract flow segments, the only possible types of the abstract flow
segments are SV to SH/KL/KR, or I to SH. Such points never occur on abstract pe-
riodic trajectories, as the above abstract flow segments all connect distinct types of
points. Similarly, no point on an abstract periodic trajectory occurs as the terminal
point of two distinct abstract flow segments. Intuitively this means that primitive
abstract periodic trajectories have no chance to bifurcate in either the forward or
the backward direction. Therefore, primitive abstract periodic trajectories must be
embedded and disjoint from any other abstract periodic trajectories. Moreover, the
stretching property of f and f−1 forbids any side of an abstract birectangle from
containing more than one point of a primitive abstract periodic trajectory. So there
are at most finitely many exceptional primitive abstract periodic trajectories. �

Lemma 5.3. The zipping map (5.2) is π1–surjective. Every abstract periodic
trajectory of Xf,R is immersed under the zipping map as a periodic trajectory of
the mapping torus Mf . For any primitive periodic trajectory γ of Mf , the preim-
age of γ is a union of mutually disjoint primitive abstract periodic trajectories,
each covering γ of degree po(γ). All the (not necessarily occurring) possible type
combinations of components and covering degrees are classified by Table 1 (see
(2.7)).

For our application, it is more important to remember the qualitative conclusion
that there are only finitely many exceptional primitive abstract periodic trajectories
in the flow-box complex (Lemma 5.2). The details of the classification table are only
necessary for some explicit calculation of the multivariable Lefschetz zeta function
(see Example 7.5).
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Table 1. The numbers m,n, l, d are all positive integers. The
notation pn(γ) stands for the number of prongs on S at any point
in γ∩S; the notation po(γ) stands for the number of prongs in any
prong orbit at that point (see (2.7)). For example, the KL+KR
row of the table means that the preimage of γ in Xf,R consists
of 2l primitive abstract periodic trajectories, half of type KL and
half KR. The total covering degree is 2ld, and each component
covers of degree po(γ) = d. When γ is a regular primitive periodic
trajactory, which means pn(γ) = 2, the possible type combinations
can be listed as follows: I, SH×1, SH×2, SV×1, SV×2, KL×1 +
KR×1, KL×2+KR×2, KL×1+KR×1+SH×1, KL×1+KR×1+SV×1.

type combination of components total degree pn(γ) po(γ)
I×1 1 2 1
SH×m md md d
SV×n nd nd d

KL×l + KR×l 2ld ld d

KL×l + KR×l + SH×m (2l + m)d (l + m)d d

KL×l + KR×l + SV×n (2l + n)d (l + n)d d

KL×l + KR×l + SH×m + SV×n (2l + m + n)d (l + m + n)d d

Proof. To see the π1–surjectivity of the zipping map (5.2), we claim that any loop
α : S1 → Mf can be modified by homotopy to avoid the exceptional locus (that is,
the image of all ∂Ri and ∂Rij × (0, 1) under the zipping map). The π1–surjectivity
follows immediately from the claim because the complement of the exceptional
locus lifts homeomorphically into Xf,R. To prove the claim, clearly we can first
homotope α in Mf so that it is composed of leaf segments of the invariant foliations
in the distinguished fiber S ⊂ Mf and trajectory segments of the suspension flow (in
either direction). We may also require the trajectory segments to avoid the image of
any ∂Rij × (0, 1), and the leaf segments to avoid or transversely intersect the image
of any ∂Ri. Therefore, it suffices to argue that for any open interval b ⊂ ∂Ri∩∂Rj ,
and any short leaf-segment subpath a of α contained in int(Ri) ∪ int(Rj) ∪ b and
transverse to b at a single point of intersection p, it is possible to push a off the
exceptional locus, by homotopy in Mf relative to its endpoints. To this end, we
observe that for some n ∈ Z and some Rh ∈ R, the intersection fn(b) ∩ int(Rh)
is nonempty. This is because for any sufficiently large m ∈ N, one of the leaf
segments fm(b) and f−m(b) must be stretched so much that its length exceeds
the total length of all ∂Ri, measured in the (defining) transverse measures of the
invariant foliations. Take some compact subsegment [p, p′] ⊂ b, which has p as
one endpoint, and some p′ in b ∩ f−n(int(Rh)) as the other endpoint. Denote by
[p′, q′] the trajectory segment in Mf that connects p′ and q′ = fn(p′). Intuitively,
we modify a by a finger move, pushing it first along [p, p′], and then along [p′, q′].
To be precise, first, we replace some small subsegment a′ ⊂ a that contains p with
the other three sides of the thin birectangle a′ × [p, p′] on S (namely, the union of
(∂a′) × [p, p′] and a′ × {p′}). Then, we replace some even smaller subsegment a′′

of a′ × {p′} with the other three sides of the trajectory band a′′ × [p′, q′] in Mf

(namely, the union of (∂a′′) × [p′, q′] and a′′ × {q′}). The above construction gives
rise to a new path a∗, which is homotopic to the original a relative to the endpoints.
Moreover, a∗ avoids the exceptional locus. By performing the above modification
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for every bad point p of α as above, we obtain a new loop homotopic to α avoiding
the exceptional locus. This proves the claim and therefore the π1–surjectivity of
the zipping map.

It is clear that under the zipping map, every abstract periodic trajectory of Xf,R
becomes a periodic trajectory of Mf . For any primitive periodic trajectory γ of Mf ,
the preimage of γ is a finite cell 1–complex form by abstract flow segments. It is
a union of primitive abstract periodic trajectories, so every connected component
must be a primitive abstract periodic trajectory by Lemma 5.2.

We figure out Table 1 as follows. If γ avoids the exceptional locus, there is a
unique ordinary abstract periodic trajectory which projects γ homeomorphically,
so we obtain the first row of the classification table. Otherwise, the primitive ab-
stract periodic trajectories are all exceptional by Lemma 5.2. At any periodic point
p ∈ γ∩S, we read counterclockwise the birectangles around p, so we obtain a cyclic
word of types τ = [τ0, τ1, . . . , τs−1]. Each τi ∈ {SH, SV,KL,KR} indicates the
type of p in the ith birectangle in the cyclical ordering. By definition, the smallest
power of f that fixes p permutes cyclically the prongs of F s at p, and also the
prongs of F u at p, both of order po(γ) = d. This means that τ is d–periodic, and
the first s/d terms of τ correspond bijectively to the preimage components of γ
in Xf,R. Moreover, the allowable patterns for any neighboring pair (τi, τi+1) in τ
can be listed as follows (setting τs = τ0): (SH, SH), (SH,KL), (SV, SV), (SV,KR),
(KL,KR), (KL, SV), and (KR,KL), (KR, SH). This follows directly from the def-
inition of Markov partition. If we construct a directed graph Γ whose vertices are
{SH, SV,KL,KR} and whose directed edges are the allowable neighboring patterns,
then τ can be treated as a directly immersed loop in Γ. By simple observation,
τ has to pass through the vertices KL and KR the same number of times, unless
the terms of τ are constantly SH or SV. Therefore, if we count the terms in τ
according to their types, there should be md SH, nd SV, ld KL, and ld KR, where
m,n, l are nonnegative integers. Except the triples (m > 0, n > 0, l = 0) and
(m = 0, n = 0, l = 0), any triple (m ≥ 0, n ≥ 0, l ≥ 0) can be realized by a directly
immersed loop in Γ. Therefore, they can also be realized by a local configuration
of some Markov partition near a point. (In this sense, we say such triples are
possible.) The number of prezipping components of γ is s/d = 2l + m + n. Each
component covers γ of degree d, as explained above. This gives the total covering
degree s = (2l + m + n)d. The prongs of F s and F u together cut out 2pn(γ)
sectors near p. This number equals (2m+2n+2l)d by the definition of the Markov
partition and the types. So we obtain pn(γ) = (l + m + n)d. Therefore, Table 1
follows. �

5.2.2. The transition graph.

Definition 5.4. Let Xf,R be the flow-box complex associated to a pseudo-Anosov
automorphism f of a closed orientable surface and a Markov partition R. The
transition graph Tf,R associated to (f,R) is defined to be the finite cell 1–complex
constructed from Xf,R by projecting every abstract birectangle Ri to a distinct 0–
cell vi and every abstract flow box Rij × [0, 1] to a distinct 1–cell eij parametrized
by [0, 1], via the projection to the second factor.

The 0–cells of the transition graph Tf,R are called the vertices. The canonically
oriented 1–cells are called the directed edges. By a dynamical cycle of Tf,R, we mean
an immersed oriented loop, unparametrized and without a basepoint, obtained by
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concatenating finitely many cyclically directly consecutive directed edges. It is a
simple dynamical cycle, if the loop is embedded without self-intersection.

By a subgraph of Tf,R, we mean a cell subcomplex with inherited edge direc-
tions. A subgraph is said to be irreducible, if every pair of vertices occurs in some
dynamical cycle. It is said to be nonwandering, if every vertex occurs in some dy-
namical cycle, and if every topologically connected component is irreducible. Note
that every directed graph contains a collection of maximal irreducible subgraphs
(also known as the strongly connected components in directed graph theory), which
are mutually disjoint. Any directed edge that transits between different maximal
irreducible subgraphs never occurs in any dynamical cycle. Therefore, a subgraph
of Tf,R is nonwandering if and only if every vertex or directed edge occurs in some
dynamical cycle.

Remark 5.5. In terms of symbolic dynamics, the transition graph is the directed
graph model of the one-sided subshift of finite type that is determined by the
Markov partition. Every subgraph W of Tf,R can be represented as a square matrix,
whose columns and rows are labeled by the vertices of W , and whose entries are
1 or 0 indicating the presence or absence of a directed edge between the vertices.
This matrix is called the transition matrix associated to W , which we denote as
AW . The one-sided subshift determined by W is the subset XW of Vertex(W )N
together with a canonical shift map σ : XW → XW . The points x = (xi)i∈N in XW

are determined by the relation (AW )xixi+1 = 1 for all i ∈ N. The map σ is defined
as σ(x)i = xi+1 for all i ∈ N. According to [Kit98, Section 1.4], (XW , σ) is said
to be irreducible if AW is irreducible, or nonwandering if there are no wandering
points. Our terminology comes from characterizations of those properties in terms
of the subgraphs. For details, see [Kit98, Sections 1.1 and 5.1], and in particular,
Corollary 5.13 thereof. We adopt the directed graph model rather than the matrix
model in this paper, because it is more convenient in the covering setting.

There is by definition a canonical quotient map

(5.3) Xf,R → Tf,R

which we call the collapse map. For any subgraph W of Tf,R, we denote by
Xf,R(W ) the preimage of W in Xf,R. As it is the union of the abstract birectangles
and the abstract flow boxes which collapse to the vertices and the directed edges
W , we call Xf,R(W ) the flow-box subcomplex over W .

Lemma 5.6. The transition graph Tf,R is irreducible.

Proof. This is immediately implied by the ergodicity of pseudo-Anosov automor-
phisms [FLP, Exposé 9, Proposition 9.18]. (See also the argument of Lemma
5.2.) �

Lemma 5.7. For any subgraph W of the transition graph Tf,R, restriction of
the collapse map (5.3) yields a homotopy equivalence between the flow-box sub-
complex Xf,R(W ) and W . Composition with the collapse map yields a bijective
correspondence between the abstract periodic trajectories of Xf,R(W ) and the dy-
namical cycles of W .

Proof. Note that Xf,R is topologically a polyhedral complex, obtained by gluing
contractible pieces (abstract birectangles and flow boxes) nicely along contractible
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subpieces (horizontal or vertical blocks). It is glued up according to the cell 1–
complex structure of Tf,R. (Definitions 5.1 and 5.4.) Therefore, the homotopy
equivalence property of the collapse map (5.3) is readily observed from the defining
construction.

