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FLOWS ON THE PGL(V)-HITCHIN COMPONENT

Zhe Sun, Anna Wienhard And Tengren Zhang

Abstract. In this article we define new flows on the Hitchin components for PGL(V ).
Special examples of these flows are associated to simple closed curves on the sur-
face and give generalized twist flows. Other examples, so called eruption flows, are
associated to pair of pants in S and capture new phenomena which are not present
in the case when n = 2. We determine a global coordinate system on the Hitchin
component. Using the computation of the Goldman symplectic form on the Hitchin
component, that is developed by two of the authors in a companion paper to this
article (Sun and Zhang in The Goldman symplectic form on the PGL(V )-Hitchin
component, 2017. arXiv:1709.03589), this gives a global Darboux coordinate system
on the Hitchin component.
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1 Introduction

Let S be a closed oriented surface of genus at least 2, and let H(S) denote the
space of marked hyperbolic structures on S. By the uniformization theorem H(S)
can be identified with the Teichmüller space of S, which is a smooth cover of the
moduli space of Riemann surfaces. There is a natural symplectic structure on H(S),
given by the Weil–Petersson symplectic form. Given a simple closed curve c on S
the length function with respect to c is the function on H(S) which associates to a
marked hyperbolic structure the hyperbolic length of the unique geodesic in the free
homotopy class of c. The Fenchel–Nielsen twist flow associated to the simple closed
curve c is one of the simplest flows on H(S). Geometrically it can be described by
cutting S along the curve c and regluing after a twist. Wolpert [Wol82, Wol83] showed
that the Fenchel–Nielsen twist flow associated to a simple closed curve c is precisely
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the Hamiltonian flow of the length function with respect to c. Furthermore, he
proved that the twist flows associated to non-intersecting simple closed curves have
Poisson commuting Hamiltonian functions. In particular, given a maximal family of
pairwise non-intersecting simple closed curves, the twist flows generate a Lagrangian
submanifold of H(S).

A maximal family of pairwise non-intersecting simple closed curves gives a de-
composition of S into pairs of pants. Fixing a pair of pants decomposition and
a transversal to each pants curve, H(S) can be parametrized by Fenchel–Nielsen
coordinates, which consist of the length functions li of the 3g − 3 pants curves,
and 3g − 3 twist functions θi, which measure the twisting across each pants curve.
Wolpert [Wol82, Wol83] gave a beautiful explicit description of the Weil–Petersson
symplectic structure in terms the Fenchel–Nielsen coordinates. He showed that the
length and twist functions give global Darboux coordinates for Teichmüller space,
i.e. the Weil–Petersson symplectic form can be written as

ω =
3g−3
∑

i=1

d�i ∧ dθi. (1.1)

Goldman [Gol84] showed that for any semisimple Lie group G, there is a natural
symplectic structure on the set of smooth points of Hom(π1(S), G)/G. We refer
to this symplectic structure as the Goldman symplectic structure. He also defined
generalized twist flows and showed that they are precisely the Hamiltonian flows
associated to generalized length functions on Hom(π1(S), G)/G [Gol86]. Associating
to a marked hyperbolic structure its holonomy provides an embedding of H(S) into
Hom(π1(S), PGL2(R))/PGL2(R) as the connected component consisting entirely of
discrete and faithful representations, which is smooth. Goldman then showed that
via this embedding, the restriction of the Goldman symplectic form to H(S) is (up
to scaling) the Weil–Petersson symplectic form.

In recent years there has been a lot of interest in studying more general represen-
tations varieties Hom(π1(S), G)/G, where G is a semisimple Lie group. For some Lie
groups G (of higher rank) there exist connected components in Hom(π1(S), G)/G
that consist entirely of discrete and faithful representations. The study of these con-
nected components is the central theme of the burgeoning field of higher Teichmüller
theory. Hitchin [Hit92] introduced the first such component, which is now called the
G-Hitchin component, and proved that it is homeomorphic to a cell of dimension
(2g − 2) dim G.

In this article, and its companion paper [SZ17], we extend the results of Wolpert
to the setting of the PGL(V )-Hitchin component HitV (S). The main goal of this
paper is to define new flows on the Hitchin component. These flows are defined with
respect to an ideal triangulation of S and a set of transversals. We give a clean
description of these flows in terms of a mild but non-trivial reparametrization of
the Bonahon-Dreyer parametrization of HitV (S) [BD14, BD17]. The flows we define
pairwise commute and provide a trivialization of the tangent bundle of HitV (S).
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When the ideal triangulation and the set of transverals are subordinate to a pair
of pants decomposition of S, we use a special family of these new flows to construct a
new coordinate system on HitV (S) that generalizes Fenchel–Nielsen coordinates on
H(S) in the setting of the PGL(V )-Hitchin component. One of the key new features
is that the flows and coordinates are not only associated to simple closed curves,
but also to pairs of pants in S given by the pants decomposition.

In the companion paper [SZ17] it is proved that the flows defined here are in
fact Hamiltonian flows, and that the coordinate system we construct here is a global
Darboux coordinate system for HitV (S).

1.1 Frenet curves. A key tool we use in our approach is a theorem due to
[Lab06] and Guichard [Gui08], which says that there is a canonical embedding of
the Hitchin component HitV (S) into the space Fre(V ) of projective classes of Frenet
curves. Frenet curves are maps from S1 into the space of (complete) flags F(V ) of
V , which satisfy strong continuity and transversality properties (see Definition 2.6).
More precisely, they show that using the identification of the Gromov boundary
∂π1(S) of π1(S) with S1, the PGL(V )-Hitchin component HitV (S) can be iden-
tified with projective classes of Frenet curves from S1 = ∂π1(S) into F(V ) that
are ρ-equivariant for some representation ρ : π1(S) → PGL(V ). In the case when
dim(V ) = 2, this is just the classical fact that a representation ρ : π1(S) → PGL2(R)
is the holonomy of a hyperbolic surface if and only if there is a ρ-equivariant, con-
tinuous, injective map ξ : ∂π1(S) → RP

1.
We first introduce two types of flows, the elementary shearing flows and the

elementary eruption flows, on the space of projective classes of Frenet curves Fre(V),
that do not preserve HitV (S).

The elementary shearing flows generalize the shear along a geodesic in the Poincaré
disk. They are associated to a pair of distinct points r := (r1, r2) in S1 and a pair of
positive integers k := (k1, k2) that sum to n. Given a Frenet curve ξ : S1 → F(V ),
the pair k determines a one-parameter family of projective transformations that fix
the two flags ξ(r1) and ξ(r2). We then apply this one-parameter family of projective
transformations to one of the two connected components of ξ(S1 \ {r1, r2}), and its
inverse to the other connected component (see Section 3.2 for the precise definition).
The elementary shearing flow keeps each component of ξ(S1 \ {r1, r2}) projectively
invariant, but changes the way the two components are glued together at ξ(r).

The elementary eruption flows are a new feature that only arises when dim(V ) >
2. They are associated to a triple x := (x1, x2, x3) of pairwise distinct points in S1

and a triple of positive integers i := (i1, i2, i3) that sum to n. Given a Frenet curve
ξ : S1 → F(V ), we use i to specify three one-parameter families of projective trans-
formations, and deform the three connected components of ξ(S1 \{x1, x2, x3}) using
these three one-parameter families (see Section 3.1 for the precise definition). The
elementary eruption flows change the projective class of the triple of flags ξ(x). In
the case when dim(V ) = 3, these flows have a particularly nice geometric description
as changing the gluing parameter of a triple of flags, see [WZ17].
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In order to define flows that preserve the Hitchin component HitV (S) inside of
Fre(V), we fix an ideal triangulation T of S and a set of transversals J , that we call
a compatible bridge system. We lift this to an ideal triangulation ˜T of ˜S. Note that
any edge of ˜T corresponds to a pair of distinct points in S1, and any triangle of ˜T
correponds to a triple of pairwise distinct points in S1. To define a flow on the Hitchin
component HitV (S) we thus want to perform an infinite π1(S)-invariant family of
elementary shearing flows along the edges of ˜T , and of elementary eruption flows
along the ideal triangles of ˜T . This is a simple idea, but it turns out that formally
defining these flows is rather delicate; one has to compose this infinite family of
elementary flows in a certain order to ensure convergence. These technical difficulties
are addressed in Sections 6 and 7. In fact, we construct, for any equivariant Frenet
curve ξ and any tangent vector μ in T[ξ]HitV (S), such a flow whose tangent vector
at [ξ] is μ. The flow that we construct this way is called the (T , J )-parallel flow
associated to μ (see Definition 6.5).

A key ingredient to prove that the (T , J )-parallel flows are well-defined is that
the choice of an ideal triangulation and a set of transversal gives a real analytic
parametrization of HitV (S). Such a parametrization was first given by Bonahon and
Dreyer [BD14, BD17], based on work of Fock and Goncharov in the case of surface
with punctures [FG06]. See Section 5.3 for more details.

The first main result of the paper can be condensed into the following theorem.

Theorem 1.1. (Theorems 5.20, 6.6) Let T be an ideal triangulation on S and J a
compatible bridge system. Denote by Θ the set of ideal triangles of T . Then there
is a (n2 − 1)(2g − 2)-dimensional subspace

WT ⊂ R
|T |(n−1)+|Θ| (n−1)(n−2)

2 ,

an open convex polytope CT ⊂ WT , and a real analytic diffeomorphism

Ω = ΩT ,J : HitV (S) → CT

such that the (T , J )-parallel flow associated to μ, φμ
t : HitV (S) → HitV (S), is given

by

φμ
t [ξ] = Ω−1(Ω[ξ] + tμ)

where the vector μ in T[ξ]HitV (S) is viewed as a vector in WT via Ω. In particular,
any two (T , J )-parallel flows commute.

The parametrization Ω in the above theorem is a slight reparametrization of the
Bonahon-Dreyer parametrization of HitV (S) in [BD14], where we replace their edge
invariants associated to the closed curves in T with a new invariant that we call the
symplectic closed edge invariants.

Theorem 1.1 implies that φμ
t [ξ] is a well-defined projective class of Frenet curves

in HitV (S), as long as Ω[ξ] + tμ lies in CT .
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More conceptually, Theorem 1.1 states that any pair (T , J ) of an ideal trian-
gulation and a compatible bridge system determines a trivialization of the tangent
bundle THitV (S) of HitV (S), and the (T , J )-parallel flows are exactly the flows
generated by the vector fields parallel to this trivialization. As a by-product of the
proof of Theorem 1.1, we can explicitly specify the projective transformations that
govern the (T , J )-parallel flows (see Section 7.4).

1.2 Coordinates on HitV (S). Each choice of an ideal triangulation T and
a compatible bridge system J determines a trivialization of the tangent bundle
THitV (S) of HitV (S). Via the parametrization ΩT ,J , any basis of the vector space
WT determines a family of (T , J )-parallel flows on HitV (S), with the property
that their tangent fields {X1, . . . ,X(n2−1)(2g−2)} form a basis of the tangent space
to HitV (S) at every point in HitV (S). If one can show that these vector fields are
Hamiltonian vector fields and that they give a Darboux basis of the tangent space
at every point in HitV (S), then the potential functions of these vector fields define a
Darboux coordinate system on HitV (S). With this in mind, we construct an explicit
global coordinate system on HitV (S) as follows.

Choose a pants decomposition on S. We then fix an appropriate ideal triangula-
tion that is subordinate to the pair of pants decomposition of S, and an appropriate
compatible bridge system J , see Section 8.1 for more details. With these choices we
define four types of special (T , J )-parallel flows, namely the twist flows, length flows,
eruption flows, and hexagon flows. There are n−1 twist flows and n−1 length flows
associated to each simple closed curve in the pants decomposition, and (n−1)(n−2)

2

eruption flows, and (n−1)(n−2)
2 hexagon flows associated to each pair of pants in the

pants decomposition.
The twist flows associated to a simple closed curve c do not change the Hitchin

representation restricted to π1(S\c) (up to conjugation). The length flows associated
to the simple closed curve c change the n−1 generalized length functions associated
to c, but they do not change the Hitchin representation restricted to the fundamental
groups of the connected components of S\(P1∪P2), where P1 and P2 are the two pairs
of pants that share c as a common boundary component (it is possible that P1 = P2).
When dim(V ) = 2, the twist flow agrees (up to scaling) with the Fenchel–Nielsen
twist flow, and the length flow increases the length of the curve it is associated to
while keeping the lengths of all the other curves in the pants decomposition (and
the way the pairs of pants are glued together) unchanged.

The eruption and hexagon flows associated to a pair of pants P change the
Hitchin representation restricted to π1(P ), while keeping the Hitchin representation
restricted to the fundamental group of each connected component of S\P unchanged.
When dim V = 2, the holonomies of the boundary curves uniquely determine the
hyperbolic structure on a pair of pants, therefore the eruption and hexagon flows are
not present in Teichmüller space. They are a new feature arising when dimV > 2. In
the case when dim(V ) = 3, the eruption, twist, and hexagon flows were previously
described in a more geometric way in [WZ17].
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To any pair of positive integers k := (k1, k2) that sum to n and any closed curve in
the pants decomposition we can associate a twist flow and a length flow. We denote
their tangent fields by Sk

c and Yk
c respectively. To any triple of positive integers

i := (i1, i2, i3) that sum to n and any pair of pants of the pants decomposition, we
can associate an eruption flow and a hexagon flow. We denote their tangent fields by
E i
x and Hi

x respectively. We call these tangent vector fields the special (T , J )-parallel
vector fields, and set

X ∗ :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Sk
c if X = Yk

c ;
−Yk

c if X = Sk
c ;

E i
x if X = Hi

x;
−Hi

x if X = E i
x.

Theorem 1.2 (Corollary 8.15, Theorems 8.18, 8.22). For any special (T , J )-parallel
vector field X , there is a real analytic function

H(X ) : HitV (S) → R

whose derivative in the direction of X ∗ is 1, and whose derivative in the direction
of any other special (T , J )-parallel vector field is 0. In particular, the collection of
functions

{H(X ) : X is a special (T , J )-parallel vector field}

defines a global coordinate system on HitV (S). Furthermore, H(X ) can be described
explicitly in terms of the coordinate functions of Ω : HitV (S) → CT ⊂ WT .

This coordinate system on HitV (S) generalizes the Fenchel–Nielsen coordinates.
Compared to other such coordinate systems, which have been constructed by Gold-
man [Gol90] when dim(V ) = 3, and by one of the authors [Zha15a, Zha15b] for the
general case, this new coordinate system has the additional advantage that it is com-
patible with the symplectic structure on HitV (S). In the companion paper [SZ17],
two of the authors show that any (T , J )-parallel flow is a Hamiltonian flow, and
the vector fields Sk

c and Yk
c , and E i

x and Hi
x are dual to each other with respect to

the Goldman symplectic structure. This implies that the coordinate system given in
Theorem 1.2 is a global Darboux coordinate system, and H(X ) is the Hamiltonian
function of the integral flow of the vector field X .

Remark 1.3. Theorem 1.1 suggests that we use the coordinate system Ω to define
the (T , J )-parallel flows. However, we in fact define them more geometrically and
then show that they can be described very naturally in the coordinate system Ω.
The geometric definition plays an important role in order to compute the symplectic
pairing between a pair of (T , J )-parallel vector fields, and to show that (T , J )-
parallel flows are Hamiltonian.
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Structure of the paper: In Section 2, we review definitions of cross ratios,
triple ratios, and Frenet curves. The elementary shearing and eruption flows for
Frenet curves are introduced in Section 3. In Section 4, we give a combinatorial
description of any pair of vertices in of T , which is a key tool that we use repeatedly
in our proofs. In Section 5, we describe the Bonahon-Dreyer parametrization of the
Hitchin component as well as the (re)parametrization Ω. In Section 6, we define the
(T , J )-parallel flows and state our main results that imply Theorem 1.1, before we
prove the technical convergence results in Section 7. Finally, the twist flows, length
flows, eruption flows, hexagon flows are defined in Section 8, where we also prove
Theorem 1.2. The appendix contains proofs of a few technical statements.

2 The Hitchin Component and Frenet Curves

In this section we recall the definition of the PGL(V )-Hitchin component and of
Frenet curves, review some of their properties, and state an important theorem due
to Labourie and Guichard relating these two objects. We introduce two important
projective invariants, the cross ratio and triple ratio, and recall the definition of a
positive curve, which was used by Fock and Goncharov to give a characterization of
the PGL(V )-Hitchin component.

2.1 The PGL(V )-Hitchin component. Let V be an n-dimensional real vec-
tor space, n ≥ 2. Let Γ := π1(S) be the fundamental group of a closed, connected, ori-
ented surface S of genus at least 2. We consider the space Hom(Γ, PGL(V )) of homo-
morphisms of Γ to PGL(V ). Since PGL(V ) is a real algebraic group, Hom(Γ, PGL(V ))
is naturally a real algebraic variety. Thus, it has a natural real analytic structure
away from its singular points, which is compatible with the compact-open topology
on Hom(Γ, PGL(V )).

Definition 2.1. A representation ρ : Γ → PGL(V ) is a PGL(V )-Hitchin represen-
tation if it is a continuous deformation in Hom(Γ, PGL(V )) (with respect to the
compact-open topology) of a faithful representation whose image is discrete and lies
in the image of an irreducible representation from PSL(2,R) to PGL(V ).

Remark 2.2. Since PSL(2,R) is connected, the image of any PGL(V )-Hitchin rep-
resentation must in fact lie in the identity component of PGL(V ), which is PSL(V ).