It is also clear that every abstract periodic trajectory of Xf,R gives rise to a
dynamical cycle of the transition graph Tf,R via the collapse map. Conversely,
given a dynamical cycle of the transition graph Tf,R, by choosing an auxiliary base
vertex Ri0 of that dynamical cycle, we obtain a sequence of partial maps Ri0 ���
Ri1 ��� · · · ��� Rim−1 ��� Ri0 , where Rij ��� Rij+1 stands for the restricted map
f | : Rijij+1 → f(Rijij+1) for j = 0, . . . ,m − 1 and im = i0. The Markov partition
property implies that the set of points E ⊂ Ri0 with a prescribed m–itinerary
Ri1 , . . . , Rim−1 , Ri0 forms a horizontal block of the birectangle Ri0 . Namely, E

consists of those p ∈ Ri0 with f j(p) ∈ Rij for j = 1, 2, . . . ,m, and E is a birectangle
formed by horizontal fibers of Ri0 . Note that fm(E) is a vertical block of Ri0 .
The pseudo-Anosov local picture therefore forces the existence of a unique point
p ∈ E with fm(p) = p. We obtain an abstract periodic trajectory of Xf,R by
cyclically concatenating the abstract flow segments f j(p)×[0, 1] of the abstract flow
boxes Rijij+1 × [0, 1]. The uniqueness argument above implies that the constructed
abstract periodic trajectory does not depend on the auxiliary choice of the base
vertex Ri0 . So any dynamical cycle of the transition graph Tf,R determines a unique
abstract periodic trajectory of the flow-box complex Xf,R. It is straightforward to
see that the above constructions establish the claimed bijective correspondence. �

Notation 5.8. For any dynamical cycle z of the transition graph Tf,R, we denote by
γ̂z : S1 → Xf,R the abstract periodic trajectory of the abstract flow-box complex
which collapses to z, and by γz : S1 → Mf the zipped periodic trajectory qf,R ◦ γ̂z.
We treat γ̂z and γz as immersed oriented loops without any preferred parametriza-
tion or any basepoint. In this way they are uniquely determined by z. (See Lemmas
5.3 and 5.7.)

5.2.3. The space of projective currents.

Definition 5.9. Let Tf,R be the transition graph associated to a pseudo-Anosov
automorphism f of a closed orientable surface and a Markov partition R. A projec-
tive current on Tf,R is defined to be a probability measure on the finite discrete set
of the directed edges of Tf,R, and moreover, it is required to be balanced at every
vertex of Tf,R, in the sense that the total measure of the incoming edges should be
equal to the total measure of the outgoing edges. Any projective current is denoted
as a formal convex combination μ =

∑
e μe e. The summation here is taken over

all the directed edges of Tf,R, and the coefficients μe ∈ R satisfy
∑

e μe = 1 and
μe ≥ 0, and also the required balance condition. The space of projective currents
Pf,R is defined to be the set of all the projective currents on Tf,R. We treat Pf,R
as an affine linear convex subset of the abstract simplex Δ(Tf,R) spanned by the
set of directed edges of Tf,R.

The support subgraph of a projective current μ ∈ Pf,R refers to the unique
nonwandering subgraph of Tf,R whose set of directed edges is the support of the
probability measure μ. A projective current is said to be irreducible if its sup-
port subgraph is irreducible, and elementary if the support subgraph is a simple
dynamical cycle of Tf,R.
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There is a canonical affine linear map
(5.4) hdf,R : Pf,R → A(Mf , φf ),
which we call the homology direction map (see Definition 4.1). For any projective
current μ ∈ Pf,R, identify μ naturally as a real cellular 1–cycle of Tf,R in the usual
chain complex context. Then hdf,R(μ) in A(Mf , φf ) is defined to be the image of
the projective point R · [μ] ∈ P(H1(Tf,R;R)) under the projective linear composite
map P(H1(Tf,R;R)) → P(H1(Xf,R;R)) → P(H1(Mf ;R)) induced by a homotopy
inverse of the collapse map (5.3) and the zipping map (5.2).

Lemma 5.10. The space of projective currents Pf,R is a polytope. For every
nonwandering subgraph W of Tf,R, there exists a unique open face FW of Pf,R
with the following characterization. A projective current lies in FW if and only if
its support subgraph is W . This correspondence sets up an isomorphism between
the lattice of nonwandering subgraphs of Tf,R and the face lattice of Pf,R.

Recall that a polytope refers to a compact convex polyhedron in the sense of real
affine geometry (see Remark 4.2 for our terminology). For any polytope, an open
face of dimension 0 is a vertex, and an open face of codimension 0 is the point-set
interior.

Proof. Denote by C1(Tf,R;R) the R–module of cellular 1–chains, with a standard
unordered basis given by the directed edges. We identify Δ(Tf,R) as the standard
simplex in C1(Tf,R;R), which consists of the convex combinations of the basis
vectors (namely,

∑
e μee with

∑
e μe = 1 and μe ≥ 0). The balance conditions

at the vertices give rise to a linear system of equations on C1(Tf,R;R), whose
solution space is exactly the R–submodule of cellular 1–cycles, Z1(Tf,R;R). The
space of projective currents Pf,R is the intersection of Δ(Tf,R) with Z1(Tf,R;R)
(Definition 5.9). Therefore, Pf,R is a polytope. It remains to establish the asserted
correspondence.

For any μ ∈ Pf,R, denote by Tf,R(μ) the support subgraph of μ. Observe that
the assignment μ �→ Tf,R(μ) is constant on any open face of Pf,R. (This follows
from the fact that faces of Pf,R all arise from the intersection of Z1(Tf,R;R) with
faces of Δ(Tf,R).) Therefore, we obtain a face-to-subgraph assignment
(5.5) F �→ Tf,R(F ).
For any open face F of Pf,R, Tf,R(F ) is the subgraph Tf,R(μ) for any μ ∈ F .
Below we show that the assignment (5.5) realizes the asserted correspondence.

The assignment (5.5) sends any open face of Pf,R to a nonwandering subgraph of
Tf,R. To see this, we observe that the vertices of Pf,R all have nonnegative rational
coefficients at the directed edges of Tf,R. For any open face F , we take a rational
convex combination of the vertices of F to obtain a projective current μ ∈ F with
rational coefficients. By taking some multiple of μ, we obtain a cellular 1–cycle
ν of Tf,R(F ). The coefficients of ν are strictly positive for the directed edges of
Tf,R(F ). Treat ν as a collection of directed edges, with multiplicity indicated by the
coefficients. Then the balance condition allows us to pair them up at the vertices
of Tf,R(F ). This construction results in a collection of dynamical cycles Tf,R(F ).
Every directed edge or vertex of Tf,R(F ) lies in at least one of these dynamical
cycles. Therefore, Tf,R(F ) must be nonwandering.

The assignment (5.5) sends different open faces of Pf,R to different subgraphs of
Tf,R. In fact, if F and F ′ are different open faces, then there must be some directed
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edge e of Tf,R(F ), such that any μ ∈ F and μ′ ∈ F ′ have different triviality at e. In
other words, μe and μ′

e are neither simultaneously zero nor simultaneously strictly
positive. In particular, μ and μ′ have different support subgraphs.

The assignment (5.5) gives rise to every nonwandering subgraph of Tf,R. To
see this, suppose W is any nonwandering subgraph of Tf,R. We take the sum of
all the simple dynamical cycles of W (regarded naturally as a cellular 1–cycle),
and then normalize to make the coefficient sum 1. This construction yields to a
unique projective current μW ∈ Pf,R. As W is nonwandering, any directed edge or
vertex of W lies in some dynamical cycle of W , which must be simple if the length
is minimized among all such dynamical cycles. We see that Tf,R(μW ) equals the
given nonwandering subgraph W . So W is assigned to the open face that contains
μW .

From the above discussions, we see that the assignment (5.5) is a bijective cor-
respondence between the open faces of Pf,R and the nonwandering subgraphs of
Tf,R. It preserves the (order-theoretic) lattice structure of both sides obviously.
The inverse of the assignment (5.5) determines a unique open face FW of Pf,R
for any nonwandering subgraph W of Tf,R, as asserted. The characterization also
follows from our construction of (5.5). �

Corollary 5.11. For any nonwandering subgraph W of Tf,R, the corresponding
open face FW of Pf,R has dimension b1(W ) − 1.

Proof. Given any nonwandering subgraph W of Tf,R, let W1 � W2 � · · · � Wl =
W be any ascending chain of nonwandering subgraphs of W . Denote by Wi/Wi−1
the quotient direct graph obtained from Wi by collapsing every component of Wi−1
to a distinct point. We claim that if the length l is maximized, then Wi/Wi−1
is a simple dynamical cycle for i = 1, . . . , l, setting W0 to be a vertex in W1.
Observe that Wi/Wi−1 is nonwandering, as Wi is nonwandering. Observe also that
the preimage in Wi of any nonwandering subgraph of Wi/Wi−1 is nonwandering,
as Wi−1 is either nonwandering or a single vertex. If Wi/Wi was not a simple
dynamical cycle, the preimage of a simple dynamical cycle of Wi/Wi−1 would be a
nonwandering subgraph W ′ such that Wi−1 � W ′ � Wi, contrary to the maximality
of l. Therefore, we obtain b1(Wi/Wi−1) = 1 and l = b1(W ) − 1. It follows from
Lemma 5.10 that the open face FW has dimension b1(W ) − 1. �

Remark 5.12.
(1) It follows from Corollary 5.11 that the naturally induced projective linear

map FW → P(H1(W ;R)) is an embedding of codimension 0. Here we
point out another easy fact, although it is not quite needed for our whole
argument: the simple dynamical cycles of any nonwandering subgraph W
generate H1(W ;Z). This fact also implies the above codimension–0 em-
bedding property immediately.

(2) One may introduce the abstract homology direction hull D(Xf,R, φf,R)
mimicking the definition of D(Mf , φf ). It lives in the affine subset
A(Xf,R, φf,R) of the projective space P(H1(Xf,R;R)), complementary to
the projective hyperplane P(Ker(φf,R)), where φf,R stands for q∗f,R(φf ) ∈
H1(Xf,R;Z). The homology direction map (5.4) is the zipping of the ab-
stract homology direction map, in the apparent sense as indicated by the
composition Pf,R → A(Xf,R, φf,R) → A(Mf , φ). We point out that under
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the abstract homology direction map, Pf,R projects isomorphically onto
D(Xf,R, φf,R), and that the latter has codimension 0 in A(Xf,R, φf,R).

Lemma 5.13. Under the homology direction map (5.4) the space of projective
currents Pf,R projects onto the homology direction hull D(Mf , φf ). (See Defini-
tion 4.1.)

Proof. For any dynamical cycle C of Tf,R, the corresponding cellular 1–cycle can be
regarded as a counting measure on the set of the directed edges, so its normalization
is a projective current μC . We observe that every periodic homology direction
in D(Mf , φf ) can be realized as hdf,R(μC) for some dynamical cycle C of Tf,R.
This follows from Definition 4.1 and Lemmas 5.3 and 5.7. Then the convexity of
Pf,R implies that hdf,R(Pf,R) contains D(Mf , φf ). Note that the vertices of Pf,R
are precisely the elementary projective currents (Lemma 5.10), which all occur in
D(Mf , φf ) under hdf,R. Then the convexity of D(Mf , φf ) implies that D(Mf , φf )
contains hdf,R(Pf,R). Therefore, hdf,R(Pf,R) equals D(Mf , φf ), as asserted. �

5.3. Combinatorial description of the homology direction hull. As an ap-
plication of our discussion so far, we obtain a basic description of the homology
direction hull.

Theorem 5.14. Let f be a pseudo-Anosov automorphism of a connected ori-
entable closed surface S. Then the homology direction hull D(Mf , φf ) is a poly-
tope of codimension 0 in A(Mf , φf ). It coincides with the point-set closure of all
the periodic homology directions in A(Mf , φf ). (See Definition 4.1 and Remark
4.2.)

Proof. By Lemma 5.10 and Corollary 5.11, the naturally induced projective linear
map Pf,R → P(H1(Tf,R;R)) is a codimension–0 embedding of a polytope. The in-
duced projective linear map P(H1(Tf,R;R)) → P(H1(Xf,R;R)) → P(H1(Mf ;R))
as appeared in the definition of the homology direction map (5.4) is surjective be-
cause of Lemmas 5.3 and 5.7. By Definition 4.1 and Lemma 5.13, D(Mf , φf ) is the
image of Pf,R of the composition of the above maps, and is contained in A(Mf , φf ).
Therefore, D(Mf , φf ) is a polytope of codimension 0 in A(Mf , φf ).

As Tf,R is irreducible (Lemma 5.6), the dynamical cycles of Tf,R give rise to
all the rational points in the interior of Pf,R, by taking the normalization of their
edge-count measures. Therefore, the periodic homology directions include all the
rational points in the interior of D(Mf , φf ). So their point-set closure in A(Mf , φf )
is the same as D(Mf , φf ), by the convexity, the codimension 0, and the compactness
of D(Mf , φf ). �

Remark 5.15. Using Theorem 5.14 one can identify the homology direction hull
D(Mf , φf ) with the set of homological directions as introduced by Fried [Frd82a,
Section 2]. In fact, for the suspension flow of a pseudo-Anosov automorphism,
any homology direction occurs as an accumulation point of the periodic homology
directions. It follows that D(Mf , φf ) is the same as the set of homology directions
in Fried’s sense. (See also Section 3.)