The set ˜HitV (S) of Hitchin representations forms two connected components in
Hom(Γ, PGL(V )). Under the quotient map

Hom(Γ, PGL(V )) → Hom(Γ, PGL(V ))/PGL(V ),

˜HitV (S) is mapped to a single connected component of Hom(Γ, PGL(V ))/PGL(V ),
called the PGL(V )-Hitchin component. We denote the PGL(V )-Hitchin component
by HitV (S).
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The Hitchin component was introduced by Hitchin [Hit92], who, using tech-
niques from the theory of Higgs bundle, proved that HitV (S) is homeomorphic to
R

(2g−2)(n2−1). In the case when dim(V ) = 2, HitV (S) is exactly the space of conju-
gacy classes of faithful representations from Γ to PGL(V ) with discrete image. These
representations are precisely holonomy representations of hyperbolic structures on
S. Thus, in this case, HitV (S) can be identified with the space H(S) of marked
hyperbolic structures on S.

Remark 2.3. We work with PGL(V ) instead of PGL(n,R) in order to avoid fixing
a basis of V . We consider the Hitchin component as a connected component of
the representation variety Hom(Γ, PGL(V ))/PGL(V ). If prefered, the reader can
also consider the representation variety Hom(Γ, PSL(V ))/PSL(V ). Then, when n
is even, there are two connected components homeomorphic to HitV (S), and our
results apply to each component separately.

2.2 Frenet curves. A (complete) flag F in V is a sequence of properly nested
subspaces F (1) ⊂ · · · ⊂ F (n−1), where dim F (i) = i. We denote the set of (complete)
flags in V by F(V ). The space F(V ) can be equipped with a real-analytic structure
such that the inclusion F(V ) →

∏n−1
i=1 Gri(V ) given by F �→ (F (1), . . . , F (n−1)) is a

real-analytic embedding.

Definition 2.4. A k-tuple of flags (F1, . . . , Fk) is said to be generic if for all positive

integers i1, . . . , ik that sum to n, one has F
(i1)
1 + · · · + F

(ik)
k = V . The set of generic

k-tuples of flags is denoted by F(V )[k]. When k = 2, a pair of generic flags is also
called a transverse pair of flags.

Remark 2.5. Note that requiring a triple of flags to be generic is strictly stronger
than requiring the triple to be pairwise transverse. Most of our later constructions
involving triples of flags do not work for a pairwise transverse triple of flags; we do
indeed need that the triple of flags is generic.

Definition 2.6. A continuous curve ξ : S1 → F(V ) is said to be Frenet if the
following conditions hold for all positive integers n1, . . . , nk that sum to d ≤ n.

(1) For all pairwise distinct points x1, . . . , xk in S1 , the subspace

k
∑

j=1

ξ(nj)(xj) ⊂ V

is of dimension d.
(2) Let x be a point in S1. For all sequences {(xi,1, . . . , xi,k)}∞

i=1 of pairwise distinct
k-tuples in S1 such that limi→∞ xi,j = x for all j = 1, . . . , k, we have

lim
i→∞

k
∑

j=1

ξ(nj)(xi,j) = ξ(d)(x).



GAFA FLOWS ON THE PGL(V )-HITCHIN COMPONENT 597

The space of Frenet curves from S1 to F(V ) is denoted by ˜Fre(V ).

Note that every Frenet curve is injective, and moreover sends every k-tuple of
pairwise distinct points in S1 to a generic k-tuple of flags.

The space ˜Fre(V ) can be equipped with the topology of uniform convergence.
With this topology, the continuous action of PGL(V ) on F(V ) induces a continuous
action of PGL(V ) on ˜Fre(V ). We denote the quotient space ˜Fre(V )/PGL(V ) by
Fre(V ), and equip Fre(V ) with the quotient topology.

Remark 2.7. We denote the projective classes of non-zero vectors in V by P(V ),
and identify this with the space of lines through the origin in V . Similarly, we identify
the space of hyperplanes through the origin in V with P(V ∗), the space of projective
classes of non-zero covectors in V ∗.

It follows from an elementary linear algebra argument that PGL(V ) acts transi-
tively and freely on the set

{(F, G, P ) ∈ F(V )[2] × P(V ) : F (i) + G(n−i−1) + P = V for all i = 0, . . . , n − 1}.

In particular, if we choose a generic triple of flags F, G, H in F(V ) and a triple of
distinct points x, y, z in S1, then any projective class of Frenet curves [ξ] in Fre(V )
has a unique representative ξ such that ξ(x) = F , ξ(y) = G and ξ(1)(z) = H(1). We
make use of this normalization throughout the paper.

Labourie [Lab06] proved that for every PGL(V )-Hitchin representation ρ, there
exists a unique ρ-equivariant Frenet curve ξ : ∂Γ → F(V ). (Here ∂Γ is the Gromov
boundary of Γ. It is topologically a circle.) Guichard [Gui08] later proved the converse
to this statement. Their combined work gives the following result that is crucial for
this paper.

Theorem 2.8 [Lab06, Theorem 1.4], [Gui08, Theorem 1]. Let ρ : Γ → PGL(V ) be
a representation. Then the conjugacy class [ρ] lies in HitV (S) if and only if there is a
ρ-equivariant Frenet curve ξρ : ∂Γ → F(V ). Moreover, if such a Frenet curve exists,
then it is necessarily unique. Furthermore, if ξρ = ξρ′ , then ρ = ρ′. In particular,
the Hitchin component HitV (S) is naturally emdedded into Fre(V ) as the locus of
Frenet curves that are ρ-equivariant for some representation ρ : Γ → PGL(V ).

2.3 Projective invariants. We recall the definition of the cross ratio and triple
ratio, as well as some of their basic properties.

2.3.1 Cross ratio. We begin with the definition of the cross ratio.

Definition 2.9. Let P1, P2 ∈ P(V ) be two lines in V and let K1, K2 ∈ P(V ∗) be
two hyperplanes in V such that Pi is not contained in Kj for all i, j. For j = 1, 2
choose a non-zero vector vj in Pj and a non-zero covector αj such that ker(αj) = Kj .
Then the cross ratio of (K1, P1, P2, K2) is

C(K1, P1, P2, K2) :=
α1(v2)α2(v1)
α1(v1)α2(v2)

.
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Note that C(K1, P1, P2, K2) does not depend on the choices of vj and αi for i, j = 1,
2.

The cross ratio is a projective invariant. For this recall that a projective transfor-
mation g in PGL(V ) acts on P(V ) by g ·[v] = [g ·v], and on P(V ∗) by g ·[α] = [α◦g−1].
Thus the definition implies immediately that

C(K1, P1, P2, K2) = C(g · K1, g · P1, g · P2, g · K2).

The following symmetries of the cross ratio are also direct consequences of the defi-
nition:

C(K1, P1, P2, K2) = C(K2, P2, P1, K1),
C(K1, P1, P2, K2) · C(K1, P2, P3, K2) = C(K1, P1, P3, K2),

and

C(K1, P1, P2, K2) · C(K1, P2, P1, K2) = 1,

whenever the expressions are defined.
We apply the cross ratio most commonly in the following setting. Let H :=

(F1, G1, F2, G2) be a quadruple of flags in F(V ) such that (F1, G1, F2) and (F1, F2, G2)
are both generic triples of flags, and let k := (k1, k2) be a pair of positive integers
that sum to n. Then define

Ck(H) := C
(

F
(k1)
1 + F

(k2−1)
2 , G

(1)
1 , G

(1)
2 , F

(k1−1)
1 + F

(k2)
2

)

.

Observe that if km := (km, km+1) and Hm := (Fm, Gm, Fm+1, Gm+1) for m = 1,
2, where the arithmetic in the subscripts are done modulo 2, then

Ck1(H1) = Ck2(H2).

2.3.2 Triple ratio. We now introduce the triple ratio. Suppose first that dim(V ) =
3. Let (F1, F2, F3) be a generic triple of flags in F(V )[3]. Write Fi = (Pi, Ki), where
Pi ∈ P(V ) is a line in V and Ki ∈ P(V ∗) a hyperplane in V containing Pi. For
i = 1, 2, 3, choose non-zero vectors vi in Pi and non-zero covectors αi such that
ker(αi) = Ki. Then αi(vi) = 0, but by genericity αi(vj) �= 0 if i �= j. The triple ratio
of (F1, F2, F3) is then defined by

T (F1, F2, F3) =
α1(v2)α2(v3)α3(v1)
α1(v3)α3(v2)α2(v1)

,

which is independent of the choices of vectors and covectors. In this case, the triple
ratio determines generic triples of flags up to projective equivalence.

The definition of the triple ratio generalizes to the case when dim(V ) ≥ 3 in the
following way.
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Definition 2.10. Let K1, K2, K3 ∈ P(V ∗) be hyperplanes in V and let P1, P2,
P3 ∈ P(V ) be lines such that for all i = 1, 2, 3, Pi is contained in Ki, but not in
Ki−1∪Ki+1 (here, arithmetic in the subscripts are done modulo 3). Choose non-zero
vectors vi in Pi and non-zero covectors αi such that ker(αi) = Ki. Then the triple
ratio of (K1, P1, K2, P2, K3, P3) is

T (K1, P1, K2, P2, K3, P3) =
α1(v2)α2(v3)α3(v1)
α1(v3)α3(v2)α2(v1)

.

The triple ratio is a projective invariant:

T (g · K1, g · P1, g · K2, g · P2, g · K3, g · P3) = T (K1, P1, K2, P2, K3, P3)

for all projective transformations g in PGL(V ). It also satisfies the symmetry

T (K1, P1, K2, P2, K3, P3) = T (K2, P2, K3, P3, K1, P1) =
1

T (K3, P3, K2, P2, K1, P1)
.

We apply the triple ratio to give projective invariants of generic triples of flags
as follows. Let F := (F1, F2, F3) be a generic triple of flags in F(V )[3], and let
i := (i1, i2, i3) be a triple of positive integers that sum to n. For all m = 1, 2, 3, let

Km := F (im+1)
m + F

(im+1−1)
m+1 + F

(im−1−1)
m−1 ,

and let Pm be a line such that Pm +F
(im−1)
m = F

(im)
m . Clearly, Pm lies in Km, and the

genericity of F also implies that Pm does not lie in Km−1 and Km+1. Then define

T i(F) := T (K1, P1, K2, P2, K3, P3).

Observe that T i(F) does not depend on the choice of Pm. Also, if we set im :=
(im, im+1, im−1) and Fm := (Fm, Fm+1, Fm−1) for m = 1, 2, 3, then

T i1(F1) = T i2(F2) = T i3(F3).

Using ideas from Fock-Goncharov [FG06], one can prove that the triple ratios in
fact give a parametrization of the space F(V )[3]/PGL(V ) of generic triples of flags
in V considered up to projective transformations (see [Zha15b, Lemma 2.3.7]).

Proposition 2.11. Let B be the set of triples of positive integers that sum to n.
The map

F(V )[3]/PGL(V ) → (R \ {0})
(n−1)(n−2)

2

given by [F] �→
(

T i(F)
)

i∈B is a real-analytic diffeomorphism.
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2.4 Positive maps. In this section we briefly discuss the notion of positive
maps, introduced by Fock and Goncharov [FG06] and discuss its relation to Frenet
curves. The notion of positive maps relies on the notion of totally positive unipotent
matrices.

Definition 2.12. Let B := {f1, . . . , fn} be a basis of V . A unipotent projective
transformation u in PGL(V ) is totally positive with respect to B if in the basis
B, it is represented by an upper-triangular matrix with ones on the diagonal, such
that all the minors are positive except those that are forced to be zero by u being
upper-triangular.

Remark 2.13. Unipotent here means that um has a representative that is conjugate
to an upper triangular matrix with only 1’s along the diagonal.

Definition 2.14. A k-tuple of flags (F1, . . . Fk) in F(V ) (k ≥ 3) is said to be
positive if F1 and F2 are transverse, and for some fixed basis B = {f1, . . . , fn} of V

such that fi lies in F
(i)
1 ∩ F

(n−i+1)
2 for all i = 1, . . . , n,

• there are projective transformations u1, . . . , uk−2 in PGL(V ) that are totally
positive with respect to B, and

• there is some projective transformation g in PGL(V ) that fixes both F1 and
F2,

such that

g · (F1, F2, F3, . . . , Fk) = (F1, F2, F
′
3, . . . , F

′
k),

where F ′
i := (u1u2 . . . ui−2) · F2 for all i = 3, . . . , k. We denote the space of positive

k-tuples of flags in F(V ) by F(V )k
+.

The notion of a positive k-tuple of flags does not depend on the choice of ba-
sis B. Fock and Goncharov [FG06, Theorem 1.2, Section 5.5–5.11] proved that if
(F1, . . . , Fk) is a positive k-tuple of flags, then so is (F2, . . . , Fk, F1).

Remark 2.15. If (F1, F2, . . . , Fk) is a positive k-tuple of flags, then for any 1 ≤ i1 <
i2 < · · · < il ≤ k with l ≥ 3, (Fi1 , . . . , Fil) is also a positive l-tuple of flags.

To define the notion of positive maps, we endow S1 with a clockwise orientation.

Definition 2.16. A k-tuple of pairwise distinct points (x1, . . . , xk) in S1 is cycli-
cally ordered if x1 < · · · < xk < x1, where < denotes the cyclic ordering on S1.

Definition 2.17. [FG06] A map φ : S1 → F(V ) is positive if for any k ≥ 3
and any cyclically ordered k-tuple of points (x1, . . . , xk) in S1, the k-tuple of flags
(φ(x1), . . . , φ(xk)) is positive.

Fock and Goncharov proved the following characterization of a positive triple of
flags (this is a consequence of [FG06, Theorem 9.1(a)]).
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re,1

re,2

se,1 = xT,3

se,2
xT,1

xT,2

T
e

Figure 1: The oriented planar polygon M , where the orientation induces a clockwise orien-
tation on ∂M .

Theorem 2.18 [FG06]. Let F := (F1, F2, F3) be a triple of flags in F(V ). This
triple is positive if and only if for any triple of positive integers i := (i1, i2, i3) that
sum to n, we have T i(F) > 0.

More generally, Fock and Goncharov [FG06, Section 9] showed that the space of
projective classes of positive k-tuples of flags can be explicitly parametrized using
cross ratios and triple ratios. To describe the parametrization of F(V )k

+/PGL(V )
consider an oriented planar polygon M with k vertices, and choose a triangulation
T of M such that the vertices of the triangles in the triangulation are exactly the
vertices of M (see Figure 1). We associate to a vertex v of M the flag F (v).

We fix the following notation to simplify the statements. Choose an orientation
on all the interior edges of T . For each interior edge e of T , let re,1 and re,2 be the
forward and backward endpoints of e respectively. Then let se,1 and se,2 be the two
vertices of M such that the triangles with vertices re,1, re,2, se,1 and re,1, re,2, se,2 are
both triangles of T , and re,1 < se,1 < re,2 < se,2 < re,1 according to the clockwise
orientation on ∂M (induced by the orientation on M , see Figure 1). Then denote
the quadruple of flags

(

F (re,1), F (se,1), F (re,2), F (se,2)
)

by F(e).
For each triangle T of T , let xT,1, xT,2 and xT,3 be the three vertices of T such

that xT,1 < xT,2 < xT,3 < xT,1 according to the clockwise orientation on ∂M (see
Figure 1). Then denote the triple of flags

(

F (xT,1), F (xT,2), F (xT,3)
)

by F(T ).

Proposition 2.19. [FG06, Theorem 9.1(a)] Let M be an oriented planar k-gon
(k ≥ 3) and T a triangulation of M as described above. Let T1, . . . , Tk−2 be the
triangles given by T and e1, . . . , ek−3 be the interior edges of T . Also, let B denote
the set of triples of positive integers that sum to n, and let A denote the set of pairs
of positive integers that sum to n. The map

F(V )k
+/PGL(V ) → (R+)

(n−1)(n−2)(k−2)
2 × (R+)(n−1)(k−3)
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given by

[F (v1), . . . , F (vk)] �→
(

(

T i(F(Tj))
)

j∈[1,k−2];i∈B
,
(

−Ck(F(ej))
)

j∈[1,k−3];k∈A

)

is a real analytic diffeomorphism.

From Proposition 2.19, one can deduce the following consequences.

Corollary 2.20. Let (F1, F2, F3, F4) be a positive quadruple of flags in F(V ). Let
g be a projective transformation in PGL(V ) that fixes F1 and F3, and whose eigen-
values (of some (equiv. all) linear representatives of g) have the same sign. Then
(F1, F2, F3, g · F4) is a positive quadruple of flags.

Proof. Since (F1, F2, F3, F4) is positive, T i(F1, F2, F3) > 0 and T i(F3, F4, F1) > 0 for
all triples of positive integers i := (i1, i2, i3) that sum to n. Thus, T i(F3, g·F4, F1) > 0
because g fixes both F1 and F3. Also, the positivity of (F1, F2, F3, F4) implies that
Ck(F1, F2, F3, F4) < 0 for all pairs of positive integers k := (k1, k2) that sum to n.
By a straightforward computation,

Ck(F1, F2, F3, g · F4) =
λk1(g)

λk1+1(g)
Ck(F1, F2, F3, F4).

Since the eigenvalues of g have the same sign, Ck(F1, F2, F3, g · F4) < 0 as well. By
Proposition 2.19, (F1, F2, F3, F4) is a positive quadruple of flags. �

Corollary 2.21. Let (F1, F2, F3) be a positive triple of flags in F(V ), and sup-
pose that F : [0, 1] → F(V ) be a continuous path of flags in F(V ) such that
(F1, F2, F3, F (t)) is generic for all t ∈ [0, 1]. If (F1, F2, F3, F (0)) is a positive quadru-
ple of flags, then so is (F1, F2, F3, F (t)) for all t ∈ [0, 1].

Proof. Since (F1, F2, F3, F (t)) is generic, the cross ratio Ck(F1, F2, F3, F (t)) and the
triple ratios T i(F1, F2, F3) and T i(F3, F (t), F1) are well-defined and non-zero for all
pairs of positive integers k := (k1, k2) that sum to n, and for all triples of positive in-
tegers i := (i1, i2, i3) that sum to n. Also, the positivity of (F1, F2, F3, F (0)) allows us
to apply Theorem 2.22 to deduce that Ck(F1, F2, F3, F (0)) < 0, T i(F1, F2, F3) > 0,
and T i(F3, F (0), F1) > 0. Thus, Ck(F1, F2, F3, F (t)) < 0, T i(F1, F2, F3) > 0, and
T i(F3, F (t), F1) > 0 for all t ∈ [0, 1]. Theorem 2.22 then implies that (F1, F2, F3, F (t))
is positive. �

The next theorem relates Frenet curves to positive maps. Namely, the cross ratios
and triple ratios of points along a Frenet curve are well-behaved.

Theorem 2.22. Let ξ : S1 → F(V ) be a Frenet curve.

(1) For all pairwise distinct triples of points x := (x1, x2, x3) in S1 and for all
triples of positive integers i := (i1, i2, i3) that sum to n, we have

T i
(

ξ(x)
)

> 0.
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(2) For all cyclically ordered quadruples a := (r1, s1, r2, s2) of points in S1, and for
all pairs of positive integers k := (k1, k2) that sum to n, we have

Ck
(

ξ(a)
)

< 0.

In particular every Frenet curve is a positive map.

This theorem can be proved using similar arguments to the ones Fock and Gon-
charov use in [FG06, Theorem 9.1], see for example [Zha15b, Proposition 2.4.7]
or [LM09, Appendix B].

Conversely, the positivity of a k-tuple ensures a strong transversality condition,
which we prove in Appendix A. A slightly weaker statement was proven in [FG06,
Proposition 9.4.].

Proposition 2.23. [FG06] Let (F1, . . . , Fk) be a positive k-tuple of flags in F(V )k
+.

Then for any positive integers n1, . . . , nk that sum to d ≤ n, we have that

dim

⎛

⎝

k
∑

j=1

F
(nj)
j

⎞

⎠ = d.

This proposition might make the the reader think that there is no difference
between Frenet curves and positive maps. But positive maps φ : S1 → F(V ) do not
even have to be continuous in general, and thus are in general not Frenet. However, if
we take a representation ρ : Γ → PGL(V ) into play, then the two notions agree: any
ρ-equivariant positive map φ : ∂Γ → F(V ) is Frenet [FG06, Theorem 1.15, Section
7.6-7.9].

3 Elementary Flows on Frenet Curves

In this section we define two types of flows, the elementary eruption flows and
elementary shearing flows on the space of Frenet curves Fre(V ). Later, we use infinite
combinations of these elementary flows to define flows on the Hitchin component
HitV (S). We equip S1 with a clockwise orientation.

3.1 The elementary eruption flow. Let F := (F1, F2, F3) be a generic triple
of flags in F(V )[3], and let i := (i1, i2, i3) be a triple of positive integers that sum
to n. For any real number t we define biF(t) to be the projective transformation in
PGL(V ) that is the projectivization of the linear automorphism of V that acts as

• the identity on F
(i1)
1 ,

• scaling by e
t

3 on F
(i2)
2 , and

• scaling by e− t

3 on F
(i3)
3 .
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With respect to the decomposition V = F
(i1)
1 + F

(i2)
2 + F

(i3)
3 , the transformation

biF(t) is represented by the matrix
⎛

⎝

Idi1 0 0
0 e

t

3 Idi2 0
0 0 e− t

3 Idi3

⎞

⎠ .

Lemma 3.1. Let i := (i1, i2, i3) be a triple of positive integers that sum to n, and
let F := (F1, F2, F3) be a generic triple of flags. For m = 1, 2, 3, set im := (im, im+1,
im−1) and Fm := (Fm, Fm+1, Fm−1), where the arithmetic in the subscripts is done
modulo 3. Then for all t ∈ R,

b
im−1

Fm−1
(t) · Fm = b

im+1

Fm+1
(t) · Fm.

Notation 3.2. Let F be a generic triple. For k = 1, 2, 3 and j = 1, . . . , n− 1, let fk,j

be a vector in F
(j)
k \ F

(j−1)
k (we use the convention that F

(0)
k = {0}). Then

Bi
F = {f1,1, . . . , f1,i1 , f2,1, . . . , f2,i2 , f3,1, . . . , f3,i3}

is a basis for R
n. We call Bi

F an (i,F)-adapted basis.

Proof. Observe first that by the definition of biF(t), we have that for l ≤ im,

b
im−1

Fm−1
(t) · F (l)

m = b
im+1

Fm+1
(t) · F (l)

m .

Thus, we only need to show that the same is true for l > im. Let

Bi
F = {f1,1, . . . , f1,i1 , f2,1, . . . , f2,i2 , f3,1, . . . , f3,i3}

is a basis for R
n be the (i,F)-adapted basis

Thus, for any non-zero vector f in F
(l)
m , we can write

f =
i1

∑

j=1

α1,jf1,j +
i2

∑

j=1

α2,jf2,j +
i3

∑

j=1

α3,jf3,j ,

for some real numbers αk,j . A direct computation gives that

b
im−1

Fm−1
(t) · [f ] =

⎡

⎣

im−1
∑

j=1

αm−1,jfm−1,j + e
t

3

im
∑

j=1

αm,jfm,j + e− t

3

im+1
∑

j=1

αm+1,jfm+1,j

⎤

⎦

=

⎡

⎣

im−1
∑

j=1

et/3αm−1,jfm−1,j + e
2t
3

im
∑

j=1

αm,jfm,j +
im+1
∑

j=1

αm+1,jfm+1,j

⎤

⎦ ,

b
im+1

Fm+1
(t) · [f ] =

⎡

⎣e
t

3

im−1
∑

j=1

αm−1,jfm−1,j + e− t

3

im
∑

j=1

αm,jfm,j +
im+1
∑

j=1

αm+1,jfm+1,j

⎤

⎦ .
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Hence, b
im−1

Fm−1
(t) · [f ] and b

im+1

Fm+1
(t) · [f ] are both lines that lie in the subspace of V

spanned by the im + 1 vectors

fm,1 , . . . , fm,im , e
t

3

im−1
∑

j=1

αm−1,jfm−1,j +
im+1
∑

j=1

αm+1,jfm+1,j .

In other words,

b
im−1

Fm−1
(t) ·

(

F (im)
m + [f ]

)

= b
im+1

Fm+1
(t) ·

(

F (im)
m + [f ]

)

for any non-zero vector f in F
(l)
m . This concludes the proof. �

With Lemma 3.1, we can now define the elementary eruption flow.

Definition 3.3. Let i := (i1, i2, i3) be a triple of positive integers that sum to n,
and let x := (x1, x2, x3) be a cyclically ordered triple of points in S1. For m = 1, 2,
3, let im := (im, im+1, im−1) and xm := (xm, xm+1, xm−1), where arithmetic in the
subscripts are done modulo 3. The i-elementary eruption flow with respect to x is
the continuous flow

(

εix

)

t
: ˜Fre(V ) → ˜Fre(V ),

defined by ξ �→ ξt =
(

εix
)

t
(ξ), where

ξt(p) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

bi1ξ(x1)
(t) · ξ(p) if x2 ≤ p ≤ x3;

bi2ξ(x2)
(t) · ξ(p) if x3 ≤ p ≤ x1;

bi3ξ(x3)
(t) · ξ(p) if x1 ≤ p ≤ x2.

Here, the inequality ≤ is with respect to the clockwise orientation on S1.

Remark 3.4. In the case when n = 3 and i1 = i2 = i3 = 1, the elementary erup-
tion flow is (up to projective transformations) the eruption flow defined in [WZ17,
Section 4.2.]. In this case, the eruption flow admits a nice geometric interpreta-
tion as changing the gluing parameter of a pair of nested triangles determined by
(ξ(x1), ξ(x2), ξ(x3)) (see Figure 2). This geometric interpretation also suggested the
name eruption flow.

It is not obvious that the elementary eruption flows are well defined. Lemma 3.1
implies that for all triples i := (i1, i2, i3) of positive integers that sum to n, and all
triples x := (x1, x2, x3) of cyclically ordered points in S1, the curve ξt =

(

εix
)

t
(ξ) :

S1 → F(V ) is a well-defined continuous curve. But to show that
(

εix
)

t
is well-defined

as a flow on ˜Fre(V ), we have show that ξt is in fact a Frenet curve. We prove now
that ξt satisfies property (1) of the definition of Frenet curves; the proof that ξt



606 Z. SUN ET AL. GAFA

ξ(x1)

ξ(x2)

ξ(x3)

Figure 2: When n = 3, the dark conic is ξ(1)(S1) ⊂ RP
2 and the dark dotted lines are

ξ(2)(x1), ξ(2)(x2) and ξ(2)(x3). After applying an elementary eruption at (x1, x2, x3), ξ
(1)
t (S1)

is the light curve and ξ
(2)
t (x1), ξ

(2)
t (x2) and ξ

(2)
t (x3) are the light dotted lines.

satisfies property (2) will be delayed to Section 3.3, where we state and prove a
more general result that holds for both the elementary eruption and shearing flows.

For i = 1, 2, 3, let im := (im, im+1, im−1) and xm := (xm, xm+1, xm−1), where
arithmetic in the subscripts are done modulo 3. For convenience, we consider the
curve bimξ(xm)(−t) · ξt which is projectively equivalent to ξt. Setting

aim
Fm

(t) := b
im+1

Fm+1
(−t)bim−1

Fm−1
(t), (3.1)

the curve bimξ(xm)(−t) · ξt : S1 → ˜Fre(V ) is given by

bimξ(xm)(−t) · ξt(p) =

⎧

⎪

⎨

⎪

⎩

ξ(p) if xm+1 ≤ p ≤ xm−1;
a
im−1

ξ(xm−1)
(t) · ξ(p) if xm−1 ≤ p ≤ xm;

a
im+1

ξ(xm+1)
(t)−1 · ξ(p) if xm ≤ p ≤ xm+1.

(3.2)

This has the advantage that for all xm+1 ≤ p ≤ xm−1 we have bimξ(xm)(−t) · ξt(p) =
ξ(p). Furthermore, we have the following lemma, which is useful in later computa-
tions.

Lemma 3.5. Let F := (F1, F2, F3) be a generic triple of flags, and let i := (i1, i2, i3)
be a triple of positive integers that sum to n. For m = 1, 2, 3, let Fm := (Fm, Fm+1,
Fm−1) and im := (im, im+1, im−1). Choose a basis {fm,1, . . . , fm,n} of V such that

F
(l)
m = SpanR{fm,1, . . . , fm,l} for all l = 1, . . . , n − 1. Then aim

Fm
(t) is represented in

this basis by an upper triangular matrix where the first im entries down the diagonal
are e

2t
3 and the last n − im entries down the diagonal are e− t

3 .
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Proof. By Lemma 3.1, aim
Fm

(t) fixes the flag Fm. Therefore with respect to the basis
{fm,1, . . . , fm,n}, aim

Fm
(t) is represented by an upper triangular matrix. Furthermore,

aim
Fm

(t) is the projectivization of the linear map which acts as

• scaling by e− t

3 on F
(im−1)
m−1 + F

(im+1)
m+1 and

• scaling by e
2t
3 on F

(im)
m .

The lemma now follows. �
As a consequence of Lemma 3.5, we have the following observation.

Corollary 3.6. Let F := (F1, F2, F3) be a generic triple of flags, and let i :=
(i1, i2, i3) and j := (j1, j2, j3) be triples of positive integers that sum to n. If i2 = j2

or i3 = j3, then

ai
F(t)aj

F(t) = aj
F(t)ai

F(t).

Proof. We will prove this in the case when i2 = j2; the proof when i3 = j3 is
similar. For m = 1, 2, 3, let {fm,1, . . . , fm,n} be a basis of V such that F

(l)
m =

SpanR(fm,1, . . . , fm,l) for all l = 1, . . . , n − 1. Since i2 = j2, if i1 = j1, then i3 = j3,
and the corollary holds trivially. Thus, we may assume without loss of generality
that k := j1 − i1 = i3 − j3 > 0.

Let Bi
F = {f1,1, . . . , f1,i1 , f2,1, . . . , f2,i2 , f3,1, . . . , f3,i3} be an (i,F)-adapted basis

of V . For each l = 1, . . . , k, we may write f1,i1+l as

f1,i1+l =
i1

∑

j=1

ajf1,j +
i2

∑

j=1

bjf2,j +
i3

∑

j=1

cjf3,j

for some constants aj , bj and cj . Let A denote the linear map that acts as scaling by
e− t

3 on F
(i2)
2 + F

(i3)
3 and scaling by e

2t
3 on F

(i1)
1 . Also, let B denote the linear map

that acts as scaling by e− t

3 on F
(j2)
2 + F

(j3)
3 and scaling by e

2t
3 on F

(j1)
1 . Then for all

l = 1, . . . , k,

BA · f1,i1+l = B ·

⎛

⎝(e
2t
3 − e− t

3 )
i1

∑

j=1

ajf1,j + e− t

3 f1,i1+l

⎞

⎠

= e
4t
3

i1
∑

j=1

ajf1,j + e
t

3

⎛

⎝

i2
∑

j=1

bjf2,j +
i3

∑

j=1

cjf3,j

⎞

⎠

= A ·
(

e
2t
3 f1,i1+l

)

= AB · f1,i1+l.

On the other hand, AB · f = BA · f for all f in the (j,F)-adapted basis

Bj
F = {f1,1, . . . , f1,j1 , f2,1, . . . , f2,j2 , f3,1, . . . , f3,j3}.

Since {f1,1, . . . , f1,j1 , f2,1, . . . , f2,j2 , f3,1, . . . , f3,j3} is a basis of V , this implies that
AB = BA. Lemma 3.5 then implies the corollary. �
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As a preliminary step to prove that ξt :=
(

εix
)

t
(ξ) is a Frenet curve, we prove

the following proposition, which describes how certain projective invariants along
the image of ξt change with t.

Proposition 3.7. Let i := (i1, i2, i3) be a triple of positive integers that sum to n,
and let x := (x1, x2, x3) be a cyclically ordered triple of points in S1. Let

(

εix
)

t
be

the i-elementary eruption flow with respect to x, and let ξt :=
(

εix
)

t
(ξ). Then we

have the following:

(1) For any triple j := (j1, j2, j3) of positive integers that sum to n, we have

T j(ξt(x)) =
{

T j(x) if j �= i;
et · T j(x) if j = i.

(2) For any triple y := (y1, y2, y3) of pairwise distinct points in S1 such that y1,
y2, y3 lie in the closure of a connected component of S1 \ {x1, x2, x3}, we have
T j(ξt(y)) = T j(ξ(y)) for any triple j := (j1, j2, j3) of positive integers that sum
to n.

(3) For any cyclically ordered quadruple a := (r1, s1, r2, s2) of points in S1 such
that r1, s1, r2 lie in the closure of a connected component of S1 \ {x1, x2, x3},
and s2 either lies in that same closure or is equal to the xi that is not a boundary
point of that closure, we have Ck(ξt(a)) = Ck(ξ(a)) for any pair k := (k1, k2)
of positive integers that sum to n.

For the proof of this proposition we express the triple ratios using determi-
nants. To describe this, let F := (F1, F2, F3) be generic triple of flags in F(V )[3]

and let i := (i1, i2, i3) be a triple of positive integers that sum to n. Let Bi
F =

{f1,1, . . . , f1,i1 , f2,1, . . . , f2,i2 , f3,1, . . . , f3,i3} be an (i,F)-adapted basis. Then

F
(i1)
1 ∧ F

(i2)
2 ∧ F

(i3)
3 := det(f1,1, . . . , f1,i1 , f2,1, . . . , f2,i2 , f3,1, . . . , f3,i3)

is non-zero. Of course, F
(i1)
1 ∧F

(i2)
2 ∧F

(i3)
3 depends on the choice of the (i,F)-adapted

basis, but one can verify that the ratio

F
(i1+1)
1 ∧ F

(i2)
2 ∧ F

(i3−1)
3 · F

(i1−1)
1 ∧ F

(i2+1)
2 ∧ F

(i3)
3 · F

(i1)
1 ∧ F

(i2−1)
2 ∧ F

(i3+1)
3

F
(i1+1)
1 ∧ F

(i2−1)
2 ∧ F

(i3)
3 · F

(i1)
1 ∧ F

(i2+1)
2 ∧ F

(i3−1)
3 · F

(i1−1)
1 ∧ F

(i2)
2 ∧ F

(i3+1)
3

does not, and in fact evaluates to the triple ratio T i(F).

Proof of Proposition 3.7. Proof of (1). For m = 1, 2, 3, let im := (im, im+1, im−1),
jm := (jm, jm+1, jm−1), and xm := (xm, xm+1, xm−1), where the arithmetic in the
subscripts are done modulo 3. From the definition of aim

ξ(xm)(t) and that of ξt, it is
clear that

b
im+1

ξ(xm+1)
(−t) · ξt(xm) =

(

ξ(xm), aim
ξ(xm)(t) · ξ(xm+1), ξ(xm−1)

)

.
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Suppose first that j �= i. Then im+1 ≥ jm+1 + 1 for some m = 1, 2, 3. By
Lemma 3.5, aim

ξ(xm)(t) acts on ξ(jm+1+1)(xm+1) ⊂ ξ(im+1)(xm+1) by scaling by λ :=

e− t

3 . Since the triple ratio is a projective invariant, we have

T j(ξt(x)) = T jm
(

b
im+1

ξ(xm+1)
(−t) · ξt(xm)

)

= T jm
(

ξ(xm), aim
ξ(xm)(t) · ξ(xm+1), ξ(xm−1)

)

=
ξ(jm−1+1)(xm−1) ∧ ξ(jm)(xm) ∧ ξ(jm+1−1)(xm+1) · λjm+1−1

ξ(jm−1+1)(xm−1) ∧ ξ(jm−1)(xm) ∧ ξ(jm+1)(xm+1) · λjm+1

· ξ(jm−1−1)(xm−1) ∧ ξ(jm+1)(xm) ∧ ξ(jm+1)(xm+1) · λjm+1

ξ(jm−1)(xm−1) ∧ ξ(jm+1)(xm) ∧ ξ(jm+1−1)(xm+1) · λjm+1−1

·ξ
(jm−1)(xm−1) ∧ ξ(jm−1)(xm) ∧ ξ(jm+1+1)(xm+1) · λjm+1+1

ξ(jm−1−1)(xm−1) ∧ ξ(jm)(xm) ∧ ξ(jm+1+1)(xm+1) · λjm+1+1

= T jm(ξ(xm)) = T j(ξ(x)).