5.4. Notes.
(1) Theorem 5.14 is well known. For example, it follows from Fried’s char-

acterization of homology directions using flow cross-sections [Frd82a], and
Thurston’s combinatorial description of the fibered cones for 3–manifolds
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[Thu86]. See [FLP, Exposé 14] for an exposition in that approach. Apart
from technical details, the method we use in this section also appears
in Fried [Frd82b]. In particular, Theorem 5.14 is essentially covered by
[Frd82b, Theorem H] and its proof.

(2) Section 5.2.2 is basically symbolic coding in terms of the directed graph
model. Points of the subshift associated to the Markov partition encode
dynamical paths in the transition graph as their itineraries. The idea of
using subshifts of finite types to study suspension flow dynamics (such as
periodic trajectories, zeta functions, entropy, etc.) has been well developed;
see [Bow73,Frd82b] and [FLP, Exposé 10], for example. Our Lemmas 5.3
and 5.7 follow the idea and clarify some details of the coding in the case
of pseudo-Anosov suspension flows. The reader is referred to Kitchens’
textbook [Kit98] for a systematic introduction to symbolic dynamics.

(3) Flow boxes are familar objects in the study of Axiom A flows; see [Frd82b,
Frd86], for example. The flow-box complex that appears in Section 5.2.1
seems to be a new construction for organizing the Markov partition data.

6. Clusters via the approach of Markov partitions

In this section, we introduce clusters for a given pseudo-Anosov automorphism
of a closed orientable surface with respect to a chosen Markov partition (Definition
6.1). For any individual cluster, we obtain derived objects and the cluster homology
direction hull, which are analogous to the mapping torus case. However, there are
two major reasons which make clusters more useful. First, the clusters form a finite
partial-order system with respect to the cluster subordination maps (Definition 6.1).
Secondly, dimension of cluster homology direction hulls reflects the elementary-
versus-nonelementary dichotomy in 3–manifold topology (see Theorem 6.5).

It is possible to work with the covering setting directly. However, for this section,
we keep the same setting as in Section 5 to avoid distraction.

6.1. Clusters and their homology direction hulls.

Definition 6.1. Let f be a pseudo-Anosov automorphism of a connected closed
orientable surface S, and let R be a Markov partition of S with respect to f .

(1) For any irreducible subgraph V of the transition graph Tf,R, the cluster
subordinate to the mapping torus Mf and associated to V is defined to
be a connected Eilenberg–MacLane space QV together with a π1–surjective
map qV and a π1–injective map iV which make the following diagram com-
mutative up to homotopy:

Xf,R(V ) incl. ��

qV

��

Xf,R

qf,R

��
QV

iV �� Mf

Note that the triple (QV , qV , iV ) is unique up to homotopy equivalence
and homotopy. The irreducible subgraph V is called the cluster transition
graph, qV the cluster zipping map, and iV the subordination map to the
mapping torus. For brevity we often denote a cluster only by QV , assuming
other data implicitly prescribed. (See Definitions 5.1 and 5.4.)
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(2) For any pair of irreducible subgraphs U, V of the transition graph Tf,R, the
cluster QU is said to be subordinate to the cluster QV if U is contained in V .
In this case, the cluster subordination map is defined to be a π1–injective
map

jU,V : QU → QV

with the property iU � iV ◦jU,V . Note that jU,V is unique up to homotopy.

The distinguished cohomology class for QV is denoted as
(6.1) φV ∈ H1(QV ;Z),
and it is defined by φV = i∗V φf using the distinguished cohomology class φf of the
mapping torus Mf .

Lemma 6.2. For any irreducible subgraph V of the transition graph Tf,R, the
cluster QV associated to V exists, and in fact, a model of QV can be taken as an
orientable connected compact 3–manifold which is aspherical and atoroidal. The
distinguished cohomology class φV is nontrivial.

For an orientable connected compact 3–manifold, being aspherical is equivalent
to the property that every embedded sphere bounds an embedded 3–ball, and mean-
while, that the universal cover is not a 3–sphere. Being atoroidal requires moreover
that any embedded incompressible torus should be parallel to a boundary compo-
nent. We refer the reader to Hempel [Hem] for terminology and standard facts in
3–manifold topology.

Proof. Choose an auxiliary basepoint x ∈ Xf,R(V ) and denote by p ∈ Mf its
image under zipping. Denote by GV the image of the induced homomorphism
π1(Xf,R(V ), x) → π1(Mf , p) for the restricted zipping map. Denote by (M̃V , p̃)
the covering space of Mf together with a lifted point p̃ of p so that π1(M̃V , p̃) is
isomorphic to the subgroup GV of π1(Mf , p) via the induced homomorphism of the
fundamental group.

Note that Xf,R(V ) � V has a finitely generated free fundamental group, so
GV is finitely generated. In general, for any connected 3–manifold with a finitely
generated fundamental group, there exists an embedded compact submanifold with
the property that the inclusion map is a homotopy equivalence. This is a theorem
due to P. Scott [Sco73], and a compact submanifold with such property is usually
called a Scott core for the considered 3–manifold. We take any Scott core QV for
M̃V as a model of the cluster associated to V . Since Mf is the mapping torus of
a pseudo-Anosov automorphism, it is well known that any covering space of Mf is
orientable, aspherical, and atoroidal (see [AFW, Chapter 1]). These properties are
all preserved under homotopy equivalence between 3–manifolds, so the connected
compact model QV possesses the same properties as asserted.

The distinguished cohomology class φV is nontrivial because V contains at least
one dynamical cycle z. Indeed, the corresponding abstract periodic trajectory γ̂z
of Xf,R(V ) gives rise to a nontrivial value φV (qV ∗[γ̂z]) > 0 (see Notation 5.8). �

Definition 6.3. Let f be a pseudo-Anosov automorphism of a connected closed
orientable surface S, and let R be a Markov partition of S with respect to f .

(1) For any cluster QV associated to an irreducible subgraph V of a transition
graph Tf,R, denote by A(QV , φV ) the complement of the (projective) hyper-
plane P(Ker(φV )) in the projectivization P(H1(QV ;R)), where φV stands
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for the distinguished cohomology class (6.1). We furnish A(QV , φV ) with
the naturally induced affine linear space structure (see Remark 4.2). The
cluster homology direction hull

D(QV , φV ) ⊂ A(QV , φV )

is defined to be the affine linear convex hull of all the projective points
R · qV ∗[Ĉ] ∈ A(QV , φV ), where Ĉ ranges over all the abstract periodic
trajectories of Xf,R(V ).

(2) For any cluster QU subordinate to QV , we define the subordination map
between the cluster homology direction hulls

D(jU,V ) : D(QU , φU ) → D(QV , φV )

to be the affine linear map which is naturally induced by the cluster sub-
ordination map jU,V : QU → QV .

6.2. Derived objects for clusters. For any cluster QV , we call the subcomplex
Xf,R(V ) over V the cluster flow-box complex for QV . The space of cluster pro-
jective currents for QV refers to the affine linearly convex set of all the projective
currents on V , which can be treated as a closed face of the polytope Pf,R via the
obvious inclusion (Lemma 5.10), so we denote it as Pf,R(V ) ⊂ Pf,R. Note that
the codimension–0 open face of Pf,R(V ) is precisely the open face FV as appears
in Lemma 5.10.

For any cluster QU subordinate to QV , there are naturally determined inclusions
between the cluster transition graphs U ⊂ V , between the cluster flow-box com-
plexes Xf,R(U) ⊂ Xf,R(V ), and between the spaces of cluster projective currents
Pf,R(U) ⊂ Pf,R(V ). The second inclusion completes a commutative diagram of
maps up to homotopy together with the maps qU , qV , and jU,V . The last inclusion
agrees with the inclusion between closed faces of Pf,R (Lemma 5.10).

The cluster homology direction map is the affine linear map

(6.2) hdV : Pf,R(V ) → A(QV , φV )

defined in the similar way as the homology direction map (5.4). To be precise, any
μ ∈ Pf,R(V ) is a projective current fully supported on V , and hdV (μ) is the image
of the projective point R · [μ] ∈ P(H1(V ;R)) under the projective linear composite
map P(H1(V ;R)) → P(H1(Xf,R(V );R)) → P(H1(QV ;R)) induced by a homotopy
inverse of the restricted collapse map and the map qV .

Lemma 6.4. Under the cluster homology direction map (5.4), the space of clus-
ter projective currents Pf,R(V ) projects onto the cluster homology direction hull
D(QV , φV ).

Proof. The argument is similar to Lemma 5.13 but even more straightforward. The
simplification comes from Definition 6.3, in which we have required D(QV , φV )
to be spanned only by those cluster periodic homology directions encoded by V .
Therefore, analogous results as Lemmas 5.3 and 5.7 are no longer needed. Note that
Pf,R(V ) is a closed face of the polytope Pf,R, so it is spanned by the elementary
projective currents on V (Lemma 5.10). Then by inheriting the previous argument
we conclude that D(QV , φV ) equals the image hdV (Pf,R(V )). �
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6.3. Combinatorial description of cluster homology direction hulls.

Theorem 6.5. Let f be a pseudo-Anosov automorphism of a connected closed
orientable surface S, and let R be a Markov partition of S with respect to f .
Then for any irreducible subgraph V of the transition graph Tf,R, the cluster
homology direction hull D(QV , φV ) is a polytope of codimension 0 in A(QV , φV ).

Furthermore, suppose that D(QV , φV ) is not a single vertex. Then for any
irreducible subgraph U contained in V , the polytope D(QU , φU ) is not a single
vertex unless U is a simple dynamical cycle.

(See Definitions 6.1 and 6.3.)

Proof. The cluster homology direction hull D(QV , φV ) is a polytope because it is
the image of the cluster homology direction map, namely, hdV (Pf,R(V )), and be-
cause the space of cluster projective currents Pf,R(V ) is a closed face of the polytope
Pf,R (Lemmas 6.4 and 5.10). Since the cluster defining map qV : Xf,R(V ) → QV

is π1–surjective (Definition 6.1), it induces a surjective homomorphism
qV ∗ : H1(Xf,R(V );R) → H1(QV ;R).

We also observe that the naturally induced projective linear map Pf,R(V ) →
P(H1(Xf,R(V );R)) is an embedding of codimension 0 (Corollary 5.11 and Re-
mark 5.12(1)). As D(QV , φV ) is the image of the composite map Pf,R(V ) →
P(H1(Xf,R(V );R)) → P(H1(QV ;R)), we see that D(QV , φV ) has codimension 0
in A(QV , φV ) (Definition 6.3).

Suppose for the rest of the proof that D(QV , φV ) is not a single vertex. This is
equivalent to b1(QV ) > 1, as we have the relation

dim (D(QV , φV )) = dim (A(QV , φV )) = b1(QV ) − 1.
For any irreducible subgraph U contained in V , it suffices to argue that b1(QU ) = 1
implies that U is a simple dynamical cycle.

To this end, observe that under the assumption b1(QU ) = 1, the homomorphism
on homology

jU,V ∗ : H1(QU ;R) → H1(QV ;R)
induced by the cluster subordination map jU,V must have positive-dimensional
cokernel (see Definition 6.1). Therefore, with respect to any compatibly chosen
auxiliary basepoints, the image of the induced homomorphism π1(jU,V ) : π1(QU ) →
π1(QV ) has infinite index in π1(QV ).

We choose models for QU and QV which are aspherical and atoroidal orientable
compact 3–manifolds (Lemma 6.2). As a cluster QU is also homotopy equivalent to
an infinite cover of QV , which corresponds to the image of π1(jU,V ) (see Definition
6.1). It follows that b3(QU ) must vanish and therefore QU has nonempty boundary.
The boundary ∂QU contains no sphere components, for otherwise the aspherical 3–
manifold QU would have to be a 3–ball, contrary to the nontriviality of φU (Lemma
6.2). Using the well-known inequality in 3–manifold topology

b1(QU ) ≥ b1(∂QU )/2
(which is an exercise of the Poincaré–Lefschetz duality), we see that b1(QU ) = 1
occurs only if ∂QU is connected and is homeomorphic to a torus. As Mf is closed,
atoroidal, and aspherical, we infer that QU must be a solid torus by 3–manifold
topology. This means that the restriction of the zipping map (5.2), Xf,R(U) → Mf ,
has infinite cyclic π1–image.
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To finish the proof, we invoke the fact that every primitive periodic trajectory
of Mf represents a distinct conjugacy class of maximal infinite cyclic subgroups
in π1(Mf ). This is implied, for example, by the fact that distinct fixed points of
fm represent distinct fixed point classes for any given m ∈ N (see Remark 2.1).
According to the mapping torus approach [Jia05, Definition 4.3], any pair of fixed
points p, q of f represent the same fixed point class if and only if the loops γ1(f ; p)
and γ1(f ; q) are freely homotopic to each other in Mf . The above fact about
primitive periodic trajectories follows immediately from this characterization, by
considering fm for all m ∈ N. As π1(Xf,R(U)) projects onto an infinite cyclic
subgroup of π1(Mf ) under zipping, we see that U has to be a simple dynamical
cycle, because of the cycle–trajectory correspondences (Lemmas 5.3 and 5.7). This
completes the proof. �

We close this section with the following useful notion.