On the other hand, ai
ξ(x)(t) acts on

• ξ(i2)(x2) as scaling by e− t

3 ,
•

(

ξ(i2+1)(x2) + ξ(i3)(x3)
)

∩ ξ(i1)(x1) as scaling by e
2t
3 ,

•
(

ξ(i1)(x1) + ξ(i2+1)(x2)
)

∩ ξ(i3)(x3) as scaling by e− t

3 .

Thus,

T i(ξt(x)) = T i
(

ξ(x1), ai
ξ(x)(t) · ξ(x2), ξ(x3)

)

=
ξ(i1+1)(x1) ∧ ξ(i2)(x2) ∧ ξ(i3−1)(x3) · e− i2t

3

ξ(i1+1)(x1) ∧ ξ(i2−1)(x2) ∧ ξ(i3)(x3) · e− (i2−1)t
3

· ξ(i1−1)(x1) ∧ ξ(i2+1)(x2) ∧ ξ(i3)(x3) · e− i2t

3 e
2t
3

ξ(i1)(x1) ∧ ξ(i2+1)(x2) ∧ ξ(i3−1)(x3) · e− i2t

3 e− t

3

·ξ
(i1)(x1) ∧ ξ(i2−1)(x2) ∧ ξ(i3+1)(x3) · e− (i2−1)t

3

ξ(i1−1)(x1) ∧ ξ(i2)(x2) ∧ ξ(i3+1)(x3) · e− i2t

3

= et · T i(ξ(x)).

Proof of (2). Again, we may assume without loss of generality that the connected
component of S1 \ {x1, x2, x3} whose closure contains y1, y2, y3 is

{q ∈ S1 : x3 ≤ q ≤ x1}.

Then ξt(y) = bi2ξ(x2)
(t)·ξ(y). Since the triple ratio is a projective invariant, (2) follows

immediately.
Proof of (3). We may assume without loss of generality that the connected com-

ponent of S1 \ {x1, x2, x3} whose closure contains r1, s1, r2 is

{q ∈ S1 : x3 ≤ q ≤ x1}.
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Then either x3 ≤ s2 ≤ x1, or s2 = x2. Observe that Ck(ξt(p)) depends only on
ξ
(1)
t (s2) (and not on the rest of the flag ξt(s2)). From the definition of bi2ξ(x2)

(t) it is

clear that ξ
(1)
t (s2) = bi2ξ(x2)

(t)·ξ(1)(s2), ξt(r1) = bi2ξ(x2)
(t)·ξ(r1), ξt(r2) = bi2ξ(x2)

(t)·ξ(r2),

and ξt(s1) = bi2ξ(x2)
(t)·ξ(s1). Statement (3) then follows from the projective invariance

of the cross ratio. �

The following is a consequence of Proposition 3.7, which implies that property
(1) in the definition of Frenet curves (Definition 2.6) holds for ξt :=

(

εix
)

t
(ξ).

Proposition 3.8. Let i := (i1, i2, i3) be a triple of positive integers that sum to n,
let x := (x1, x2, x3) be a cyclically ordered triple of points in S1, let

(

εix
)

t
be the

i-elementary eruption flow with respect to x, and let

ξt :=
(

εix

)

t
(ξ).

For any pairwise distinct points p1, . . . , pk in S1, and any positive integers n1, . . . ,
nk that sum to d ≤ n, we have

dim

⎛

⎝

k
∑

j=1

ξ
(nj)
t (pj)

⎞

⎠ = d.

Proof. We may assume without loss of generality that (p1, . . . , pk) is cyclically or-
dered with respect to the cyclic order on S1. By Proposition 2.23 it is sufficient to
show that the k-tuple of flags (ξt(p1), . . . , ξt(pk)) is positive. This is what we are
going to prove now. We extend the cyclic order on {p1, . . . , pk} to a cyclic order on
{p1, . . . , pk}∪{x1, x2, x3} (it is possible that xi = pj for some i, j). This allows us to
consider {p1, . . . , pk} ∪ {x1, x2, x3} as the vertices of a planar polygon M inscribed
in the circle S1. Choose a triangulation T of M such that the vertices of T are the
vertices of M , and the triangle with vertices x1, x2, x3 is a triangle in T . Also, choose
an orientation on all the interior edges of T .

For each interior edge e of T , let re,1 and re,2 be the forward and backward
endpoints of e respectively, and let se,1 and se,2 be the two vertices of M such that
the triangles with vertices re,1, re,2, se,1 and re,1, re,2, se,2 are both triangles of
T , and re,1 < se,1 < re,2 < se,2 < re,1 according to the clockwise orientation on
∂M (see Figure 1). We set Ft(e) :=

(

ξt(re,1), ξt(se,1), ξt(re,2), ξt(se,2)
)

. Similarly, for
each triangle T of T , let xT,1, xT,2 and xT,3 be the vertices of T such that xT,1 <
xT,2 < xT,3 < xT,1 (see Figure 1), and set Ft(T ) :=

(

ξt(xT,1), ξt(xT,2), ξt(xT,3)
)

.
Since ξ0 = ξ, by Theorem 2.22, we have that:

• for every interior edge e of T and for all pairs of positive integers k that sum
to n, we have Ck(F0(e)) < 0.

• for every triangle T of the triangulation T and for all triples of positive integers
i that sum to n, the triple ratio satisfies T i(F0(T )) > 0.
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By Proposition 3.7, it follows that the above two statements about the cross ratio
and triple ratio above also hold for Ft(e) and Ft(T ). Therefore Theorem 2.22 implies
that the k-tuple (ξt(p1), . . . , ξt(pk)) is positive. �

3.2 The elementary shearing flow. To define the elementary shearing flow,
consider a pair E := (E1, E2) of transverse flags in F(V ), and a pair k := (k1, k2)
of positive integers that sum to n. For any real number t, we denote by dk

E(t)
the projective transformation in PGL(V ) that is the projectivization of the linear
automorphism of V which acts as

• the identity on E
(k1)
1 ,

• scaling by e− t

2 on E
(k2)
2 .

So with respect to the decomposition V = E
(k1)
1 + E

(k2)
2 , the projective transforma-

tion dk
E(t) can be represented by the matrix

(

Idk1 0
0 e− t

2 Idk2

)

.

Lemma 3.9. Let k := (k1, k2) be a pair of positive integers that sum to n, and let
E := (E1, E2) be a transverse pair of flags. For m = 1, 2, set km := (km, km+1) and
Em := (Em, Em+1), where the arithmetic in the subscripts are done modulo 2. Then
for all t ∈ R,

(1) dk
E(t) fixes E, and

(2) dk1
E1

(t) = dk2
E2

(−t).

Proof. Since E is a transverse pair of flags, we may choose a basis {e1, . . . , en} of V

such that ej is a non-zero vector in E
(j)
1 ∩E

(n+1−j)
2 for all j = 1, . . . , n− 1. Observe

from the definition that dk
E(t) fixes the point [ej ] in P(V ) for all j, so it necessarily

fixes E. This proves (1). (2) is obvious from the definition of dk
E(t). �

With this, we can define the elementary shearing flow.

Definition 3.10. Let r := (r1, r2) be a pair of distinct points in S1 and let k :=
(k1, k2) be a pair of positive integers that sum to n. For m = 1, 2, set rm :=
(rm, rm+1) and km := (km, km+1), where the subscripts are done modulo 2. The
k-elementary shearing flow with respect to r is the continuous flow

(ψk
r )t : ˜Fre(V ) → ˜Fre(V )

defined by ξ �→ ξt =
(

ψk
r

)

t
(ξ), where

ξt(p) =

{

dk2

ξ(r2)
(t) · ξ(p) if r2 ≤ p ≤ r1;

dk1

ξ(r1)
(t) · ξ(p) if r1 ≤ p ≤ r2.

(3.3)
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Remark 3.11. In the case when dim(V ) = 3, Goldman [Gol90, Gol13] introduced
the hyperbolic shear and the bulge deformations associated to r. The hyperbolic
shear associated to r is equal to

(

ψ
(1,2)
r

)

t
◦

(

ψ
(2,1)
r

)

t
, and the bulge associated to r

is equal to
(

ψ
(1,2)
r

)

−t
◦

(

ψ
(2,1)
r

)

t
, see [Gol13] and [WZ17, Section 4.1].

By Lemma 3.9, for all pairs of positive integers k := (k1, k2) that sum to n and
for all pairs of distinct points r := (r1, r2) in S1, ξt :=

(

ψk
r

)

t
(ξ) is a well-defined

continuous curve, obtained by deforming the two subsegments of ξ(S1) given by r1

and r2 using two different projective transformations. To prove that (ψk
r )t is well-

defined, we need to verify that ξt is indeed a well-defined Frenet curve for any t. We
now prove that ξt satisfies property (1) of the definition of Frenet curves; the proof
that it satisfies property (2) will be delayed to Section 3.3.

The arguments are analogous to the arguments for the eruption flows. For m = 1,
2, let km := (km, km+1) and let rm := (rm, rm+1), where arithmetic in the subscripts
are done modulo 2. For convenience, we consider the curve d

km+1

ξ(rm+1)
(−t) · ξt, which

is projectively equivalent to ξt. Setting

ckm

Em
(t) := d

km+1

Em+1
(−t)dkm

Em
(t) = dkm

Em
(2t), (3.4)

the curve d
km+1

ξ(rm+1)
(−t) · ξt : S1 → ˜Fre(V ) has the following description:

d
km+1

ξ(rm+1)
(−t) · ξt(p) =

{

ξ(p) if rm+1 ≤ p ≤ rm;
ckm

ξ(rm)(t) · ξ(p) if rm ≤ p ≤ rm+1.
(3.5)

Furthermore, the following lemma gives a useful matrix representation for the pro-
jective transformation ckm

Em
(t) when we choose an appropriate basis for V . It follows

immediately from Lemma 3.9.

Lemma 3.12. Let k := (k1, k2) be a pair of positive integers that sum to n, and
let E := (E1, E2) be a transverse pair of flags. For m = 1, 2, let km := (km, km+1)
and Em := (Em, Em+1), where arithmetic in the subscripts are done modulo 2.

Let {em,1, . . . , em,n} be a basis of V such that for all l = 1, . . . , n − 1, E
(l)
m =

SpanR{em,1, . . . , em,l}. Then ckm

Em
(t) is represented in this basis by an upper trian-

gular matrix where the first km entries down the diagonal are 1 and the last km+1

entries down the diagonal are e−t.

To prove that ξt is a Frenet curve we first observe how the cross ratios and triple
ratios evaluated at certain flags along ξt change with t.

Proposition 3.13. Let k := (k1, k2) be a pair of positive integers that sum to n,
and let r := (r1, r2) be a pair of distinct points in S1. Let

(

ψk
r

)

t
be the k-elementary

shear flow with respect to r, and let ξt :=
(

ψk
r

)

t
(ξ). Then we have the following:
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(1) Let s1, s2 be points in S1 such that a := (r1, s1, r2, s2) is a quadruple of cycli-
cally ordered points in S1. Then for any pair l := (l1, l2) of positive integers
that sum to n, we have Cl(ξt(a)) = etδl,kCk(ξ(a)), where δl,k = 1 if l = k and
0 otherwise.

(2) For any quadruple of cyclically ordered points b := (y1, z1, y2, z2) in S1 such
that y1, z1, y2, z2 lie in the closure of a connected component of S1 \ {r1, r2},
we have Cl(ξt(b)) = Cl(ξ(b)) for any pair l := (l1, l2) of positive integers that
sum to n.

(3) For any triple of cyclically ordered points x := (x1, x2, x3) in S1 such that
x1, x2, x3 lie in the closure of a connected component of S1 \ {r1, r2}, we have
T i(ξt(x)) = T i(ξ(x)) for any triple i := (i1, i2, i3) of positive integers that sum
to n.

For the proof we use a description of the cross ratio using determinants. Let
K1, K2 ∈ P(V ∗) be hyperplanes in V and let P1, P2 ∈ P(V ) be lines in V , such that
Pi is not contained in Kj for all i, j = 1, 2. For any basis {ki,1, . . . , ki,n−1} for the
hyperplane Ki, there is a covector αi with ker(αi) = Ki such that

αi(vj) = det(ki,1, . . . , ki,n−1, vj).

for any vector vj in Pj . We use this to express the cross ratio.

Proof. Proof of (1). Let {f1, . . . , fn} be a basis of V such that fi is a non-zero vector
in ξ(i)(r1) ∩ ξ(n−i+1)(r2). For m = 1, 2, let em be a non-zero vector in ξ(1)(sm), and
write

em =
n

∑

k=1

αm,kfk

for some real numbers αm,k. Then we can compute that

Cl(ξt(a))

=
det(f1, . . . , f̂l1+1, . . . , fn, dk

ξ(r)(−t) · e2)

det(f1, . . . , f̂l1+1, . . . , fn, dk
ξ(r)(t) · e1)

·
det(f1, . . . , f̂l1 , . . . , fn, dk

ξ(r)(t) · e1)

det(f1, . . . , f̂l1 , . . . , fn, dk
ξ(r)(−t) · e2)

=
α2,l1+1 det(f1, . . . , f̂l1+1, . . . , fn, dk

ξ(r)(−t) · fl1+1)

α1,l1+1 det(f1, . . . , f̂l1+1, . . . , fn, dk
ξ(r)(t) · fl1+1)

·
α1,l1 det(f1, . . . , f̂l1 , . . . , fn, dk

ξ(r)(t) · fl1)

α2,l1 det(f1, . . . , f̂l1 , . . . , fn, dk
ξ(r)(−t) · fl1)

.

If l1 �= k1, then dk
ξ(r)(t) scales fl1 and fl1+1 by the same amount, so

Cl(ξt(a))

=
α2,l1+1 det(f1, . . . , f̂l1+1, . . . , fn, fl1+1)

α1,l1+1 det(f1, . . . , f̂l1+1, . . . , fn, fl1+1)
· α1,l1 det(f1, . . . , f̂l1 , . . . , fn, fl1)

α2,l1 det(f1, . . . , f̂l1 , . . . , fn, fl1)
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=
det(f1, . . . , f̂l1+1, . . . , fn, e2)

det(f1, . . . , f̂l1+1, . . . , fn, e1)
· det(f1, . . . , f̂l1 , . . . , fn, e1)

det(f1, . . . , f̂l1 , . . . , fn, e2)

= Cl(ξ(a)).

Otherwise,

Ck(ξt(a))

=
α2,k1+1 det(f1, . . . , f̂k1+1, . . . , fn, e

t

2 fk1+1)

α1,k1+1 det(f1, . . . , f̂k1+1, . . . , fn, e− t

2 fk1+1)
· α1,k1 det(f1, . . . , f̂k1 , . . . , fn, fk1)

α2,k1 det(f1, . . . , f̂k1 , . . . , fn, fk1)

= et · det(f1, . . . , f̂k1+1, . . . , fn, e2)

det(f1, . . . , f̂k1+1, . . . , fn, e1)
· det(f1, . . . , f̂k1 , . . . , fn, e1)

det(f1, . . . , f̂k1 , . . . , fn, e2)

= et · Ck(ξ(a)).

This proves (1).
Proof of (2). We may assume without loss of generality that r1 ≤ y1, z1, y2, z2 ≤

r2 < r1. Then ξt(ym) = dk
ξ(r)(t) · ξ(ym) and ξt(zm) = dk

ξ(r)(t) · ξ(zm) for all m = 1, 2,
and the projective invariance of the cross ratio immediately gives (2). The proof of
(3) follows analoguously using the projective invariance of the triple ratio. �

With Propositon 3.13 we can now prove the following theorem using the same
arguments (with obvious modifications) as in the proof of Proposition 3.8. We omit
the proof to avoid repetition.

Proposition 3.14. Let k := (k1, k2) be a pair of positive integers that sum to n,
let r := (r1, r2) be a pair of distinct points in S1, let

(

ψk
r

)

t
be the k-elementary

shearing flow with respect to r, and let

ξt :=
(

ψk
r

)

t
(ξ).

For any pairwise distinct points p1, . . . , pk in S1, and any positive integers n1, . . . ,
nk that sum to d ≤ n, we have

dim

⎛

⎝

k
∑

j=1

ξ
(nj)
t (pj)

⎞

⎠ = d.

3.3 Eruption and shearing flows preserve the Frenet property. In this
section we finish the proof that the eruption and shearing flows preserve the Frenet
property:

Theorem 3.15.

(1) Let i := (i1, i2, i3) be a triple of positive integers that sum to n, and let x :=
(x1, x2, x3) be a cyclically ordered triple of points in S1. Then the i-elementary

eruption flow with respect to x,
(

εix
)

t
, is a well defined flow on ˜Fre(V ). In

particular, if ξ is a Frenet curve, then for all t ∈ R, the continuous curve
ξt = (εix)t(ξ) is a Frenet curve.
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(2) Let k := (k1, k2) be a pair of positive integers that sum to n, and let r := (r1, r2)
be a pair of distinct points in S1. Then the k-elementary shearing flow with
respect to r,

(

ψk
r

)

t
, is a well defined flow on ˜Fre(V ). In particular, if ξ is a

Frenet curve, then for all t ∈ R, the continuous curve ξt = (ψk
r )t(ξ) is a Frenet

curve.

Proof. We provide the proof for the eruption flow in detail, the proof for the shearing
flow is analogous. The key point is to show that the continuous curve ξt = (εix)t(ξ)
satisfies the Frenet property. Then for any t ∈ R, the map

(

εix
)

t
: ˜Fre(V ) → ˜Fre(V )

is well-defined, and the flow property
(

εix
)

t′ ◦
(

εix
)

t
=

(

εix
)

t+t′ is immediate from the
definition.

We established the first property required for ξt to be a Frenet curve in Proposi-
tion 3.8, i.e. that for any pairwise distinct points p1, . . . , pk in S1, and any positive
integers n1, . . . , nk that sum to d ≤ n, we have

dim

⎛

⎝

k
∑

j=1

ξ
(nj)
t (pj)

⎞

⎠ = d.

We now establish the second property required for ξt to be a Frenet curve. Namely
we show that for any point p in S1 and all sequences {(pi,1, . . . , pi,k)}∞

i=1 of pairwise
distinct k-tuples in S1 such that limi→∞ pi,j = p for all j = 1, . . . , k, we have

lim
i→∞

k
∑

j=1

ξ(nj)(pi,j) = ξ(d)(p).

We first prove this when p lies in S1\{x1, x2, x3}. We may assume without loss
of generality that x3 < p < x1. Then x3 < pi,j < x1 for sufficiently large i and for
all j = 1, . . . , k. By definition of the eruption flow, ξt(p) = bi2ξ(x2)

(t) · ξ(p) for all

x3 < p < x1, where bi2ξ(x2)
is the projective transformation defined in Section 3.1.

Thus we have

lim
i→∞

k
∑

j=1

ξ
(nj)
t (pi,j) = bi2ξ(x2)

(t) · lim
i→∞

k
∑

j=1

ξ(nj)(pi,j) = bi2ξ(x2)
(t) · ξ(d)(p) = ξ

(d)
t (p).

Now suppose that p ∈ {x1, x2, x3}. We may assume without loss of generality that
p = x2. For sufficiently large i and for all j = 1, . . . , k, we know that x1 < pi,j < x3.
From the definition of the eruption flow, we have ξt(p) = bi3ξ(x3)

(t) · ξ(p) for all x1 ≤
p ≤ x2, and ξt(p) = bi1ξ(x1)

(t) · ξ(p) for all x2 ≤ p ≤ x3. Also, recall from Lemma 3.1

that ai2
ξ(x2)

(t) := bi3ξ(x3)
(−t)bi1ξ(x1)

(t) fixes the flag ξ(x2). Let L := {j : x1 < pi,j ≤
x2 for sufficiently large i} and R := {j : x2 < pi,j < x3 for sufficiently large i}. By
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taking subsequences, we may assume that L ∪ R = {1, . . . , k} is a disjoint union.
Then

lim
i→∞

k
∑

j=1

ξ
(nj)
t (pi,j) = lim

i→∞

⎛

⎝bi3ξ(x3)
(t) ·

∑

j∈L

ξ(nj)(pi,j) + bi1ξ(x1)
(t) ·

∑

j∈R

ξ(nj)(pi,j)

⎞

⎠

= bi3ξ(x3)
(t) · lim

i→∞

⎛

⎝

∑

j∈L

ξ(nj)(pi,j) + ai2
ξ(x2)

(t) ·
∑

j∈R

ξ(nj)(pi,j)

⎞

⎠ ,

so it sufficient to show that

lim
i→∞

⎛

⎝

∑

j∈L

ξ(nj)(pi,j) + ai2
ξ(x2)

(t) ·
∑

j∈R

ξ(nj)(pi,j)

⎞

⎠ = ξ(d)(x2). (3.6)

Let nL =
∑

j∈L nj and nR =
∑

j∈R nj . Of course we have limi→∞
∑

j∈L ξ(nj)(pi,j)
= ξ(nL)(x2) and ai2

ξ(x2)
(t) ·

∑

j∈R ξ(nj)(pi,j) = ξ(nR)(x2). However, to control the limit
of the sequence of d = nL + nR dimensional subspaces

⎧

⎨

⎩

∑

j∈L

ξ(nj)(pi,j) + ai2
ξ(x2)

(t) ·
∑

j∈R

ξ(nj)(pi,j)

⎫

⎬

⎭

∞

i=1

(3.7)

we have to work a bit harder.
In order to allow ourselves access to some continuity arguments later, we view the

sequence of subspaces (3.7) as part of a continuous family of subspaces parameterized
by tuples of points in S1. For that purpose, we use the following notation. Let (x1, x3)
denote the subinterval of S1 that contains x2, and whose endpoints are x1 and x3.
Then for any l = 1, . . . , n − 1, define the map ϕ(l) : (x1, x3)l → Grl(V ) by

ϕ(l) : (q1, . . . , ql) �→ ξ(w1)(t1) + · · · + ξ(wl′ )(tl′),

where {t1, . . . , tl′} is the set {q1, . . . , ql} (l′ might not be equal to l if the qj ’s are not
pairwise distinct), and wr := |{j : qj = tr}| for all r = 1, . . . , l′. Since ξ is Frenet,
ϕ(l) is well-defined and continuous. In this notation, to prove that (3.6) holds, it is
sufficient to show that

lim
(p,q)→(x2,...,x2)

ϕ(nL)(p) + ai2
ξ(x2)

(t) · ϕ(nR)(q) = ϕ(d)(x2, . . . , x2), (3.8)

where the limit is taken over all p ∈ (x1, x2]nL and q ∈ (x2, x3)nR . Here (x1, x2] is
the half-open subinterval of (x1, x3) with endpoints x1 and x2, and (x2, x3) is the
open subinterval of (x1, x3) with endpoints x2 and x3.

Consider the flag G ∈ F(V ) given by

G(j) :=
{

ξ(j)(x1) if j ≤ i1;
ξ(i1)(x1) + ξ(j−i1)(x3) if j > i1.
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By the Frenet property of ξ, ξ(x2) and G are transverse. Let (e1, · · · , en) be a basis
of V such that ej ∈ ξ(j)(x2) ∩ G(n−j+1). Then ξ(x2)(j) = SpanR{e1, . . . ej} and
G(j) = SpanR{en, . . . , en−j+1}. The projective transformation ai2

ξ(x2)
(t) is then the

projectivization of the linear map g(t), which written with respect to this basis is
given by the matrix

g(t) =

(

e
2t
3 Idi2 0
0 e− t

3 Idn−i2

)

.

For all p ∈ (x1, x2]nL and q ∈ (x2, x3)nR , set

Fp,q(t) := ϕ(nL)(p) + ai2
ξ(x2)

(t) · ϕ(nR)(q).

The d-dimensional subspace Fp,q(t) is naturally endowed with a filtration F
(l)
p,q(t),

defined by

F (l)
p,q(t) :=

{

ϕ(l)(p1, . . . , pl) if l = 1, . . . , nL;
ϕ(nL)(p1, . . . , pnL

) + ai2
ξ(x2)

(t) · ϕ(l−nL)(q1, . . . , ql−nL
) if l = nL + 1, . . . , d.

By Proposition 3.8, F
(l)
p,q(t) ∩ G(n−l) = {0} for all l = 1, . . . , d. As such, there is a

unique vector kl = kl(p,q, t) ∈ F
(l)
p,q(t) ∩ G(n−l+1) that can be written as

kl = el +
n

∑

r=l+1

kr
l er

for some real numbers kr
l = kr

l (p,q, t). Furthermore, since Proposition 3.8 implies
that F

(l−1)
p,q (t) ∩ G(n−l+1) = {0} when l = 2, . . . , d, we see that kl does not lie in

F
(l−1)
p,q (t). Thus, (k1, . . . , kd) is a basis for Fp,q(t).

To prove that (3.8) holds, it is now sufficient to show that for all l = 1, . . . , d,

lim
(p,q)→(x2,...,x2)

kl(p,q, t) = el,

which is in turn equivalent to showing that for all l = 1, . . . , d and r = l + 1, . . . , n,

lim
(p,q)→(x2,...,x2)

kr
l (p,q, t) = 0. (3.9)

By the Frenet property of ξ, we know that (3.9) holds when t = 0. This implies
that (3.9) holds for general t when l ≤ nL, because kr

l (p,q, t) = kr
l (p,q, 0) for all

l = 1, . . . , nL and r = l + 1, . . . , n. To prove the case when l > nL, we calculate
an expression for kr

l (p,q, t) that will allow us to use the fact that (3.9) holds when
t = 0 to deduce that (3.9) holds for general t.

To do so, first observe that ϕ(1)(q) ⊂ · · · ⊂ ϕ(nR)(q) is a filtration of the nR-
dimensional subspace ϕ(nR)(q). The Frenet property of ξ implies that ϕ(i)(q) ∩
G(n−i) = {0} for all i = 1, . . . , nR. Thus, the same construction as above gives a
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basis (f1, . . . , fnR
) of ϕ(nR)(q) with the property that for all i = 1, . . . , nR, fi =

fi(q) ∈ ϕ(i)(q) ∩ G(n−i+1), fi does not lie in ϕ(i−1)(q), and fi can be written as

fi = ei +
n

∑

r=i+1

f r
i er

for some real numbers f r
i = f r

i (q).
We denote by U the n × nL matrix whose columns are (k1, . . . , knL

) from left to
right, written in the basis (e1, · · · , en), and by Vi the n× i matrix whose columns are
(f1, . . . , fi) from left to right, written in the basis (e1, · · · , en). For all l = nL+1, . . . , d
and r = l+1, . . . , n, we can then give an expression for kr

l (p,q, t) in terms of minors
of U and Vl−nL

and the eigenvalues of linear map g(t). For this we denote by Il,r the
collection of subsets of {1, . . . , l − 1, r} with cardinality l − nL. For any I ∈ Il,r we
set Î := {1, . . . , l − 1, r} \ I. Denote by mI(q) the (l − nL) × (l − nL) minor of Vl−nL

associated to the rows numbered by the integers in I, and by mÎ(p) the nL × nL

minor of U associated to the rows numbered by the integers in Î. We then have the
following statements which we prove below.

(I) For all j = 1, . . . , n, let λj(g(t)) be the eigenvalue of g(t) that corresponds to
ej . Then

∑

I∈Il,l

σIβI(g(t))mÎ(p)mI(q) �= 0,

where σI = (−1)
∑l

i=1 i+
∑

i∈I i and βI(g(t)) :=
∏

j∈I λj(g(t)).
(II) For any l = nL + 1, . . . , d and any r = l + 1, . . . , n,

kr
l (p,q, t) =

∑

I∈Il,r
σIβI(g(t))mÎ(p)mI(q)

∑

I∈Il,l
σIβI(g(t))mÎ(p)mI(q)

.

(III) For any l = nL + 1, . . . , d and any r = l, . . . , n, all the non-zero terms in the
sum

∑

I∈Il,r

σImÎ(p)mI(q)

have the same sign.

Of these three statements, (I) is needed here only to ensure that the expression for
kr

l (p,q, t) in (II) is well-defined. Now assuming (II) and (III) hold, we finish the
proof of the theorem.

Let c(t) := max{e
2i2
3

|t|, e
n−i2

3
|t|}. From the definition of g(t), observe that 1

c(t) ≤
βI(g(t)) ≤ c(t). Thus, it follows from (III) that
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1
c(t)

∣

∣

∣

∣

∣

∣

∑

I∈Il,r

σImÎ(p)mI(q)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∑

I∈Il,r

σIβI(g(t))mÎ(p)mI(q)

∣

∣

∣

∣

∣

∣

≤ c(t)

∣

∣

∣

∣

∣

∣

∑

I∈Il,r

σImÎ(p)mI(q)

∣

∣

∣

∣

∣

∣

for all r = l, . . . , n. Then (II) implies that |kr
l (p,q, t)| ≤ c(t)2|kr

l (p,q, 0)| for any
l = nL + 1, . . . , d, and any r = l, . . . , n. Since (3.9) holds when t = 0, this implies
that it also holds for general t. �

It remains to prove (I), (II) and (III) in the proof of Theorem 3.15. First, we
prove (I) and (II).

Lemma 3.16.

(1) For any l = nL + 1, . . . , d, there is a unique vector αl = αl(p,q, t) in F
(l)
p,q(t) ∩

G(n−l+1) such that

αl = g(t) · fl−nL
+

nL
∑

j=1

ajkj +
l−1
∑

j=nL+1

bjαj

for some constants aj and bj .
(2) If αr

l = αr
l (p,q, t) is the real number defined by

αl =
n

∑

r=l

αr
l er,

then
⎛

⎝

l−1
∏

j=nL+1

αj
j

⎞

⎠ αr
l =

∑

I∈Il,r

σIβI(g(t))mÎ(p)mI(q). (3.10)

In particular, (I) and (II) holds.

Proof. Proof of (1). We prove this by induction on l − nL. First, we prove the base
case, when l = nL + 1. Since knL+1 lies in F

(nL+1)
p,q (t) ∩ G(n−nL), it can be written

as a linear combination of k1, . . . , knL
, g(t) · f1. On the other hand, knL+1 cannot

be written as a linear combination of k1, . . . , knL
. Thus, when knL+1 is written as

a linear combination of k1, . . . , knL
, g(t) · f1, the coefficient for g(t) · f1 is non-zero.

Rescaling knL+1 by this coefficient gives the required vector αnL+1.
Next, we prove the inductive step. Suppose that l ≥ nL + 2. Then the vector kl

can be written as a linear combination of k1, . . . , knL
, g(t) ·f1, . . . , g(t) ·fl−nL

, where
the coefficient of g(t) · fl−nL

is non-zero. Let αl be kl rescaled by this coefficient.
By the inductive hypothesis, each of the vectors g(t) · f1, . . . , g(t) · fl−nL−1 can be
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written as a linear combination of k1, . . . , knL
, αnL+1, . . . , αl−1. It follows that αl

has the required properties.
Proof of (2). We make the following preliminary observation. Let Vi and V ′

i be the
n× i matrices whose columns are respectively (f1, . . . , fi) and (g(t) · f1, . . . , g(t) · fi)
from left to right, written in the basis (e1, . . . , en). Let I ⊂ {1, . . . , n} be any subset of
cardinality i, and let mI(f1, . . . , fi) and mI(g(t) ·f1, . . . , g(t) ·fi) respectively denote
the i× i minor of Vi and V ′

i corresponding to the rows in I. In the basis (e1, . . . , en),
g(t) is represented by a diagonal matrix, so with βI(g(t)) =

∏

j∈I λj(g(t)), we have

mI(g(t) · f1, . . . , g(t) · fi) = βI(g(t))mI(f1, . . . , fi) = βI(g(t))mI(q). (3.11)

Now, let N and N ′ be the n× l matrices whose columns are respectively (k1, . . . ,
knL

, αnL+1, . . . , αl) and (k1, . . . , knL
, g(t) ·f1, . . . , g(t) ·fl−nL

) from left to right, writ-
ten in the basis (e1, . . . , en). From the properties of αnL+1, . . . , αl given by (1),
the l × l minor of both N and N ′ corresponding to the rows {1, . . . , l − 1, r} agree
for any r = l, . . . , n. It is easy to see that this minor of N gives the left hand
side of (3.10). On the other hand, by using the observation (3.11) and the cofactor
expansion involving the last l − nL columns, we can compute this minor of N ′ as

∑

I∈Il,r

σImÎ(p)mI(g(t) · f1, . . . , g(t) · fl) =
∑

I∈Il,r

σIβI(g(t))mÎ(p)mI(q).

This is the right hand side of (3.10).
Finally, we prove (I) and (II). First, observe that for all j = nL + 1, . . . , d, αj

j

is exactly the coefficient that we scale kj by to get αj . In particular, αj
j is non-zero,

so (3.10) specialized to the the case when r = l implies (I). This observation also
implies that for all l = nL + 1, . . . , d and all r = l + 1, . . . , n, we have

kr
l (p,q, t) =

αr
l (p,q, t)

αl
l(p,q, t)

.

Applying (3.10) then finishes the proof of (II). �

It turns out that to prove (III), we need a more general version of (I)

(I’) Let g be any linear map whose projectivization fixes both ξ(x2) and G, and
whose eigenvalues all have the same sign. For all j = 1, . . . , n, let λj(g) be
the eigenvalue of g that corresponds to ej . We set σI = (−1)

∑l
i=1 i+

∑

i∈I i and
βI(g) :=

∏

j∈I λj(g), then
∑

I∈Il,l

σIβI(g)mÎ(p)mI(q) �= 0,

The proof of (I’) is verbatim the same as for (I), when F
(l)
p,q(t) is replaced by

F
(l)
p,q(g) :=

{

ϕ(l)(p1, . . . , pl) if l = 1, . . . , nL;
ϕ(nL)(p1, . . . , pnL

) + g · ϕ(l−nL)(q1, . . . , ql−nL
) if l = nL + 1, . . . , d,
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once we establish that F
(l)
p,q(g) ∩ G(n−l) = {0} for all l = 1, . . . , d. This is a conse-

quence of Lemma 3.17.
For the next two lemmas we appeal to the positivity of certain tuples of flags. For

this we extend ϕ(nL)(p) and ϕ(nR)(q) to full flags. Observe that for any (n−1)-tuple
r = (r1, . . . , rn−1) ∈ (x3, x1)n−1, we have that ϕ(j−1)(r1, . . . , rj−1) ⊂ ϕ(j)(r1, . . . , rj)
for all 2 ≤ j ≤ n − 1. Thus, we may define a continuous map

ϕ : (x1, x3)n−1 → F(V )

by ϕ(l)(r1, . . . , rn−1) = ϕ(l)(r1, . . . , rl). Thus, extending the nL-tuple p = (p1, . . . ,
pnL

) ∈ (x1, x2]nL and the nR-tuple q = (q1, . . . , qnR
) ∈ (x2, x3)nR to (n − 1)-tuples

p = (p1, . . . , pn−1) ∈ (x1, x2]n−1 and q = (q1, . . . , qn−1) ∈ (x2, x3)n−1, we have
ϕ(nL)(p) = ϕ(nL)(p), and ϕ(nR)(q) = ϕ(nR)(q).