Definition 6.6. Let f be a pseudo-Anosov automorphism of a connected closed
orientable surface, and let R be a Markov partition for f .

(1) For any cluster QV subordinate to the mapping torus Mf and any closed
face E of the cluster homology direction hull D(QV , φV ), the support sub-
graph for E, denoted as

V [E] ⊂ V,

is defined to be the nonwandering subgraph of the cluster transition graph
V which corresponds to the closed face hd−1

V (E) of the space of cluster
projective currents Pf,R(V ).

(2) We say that a closed face E of D(QV , φV ) is purely ordinary if the flow-box
subcomplex Xf,R(V [E]) over the support subgraph V [E] contains no ex-
ceptional abstract periodic trajectories, or purely exceptional if Xf,R(V [E])
contains no ordinary abstract periodic trajectories. (See Lemmas 5.10 and
6.4.)

Note that for any purely exceptional closed face E of a cluster homology di-
rection hull D(QV , φV ), a primitive dynamical cycle z of the cluster subgraph
V is carried by the support subgraph V [E] if and only if the homology class
qV ∗[γ̂z] ∈ H1(QV ;Z)free lies in the linear cone over E (see Definition 6.1). If
E is purely exceptional, the support subgraph V [E] is necessarily a union of mu-
tually disjoint simple dynamical cycles due to the finiteness of exceptional abstract
periodic trajectories (Lemma 5.2). Trivial examples of purely ordinary and purely
exceptional closed faces occur for clusters associated to simple dynamical cycles, as
the 0–dimensional closed face of cluster homology direction hull. Closed faces may
also be neither purely exceptional nor purely ordinary. The homology direction hull
D(Mf , φf ) itself, as the codimension–0 closed face for the cluster Mf associated to
Tf,R, provides a simple example.

7. Reciprocal characteristic polynomials for clusters

In this section, we continue the discussion of Section 6, and introduce a calcula-
tion gadget for clusters called the reciprocal characteristic polynomial. At the end
of this section, we exhibit three motivating examples for our main goal (compare
Subsection 9.2).
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Let f be a pseudo-Anosov automorphism of a connected closed orientable surface,
and let R be a Markov partition for f . To any primitive dynamical cycle z of the
transition graph Tf,R, we associate an integer
(7.1) sgn(z) ∈ {±1}
by the following rule. Adopting Notation 5.8, we assign sgn(z) to be 1 if the abstract
periodic trajectory γ̂z is exceptional. Otherwise, as γ̂z : S1 → Xf,R is embedded
in the ordinary part, we observe that the tangent bundle of Xf,R is well-defined
over γ̂z(S1). The tangent bundle over γ̂z(S1) splits as the direct sum of three line
subbundles, parallel to the ordinary abstract flow direction, the horizontal direction,
and the vertical direction, respectively. The first one is always canonically oriented,
whereas the latter two are either both orientable, or both nonorientable. We assign
sgn(z) to be 1 for the orientable case, or −1 for the nonorientable case.

Definition 7.1. Let f be a pseudo-Anosov automorphism of a connected closed
orientable surface, and let R be a Markov partition for f . For any cluster QV

subordinate to Mf , and for any subgraph W of the cluster transition graph V ,
we introduce the reciprocal characteristic polynomial of W with respect to QV by
the following expression, in the positive-half completion of CH1(QV ;Z)free with
respect to the φV –grading:

κ#
f,R (W ;QV ) =

∏
z primitive of W

(1 − sgn(z) · qV ∗ [γ̂z]) .

Here the (possibly infinite) product is taken over all the primitive dynamical cycles
z of W , and γ̂z is defined in Notation 5.8. The cluster reciprocal characteristic poly-
nomial for QV is defined using the cluster transition graph V , denoted particularly
as

κ#
f,R (QV ) = κ#

f,R (V ;QV ) .
(See Definition 6.1).

The following description of κ#
f,R(W ;QV ) and its proof explain the name.

Lemma 7.2. Adopting the notation of Definition 7.1, the reciprocal characteristic
polynomial κ#

f,R(W ;QV ) is of the form 1+
∑

u auu, where the summation is taken
for all u ∈ H1(QV ;Z)free with the property Ru ∈ D(QV , φV ) and φV (u) > 0,
and where at most finitely many coefficients au ∈ C are nonzero. In particular,
κ#
f,R(W ;QV ) can be identified as an element of CH1(QV ;Z)free.

Proof. We make the following auxiliary choices. Choose an orientation for the
distinguished fiber S, which is preserved under f . For each birectangle Ri of the
Markov partition R = {R1, . . . , Rk}, choose a Cartesian chart (xi, yi) : Ri → R×R,
such that dxi∧dyi agrees with the chosen orientation of S. We also require |dxi| =
μs and |dyi| = μu. (So Ri is parametrized as a product rectangle in the Cartesian
plane.) Note that f∗dxj = ±λdxi and f∗dyj = ±λ−1dyi hold in any nonempty
intersection int(Ri) ∩ f−1(int(Rj)), and that the signs are either both positive or
both negative. Therefore, the auxiliary data determines a function on the set of
directed edges of the transition graph sgn: Edge(Tf,R) → {±1}, as follows. For
any nonempty intersection int(Ri) ∩ f−1(int(Rj)) and the corresponding directed
edge eij , sgn(eij) = ±1 is assigned according to the sign in the above equations.

Given any subgraph W of the cluster transition graph V , denote by C1(W ) the
free abelian group of the cellular 1–chains of W . The commutative group algebra
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CC1(W ) can be naturally regarded as a complex multivariable Laurent polynomial
ring with indeterminates in Edge(W ). Endow CC1(W ) with the natural Z–grading
where all the indeterminants e ∈ Edge(W ) have degree 1.

Define a square matrix Φ(W ) of size |R| with entries in CC1(W ), as follows. The
(i, j)–entry of Φ(W ) equals sgn(eij) · eij if there is a directed edge eij ∈ Edge(W ),
or 0 otherwise. Note that the nonzero entries of Φ(W )m are all homogeneous of
degree m for any m ∈ N. Moreover, the following identity holds in the positive-half
graded completion of CC1(W ):

(7.2) det (1− Φ(W )) = exp

(
−

∑
m∈N

tr (Φ(W )m)
m

)
,

where 1 stands for the identity matrix of size |R| over CC1(W ). In fact, one
way to see (7.2) is as follows. Treat the square matrix 1 − Φ(W ) as over an
extended graded ring CC1(W )[t, t−1], where the new indeterminant t has degree
1. The extended graded ring is also a Laurent polynomial ring Λ[t, t−1], over
the subring Λ that consists of all the degree–0 homogeneous elements. In any
splitting field K for the characteristic polynomial of the matrix Φ(W )t−1 over Λ,
the usual splitting argument can be applied, so (7.2) follows from the identity
1 − ht = exp

(
−
∑

m∈N

hmtm

m

)
in K[[t]] for all h ∈ K.

Further manipulation of (7.2) yields the following identity, in the positive-half
graded completion of CC1(W ):

(7.3) det (1 − Φ(W )) =
∏

z primitive of W

(1 − sgn(z) · z) .

The product in (7.3) is taken over all the primitive dynamical cycles z of W . We
adopt the multiplicative notation for the abelian group C1(W ), and understand z
as a cellular 1–cycle in the factors. In fact, one way to see (7.3) is as follows. Denote
by DCm(W ) the set of dynamical cycles of W that have combinatorial length m,
and by PDC(W ) the set of primitive dynamical cycles of W . For any z ∈ DCm(W ),
denote by div(z) the divisibility of z (that is, the degree of which z is a cyclic cover
of a primitive dynamical cycle). Then the number of different closed dynamical
paths that represent z (by forgetting the basepoint) equals m/div(z). The traces
of Φ(W )m can be computed in CC1(W ) as:

tr(Φ(W )m) =
∑

z∈DCm(W )

m× sgn(z)
div(z)

· z.

This is because each closed path that represents z contributes sgn(z) ·z to the trace,
by definition. Therefore, in the positive-half completion of CC1(W ) with respect
to the Z–grading, we compute:

log det (1 − Φ(W )) = −
∑
m∈N

∑
z∈DCm(W )

sgn(z)
div(z)

· z

= −
∑

z∈PDC(W )

∑
j∈N

sgn(z)j · zj
j

=
∑

z∈PDC(W )

log(1 − sgn(z) · z).
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Then (7.3) follows by taking exponential. Note that the equalities in the above
computation are all understood in the graded formal series sense. This means that
we compare the homogeneous parts of both sides degree by degree. In particular,
there are only finitely many dynamical cycles involved in each time of comparison.

From (7.3) we see that det(1−Φ(W )) lies in the subalgebra CZ1(W ) of CC1(W ),
where Z1(W ) is the abelian subgroup of C1(W ) that consists of all the cellular 1–
cycles of W . In fact, the left-hand side shows that it has degree at most |R|, while
the right-hand side shows that up to this degree it agrees with a Q–coefficient
polynomial function of the primitive dynamical cycles in W of length at most |R|.

As W is a cell 1–complex homotopy equivalent to Xf,R(W ) (Lemma 5.7), there
are canonical isomorphisms of abelian groups
(7.4) Z1(W ) ∼= H1(W ;Z) ∼= H1(W ;Z)free ∼= H1(Xf,R(W );Z)free,
under which z is identified with [γ̂z] by Notation 5.8. Via the cluster zipping map
qV , we see that κ#

f,R(W ;QV ) lies in CH1(QV ;Z)free. Then the asserted form follows
from the defining expression. �
Remark 7.3. The algebraic manipulations in our proof of Lemma 7.2 are essentially
equivalent to [Frd82b, Section 2]. In fact, computations with formal logarithms are
done there for homological zeta functions associated with Axiom A flows (see the
arguments for Proposition 2 thereof). What becomes different here is only the
context, as our cluster subgraph W does not arise a priori from an actual flow.

For any cluster QV subordinate to Mf and for any subgraph W of the cluster
transition graph V , enumerate by U1, . . . , Ur all the maximal irreducible subgraphs
of W (also known as the strong components of W ). Then we obtain the product
formula:
(7.5) κ#

f,R (W ;QV ) = κ#
f,R (U1;QV ) × · · · × κ#

f,R (Ur;QV ) ,
For any other cluster QU subordinate to QV , suppose that a subgraph W of V is
contained in the cluster transition graph U . Then we obtain the induction formula:

(7.6) κ#
f,R (W ;QV ) = jU,V ∗

(
κ#
f,R (W ;QU )

)
,

where jU,V ∗ : CH1(QU ;Z)free → CH1(QV ;Z)free is the group-algebra homomor-
phism induced by cluster subordination. Both (7.5) and (7.6) are immediate con-
sequences of Definition 7.1.

For any cluster QV subordinate to Mf , and any subgraph W of the cluster
transition graph V , write κ#

f,R(W ;QV ) = 1 +
∑

u auu as in Lemma 7.2. For
any closed face E of the cluster homology direction hull D(QV , φV ), we introduce
the E–part of the reciprocal characteristic polynomial κ#

f,R(W ;QV ), denoted as
κ#
f,R(W ;QV )[E] ∈ CH1(QV ;Z)free, to be the sum 1 +

∑
u over E au · u, where the

summation is taken over all u ∈ H1(QV ;Z)free in the φV –positive linear cone over
E. Then we obtain the face formula:
(7.7) κ#

f,R (W ;QV ) [E] = κ#
f,R (W ∩ V [E];QV ) ,

where V [E] is the support subgraph for E.

Example 7.4. For any cluster QC associated to a simple dynamical cycle C of the
transition graph Tf,R, the cluster reciprocal characteristic polynomial κ#

f,R(QC)
equals 1− sgn(C) · u, where u is the generating element of the infinite cyclic group
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H1(QV ;Z)free determined by φV (u) = |Edge(C)|, and where sgn(C) = ±1 is deter-
mined by the fundamental cycle of C. In particular, κ#

f,R(QC) is not the constant
polynomial 1.