Lemma 3.17. Let q ∈ (x2, x3)n−1, and let g ∈ GL(V ) be a linear map whose pro-
jectivization fixes ξ(h2) and G, and whose eigenvalues all have the same sign.

(1) If p ∈ (x1, x2)n−1, then (G, ϕ(p), ξ(x2), g ·ϕ(q)) is a positive quadruple of flags.
(2) If p ∈ (x1, x2]n−1, then (G, ϕ(p), g · ϕ(q)) is a positive triple of flags. In par-

ticular, F
(l)
p,q(g) ∩ G(n−l) = {0} for all l = 1, . . . , d, and (I’) holds.

Proof. Proof of (1). Let [x3, x1] denote the closed subinterval {p ∈ S1 : x3 ≤ p ≤
x1} = S1 \ (x1, x3) of S1. Let p : [0, 1] → [x3, x1] be a parameterization of J such
that p(0) = x1 and p(1) = x3. Let G0 := ξ(x1), and for all s ∈ (0, 1], let Gs be the
flag in F(V ) given by

G(j)
s =

{

ξ(j)(x1) if j ≤ i1;
ξ(i1)(x1) + ξ(j−i1)(p(s)) if j > i1.

Observe that G1 = G, and the Frenet property of ξ implies that the path [0, 1] →
F(V ) given by s �→ Gs is continuous.

Let s �→ ps be a continuous path [0, 1] → (x1, x2)n−1 such that p0 = (p, . . . , p)
for some p ∈ (x3, x2), and p1 = p. Similarly, let s �→ qs be a continuous path in
[0, 1] → (x2, x3)n−1 such that q0 = (q, . . . , q) for some q ∈ (x2, x3), and q1 = q.
Since ξ is Frenet, (Gs, ϕ(ps′), ξ(x2), ϕ(qs′′)) is a generic quadruple of flags for all
s, s′, s′′ ∈ [0, 1]. Theorem 2.22 implies that (G0, ϕ(p0), ξ(x2), ϕ(q0)) is a positive
quadruple of flags, so (G, ϕ(p), ξ(x2), ϕ(q)) = (G1, ϕ(p1), ξ(x2), ϕ(q1)) is also posi-
tive by Corollary 2.21. Then apply Corollary 2.20 to see that (G, ϕ(p), ξ(x2), g ·ϕ(q))
is positive.

Proof of (2). By (1), (G, ϕ(p′), ξ(x2), g · ϕ(q)) is generic for all p′ ∈ (x1, x2)n−1.
This implies that (G, ϕ(p), g ·ϕ(q)) is also generic for all p ∈ (x1, x2]n−1. Let s �→ ps

be a continuous path [0, 1] → (x1, x2]n−1 such that p0 ∈ (x1, x2)n−1, and p1 = p.
Since (1) implies that (G, ϕ(p0), g · ϕ(q)) is positive, by Corollary 2.21, the same is
true for (G, ϕ(p), g · ϕ(q)) = (G, ϕ(p1), g · ϕ(q)). �
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Aside from (I’), another key ingredient needed for the proof of (III) is the fol-
lowing inequality involving the minors of the matrices Vi and U .

Lemma 3.18. Let p ∈ (x1, x2)nL and let q ∈ (x2, x3)nR . Fix l = nL + 1, . . . , d, and
let I := {s1, . . . , sl−nL

} be a subset of {1, . . . , l} such that 1 ≤ s1 < · · · < sl−nL
≤ l.

For any r = l, . . . , n, let

Ir :=
{

I if sl−nL
< l;

{s1, . . . , sl−1, r} if sl−nL
= l,

and let Îr := {1, . . . , l − 1, r} \ Ir. Then

(

σIrmÎr
(p)mIr(q)

)(

σIlmÎl
(p)mIl(q)

)

> 0.

Proof. As before, extend p ∈ (x1, x2)nL to p ∈ (x1, x2)n−1 and q ∈ (x2, x3)nR to
q ∈ (x2, x3)n−1. By the Frenet property of ξ, ϕ(l)(p) ∩ G(n−l) = {0} for all l = 1,
. . . , n− 1. As such, there is a unique vector ul = ul(p) ∈ ϕ(l)(p)∩G(n−l+1) that can
be written as

ul = el +
n

∑

r=l+1

ur
l er

for some real numbers ur
l = ur

l (p), and (u1, . . . , ul) is a basis for ϕ(l)(p) for all
l = 1, . . . , n − 1. Similarly, for all l = 1, . . . , n − 1, there is a unique vector
vl = vl(q) ∈ ϕ(l)(q) ∩ G(n−l+1) that can be written as

vl = el +
n

∑

r=l+1

vr
l er

for some real numbers vr
l = vr

l (q), and (v1, . . . , vl) is a basis for ϕ(l)(q) for all l = 1,
. . . , n − 1. By definition, ul = kl for all l = 1, . . . , nL and vl = fl for all l = 1, . . . ,
nR. Let W1 and W2 be the matrices whose columns are respectively (u1, . . . , un) and
(v1, . . . , vn) from left to right, written in the basis (e1, . . . , en). Note that both W1

and W2 are lower triangular unipotent matrices.
By Lemma 3.17, (ξ(x2), ϕ(p), G) is a positive triple of flags. Thus, up to con-

jugating W1 by a diagonal matrix whose diagonal entries are ±1, W1 is a totally
positive, unipotent, lower triangular matrix. In other words, by replacing some of
the ej with −ej if necessary, we may assume that W1 is totally positive. Hence, the
minors mÎr

(p) are positive for all r = l, . . . , n, and in particular,

mÎr
(p)mÎl

(p) > 0. (3.12)

Also, by Lemma 3.17, (ξ(x2), ϕ(p), G, ϕ(q)) is a positive quadruple. Thus, Propo-
sition 2.19 implies that Ck(ξ(x2), ϕ(p), G, ϕ(q)) < 0 for all pairs of positive integers
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k := (k1, k2) that sum to n. A straightforward computation similar to the one we
did in the proof of Proposition 3.13(1) proves that if

v1 =
n

∑

r=1

vr
1er,

then vr
1 �= 0 for all r = 1, . . . , n, and vr

1

vr+1
1

< 0 for all r = 1, . . . , n − 1.
At the same time, (ξ(x2), ϕ(q), G) is a positive triple of flags. Hence, W2 is

conjugate, via a diagonal matrix D whose diagonal entries are ±1, to a totally
positive, unipotent, lower triangular matrix. Since v1

1 = 1, the fact that vr
1

vr+1
1

< 0 for
all r = 1, . . . , n − 1 implies that the diagonal entries d1, . . . , dn down the diagonal of
D are of the form di = (−1)i−1. Thus, for all l = 1, . . . , n − 1, if

vl =
n

∑

r=l

vr
l er,

then vr
l �= 0 for all r = l, . . . , n, and vr

l

vr+1
l

< 0 for all r = l, . . . , n − 1. This implies
that the signs of the minors mIr(q) and mIl(q) are opposite if r − l is odd, and are
the same if r − l is even. In other words,

mIr(q)mIl(q)(−1)r−l > 0. (3.13)

Observe that σIlσIr = (−1)r−l, so (3.12) and (3.13) together proves the lemma. �

With Lemma 3.18 and (I’), we can finally prove (III).

Lemma 3.19. If p ∈ (x1, x2)nL and q ∈ (x2, x3)nR , then for any l ∈ {nL + 1, . . . , d}
and any r ∈ {l, . . . , n}, all the terms in the sum

∑

I∈Il,r

σImÎ(p)mI(q)

are non-zero and have the same sign. In particular, (III) holds.

Proof. Consider the case when l = r. Suppose for contradiction that there are I0,
I1 ∈ Il,l such that σI0mÎ0

(p)mI0(q) > 0 and σI1mÎ1
(p)mI1(q) < 0. Then the

subsets

I+
l,l := {I ∈ Il,l : σImÎ(p)mI(q) > 0} and I−

l,l := {I ∈ Il,l : σImÎ(p)mI(q) < 0}

of Il,l are both non-empty, so both sums
∑

I∈I+
l,l

σImÎ(p)mI(q) and
∑

I∈I−
l,l

σImÎ(p)mI(q)
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are non-zero. By (I), these two sums cannot have the same absolute value, so we
may assume without loss of generality that

∣

∣

∣

∣

∣

∣

∑

I∈I+
l,l

σImÎ(p)mI(q)

∣

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

∣

∑

I∈I−
l,l

σImÎ(p)mI(q)

∣

∣

∣

∣

∣

∣

. (3.14)

For all t ∈ R, let h(t) be the projective transformation that is represented in
the basis (e1, . . . , en) by the diagonal matrix whose j-th entry down the diagonal,
denoted λj(h(t)), is given by

λj(h(t)) =
{

et if j ∈ I1;
1 otherwise.

Observe that for any I ∈ Il,l, βI(h(t)) = et|I∩I1|. Thus
∣

∣

∣

∣

∣

∣

∑

I∈I+
l,l

σIβI(h(t))mÎ(p)mI(q)

∣

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

∣

∑

I∈I−
l,l

σIβI(h(t))mÎ(p)mI(q)

∣

∣

∣

∣

∣

∣

for sufficiently large t. At the same time (3.14) implies that
∣

∣

∣

∣

∣

∣

∑

I∈I+
l,l

σIβI(h(0))mÎ(p)mI(q)

∣

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

∣

∑

I∈I−
l,l

σIβI(h(0))mÎ(p)mI(q)

∣

∣

∣

∣

∣

∣

.

Thus, there is some t0 > 0 such that
∣

∣

∣

∣

∣

∣

∑

I∈I+
l,l

σIβI(h(t0))mÎ(p)mI(q)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

I∈I−
l,l

σIβI(h(t0))mÎ(p)mI(q)

∣

∣

∣

∣

∣

∣

,

or equivalently,
∑

I∈Il,l

σIβI(h(t0))mÎ(p)mI(q) = 0.

However, this contradicts (I’). Thus, all the non-zero terms in the sum
∑

I∈Il,l

σImÎ(p)mI(q)

have the same sign. The fact that all the terms are non-zero follows from the positiv-
ity of the quadruple (G, ϕ(p), ξ(h2), ϕ(q)), since we can realize mÎ(p) and mI(q) as
minors in a lower triangular, unipotent matrix that is conjugate to a totally positive,
lower triangular, unipotent matrix (see proof of Lemma 3.18). This implies that the
first statement of the lemma holds when r = l. To prove that it holds for all r ≥ l,
simply apply Lemma 3.18.
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Finally, we prove (III). Observe that when p ∈ (x3, x2]nL and q ∈ (x2, x1)nR ,
σImÎ(p)mI(q) is well-defined for all I ∈ Il,r, and

σImÎ(p)mI(q) = lim
k→∞

σImÎ(pk)mI(q)

for some sequence of tuples (pk)
∞
k=1 in (x2, x2)nL . Thus, it is possible that some of

terms of the sum
∑

I∈Il,r

σImÎ(p)mI(q)

are zero, but the first statement of the lemma implies that the non-zero terms have
the same sign. �

3.4 The elementary flows descend. The elementary flows on the space of
Frenet curves ˜Fre(V ) in fact descend to well-defined flows on the space of equivalence
classes of Frenet curves Fre(V ).

Proposition 3.20. Let i := (i1, i2, i3) be a triple of positive integers that sum to
n and let x := (x1, x2, x3) be a cyclically ordered triple of points in S1. Then the

i-elementary eruption flow with respect to x,
(

εix
)

t
, descends from ˜Fre(V ) to a flow

on Fre(V ).
Let k := (k1, k2) be a pair of positive integers that sum to n and r := (r1, r2) a

pair of distinct points in S1. Then the k-elementary shearing flow with respect to r,
(

ψk
r

)

t
, descends from ˜Fre(V ) to a flow on Fre(V ).

Proof. We only prove the statement for the elementary eruption flows; the proof for
the elementary shearing flows is the same, with the obvious modifications.

Let ξ : S1 → F(V ) be any Frenet curve, and for m = 1, 2, 3, let im :=
(im, im+1, im−1) and xm := (xm, xm+1, xm−1), where the arithmetic in the sub-
scripts are done modulo 3. Let bimξ(xm) be the projective transformations defined
in Section 3.1, when we introduced the eruption flows. For any projective transfor-
mation g in PGL(V ), observe that gbimξ(xm)g

−1 = bimg·ξ(xm). Hence, for any p in S1 and
any g in PGL(V ),

g ·
(

εix

)

t
(ξ)(p) =

⎧

⎪

⎨

⎪

⎩

gbi1ξ(x1)
(t) · ξ(p) if x2 ≤ p ≤ x3;

gbi2ξ(x2)
(t) · ξ(p) if x3 ≤ p ≤ x1;

gbi3ξ(x3)
(t) · ξ(p) if x1 ≤ p ≤ x2

=

⎧

⎪

⎨

⎪

⎩

bi1g·ξ(x1)
(t)g · ξ(p) if x2 ≤ p ≤ x3;

bi2g·ξ(x2)
(t)g · ξ(p) if x3 ≤ p ≤ x1;

bi3g·ξ(x3)
(t)g · ξ(p) if x1 ≤ p ≤ x2

=
(

εix

)

t
(g · ξ)(p). �

We use the same notation and terminology for the flows on ˜Fre(V ) and Fre(V ).
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3.5 Properties of the elementary flows. In this subsection, we establish
some basic properties of elementary eruption and shearing flows.

Proposition 3.21. The elementary shearing and eruption flows on Fre(V ) satisfy
the following properties.

(1) Let i := (i1, i2, i3) and j := (j1, j2, j3) be two triples of positive integers that
sum to n, and let x := (x1, x2, x3) be any cyclically ordered triple of points in

S1. Then the flows
(

εix
)

t
and

(

εjx

)

t′
on Fre(V ) commute:

(

εix

)

t
◦

(

εjx

)

t′
=

(

εjx

)

t′
◦

(

εix

)

t

for all real numbers t, t′.
(2) Let i := (i1, i2, i3) and j := (j1, j2, j3) be two triples of positive integers that

sum to n, and let x := (x1, x2, x3) be any cyclically ordered triple of points in
S1. If y := (y1, y2, y3) is a cyclically ordered triple of points in S1 such that
y1, y2, y3 lie in the closure of a connected component of S1 \ {x1, x2, x3}, then

the flows
(

εix
)

t
and

(

εjy

)

t′
on Fre(V ) commute:

(

εix

)

t
◦

(

εjy

)

t′
=

(

εjy

)

t′
◦

(

εix

)

t

for all real numbers t, t′.
(3) For any pairs k := (k1, k2) and l := (l1, l2) of positive integers that sum to n,

and pairs r := (r1, r2) and s := (s1, s2) of distinct points in S1, such that s1, s2

lie in the closure of a connected component of S1 \{r1, r2}, the flows
(

ψk
r

)

t
and

(

ψl
s

)

t′ commute:

(

ψk
r

)

t
◦

(

ψl
s

)

t′
=

(

ψl
s

)

t′
◦

(

ψk
r

)

t

for all real numbers t, t′.
(4) For any pair r := (r1, r2) of distinct points in S1 and cyclically ordered triple

x := (x1, x2, x3), such that x1, x2, x3 lie in the closure of a connected compo-
nent of S1 \ {r1, r2}, the eruption flows associated to x and the shearing flows
associated to r commute. i.e.

(

ψk
r

)

t
◦

(

εix

)

t′
=

(

εix

)

t′
◦

(

ψk
r

)

t

for all pairs k := (k1, k2) of positive integers that sum to n, all triples i :=
(i1, i2, i3) of positive integers that sum to n, and all real numbers t, t′.

Proof. For m = 1, 2, 3, set

xm := (xm, xm+1, xm−1), ym := (ym, ym+1, ym−1),
im := (im, im+1, im−1), jm := (jm, jm+1, jm−1),



GAFA FLOWS ON THE PGL(V )-HITCHIN COMPONENT 627

where arithmetic in the subscripts are done modulo 3. Also, for m = 1, 2, set

rm := (rm, rm+1), sm := (sm, sm+1), km := (km, km+1), lm := (lm, lm+1)

for m = 1, 2, where arithmetic in the subscripts are done modulo 2.
Proof of (1). Set ξ1 :=

(

εix
)

t
◦

(

εjx

)

t′
(ξ), ξ2 :=

(

εjx

)

t′
◦

(

εix
)

t
(ξ), η1 :=

(

εjx

)

t′
(ξ),

and η2 :=
(

εix
)

t
(ξ). By Propositions 3.7 and 2.11, there is a projective transformation

g in PGL(V ) such that g · ξ1(x) = ξ2(x). We now show that g · ξ1 = ξ2.
Observe that for fixed m = 1, 2, 3 and for all xm+1 ≤ p ≤ xm−1,

ξ1(p) = bimη1(xm)(t)b
jm
ξ(xm)(t

′) · ξ(p) and ξ2(p) = bjmη2(xm)(t
′)bimξ(xm)(t) · ξ(p),

where bimξ(xm) are the projective transformations used to define the eruption flow (see
Section 3.1).

It follows from the definitions that bimξ(xm)(t), bjmξ(xm)(t
′), bimη1(xm)(t) and bjmη2(xm)(t

′)

fix ξ(1)(xm). In particular, ξ(1)(xm) = ξ
(1)
1 (xm) = ξ

(1)
2 (xm).

Moreover, the product

bjmη2(xm)(t
′)bimξ(xm)(t)b

jm
ξ(xm)(t

′)−1bimη1(xm)(t)
−1

maps ξ1(xm−1) to ξ2(xm−1) and ξ1(xm+1) to ξ2(xm+1). By Remark 2.7 this com-
pletely determines the projective transformation g, which is

g = bjmη2(xm)(t
′)bimξ(xm)(t)b

jm
ξ(xm)(t

′)−1bimη1(xm)(t)
−1.

Thus, g · ξ1(p) = ξ2(p) for all xm+1 ≤ p ≤ xm−1. Since this is true for all m = 1, 2,
3, we see that g · ξ1(p) = ξ2(p) for all p in S1. This proves (1).

The proofs of (2), (3) and (4) are similar, so we only give the proof of (2) to
avoid repetition.

Proof of (2). We can assume without loss of generality that x3 ≤ y1 < y2 <

y3 ≤ x1. Set ξ1 :=
(

εix
)

t
◦

(

εjy

)

t′
(ξ), ξ2 :=

(

εjy

)

t′
◦

(

εix
)

t
(ξ), η1 :=

(

εjy

)

t′
(ξ),

and η2 :=
(

εix
)

t
(ξ). Applying Proposition 3.7 and Proposition 2.19, we deduce that

there is some projective transformation g in PGL(V ) such that g · ξ1(x) = ξ2(x) and
g · ξ1(y) = ξ2(y). We now show that g · ξ1 = ξ2.

For all x1 ≤ p ≤ x2, observe that

ξ1(p) = bi3η1(x3)
(t)bj2ξ(y2)

(t′) · ξ(p) and ξ2(p) = bj2η2(y2)
(t′)bi3ξ(x3)

(t) · ξ(p).

Similarly,

ξ
(1)
1 (x3) = bi3η1(x3)

(t)bj2ξ(y2)
(t′) · ξ(1)(x3) and ξ

(1)
2 (x3) = bj2η2(y2)

(t′)bi3ξ(x3)
(t) · ξ(1)(x3).
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Remark 2.7 implies g = bi3η1(x3)
(t)bj2ξ(y2)

(t′)
(

bj2η2(y2)
(t′)bi3ξ(x3)

(t)
)−1

, so g · ξ1(p) = ξ2(p)
for all x1 ≤ p ≤ x2. Repeating a similar argument for each of the intervals

{p ∈ S1 : x2 ≤ p ≤ x3}, {p ∈ S1 : y1 ≤ p ≤ y2}, {p ∈ S1 : y2 ≤ p ≤ y3},

and {p ∈ S1 : y3 ≤ p ≤ x1}, {p ∈ S1 : x3 ≤ p ≤ y1}

shows that g · ξ1(p) = ξ2(p) for all p ∈ S1. �

4 Ideal Triangulations and Bridge Systems

In this section we recall the definition of an ideal triangulation on S, and define the
notion of a compatible bridge system. We explain how to combinatorially describe
pairs of vertices in an ideal triangulation. This description is an important tool in
Sections 5, 6, and 7.

4.1 Ideal triangulations of S. We recall some facts about ideal triangulations
on S. For more details, see [Thu79, CB88, PH92, Bon01].

To describe ideal triangulations it is useful to endow S with an auxiliary hy-
perbolic metric, such that we have a hyperbolic surface, which we denote by X.
An ideal triangulation on X is a family T of finitely many disjoint, simple, unori-
ented geodesics on X, whose union is a closed set in X that cuts X into finitely
many open sets, each of which is isometric to an ideal triangle in H

2. We call the
connected components of X \

⋃

c∈T c the ideal triangles of the ideal triangulation T .
The geodesics in T might be closed or not. Every non-closed geodesic e in T is

isolated, i.e. there is an open set in X containing e that does not intersect any other
geodesic in T . Every closed geodesic c in T is closed as a subset of X, and is not
isolated; in fact for every collar neighborhood of c, both of the connected components
of the complement of c in this neighborhood intersect a non-closed geodesic in T .
Therefore instead of closed geodesics in T we talk about non-isolated edges of T ,
and instead of non-closed geodesics we talk about isolated edges of T . The advantage
of this terminology is that this also makes sense when we lift the ideal triangulation
of X to an ideal triangulation ˜T of ˜X = H

2. The ideal triangulation ˜T is an infinite
family of geodesics, whose complement is an infinite collection of ideal triangles,
each of which is bijectively mapped to an ideal triangle of T by the covering map.

Even though we used a hyperbolic metric on S to define it, an ideal triangulation
is of combinatorial nature and can be described completely independent of a metric
in terms of the Gromov boundary ∂Γ of the fundamental group Γ. The hyperbolic
metric induces a Γ-equivariant homeomorphism between ∂Γ and the visual boundary
∂H2 of the hyperbolic plane. An unoriented geodesic on ˜X = H

2 is determined by
its two endpoints in ∂Γ. Choosing an ordering of this pair of points amounts to
choosing an orientation on the corresponding geodesic. Thus we can identify the set
of (unoriented) geodesics on the universal cover ˜S with the set of unordered pairs of
distinct points in ∂Γ. This allows to identify the ideal triangulation ˜T with a subset
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of the space of unordered pairs of distinct points ∂Γ, and the set of ideal triangles
in ˜T with a subset of the spaces of pairwise distinct triples in ∂Γ. Since ˜T is the lift
of an ideal triangulation T on S, these subsets are Γ-invariant.

We denote by ˜Q the set of isolated edges in ˜T , by ˜P the set of non-isolated edges
in ˜T , and by ˜Θ the set of ideal triangles of ˜T . We denote by ˜V the set of vertices
of ˜T , i.e. the set of all points in ∂Γ which arise as an endpoint of an edge of ˜T . All
these sets are Γ-invariant, and there are natural identifications of their orbit spaces,
namely of Q := ˜Q/Γ with the set of isolated edges in T , of P := ˜P/Γ with the set
of non-isolated edges in T , and Θ := ˜Θ/Γ with the set of ideal triangles of T . Note
that, by the Gauss-Bonnet theorem we have

|Θ| = 4g − 4 , |Q| = 6g − 6 , 1 ≤ |P| ≤ 3g − 3, and |T | = |Q| + |P|,
where g is the genus of S. When |P| = 3g − 3, P is a pants decomposition of S.

We collect the following useful observations:

(1) Any ideal triangle of ˜T is bound by three isolated edges, i.e. if {x1, x2, x3} is
an ideal triangle in ˜Θ, then {xi, xi+1} is an isolated edge in ˜T for i = 1, 2, 3.

(2) Any isolated edge bounds two triangles, i.e. if {r1, r2} is an isolated edge in ˜T ,
then there are points z1 and z2 in ∂Γ such that {r1, r2, z1} and {r1, r2, z2} are
ideal triangles in ˜Θ.

(3) Isolated edges in T accumulate onto non-isolated edges, i.e. if {r1, r2} is an
isolated edge in ˜T , then there exist non-isolated edges {s1, s2} and {y1, y2} in
˜T with r1 = s1 and r2 = y2.

(4) Every non-isolated edge in T is a closed geodesic, i.e. if {r1, r2} is a non-
isolated edge in ˜T , then there exists a group element γ in Γ, whose attracting
and repelling fixed point is r1 and r2 respectively.

(5) For every collar neighborhood U of a non-isolated edge in c in T , both con-
nected components of the complement U \ c intersect isolated edges of T . This
means that if {r1, r2} is a non-isolated edge in ˜T , then there are sequences
{yi}∞

i=1, {zi}∞
i=1 ⊂ ˜V such that

• (r1, yi, r2, zi) is cyclically ordered for all i,
• {r1, yi} is an isolated edge in ˜T for all i and limi→∞ yi = r2, or {r2, yi} is

an isolated edge in ˜T for all i and limi→∞ yi = r1, and
• {r1, zi} is an isolated edge in ˜T for all i and limi→∞ zi = r2, or {r2, zi} is

an isolated edge in ˜T for all i and limi→∞ zi = r1.

We close this subsection with the statement that any Frenet curve is determined
by its behaviour at the vertices of an ideal triangulation. The proof of this lemma
is given in Appendix B.

Lemma 4.1. Let T be an ideal triangulation of S and let ˜T be the lift to the universal
covering. Let ˜V ⊂ S1 = ∂Γ denote the set of vertices of ˜T , and let (ξj)∞

j=1 be a

family of Frenet curves in ˜Fre(V ). If limj→∞ ξj(p) = ξ0(p) for all vertices p in ˜V,
then limj→∞ ξj(p) = ξ0(p) for all points p in ∂Γ.
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s2
r2

s1

r1

Figure 3: The thin (blue) lines are isolated edges of ˜T , the thick (red) lines are non-isolated
edges of ˜T , and the (green) dotted lines are bridges in ˜J (Color figure online).

4.2 Bridge system. Let T be an ideal triangulation on S. Using T , we now
introduce the notion of a bridge system on S compatible with T . This is the choice
of further topological data on S that is needed to completely determine a mark-
ing on S. More precisely, if a homeomorphism from S to itself preserves an ideal
triangulation T (viewed as a collection of Γ-orbits of pairs of points in ∂Γ), it is
not necessarily isotopic to the identity; for example, one can perform a Dehn twist
around a non-isolated edge in T . However, if the homeomorphism preserves both
the ideal triangulation and a compatible bridge system, then it is isotopic to the
identity. There are of course many ways to fix topological data on S to remove the
ambiguity of Dehn twists around the non-isolated edges in T ; the way we choose is
specifically suited for constructing flows on the Hitchin component.

Definition 4.2. Let ˜T be an ideal triangulation of ˜S and let {r1, r2} be a non-
isolated edge in ˜T .

• A bridge across {r1, r2} is an (unordered) pair {T1, T2} of ideal triangles in ˜Θ
such that for all m = 1, 2, one of the vertices of Tm is r1 or r2, and the other
two vertices of T1 lie in a different connected component of ∂Γ \ {r1, r2} from
the other two vertices of T2 (see Figure 3).

• A bridge system compatible with ˜T , denoted ˜J = ˜J
˜T , is a minimal Γ-invariant

collection of bridges such that for every non-isolated edge {r1, r2} in ˜T , there
is a bridge {T1, T2} across {r1, r2} that lies in ˜J . We also say that J = JT :=
˜J /Γ is a bridge system compatible with T .

When we choose a hyperbolic metric on S and work on the hyperbolic surface
X, the bridge system J can be realized as a collection of “short” transverse geodesic
segments, one for each closed geodesic in P. Each geodesic segment in J intersects
a unique closed geodesic in P transversely, and each closed geodesic in P intersects
a unique geodesic segment in J transversely. In our figures we therefore represent
bridges by lines that are transverse to the non-isolated edges of the triangulation.
The endpoints of the lines lie in the two ideal triangles forming the bridge.
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4.3 Combinatorial description of a pair of distinct vertices of ˜T . Let
T be an ideal triangulation on S. Next, we give a combinatorial description of an
arbitrary pair (x, y), not necessarily an edge, of distinct vertices of ˜T . This is useful
later (see Sections 5.1, 7.1, and 7.3) to keep track of how the flags assigned to x and
y by a Frenet curve change relative to each other when we deform the Frenet curve.

We may choose a hyperbolic metric on S to have at our disposal a hyperbolic
surface X. As described in the previous subsections, all the constructions we make
are of combinatorial nature and do not depend on this metric, but the choice of
metric allows us to talk about geodesics as well as their intersection.

For any pair (x, y) of distinct vertices of ˜T , first consider the set

E ′
(x,y) :=

{

{r1, r2} ∈ ˜T : r1 < x < r2 < y < r1

}

.

The set E ′
(x,y) is the (possibly infinite) collection of edges in ˜T that transversely

intersect the geodesic in the universal cover of S whose endpoints are x and y. If
{x, y} is an edge of the ideal triangulation ˜T , then E ′

(x,y) is empty. In general, E ′
(x,y)

admits a natural ordering ≤ that can be described as follows: orient both components
of ∂Γ \ {x, y} from x to y, and define {r1, r2} ≤ {r′

1, r
′
2} if r1 and r′

1 (hence r2 and
r′
2) lie in the same connected component of ∂Γ\{x, y}, r1 weakly precedes r′

1, and r2

weakly precedes r′
2. With respect to this ordering, E ′

(x,y) does not necessarily have a
minimal (resp. maximal) element. Thus, we enlarge E ′

(x,y) to a set E(x,y) that has an
ordering which restricts to the natural ordering on E ′

(x,y), and always has a maximum
and a minimum.

Note that E ′
(x,y) does not have a minimum (resp. maximum) if and only if there

is a vertex p (resp. q) of ˜T such that

• the edge {x, p} (resp. {y, q}) is a non-isolated edge of T ,
• there is a sequence {zi}∞

i=1 of vertices of ˜T that converges to x (resp. y), and
• the edge {zi, p} (resp. {zi, p}) is contained in E ′

(x,y) for all i.

We therefore set

E(x,y) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

E ′
(x,y) if E ′

(x,y) has a max and a min,

E ′
(x,y) ∪

{

{x, p}
}

if E ′
(x,y) has a max but no min,

E ′
(x,y) ∪

{

{y, q}
}

if E ′
(x,y) has a min but no max,

E ′
(x,y) ∪

{

{x, p}, {y, q}
}

if E ′
(x,y) has neither a max nor a min.

There are only finitely many non-isolated edges (possibly none) in ˜T that lie in
E(x,y). We now decompose the set E(x,y) with respect to these non-isolated edges.
Suppose first that E(x,y) contains a non-isolated edge. Let e1, . . . , ek be the non-
isolated edges in E(x,y), enumerated according to the ordering on E(x,y). For any
s = 1, . . . , k we set

E(x,y),s = Es := {e ∈ E(x,y) : e shares a vertex with es}.
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x y

Figure 4: The geodesics drawn above that intersect {x, y} transversely represent the edges
in E(x,y). The thick (red) lines are non-isolated edges of ˜T , the thin (blue) lines geodesics
are edges in Es for some s, and the black lines are edges in Es,s+1 for some s (Color figure
online).

The set Es is infinite, but has a well-defined minimum and maximum (see Figure 5).
If e is an edge in E(x,y) that shares a common vertex w with some es, then every

edge in E(x,y) that lies between e and es also has w as a vertex. Therefore if we set

F−
s := {e ∈ E(x,y) : e < e′ for all e′ ∈ Es},

F+
s := {e ∈ E(x,y) : e > e′ for all e′ ∈ Es},

then E(x,y) = F−
s ∪ Es ∪ F+

s is a disjoint union. The set F±
s might be empty.

We now set

E(x,y),s,s+1 = Es,s+1 :=

⎧

⎨

⎩

F−
1 if s = 0;

F+
s ∩ F−

s+1 if 0 < s < k;
F+

k if s = k

(see Figure 6). The set Es,s+1 is finite (possibly empty) for all s = 0, . . . , k, and
in particular has a minimum and maximum if it is non-empty. This gives us a
decomposition of E(x,y) into the disjoint union

E(x,y) =
k

⋃

s=1

Es ∪
k

⋃

s=0

Es,s+1

(see Figure 4).
In the case when E(x,y) does not contain a non-isolated edge, we adopt the con-

vention that k = 0, i.e. E(x,y) = E(0,1).
One can think of the data Es as encoding the combinatorics of the geodesic with

endpoints x and y in a “neighborhood” of the non-isolated edge es, while Es,s+1

encodes the combinatorics as it “moves between” es and es+1.
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4.4 The ends of Es and Es,s+1. Recall that (x, y) is a pair of distinct vertices
of ˜T . In this section we introduce the backward and the forward end of the sets
Es = E(x,y),s and Es,s+1 = E(x,y),s,s+1 defined in Section 4.3. These ends are usually
ideal triangles in ˜Θ, but might collapse to non-isolated edges in ˜T in the cases when
the end is the backward end (resp. forward end) of E1 (resp. Ek) when the minimum
(resp. maximum) of E(x,y) is a non-isolated edge. The ends are defined in such a
way that, provided Es,s+1 is non-empty, the forward end of Es,s+1 agrees with the
backward end of Es+1, and the backward end of Es,s+1 agrees with the forward end
of Es. If Es,s+1 is empty, then the forward end of Es agrees with the backward end
of Es+1.

We use the set E(x,y), the decomposition E(x,y) =
⋃k

s=1 Es ∪
⋃k

s=0 Es,s+1 defined
in Section 4.3, and the forward and backward ends of Es and Es,s+1to control the
behaviour of a Frenet curve at y when we are given its behaviour at x.

Recall that ˜V denotes the set of vertices of ˜T . For any s = 1, . . . , k, consider Es

as defined in Section 4.3. Let the edges {as, bs} and {cs, ds} be the minimum and
maximum of Es respectively, such that bs and ds are vertices of es. If s = 1, . . . ,
k−1, or s = k and Ek,k+1 is non-empty, let d′

s be the vertex of ˜T such that {cs, d
′
s} is

the successor of {cs, ds} with respect to the natural ordering. Similarly, if s = 2, . . . ,
k, or s = 1 and E0,1 is non-empty, let b′

s be the vertex of ˜T in ∂Γ such that {as, b
′
s}

is the predecessor of {as, bs}. On the other hand, if s = k and Ek,k+1 is empty, let
d′

k := y and if s = 1 and E0,1 is empty, let b′
0 := x (see Figure 5).

Definition 4.3. The triple {as, bs, b
′
s} is the backward end of Es, the triple {cs, ds, d

′
s}

is the forward end of Es.

Remark 4.4. If the minimum of E(x,y) is a non-isolated edge of T , then E0,1 is
empty and the two vertices b1 and b′

1 of the backward end of E1 agree. Similarly, if
the maximum E(x,y) is a non-isolated edge of T , then Ek,k+1 is empty and the two

bs
b′
s

as

ds

d′
s

cs

x y

Figure 5: The lines in Es ∪
{

{as, b
′
s}

}

∪
{

{cs, d
′
s}

}

, where the thick (red) line is the non-
isolated edge es (Color figure online).
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b′
s,s+1

as,s+1

bs,s+1

d′
s,s+1

ds,s+1

cs,s+1

x y

Figure 6: The thick (red) lines are es and es+1, the thin (blue) lines lie in Es and Es+1, and
the black lines lie in Es,s+1 (Color figure online).

vertices dk and d′
k of the forward end of Ek agree. In these two cases, the ends collapse

to non-isolated edges in ˜T . In all other cases, the ends of Es are ideal triangles in ˜Θ.