Example 7.5. For the cluster Mf associated to the transition graph Tf,R itself,
the cluster reciprocal characteristic polynomial κ#

f,R(Mf ) equals the multivariable
Lefschetz zeta function ζ#

f up to finitely many cyclotomic polynomial factors de-
termined by the exceptional periodic trajectories. To be precise, by (2.8), Lemma
5.3, and Definition 7.1, we obtain the formula

κ#
f,R(Mf ) = ζ#

f ×
∏

γ primitive
pγ ([γ]) ,

where pγ are polynomials as indicated by Table 2 (see (2.7), Lemma 5.3, and Table
1 for the notation). The product is taken over all the primitive periodic trajectories
γ of Mf , which is essentially finite as we ignore the trivial factors 1. In particular,
for any ordinary closed face E of D(Mf , φf ), we have an equality between the
E–parts

κ#
f,R(Mf )[E] = ζ#

f [E]
by (7.7) (see Definitions 4.1 and 6.6).

Table 2

prezipping type combination the polynomial pγ(a) description of γ
I×1 1 ordinary
SH×m or SV×n 1 − a purely side exceptional
KL×l + KR×l +

(
SH×m

)
(1 − a) ×

(
1 − apo(γ)

)l
mixed or purely corner exceptional

+
(
SV×n

)
Example 7.6. Consider a subordination sequence of clusters

Qd
jd �� · · · �� Q1

j1 �� Q0

associated to an inclusion sequence of cluster transition graphs Vd ⊂ · · · ⊂ V1 ⊂ V0,
which are irreducible subgraphs of the transition graph Tf,R. Suppose the following
conditions are all satisfied:

• For n = 1, . . . , d, there is a closed face En of the cluster homology hull
D(Qn−1, φn−1) such that Vn is a maximal irreducible subgraph of Vn−1[En].

• For n = 1, . . . , d, the induced affine linear map D(jn) : D(Qn, φn)
→ D(Qn−1, φn−1) is an embedding.

• The subgraph Vd is a simple dynamical cycle.
Therefore, we have a sequence of affine linear embeddings of affine linear polytopes

Dd
�� Ed

�� · · · �� D1 �� E1 �� D0 ,

where Dn stands for D(Qn, φn) for n = 0, 1, . . . , d and where Dd is a single vertex
(Theorem 6.5).

The third condition implies κ#
f,R(Qd) �= 1 by Example 7.4. Using the first

two conditions, we obtain κ#
f,R(Qd−1) �= 1, because jd∗(κ#

f,R(Qd)) divides the Ed–
part of κ#

f,R(Qd−1) in CH1(Qd−1;Z)free by the formulas (7.5), (7.6), and (7.7).
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Repeating likewise, we obtain κ#
f,R(Qd−2) �= 1, and κ#

f,R(Qd−3) �= 1, and so on.
In the end, we see that the above conditions guarantee κ#

f,R(Q0) �= 1, and indeed,
κ#
f,R(Q0)[E1] �= 1.

8. Behavior under finite covering

In this section, we extend our theory of clusters to the covering setting. Since all
the former arguments work almost directly for covering mapping tori with respect
to the lifted Markov partition of the distinguished fiber, we provide a summary
about how the associated objects change under passage to a finite cover of the
mapping torus. For supplementary details of the verification, see Remark 8.1.

Let f be a pseudo-Anosov map of a connected closed orientable surface S. Denote
by Mf the mapping torus of f and by φf the distinguished cohomology class of
Mf . For any finite cover M ′ of Mf , declare M ′ as a covering mapping torus Mf ′

over Mf according to Convention 2.3.
Given any Markov partition R of S with respect to f , there is an induced Markov

partition R′ of S′ with respect to f ′, namely, whose birectangles are precisely all
the lifts of the birectangles from R. We obtain derived objects in the same way as
before. These include the flow-box complex Xf ′,R′ , the transition graph Tf ′,R′ , and
the polytope of projective currents Pf ′,R′ (Definitions 5.1, 5.4, and 5.9). The zip-
ping map, the collapse map, and the homology direction map are associated in the
same way as before (see (5.2), (5.3), and (5.4)). The derived objects and the asso-
ciated maps can be described by the same statements as Lemmas 5.2, 5.3, 5.6, 5.7,
5.10, and 5.13. In particular, Theorem 5.14 holds true for the covering mapping
torus Mf ′ , so the homology direction hull D(Mf ′ , φf ′) for the covering mapping
torus (Definition 4.1) is a polytope of codimension 0 in A(Mf ′ , φf ′). Moreover, any
deck transformation of Mf ′ over Mf preserves φf ′ , and it induces isomorphic trans-
formations on the derived objects, with respect to their own declared structures.
The associated maps are equivariant with respect to the induced transformations.

For any further finite cover M ′′ of M ′, declare M ′′ as a covering mapping torus
Mf ′′ over Mf . There is a commutative diagram of continuous maps

(8.1) Tf ′′,R′′

��

Xf ′′,R′′
coll.��

��

qf′′,R′′�� Mf ′′

��
Tf ′,R′ Xf ′,R′

coll.��
qf′,R′ �� Mf ′

,

where the vertical maps are induced as covering projections. There is a commutative
diagram of affine linear maps

(8.2) Pf ′′,R′′
hdf′′,R′′��

��

A (Mf ′′ , φf ′′)

��
Pf ′,R′

hdf′,R′ �� A (Mf ′ , φf ′) ,

where the vertical maps are induced and surjective. In particular, the induced affine
linear map

(8.3) D (Mf ′′ , φf ′′) → D (Mf ′ , φf ′)
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is a (surjective) projection between polytopes. The preimage of any closed face
of D(Mf ′ , φf ′) is always a closed face of D(Mf ′′ , φf ′′) with the same or higher
codimension, but the preimage of an open face is often a union of several open
faces.

Clusters subordinate to a covering mapping torus Mf ′ with respect to the in-
duced Markov partition R′ are defined in the same way as Definition 6.1. Further-
more, Lemmas 6.2 and 6.4 and Theorem 6.5 hold true for the cluster setting with
only a change of notation. For clusters subordinate to a covering mapping torus, we
have the same theory about reciprocal characteristic polynomials as with Section
7, simply by dropping the connectedness assumption there.

When a covering mapping torus Mf ′′ covers Mf ′ as above, some clusters subor-
dinate to Mf ′′ cover clusters subordinate to Mf ′ in a natural way. To be precise, for
any irreducible subgraph V ′ of the transition graph Tf ′,R′ and any connected com-
ponent V ′′ of the preimage of V ′ in Tf ′′,R′′ , there is an induced (homotopy) cluster
covering projection QV ′′ → QV ′ . Indeed, for any defining triple (QV ′ , qV ′ , iV ′),
some triple (QV ′′ , qV ′′ , iV ′′) and a covering projection QV ′′ → QV ′ can be chosen
to make the following diagram of maps commutative up to homotopy:

(8.4) V ′′

��

Xf ′′,R′′(V ′′)coll.��

��

qV ′′ �� QV ′′

��

iV ′′ �� Mf ′′

��
V ′ Xf ′,R′(V ′)coll.�� qV ′ �� QV ′

iV ′ �� Mf ′

(We may call any irreducible subgraph V ′′ as above an elevation of V ′, and the
cluster QV ′′ an elevation of QV ′ , agreeing with the customary glossary for covering
spaces.) Cluster covering projections QV ′′ → QV ′ behave pretty much like covering
projections between covering mapping tori Mf ′′ → Mf ′ . For example, it induces
an affine linear projection between polytopes
(8.5) D (QV ′′ , φV ′′) → D (QV ′ , φV ′) ,
which directly generalizes (8.3).

Remark 8.1. A careful inspection of the arguments of Sections 5, 6, 7 shows that
connectedness of S is only essentially used in the proof of Lemma 5.2. In fact,
it is rather the ergodicity of f on S than the connectedness of S that implies
the connectedness of the flow-box complex. Therefore, Lemma 5.2 holds for the
covering setting as well, because the lifted pseudo-Anosov automorphism on the
possibly disconnected distinguished fiber is evidently ergodic by Convention 2.3.

9. Diversity of dominant virtual faces

In this section, we construct regular finite covers for closed pseudo-Anosov map-
ping tori so that they satisfy the hypothesis of Theorem 4.3 (Theorem 9.1). This is
done in two steps by Propositions 9.2 and 9.6, following the plan as explained after
Theorem 4.3. The proof for Theorem 9.1 is summarized in Subsection 9.3.

Theorem 9.1. Let f be a pseudo-Anosov automorphism of a connected closed
orientable surface S. Then for any positive integer N , there exists a connected
regular finite cover M̃ of the mapping torus Mf , and moreover, the homology
direction hull D(M̃, φ̃) contains N or more mutually distinct Γ–orbits of mutually
disjoint dominant closed faces. Here Γ stands for the deck transformation group
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VIRTUAL HOMOLOGICAL SPECTRAL RADII 1213

and M̃ is declared as a covering mapping torus according to Convention 2.3. (See
Definition 4.1, Theorem 5.14, and Section 8.)

9.1. Diversity of ordinary virtual vertices.

Proposition 9.2. Let f be a pseudo-Anosov automorphism of a connected closed
orientable surface S, and let R be a Markov partition of S for f . Then for any
positive integer N , there exists a connected regular finite cover M̃ of the mapping
torus Mf , and moreover, the homology direction hull D(M̃, φ̃) contains N or
more mutually distinct Γ–orbits of ordinary vertices. Here Γ stands for the deck
transformation group and M̃ is declared as a covering mapping torus according
to Convention 2.3. (See Definitions 4.1 and 6.6, Theorem 5.14, and Section 8.)

We prove Proposition 9.2 in the rest of this subsection.
In the argument, frequently we consider group-theoretic properties for the π1–

image of a cluster under the subordination map. Both the fundamental group
and the induced homomorphism depend on a chosen basepoint of the cluster, but
different choices do not matter if the considered subgroup property is invariant
under conjugation. So we simply omit mentioning the chosen basepoint whenever
conjugacy invariance is clear from the context.

Lemma 9.3. Suppose that M ′ is a connected finite cover of Mf , and that E′ is a
positive codimensional closed face of the homology direction hull D(M ′, φ′). Then
for any irreducible subgraph V ′ of the support subgraph Tf ′,R′ [E′], the π1–image
for the subordination map of the associated cluster iV ′ : QV ′ → M ′ is quasiconvex
of infinite index in the nonelementary word-hyperbolic group π1(M ′).

Proof. Denote by LE′ the smallest linear subspace of H1(M ′;R) that contains the
linear cone over E′ ⊂ A(M ′, φ′) ⊂ P(H1(M ′;R)), so LE′ has codimension at
least 1 in H1(M ′;R) by the assumption. Since D(M ′, φ′) is a polytope with ra-
tionally defined faces in A(M ′, φ′), there exists some primitive cohomology class
ψ ∈ H1(M ′;Z) which vanishes on LE′ and which remains strictly positive on the
linear cone over D(M ′, φ′) \E′. In other words, ψ lies on the point-set boundary of
the open linear cone in H1(M ′;R) that is dual to the linear cone over D(M ′, φ′) in
H1(M ′;R). It is known that the dual open linear cone coincides with the fibered
cone that contains φ′ ([FLP, Exposé 14, Theorem 14.11]; see also Remark 5.15).
In particular, it is implied that ψ must not be a fibered class. In other words, it is
impossible to represent ψ by a fiber-bundle projection M ′ → S1, under the natural
isomorphism H1(M ′;Z) ∼= [M ′, S1].

Fix a basepoint x ∈ Xf ′,R′(V ′). Denote by pV ′ ∈ QV ′ and p ∈ M ′ the induced
basepoint via qV ′ and iV ′ ◦ qV ′ (Definition 6.1). Denote by ΠV ′ the image of the
homomorphism π1(iV ′) : π1(QV ′ , pV ′) → π1(M ′, p). It is clear that ΠV ′ is finitely
generated (see Lemma 6.2). We also observe that H1(Xf ′,R′(V ′);Z) ∼= H1(V ′;Z)
is generated by all the abstract periodic trajectories of Xf ′,R′(V ′). It follows from
Definitions 6.1 and 6.6 that the image of iV ′∗ : H1(QV ′ ;Z) → H1(M ′;R) is con-
tained in the proper linear subspace LE′ . Therefore, ΠV ′ is contained in the kernel
of the surjective composite homomorphism of groups:

(9.1) π1(M ′, p) abel. �� H1(M ′;Z)
ψ �� Z.

In particular, ΠV ′ has infinite index in π1(M ′, p).
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For the rest of the proof, we need to recall some hyperbolic geometric facts
(restricted to the closed orientable case), which are technically deep consequences
of hyperbolization. Every aspherical and atoroidal connected orientable closed 3–
manifold admits a Riemannian metric of constant sectional curvature −1. The
metric is unique up to homotopy by Mostow rigidity, and in fact, unique up to iso-
topy by the Smale conjecture, proved by D. Gabai for hyperbolic 3–manifolds [Gab].
See Thurston [Thu79] and Marden [Mar] for general references of hyperbolization.
In particular, the fundamental group of any such 3–manifold is word-hyperbolic in
the sense of M. Gromov [Grv]. It is also nonelementary, meaning that there are no
infinite cyclic subgroups of finite index. After choosing an orthonormal frame of
reference at a basepoint, the fundamental group can be uniquely represented via
the holonomy representation as a cocompact Kleinian group, by which we mean a
cocompact discrete subgroup of PSL(2,C). (We identify PSL(2,C) as the group
of orientation-preserving isometries acting on a fixed model of hyperbolic 3–space
H3, where a preferred orthonormal frame at a basepoint is given.) By hyperbolic
geometry, any finitely generated subgroup of a cocompact Kleinian group is either
geometrically finite or geometrically infinite (distinguished according to the co-
volume of its convex hull). Every geometrically finite subgroup is a quasiconvex
subgroup of the nonelementary word-hyperbolic fundamental group, in terms of
geometric group theory. By contrast, a finitely generated and geometrically infinite
subgroup is never quasiconvex. In fact, it always contains some (closed orientable)
surface subgroup of finite index (actually at most 2). Moreover, the surface sub-
group is normal in some finite-index subgroup of the fundamental group, and the
quotient group is the infinite cyclic quotient. We refer the reader to [AFW, Sections
4.1 and 4.4] for an informative survey on hyperbolic 3–manifolds, which contains
the facts that we mention above and their direct references.

The covering mapping torus M ′ is aspherical and atoroidal because of the
Nielsen–Thurston classification of surface automorphisms (see [AFW, Section 1.10]).
Hence π1(M ′, p) is word-hyperbolic and nonelementary (see [AFW, Theorem 4.4.2]).
If the finitely generated subgroup ΠV ′ were geometrically infinite, there would be
a finite-index subgroup Π′′ of π1(M ′, p) such that ΠV ′ ∩ Π′′ is normal in Π′′ and
that Π′′/(ΠV ′ ∩ Π′′) is infinite cyclic. (In fact, one can construct a finite cover
that corresponds to Π′′, such that ΠV ′ ∩ Π′′ is the fundamental group of a fiber
surface; see [AFW, Theorem 4.1.2].) In this case, it is easy to see that the kernel
of (9.1) intersects Π′′ exactly in the subgroup ΠV ′ ∩ Π′′. In fact, the restriction of
(9.1) to Π′′ has to factor through the infinite cyclic quotient Π′′ → Π′′/(ΠV ′ ∩Π′′),
inducing an embedding Π′′/(ΠV ′ ∩ Π′′) → Z. In particular, the kernel of (9.1)
is finitely generated. However, finite generation of the kernel occurs if and only
if ψ is a fibered class, by a well-known fibering criterion in 3–manifold topology
due to J. Stallings ([Sta]; see also [FLP, Exposé 14, Theorem 14.2]). Because ψ is
nonfibered by our construction, the subgroup ΠV ′ must be geometrically finite, or
equivalently, quasiconvex in the nonelementary word-hyperbolic group π1(M ′, p).
Therefore, we have verified all the asserted properties about the π1–image ΠV ′ for
the subordination map iV ′ : QV ′ → M ′. �

Lemma 9.4. Suppose that M ′ is a connected finite cover of Mf . Then there
exists an infinite and virtually abelian quotient group G′ of the fundamental group
π1(M ′) with the following property. For every positive codimensional closed face
E′ of the homology direction hull D(M ′, φ′), and for every irreducible subgraph
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VIRTUAL HOMOLOGICAL SPECTRAL RADII 1215

V ′ of the support subgraph Tf ′,R′ [E′], the π1–image for the subordination map
iV ′ : QV ′ → M ′ has finite quotient-image in G′.

Proof. The key fact for this proof is that π1(M ′) is nonelementary word-hyperbolic
and virtually compact special [Ago13, Section 9]. We recall that a finitely generated
group is said to be virtually compact special if some finite-index subgroup of the
group is isomorphic to the fundamental group of a compact special cube complex
([Wis, Chapter 4, Definition 4.2]; compare [HW, Definition 3.2] and [AGM, Defi-
nition 2.1]). Since there are only finitely many available irreducible subgraphs V ′,
and since the subordination maps iV ′ all have quasiconvex π1–images (Lemma 9.3),
Wise’s Special Quotient Theorem [Wis, Theorem 12.7] applies to π1(M ′) with re-
spect to those quasiconvex π1–images. This will yield a virtually compact special
word-hyperbolic quotient group G∗ of π1(M ′), and moreover, for each V ′ as as-
sumed, the π1–image for iV ′ projects onto a finite subgroup in G∗. If G∗ happens
to be infinite, an infinite and virtually abelian quotient group G′ as asserted can
be obtained by taking some quotient G∗. It seems plausible that one may produce
an infinite G∗ by performing Wise’s original construction with some mild control.
To avoid citation of technical proofs, however, we outline an alternate argument
based on more efficiently stated results available in the literature. These include
the Malnormal Special Quotient Theorem and peripheral hyperbolic Dehn fillings.

Choose a basepoint p for M ′. Denote by Π the fundamental group π1(M ′, p).
Let V ′ be the set of all the irreducible subgraphs V ′ of Tf ′,R′ with the property
that the image of the affine linear map D(iV ′) : D(QV ′ , φV ′) → D(M ′, φ′) is con-
tained in ∂D(M ′, φ′). For each V ′ ∈ V ′, choose a basepoint pV ′ for the associated
cluster QV ′ , and a path αV ′ in M ′ from p to iV ′(pV ′). Then there is an induced
homomorphism π1(iV ′) : π1(QV ′ , pV ′) → π1(M ′, iV ′(pV ′)). Using the path αV ′ , we
can identify the image of π1(iV ′) as a subgroup of Π, denoted as ΠV ′ . Adjusting
the path αV ′ is equivalent to conjugating ΠV ′ by some element of Π. As we as-
sume that D(M ′, φ′) has a positive codimensional face E′, the subgroup ΠV ′ must
be quasiconvex of infinite index in Π (Lemma 9.3). Moreover, if we adjust the
paths {αV ′ : V ′ ∈ V ′} suitably, the subgroup ΠV ′ of Π generated by the subgroups
{ΠV ′ : V ′ ∈ V ′} will be isomorphic to the free amalgamation of those subgroups.

Such adjustment is quite well known to be available. For example, it can be
done as follows. Enumerate the not yet adjusted subgroups as H0, H1, . . . , Hs. We
show that there are conjugates H0, H

g1
1 , . . . , Hgs

s which generate a free-amalgam
subgroup H0 ∗Hg1

1 ∗ · · · ∗Hgs
s of Π. Here we adopt the notation Hg = g−1Hg. The

limit set Λ(Π) of Π itself is the sphere at infinity S2
∞ of the hyperbolic 3–space H3.

For any infinite-index quasiconvex subgroup H of Π, the limit set Λ(H) is a proper
closed subset of S2

∞ and has Lebesgue measure zero ([Thu79, Theorem 8.4.2]; see
also [Mar, Theorem 5.6.6]). In particular, for any open subset D ⊂ S2

∞, there is
some g ∈ Π such that Λ(Hg) is contained in D. (For example, one may pick g so
that the ideal fixed point of g lies in D \ Λ(H), and the translation distance of g
is sufficiently large.) Therefore, there is some g1 ∈ Π such that Λ(H0) and Λ(Hg1

1 )
are disjoint in S2

∞. By Klein’s Combination Theorem [Mat, Chapter VII, Theorem
A.13], the subgroups H0 and Hg1

1 generate a free-amalgam subgroup H0 ∗Hg1
1 of Π,

which is again quasiconvex. Note that H0 ∗Hg1
1 still has infinite index, since finite-

index subgroups of Π are freely indecomposable. Working similarly with H0 ∗Hg1
1

and H2, we find some g2 ∈ Π such that H0 ∗Hg1
1 and Hg2

2 generate a (quasiconvex
infinite-index) free-amalgam subgroup H0 ∗Hg1

1 ∗Hg2
2 of Π, and so on. Eventually
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we obtain the conjugates Hgi
i and the free-amalgam subgroup H0 ∗Hg1

1 ∗ · · · ∗Hgs
s ,

as claimed.
Let ΠV ′ be the free-amalgam subgroup of Π, constructed from {ΠV ′ : V ′ ∈ V ′}

as above. In particular, ΠV ′ is geometrically finite of infinite covolume. Therefore,
ΠV ′ is quasiconvex of infinite index in the virtually compact special nonelementary
word-hyperbolic group Π.

In general, we prove the following statement. For any virtually compact special
and nonelementary word-hyperbolic group G and for any infinite-index quasiconvex
subgroup H of G, there exists a virtually compact special, nonelementary, and
word-hyperbolic quotient group G∗ of G, and moreover, H has finite image in G∗.
This is done by induction on the height of H, following the same argument as in
[Ago13, Theorem A.1]. Recall the height of H in G is defined to be the smallest
integer k ≥ 0 such that for any mutually distinct H–cosets H, g1H, . . . , gkH in G,
the intersection H∩Hg1∩· · ·∩Hgk is a finite subgroup of G (see [GMRS, Definitions
0.1 and 0.2] or [AGM, Definition 3.23]). For any infinite-index quasiconvex subgroup
of a word-hyperbolic group, the height always exists [GMRS].

If the height of H equals 0, H is already finite, so the statement is trivially true,
for G∗ = G. If the height of H is at least 1, we take a malnormal core for H
and the induced peripheral structure for G (see [Ago13, Definition A.5]). For our
consideration, let us only mention that the induced peripheral structure is given
as a finite set of subgroups {P1, . . . , Pm} of G, which is almost malnormal in the
sense that for any Pi, Pj and g ∈ G, the intersection P g

i ∩ Pj is a finite subgroup
of G unless Pi equals Pj and contains g. By the Malnormal Special Quotient
Theorem ([Wis, Theorem 12.3]; see also [AGM, Corollary 2.8]), sufficiently long
peripherally finite fillings are word-hyperbolic and virtually compact special. More
precisely, this means that there are finite-index normal subgroups Ṗi of Pi for
i = 1, . . . ,m with the following property. For any finite-index normal subgroups
Ni of Pi contained in Ṗi, the quotient group Ḡ = G/〈〈N1 ∪ · · · ∪Nm〉〉 of G by the
normal closure of N1 ∪ · · · ∪Nm is word-hyperbolic and virtually compact special.
We can require in addition that Ḡ is nonelementary. In fact, this follows from
[GM, Theorems 7.2 and 11.12] if G is torsion-free. For the general case, we take a
finite-index torsion-free characteristic subgroup Ġ of G, using residual finiteness of
the virtually compact special group G [Wis, Theorem 4.4]. We require the above
asserted Ṗi to be contained in Ġ. The quotient image of Ġ in Ḡ is a peripherally
finite filling of Ġ, with respect to the induced peripheral structure [AGM, Notation
2.9]. For sufficiently long fillings, the torsion-free case implies that the image of Ġ
in Ḡ is nonelementary, so Ḡ is nonelementary as well. Furthermore, we can require
that the quotient image H̄ of H in Ḡ is quasiconvex of height strictly less than the
height of H [Ago13, Theorem A.16]. In particular, H̄ has infinite index in Ḡ, as
Ḡ is infinite. Passing to the pair (Ḡ, H̄) from (G,H) decreases the height strictly
with the other hypotheses unaffected. Then the statement to be proved holds true
by induction.

Apply the above statement to G = Π and H = ΠV ′ . This yields a nonelementary
word-hyperbolic quotient G∗ of Π which is virtually compact special. In particular,
G∗ contains finite-index subgroups with (arbitrarily large) positive first Betti num-
ber [Ago13, Corollary 1.2]. So G∗ admits an infinite and virtually abelian quotient
G′. Under the composite quotient homomorphism Π → G∗ → G′, the image of ΠV ′
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for any V ′ ∈ V ′ is finite, because the image of ΠV ′ is finite. This completes the
proof for Lemma 9.4. �

Lemma 9.5. For every positive integer n ∈ N, there exists a connected regu-
lar finite cover M ′

n of Mf with the deck transformation group denoted by Γ′
n,

and moreover, the homology direction hull D(M ′
n, φ

′
n) is a positive-dimensional

polytope with at least n Γ′
n–orbits of vertices.

Proof. For n equal to 1, we take a connected regular finite cover M ′
1 of Mf with the

deck transformation group denoted by Γ′
1. We also require the homology direction

hull D(M ′
1, φ

′
1) to not be a single vertex. This is possible because of the deep

fact that every pseudo-Anosov mapping torus admits connected finite covers with
arbitrarily large first Betti number ([Ago13, Theorem 9.2]; see also [AFW]). Then
M ′

1 satisfies the asserted property.
Suppose by induction that we have constructed M ′

n as asserted for some n ∈ N.
To proceed to the next level, we apply Lemma 9.4 to M ′

n and obtain an infinite
and virtually abelian quotient

π1(M ′
n) → G′

n.

Take a finite-index free abelian subgroup G′′
n of G′

n. Choose a basepoint p′n ∈ M ′
n.

Take a connected finite cover M ′′
n of M ′

n with a lifted basepoint p′′n, such that
π1(M ′′

n , p
′′
n) gives rise to the preimage of G′′

n in π1(M ′
n, p

′
n). We take M ′

n+1 to be a
connected finite cover of M ′′

n which is regular over Mf .
We verify that M ′

n+1 satisfies the asserted properties. Observe that there are
induced affine linear projections of homology direction hulls

D(M ′
n+1, φ

′
n+1) → D(M ′′

n , φ
′′
n) → D(M ′

n, φ
′
n)

(Theorem 5.14 and Section 8). In particular, D(M ′
n+1, φ

′
n+1) has positive dimen-

sion, as D(M ′
n, φ

′
n) does. Over each Γ′

n–orbit of vertices in D(M ′
n, φ

′
n), there is

at least one Γ′
n+1–orbit of vertices in D(M ′

n+1, φ
′
n+1), so D(M ′

n+1, φ
′
n+1) already

has at least n distinct Γ′
n+1–orbits of vertices, by the induction hypothesis. To

obtain at least one extra vertex orbit in D(M ′
n+1, φ

′
n+1), it suffices to show that

the convex hull of the preimage of ∂D(M ′
n, φ

′
n) in D(M ′

n+1, φ
′
n+1) is not the entire

D(M ′
n+1, φ

′
n+1). In fact, we show that this convex hull has positive codimension in

D(M ′
n+1, φ

′
n+1). To this end, observe that the abelianized homomorphism

H1 (M ′′
n ;Z) → G′′

n

is surjective, by the construction of M ′′
n . If E′ is any positive-codimensional closed

face of D(M ′
n, φ

′
n), and if E′′ is the closed face of D(M ′′

n , φ
′′
n) given as the preim-

age of E′, there is an induced covering projection between the support subgraphs
Tf ′′

n ,R′′
n
[E′′] → Tf ′

n,R′
n
[E′]. If QV ′′ is any cluster subordinate to M ′′

n which is as-
sociated to an irreducible subgraph V ′′ of Tf ′′

n ,R′′
n
[E′′], the construction of M ′′

n

guarantees that the following composite homomorphism is trivial:

H1 (QV ′′ ;Z)
iV ′′∗ �� H1 (M ′′

n ;Z) �� G′′
n.

Therefore, the subspace of H1(M ′′
n ;R) spanned by all the iV ′′∗(H1(QV ′′ ;R)) as

above must have codimension at least the rank of G′′
n. Passing to homology direction

hulls, this means that the preimage of ∂D(M ′
n, φ

′
n) in D(M ′′

n , φ
′′) is contained in

some affine linear subset of codimension at least the rank of G′′
n. The rank of

G′′
n is positive because G′′

n is a finite-index free abelian subgroup in the infinite
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virtually abelian group G′
n. Pulling back via D(M ′

n+1, φ
′
n+1) → D(M ′′

n , φ
′′
n), we see

that the preimage of ∂D(M ′
n, φ

′
n) in D(M ′

n+1, φ
′
n+1) is also contained in an affine

linear subset of the same positive codimension. Therefore, the convex hull of the
preimage of ∂D(M ′

n, φ
′
n) cannot be the entire D(M ′

n+1, φ
′
n+1). As explained above,

D(M ′
n+1, φ

′
n+1) has at least (n + 1) Γ′

n+1–orbits of vertices. This completes the
induction. �

To prove Proposition 9.2, we observe that there are only finitely many, say K,
primitive exceptional abstract periodic trajectories in the flow-box complex Xf,R
(Lemma 5.2). For any regular finite cover M̃ of Mf with the deck transformation
group denoted by Γ, the primitive exceptional abstract periodic trajectories of Xf̃ ,R̃
are precisely the preimage of those of Xf,R, with respect to the induced covering
projection Xf̃ ,R̃ → Xf,R. So there are at most K distinct Γ–orbits of primitive
exceptional abstract periodic trajectories in Xf̃ ,R̃. Given any positive integer N ∈
N, take M̃ to be a regular finite cover M ′

N+K as provided by Lemma 9.5. We see
that the homology direction hull D(M̃, φ̃) has at least (N +K) Γ–orbits of vertices,
and that at most K of them could be represented by exceptional abstract periodic
trajectories. In other words, there remains to be N or more Γ–orbits of ordinary
vertices (Definition 6.6), as asserted.

This completes the proof of Proposition 9.2.

9.2. Dominance over ordinary virtual vertices.

Proposition 9.6. Let f be a pseudo-Anosov automorphism of a connected closed
orientable surface S, and let R be a Markov partition of S for f . Then for any
connected finite cover M ′ of the mapping torus Mf and any ordinary vertex v′

of the homology direction hull for M ′, there exists a connected finite cover M̃
of M ′ with the property that the preimage of v′ is a dominant closed face of the
homology direction hull for M̃ . Here M ′ and M̃ are declared as covering mapping
tori over Mf according to Convention 2.3. (See Definitions 4.1 and 6.6, Theorem
5.14, and (8.3).)

We prove Proposition 9.6 in the rest of this subsection.

Lemma 9.7. Suppose that M ′ is a connected finite cover of the mapping torus
Mf and that v′ is an ordinary vertex of the homology direction hull D(M ′, φ′).
Then there exists a finite sequence of successively subordinate clusters

Q′
d

�� · · · �� Q′
2

�� Q′
1

�� M ′,

and moreover, the following conditions are all satisified:
• The cluster homology direction hull D(Q′

1, φ
′
1) projects onto the vertex v′,

and the cluster Q′
1 is maximal subject to this property.

• For every n = 2, . . . , d, the cluster homology direction hull D(Q′
n, φ

′
n)

projects onto some vertex of D(Q′
n−1, φ

′
n−1), and the cluster Q′

n is maxi-
mal subject to this property.

• The cluster homology direction hull D(Q′
d, φ

′
d) is a single vertex.

Here the projections of cluster homology direction hulls and the partial ordering
of clusters are both understood as induced by subordination.

Proof. Take a maximal irreducible subgraph V ′
1 of the support subgraph Tf ′,R′ [v′]

(Definition 6.6). (Topologically V ′
1 is nothing but a connected component, since
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Tf ′,R′ [v′] is nonwandering.) We construct Q′
1 as the cluster subordinate to M ′ and

assoicated to V ′
1 . Suppose by induction that a sequence of clusters Q′

1, . . . , Q
′
n has

been constructed for some n ∈ N, associated to a properly descending chain of
irreducible subgraphs V ′

1 � V ′
2 � · · · � V ′

n. If V ′
n is a simple dynamical cycle, we

terminate our construction. Otherwise, take a vertex w′
n+1 of the cluster homology

direction hull D(Q′
n, φ

′
n), and take a maximal irreducible subgraph V ′

n+1 of the
cluster support subgraph V ′

n[w′
n+1]. Construct Q′

n+1 as the cluster associated to
V ′
n+1.
Since there is an ordinary vertex v′, D(M ′, φ′) must have positive dimension. It

follows that D(Q′
n, φ

′
n) has positive dimension unless V ′

n is a simple dynamical cycle
(Theorem 6.5). Then every V ′

n+1 is properly contained in V ′
n unless the construction

terminates at the level n. However, the construction has to terminate at some level
n = d, because the transition graph Tf ′,R′ is finite. It is straightforward to check
that the clusters Q′

1, . . . , Q
′
d satisfy the asserted properties (see Theorem 6.5 and

Definition 6.6). �
Lemma 9.8. Suppose that M ′ is a connected finite cover of the mapping torus
Mf and that v′ is an ordinary vertex of the homology direction hull D(M ′, φ′).
Then for any sequence of clusters Q′

1, . . . , Q
′
d subordinate to M ′ as described by

Lemma 9.7, there exist a connected finite cover M̃ of M ′ and clusters Q̃1, . . . , Q̃d

subordinate to M̃ , and moreover, the following conditions are all satisfied:
• The following diagram of maps is commutative up to homotopy:

Q̃d
��

��

· · · �� Q̃2 ��

��

Q̃1 ��

��

M̃

��
Q′

d
�� · · · �� Q′

2
�� Q′

1
�� M ′

In the diagram, the horizontal maps are all cluster subordination maps,
and the vertical maps are all cluster covering projections.

• The subordination maps for cluster homology direction hulls D(Q̃1, φ̃1) →
D(M̃, φ̃) and D(Q̃n, φ̃n) → D(Q̃n−1, φ̃n−1) for n = 2, . . . , d are all affine
linear embeddings.

• The map Q̃d → Q′
d is a homotopy equivalence.

Proof. For convenience we rewrite M ′ as Q′
0. Choose a basepoint p′d for Q′

d, and
for n = 0, 1, . . . , d − 1, endow Q′

n with the basepoint p′n which is the image of p′d
under the cluster subordination map Q′

d → Q′
n. Denote by Πn the fundamental

group π1(Q′
n, p

′
n) for n = 0, . . . , d. As the cluster subordination maps are all π1–

injective, for n = 1, . . . , d, we identify each Πn as a subgroup of Πn−1, so Πn

are all subgroups of Π0. We also identify Π0 as a cocompact Kleinian group by
hyperbolization. Observe b1(M ′) > 1 because v′ is an ordinary vertex, so Π1, . . . ,Πd

are all geometrically finite in Π0 by Lemmas 9.3 and 9.7. Therefore, for n =
1, . . . , d, Πn−1 is word-hyperbolic and Πn is quasiconvex in Πn−1 ([Swa]; see also
[KS, Theorem 2]). Moreover, Πn−1 is virtually compact special [Wis, Theorem
16.6].

For n = 0, . . . , d, we construct a finite-index subgroup Π̇n of Πn as follows.
First take Π̇d = Πd. Since Π̇d is quasiconvex in the virtually compact special
word-hyperbolic group Πd−1, Π̇d is a virtual retract of Πd−1 by [HW, Theorem
7.3] (see also [Wis, Proof 2 of Theorem 4.13]). In other words, there exists a finite
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index subgroup Π̇d−1 of Πd−1 which contains Π̇d, and moreover, there exists a
homomorphism Π̇d−1 → Π̇d which extends the identity homomorphism of Π̇d. So
we take such a Π̇d−1 for our construction. Proceeding likewise, we construct finite-
index subgroups Π̇n of Πn for n = d−2, . . . , 1, 0. The construction makes sure that
each Π̇n is contained in Π̇n−1 as a retract for n = 1, . . . , d.

For n = 0, . . . , d, take Q̃n to be the connected finite cover of Q′
n that corresponds

to the subgroup Π̇n of Πn. We rewrite Q̃0 as M̃ , the asserted connected finite cover
of M ′. The finite covers Q̃n are naturally clusters subordinate to the covering
mapping torus M̃ . In fact, for n = 1, . . . , d, the cluster transition graph Ṽn of Q̃n is
a preimage component of the cluster transition graph V ′

n of Q′
n, under the induced

covering projection of transition graph Tf̃ ,R̃ → Tf ′,R′ (see Definition 6.1 and (8.4)).
The successive retract property from the construction implies that the sequence of
homomorphisms induced by cluster subordination maps

H1(Q̃d;R) �� · · · �� H1(Q̃2;R) �� H1(Q̃1;R) �� H1(M̃ ;R)

are all embeddings. This implies the asserted successive embeddings of cluster
homology direction hulls D(Q̃n, φ̃n). The remaining asserted properties are obvious
from the construction. �

To prove Proposition 9.6, we apply Lemmas 9.7 and 9.8 to construct a connected
finite cover

(9.2) M̃ → M ′,

with respect to the given ordinary vertex v′ of the homology direction hull D(M ′, φ′).
We retain the clusters Q′

1, . . . , Q
′
d subordinate to M ′ and the clusters Q̃1, . . . , Q̃d

subordinate to M̃ in those lemmas for our record.
Let us quickly analyze the result of our construction on the homology direction

level. For n = 1, . . . , d, denote by D′
n the cluster homology direction hull for Q′

n,
and by D̃n for Q̃n. For n = 2, . . . , d, denote by w′

n the vertex of D′
n−1 that is

projected by D′
n, and denote by Ẽn the closed face of D̃n that is the preimage of

w′
n under the cluster covering-induced projection (8.5). Denote by Ẽv′ the closed

face of D(M̃, φ̃) that is the preimage of v′. Then the situation can be summarized
by the following commutative diagram of affine linear maps of polytopes:
(9.3)
D̃d

��

��

Ẽd
��

��

· · · �� D̃2 ��

��

Ẽ2 ��

��

D̃1 ��

��

Ẽv′ ��

��

D
(
M̃, φ̃

)
��

D′
d

�� w′
d

�� · · · �� D′
2

�� w′
2

�� D′
1

�� v′ �� D (M ′, φ′)

In the diagram (9.3), the vertical arrows are all surjective, the horizontal arrows
in the upper row are embeddings, and the horizontal arrows in the lower row are
projections onto singletons and embeddings as vertices, alternately.

It remains to verify that Ẽv′ is a dominant closed face of D(M̃, φ̃). To this end,
we apply the calculation of Example 7.6 on the level of the covering mapping torus
M̃ (see also Section 8), putting the cluster Q̃0 as M̃ and the closed face Ẽ1 as
Ẽv′ . It follows that the Ẽv′–part of the reciprocal characteristic polynomial for M̃
satisfies

κ#
f̃ ,R̃

(
M̃

) [
Ẽv′

]
�= 1.
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As v′ is an ordinary vertex of D(M ′, φ′), the closed face Ẽv′ of D(M̃, φ̃) is also
ordinary, by Definition 6.6. Then the calculation of Example 7.5 implies that the
Ẽv′–part of the multivariable Lefschetz zeta function satisfies

ζ#
f̃

[
Ẽv′

]
= κ#

f̃ ,R̃
(
M̃

) [
Ẽv′

]
�= 1.

By Definition 4.1, this means exactly that Ẽv′ is a dominant closed face of D(M̃, φ̃).
In other words, M̃ is a connected finite cover of M ′ which satisfies the asserted
property of Proposition 9.6 with respect to the given ordinary vertex v′.

This completes the proof of Proposition 9.6.

9.3. Proof of Theorem 9.1. We obtain by Proposition 9.2 a connected regular
finite cover M ′ of Mf , whose deck transformation group is denoted as Γ′. There
are at least N mutually distinct Γ′–orbits of ordinary vertices in the homology
direction hull D(M ′, φ′). We list them by some representative vertices v′1, . . . , v

′
N .

For each v′i, obtain by Proposition 9.6 a connected finite cover M ′′
i over M ′, so that

the preimage of v′i is a dominant closed face E′′
i of D(M ′′

i , φ
′′
i ). Take a common

connected finite cover M̃ for all M ′′
1 , . . . ,M

′′
N , and moreover, require M̃ to be regular

over Mf . With respect to the induced affine linear projections

D
(
M̃, φ̃

)
→ D (M ′′

i , φ
′′
i ) ,

denote by Ẽi the preimage of E′′
i , which are closed faces of D(M̃, φ̃).

It is clear by the definition of dominant closed faces that Ẽ1, . . . , ẼN are also
dominant closed faces of D(M̃, φ̃) (see Definition 4.1). Denote by Γ the deck trans-
formation group of M̃ over Mf , according to the notation of Theorem 9.1. Note
that the affine linear projection

D
(
M̃, φ̃

)
→ D (M ′, φ′)

is equivariant with respect to the quotient homomorphism of deck transformation
groups

Γ → Γ′.

The closed faces Ẽ1, . . . , ẼN are mutually disjoint since they project the mutually
distinct vertices v′1, . . . , v′N . Moreover, the Γ–orbits of the closed faces are mutually
disjoint (as Γ–invariant subsets), since the vertices represent mutually distinct Γ′–
orbits. Therefore, for the connected regular finite cover M̃ over Mf , the homology
direction hull D(M̃, φ̃) possesses at least N mutually distinct Γ–orbits of mutually
disjoint dominant closed faces, as asserted.

This completes the proof of Theorem 9.1.

10. Proof of the virtual homological spectral radius conjecture

In this section, we prove Theorem 1.2, which confirms Conjecture 1.1. The
essential case for pseudo-Anosov automorphisms of closed surfaces is summarized
as the following Lemma 10.1, based on all the techniques that we have developed
so far. The bounded pseudo-Anosov case and the partially pseudo-Anosov case are
derived by Lemmas 10.2 and 10.3. In the end, we complete the proof of Theorem
1.2 using the Nielsen–Thurston classification.

Lemma 10.1. For any pseudo-Anosov automorphism f of a connected closed
orientable surface S, some virtual homological spectral radius for f is strictly
greater than 1.
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Proof. Denote by Mf the mapping torus for f with the distinguished cohomology
class φf . Take N to be the positive integer −χ(S) + 1. We apply Theorem 9.1 to
obtain a connected regular finite cover M̃ of Mf with the deck transformation group
denoted by Γ. Declare M̃ as a covering mapping torus according to Convention
2.3. Then the homology direction hull D(M̃, φ̃) has at least N mutually disjoint
Γ–invariant dominant semiextreme subsets, each given by a Γ–orbit of dominant
closed faces as their union. So the Mahler measure of the multivariable Alexander
polynomial of M̃ is strictly greater than 1 by Theorem 4.3. By [Sun17, Theorem
1.2], we conclude that for some connected finite cover S′ of S and some lift f ′ : S′ →
S′ of f , the homological spectral radius for f ′ is strictly greater than 1, as asserted.

�

For a connected compact orientable surface S with nonempty boundary, the
interior of S is a connected punctured orientable surface of finite type. In this
setting, an orientation-preserving self-homeomorphism f : S → S is called a pseudo-
Anosov automorphism if S has negative Euler characteristic, and if f preserves
projectively a pair of measured foliations (F u, μu) and (F s, μs) on the punctured
surface int(S). The underlying invariant foliations are transverse to each other
except at finitely many common singular points in the interior or at the punctures.
For any singular point in the interior, we require that both of the invariant foliations
have a k–prong singularity, for some and the same positive integer k ≥ 3; for any
singular point at a puncture, we allow 1–prong singularity in addition. (This agrees
with the terminology of [FLP, Exposé 11, Section 11.3].)

Lemma 10.2. For any pseudo-Anosov automorphism f of a connected compact
orientable surface S with nonempty boundary, some virtual homological spectral
radius for f is strictly greater than 1.

Proof. For any characteristic finite cover S̃ of S, f admits a lift to S̃ as a pseudo-
Anosov automorphism f̃ , and the invariant foliations F̃ s and F̃ u for f̃ are obtained
via pull-back. We require that every boundary component of S̃ covers a boundary
component of S of degree at least 2. Then the pull-back invariant foliations have
no 1–prong singularities. In this case, we obtain a closed orientable surface S̃fill
by collapsing every boundary component of S̃ to a point, so f̃ descends to be a
pseudo-Anosov automorphism f̃fill of S̃fill. For any lift f ′

fill of f̃fill to some
finite cover S′

fill of S̃fill, we have an induced lift f ′ of f̃ to the induced finite cover
S′ of S̃.

For any lift f ′
fill of f̃fill as above, it is easy to see that f ′ and f ′

fill have the
same homological spectral radius (by considering the homology long exact sequence
induced by filling the punctures for S′). Since some f ′

fill has homological spectral
radius strictly greater than 1 (Lemma 10.2), the same property holds for f ′, which
lifts f , as asserted. �

Lemma 10.3. Let f be an automorphism of a connected compact orientable sur-
face S. Suppose that S0 is an essentially embedded connected subsurface of S
which is invariant under f . If the restriction of f to S0 is a pseudo-Anosov au-
tomorphism of S0, then some virtual homological spectral radius for f is strictly
greater than 1.

Proof. We start by explaining a basic construction for finite covers of surfaces
(sometimes known as completing a semicover). For any finite cover S′

0 → S0, we
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can construct a finite cover S′ of S and an embedding of S′
0 into S′, so that they

fit into the following commutative diagram:

S′
0

emb. ��

cov.
��

S′

cov.
��

S0
incl. �� S

The above construction follows from the fact that the fundamental group of S is
LERF, due to P. Scott [Sco78, Theorem 3.1]. To be more precise, we recall the
following topological characterization of the LERF property [Sco78, Lemma 1.1].
Let X be a Hausdorff topological space with a regular covering space X̂ and deck
transformation group G. Then G is LERF if and only if given a finitely generated
subgroup H of G and a compact subset K of X̂/H, there is a finite covering
projection X ′ → X such that the covering projection X̂/H → X factors through
X ′ and K projects homeomorphically into X ′. For convenience, we choose an
auxiliary basepoint ∗ of S which lies in S0, and choose a lifted basepoint ∗′ in S′

0.
Then H = π1(S′

0, ∗′) can be naturally identified as a finitely generated subgroup
of G = π1(S, ∗). Let Ŝ be a universal cover of S with a lifted basepoint, so G

acts naturally on Ŝ as deck transformations. The composite map S′
0 → S0 →

S lifts to Ŝ/H as an embedding. Since G is LERF [Sco78, Theorem 3.1], the
covering projection Ŝ/H → S factors through some finite cover S′ of S, and the
embedded image of S′

0 projects homeomorphically into S′. Therefore, we obtain a
finite covering map S′ → S and an embedding S′

0 → S̃/H → S′, as claimed.
To prove Lemma 10.3, it suffices to assume that the boundary of S0 is nonempty,

otherwise we are done by Lemma 10.1. Denote by f0 : S0 → S0 the restriction of
f to S0. We apply Lemma 10.2 to obtain a connected finite cover S′

0, and an
automorphism f ′

0 : S′
0 → S′

0 that lifts f0 with homological spectral radius > 1. By
the above construction, we can extend S′

0 to obtain a finite cover S′ of S. Take a
characteristic finite cover S̃ of S that factors through S′, and take an automorphism
f̃ : S̃ → S̃ that lifts f . It suffices to show that f̃ has homological spectral radius
> 1.

To this end, let S̃0 ⊂ S̃ be a connected component of the preimage of S′
0. There

exists some m ∈ N such that f̃m preserves S̃0 and commutes with the deck trans-
formations of S̃ over S. In particular, f̃m descends to S′ as an automorphism
F ′ : S′ → S′. The restricted automorphism F ′

0 : S′
0 → S′

0 is necessarily of the form
σ ◦ (f ′

0)m, where σ is some deck transformation of S′
0 over S0. Possibly after raising

m to a positive multiple (for example, [S′
0 : S0] times m), we may assume that F ′

0
equals (f ′

0)m. As S̃0 → S′
0 has finite degree, every homological eigenvalue of (f ′

0)m
off the unit circle is also a homological eigenvalue of the restriction of f̃m to S̃0
(by the surjectivity of H1(S̃0;C) → H1(S′

0;C)). As S̃0 is essentially embedded in
S̃, every homological eigenvalue of f̃m|S̃0

off the unit circle is also a homological
eigenvalue of f̃m (by considering the homology Mayer–Vietoris sequence for the pair
(S̃0, S̃ \ int(S̃0))). Since f ′

0 : S′
0 → S′

0 has homological spectral radius > 1, the same
holds for (f ′

0)m, and hence for f̃m. It follows that f̃ must also have homological
spectral radius > 1. �
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For any automorphism f of a connected compact orientable surface S in gen-
eral, the Nielsen–Thurston classification implies that there exists a possibly empty
collection of mutually disjoint essential simple closed curves on S as follows. Up to
isotopy, f preserves the union of the curves, and therefore, some positive power fm

of f preserves each of the complementary components. Moreover, for each of the
complementary component (path-compactified as a connected compact orientable
surface), the restriction of fm to that component is isotopic to either a periodic
automorphism or a pseudo-Anosov automorphism. (See [FLP, Exposé 11, Theorem
11.7].) It is known that the mapping-class entropy of f is positive if and only if there
is at least one component as above of the pseudo-Anosov type (see [Koj, Corollary
10]). In this case, fm, and hence f , must have some virtual homological spectral
radius which is strictly greater than 1, by Lemmas 10.1, 10.2, and 10.3. Otherwise,
some positive power of f is isotopic to a Dehn multitwist along the above decom-
position curves, namely, a product of integral Dehn twists along the curves. In this
case, obviously any virtual homological spectral radius of f must be 1.

This completes the proof of Theorem 1.2.
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Note added in proof

The author just learned that Asaf Hadari had a completely independent proof of
Conjecture 1.1 for surfaces with nonempty boundary [Had17]. Using very different
techniques from ours for constructing regular finite covers, Hadari’s proof works
also for fully irreducible outer automorphisms of finitely generated free groups, and
the asserted covers there are solvable.
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