Next, suppose that s = 0, . . . , k and that Es,s+1 is non-empty. To define the
backward end of Es,s+1 for s > 0, we consider the minimum {as,s+1, bs,s+1} of Es,s+1,
where as,s+1 is the common vertex of {as,s+1, bs,s+1} and its predecessor. Then let
b′
s,s+1 denote the vertex of its predecessor that is not as,s+1. Similarly, for the forward

end of Es,s+1 for s < k, we consider the maximum {cs,s+1, ds,s+1} of Es,s+1, where
cs,s+1 is the common vertex of {cs,s+1, ds,s+1} and its successor. Then let d′

s,s+1

denote the vertex of its successor that is not cs,s+1 (see Figure 6). For s = 0 we set
b′
0,1 := x and for s = k, we set d′

k,k+1 := y.

Definition 4.5. The triple {as,s+1, bs,s+1, b
′
s,s+1} is called the backward end of

Es,s+1, and the triple {cs,s+1, ds,s+1, d
′
s,s+1} is called the forward end of Es,s+1.

Observe that for s = 1, . . . , k −1, if Es,s+1 is non-empty, then the forward end of
Es,s+1 agrees with the backward end of Es+1, and the backward end of Es,s+1 agrees
with the forward end of Es. On the other hand, if Es,s+1 is empty, then the forward
end of Es agrees with the backward end of Es+1. All of these ends are ideal triangles
in ˜Θ.

5 Parametrizing Frenet Curves

The goal of this section is to describe a new parametrization of HitV (S). This
parametrization is a slight, but non-trivial modification of the Bonahon-Dreyer
parametrization [BD14], which we also describe. The parametrization is with re-
spect to a fixed ideal triangulation and a fixed compatible bridge system, and is
given by invariants associated to the edges and triangles of the triangulation using
cross ratios and triple ratios. Along the way we show, that these edge and triangle in-
variants completely determine the projective class a Frenet curve [ξ] in Fre(V ), even
if the curve it is not equivariant with respect to a representation ρ : Γ → PGL(V ).
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qm pm

wm
zm

pm qm

zm

wm

Figure 7: The thick (red) line is the non-isolated edge {r1, r2}, and the (blue) triangle is
Tm (Color figure online).

5.1 Edge and triangle invariants. We fix an ideal triangulation T and a
compatible bridge system J . Given a Frenet curve ξ : ∂Γ → F(V ), we associate in-
variants to the edges and ideal triangles of the ideal triangulation T . These invariants
were introduced by Fock and Goncharov [FG06], and are based on the cross ratios
and triple ratios described in Section 2.3. They are also used in the Bonahon-Dreyer
parametrization [BD14] of the Hitchin component.

5.1.1 The edge invariants. Let {r1, r2} be an edge of the ideal triangulation ˜T .
If {r1, r2} is a non-isolated edge, let J := {T1, T2} be a bridge in ˜J across {r1, r2}.
For m = 1, 2, we set pm (resp. qm) to be the vertex of the edge {r1, r2} that is (resp.
is not) a vertex of Tm, and let zm, wm be the other two vertices of Tm such that
either (pm, zm, wm, qm) or (qm, wm, zm, pm) is cyclically ordered (see Figure 7). By
switching the roles of T1 and T2 if necessary, we may assume that T1 (resp. T2) lies
to the left (resp. right) of r := (r1, r2), which we view as an oriented geodesic from
r1 to r2. This means that (r1, z1, r2, z2) is a cyclically ordered quadruple of points
in ∂Γ.

If {r1, r2} is an isolated edge, let z1 and z2 be the vertices of ˜T such that
{r1, r2, zm} is an ideal triangle of ˜T for m = 1, 2, and (r1, z1, r2, z2) is a cyclically
ordered quadruple of points in ∂Γ (see Figure 3).

Definition 5.1. Let k := (k1, k2) be a pair of positive integers that sum to n,
let r := (r1, r2) be an edge in ˜T , let z := (z1, z2) be as defined above, and set
a := (r1, z1, r2, z2). The k-edge invariant along r is the function

σk
r : Fre(V ) → R

defined by σk
r [ξ] := log

(

−Ck(ξ(a))
)

.

By Theorem 2.22 and the projective invariance of the cross ratio, the k-edge
invariant σk

r is well-defined for all pairs of integers k := (k1, k2) that sum to n and
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all pairs r := (r1, r2) of points in S1 such that {r1, r2} is an edge in ˜T . From the
symmetries of the cross ratio,

σk1
r1

= σk2
r2

,

if km := (km, km+1), and rm := (rm, rm+1) for m = 1, 2.

Remark 5.2. For a non-isolated edge {r1, r2}, the edge invariants along r := (r1, r2)
depend on the bridge J in ˜J across {r1, r2}. We write σk

r,J [ξ] when we want to
emphasize this dependence. When ξ is ρ-equivariant for some representation ρ :
Γ → PGL(V ), then the edge invariants along r do not depend on J in ˜J .

5.1.2 The triangle invariants. Recall that ˜Θ is the set of ideal triangles of ˜T .

Definition 5.3. Let i := (i1, i2, i3) be a triple of positive integers that sum to n,
and let x := (x1, x2, x3) be a cyclically ordered triple of points in ∂Γ such that
{x1, x2, x3} is an ideal triangle in ˜Θ. The i-triangle invariant of x is the function

τ i
x : Fre(V ) → R,

where τ i
x[ξ] := log

(

T i(ξ(x))
)

.

By Theorem 2.22 and the projective invariance of the triple ratio, the triangle
invariant τ i

x is well-defined for all triples i := (i1, i2, i3) of positive integers that sum
to n and for all cyclically ordered triples x := (x1, x2, x3) in ∂Γ such that {x1, x2, x3}
is an ideal triangle in ˜T . From the symmetries of the triple ratio, we see that

τ i1
x1

= τ i2
x2

= τ i3
x3

,

where im := (im, im+1, im−1), and xm := (xm, xm+1, xm−1) for m = 1, 2, 3.
The edge and triangle invariants determine the PGL(V )-orbit of a Frenet curve.

Proposition 5.4. Let [ξ1], [ξ2] be projective classes of Frenet curves in Fre(V ).
Then [ξ1] = [ξ2] if and only if all of the following hold:

• For all edges {r1, r2} of ˜T and all pairs of positive integers k := (k1, k2) that
sum to n, the k-edge invariants of [ξ1] and [ξ2] along r := (r1, r2) agree: σk

r [ξ1] =
σk
r [ξ2].

• For all ideal triangles {x1, x2, x3} in ˜Θ such that x := (x1, x2, x3) is cyclically
ordered, and for all triples of positive integers i := (i1, i2, i3) that sum to n,
the i-triangle invariants of x at [ξ1] and [ξ2] agree: τ i

x[ξ1] = τ i
x[ξ2].

In other words, the map

Φ : Fre(V ) → R
| ˜P|·| ˜J |·(n−1) × R

| ˜Q|·(n−1) × R
|˜Θ|· (n−1)(n−2)

2

[ξ] �→ (Σ1, Σ2, Σ3)
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is injective, where

Σ1 :=
(

σk
r,J [ξ]

)

k∈A; {r1,r2}∈ ˜P; J∈ ˜J across {r1,r2}
,

Σ2 :=
(

σk
r [ξ]

)

k∈A; {r1,r2}∈ ˜Q
,

Σ3 :=
(

τ i
x[ξ]

)

i∈B; {x1,x2,x3}∈˜Θ, x1<x2<x3<x1

.

Here, recall that ˜P and ˜Q are respectively the set of non-isolated and isolated edges
in ˜T . Furthermore, A denotes the set of pairs of positive integers that sum to n, and
B denotes the set of triples of positive integers that sum to n.

Remark 5.5. Let us stress that in Proposition 5.4 we do not assume any equivari-
ance properties for the Frenet curves. In fact, the ideal triangulation ˜T does not even
need to be the lift of an ideal triangulation of S. We will later apply Proposition 5.4
to non-equivariant Frenet curves in our construction of flows on HitV (S).

In the case of equivariant Frenet curves, Proposition 5.4 has been proved by
Bonahon and Dreyer [BD14, Theorem 2]. In this case they also determine the image,
see Section 5.3. The analogue of Proposition 5.4 holds for equivariant positive maps,
but it does not hold for general non-equivariant positive maps.

Proof of Proposition 5.4. Let {x1, x2, x3} be an ideal triangle of T , such that x :=
(x1, x2, x3) is cyclically ordered. Let ξ1 and ξ2 be the representatives of [ξ1] and [ξ2]
respectively, normalized such that ξ1(x1) = ξ2(x1), ξ1(x2) = ξ2(x2) and ξ

(1)
1 (x3) =

ξ
(1)
2 (x3). Since

T i(ξ1(x)) = T i(ξ2(x))

for all positive triples of integers i := (i1, i2, i3) that sum to n, Proposition 2.19
implies that ξ1(x3) = ξ2(x3).

By Lemma 4.1, it is sufficient to prove that ξ1(y) = ξ2(y) for any vertex y of ˜T
that is not x1, x2 or x3. For this we use the set E(x1,y), which gives a combinatorial
description of the pair (x1, y) as described in Section 4.3, and its decomposition as

E(x1,y) =
k

⋃

s=1

E(x1,y),s ∪
k

⋃

s=0

E(x1,y),s,s+1 =
k

⋃

s=1

Es ∪
k

⋃

s=0

Es,s+1.

By relabelling x1, x2 and x3 if necessary, we may assume that {x2, x3} is the
minimum of E(x1,y). Then the ideal triangle {x1, x2, x3} is the backward end of E0,1

(see Definitions 4.3 and 4.5 for the definition of ends.) Furthermore, recall that all the
other ends of Es,s+1 and Es are also ideal triangles, except for possibly the forward
end of Ek (in which case Ek,k+1 is empty, see Remark 4.4). Since we have already
established that ξ1 and ξ2 agree on this backward end of E0,1, and y is a vertex of
the forward end of Ek,k+1 (or of Ek if Ek,k+1 is empty), it is sufficient to show that
the following hold for all E where E = Es,s+1 or E = Es:
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(†) If ξ1 and ξ2 agree on the backward end of E , then they must agree on its forward
end as well.

Since Es,s+1 is finite, Proposition 2.19 immediately implies (†) when E = Es,s+1.
To prove (†) when E = Es, let {bs, ds} = es be the unique non-isolated edge in Es,

let {as, bs, b
′
s} the backward end, and let {cs, ds, d

′
s} the forward end (see Figure 5).

Observe that

Es ∪
{

{as, b
′
s}

}

∪
{

{cs, d
′
s}

}

= Es,− ∪ Es,+,

where Es,− := {e ∈ Es : e ≤ es}∪
{

{as, b
′
s}

}

and Es,+ := {e ∈ Es : e ≥ es}∪
{

{cs, d
′
s}

}

.
(Observe that in the case when the maximum of Es is a non-isolated edge, then
Es,+ = {es}. This can only happen when s = k and Es,s+1 is empty, see Remark
4.4.) We denote by Vs,± the vertices of Es,±. Proposition 2.19 and the continuity of
ξ1 and ξ2 imply that there is a projective transformation g± in PGL(V ) such that
g± · ξ1(q) = ξ2(q) for any vertex q in Vs,±.

Since ξ1 and ξ2 agree on the backward end of Es, which is contained in Es,−,
Remark 2.7 implies that g− = id. Thus, ξ1(bs) = ξ2(bs) and ξ1(ds) = ξ2(ds). This
finishes the proof when the maximum of Es is a non-isolated edge. In the case when
the maximum of Es is an isolated edge, this allows us to deduce that g+ fixes both
ξ1(bs) and ξ1(ds). Let e := (bs, ds) and let J be any bridge across es. By assumption,
for all pairs of positive integers k := (k1, k2) that sum to n, σk

e,J [ξ1] = σk
e,J [ξ2]. Thus,

there is some vertex p of Es,+ that is not bs or ds, such that ξ
(1)
1 (p) = ξ

(1)
2 (p). This

implies that g+ fixes ξ1(bs), ξ1(ds) and ξ
(1)
1 (p), so Remark 2.7 implies that g+ = id.

Therefore ξ1 and ξ2 agree on the forward end of Es. This finishes the proof. �

5.2 The symplectic closed edge invariants. In this section we replace the
edge invariants associated to the non-isolated edges in ˜T by new invariants, which
we call the symplectic closed edge invariants. The symplectic closed edge invariants
behave more naturally under the shearing flows along these non-isolated edges (see
Lemma 5.11). In the companion paper [SZ17], it is shown that the symplectic closed
edge invariant can be used to give an easy description of the Goldman symplectic
structure on the Hitchin component HitV (S). Note that the symplectic closed edge
invariants resemble, but are not the same as the edge invariants in the Bonahon-
Dreyer parametrization in [BD17].

Recall that to define the edge invariants, we used that the cross ratios of a con-
figuration of four cyclically oriented points along a Frenet curve is always negative.
The first step to define the symplectic closed edge invariant is to control the sign
of the cross ratio of particular configurations of points, that do not necessarily lie
along a Frenet curve.

For this, let {r1, r2} be a non-isolated edge of ˜T and let J = {T1, T2} be the
bridge across {r1, r2}, such that T1 (resp. T2) lies to the left (resp. right) of the
oriented edge r := (r1, r2). As before, for m = 1, 2, let pm (resp. qm) be the vertex
of the edge {r1, r2} that is (resp. is not) a vertex of Tm, and let zm, wm be the other
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two vertices of Tm such that either (pm, zm, wm, qm) or (qm, wm, zm, pm) is cyclically
ordered (see Figure 7).

Proposition 5.6. Let ξ : ∂Γ → F(V ) be any Frenet curve (without any equivari-
ance assumptions), and let um be the unique unipotent projective transformation in
PGL(V ) that fixes the flag ξ(pm) and sends the flag ξ(zm) to ξ(qm). Then, for all
pairs k := (k1, k2) of positive integers that sum to n, the cross ratio satisfies

Ck(ξ(r1), u2 · ξ(w2), ξ(r2), u1 · ξ(w1)) < 0.

Proof. By Theorem 2.22, the Frenet curve ξ is a positive map. For m = 1, 2, choose
a basis Bm = {fm,1, . . . , fm,n} such that fm,i lies in ξ(i)(pm)∩ξ(n−i+1)(zm) for i = 1,
. . . , n − 1. By Definition 2.17 we have unipotent projective transformations v1,m

and v2,m in PGL(V ) that are totally positive with respect to Bm, such that up to
transforming everything by a projective transformation, ξ(wm) = v1,m · ξ(zm) and
ξ(qm) = v1,mv2,m · ξ(zm). In particular, v1,mv2,m fixes ξ(pm) and sends ξ(zm) to
ξ(qm), so this implies that um = v1,mv2,m. Hence, um · ξ(wm) = v1,mv2,mv1,m · ξ(zm),
which means that any cyclic permutation of

(ξ(pm), ξ(zm), ξ(qm), um · ξ(wm)) or (ξ(qm), ξ(zm), ξ(pm), um · ξ(wm))

is a positive quadruple of flags. Hence, by Proposition 2.19, we see that

Ck(ξ(r1), u2 · ξ(w2), ξ(r2), ξ(z2)),
Ck(ξ(r1), u1 · ξ(w1), ξ(r2), ξ(z1)), and
Ck(ξ(r1), ξ(z2), ξ(r2), ξ(z1))

are negative. This implies that

Ck(ξ(r1), u2 · ξ(w2), ξ(r2), u1 · ξ(w1))

=
Ck(ξ(r1), ξ(z2), ξ(r2), ξ(z1)) · Ck(ξ(r1), u2 · ξ(w2), ξ(r2), ξ(z2))

Ck(ξ(r1), u1 · ξ(w1), ξ(r2), ξ(z1))
< 0. �

Remark 5.7. If we defined um with wm in place of zm, then u−1
2 u1 is the Bonahon-

Dreyer slithering map [BD17, Section 5] associated to the pair (T1, T2).

With this, we make the following definition.

Definition 5.8. For any non-isolated edge {r1, r2} in ˜T , any bridge J in ˜J across
{r1, r2}, and any pair of positive integers k := (k1, k2) that sum to n, the k-
symplectic closed edge invariant along r := (r1, r2) is the function αk

r,J : Fre(V ) → R

defined by

αk
r,J [ξ] := log

(

−Ck(ξ(r1), u2 · ξ(w2), ξ(r2), u1 · ξ(w1))
)

,

where um is the unique unipotent projective transformation in PGL(V ) that fixes
ξ(pm) and sends ξ(zm) to ξ(qm).
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The projective invariance of the cross ratio implies that αk
r,J [ξ] does not depend

on the choice of representative ξ in [ξ], so Proposition 5.6 implies that αk
r,J [ξ] is

indeed well-defined. Note that while the edge invariant σk
r,J depends only on ξ(r1),

ξ(r2), ξ(1)(z1), and ξ(1)(z2), the symplectic closed edge invariant αk
r,J depends on

ξ(r1), ξ(r2), ξ(z1), ξ(z2), ξ(1)(w1), and ξ(1)(w2).
Setting k1 := (k1, k2), k2 := (k2, k1), r1 := (r1, r2) and r2 := (r2, r1), we have

αk1
r1,J

[ξ] = αk2
r2,J

[ξ].
We now establish the key property of the symplectic closed edge invariant, which

the usual edge invariant does not satisfy.

Lemma 5.9. Let ξ and ξ′ are two Frenet curves normalized such that ξ(r1) = ξ′(r1),
ξ(r2) = ξ′(r2), and ξ(1)(w2) = ξ′(1)(w2). Suppose further that ξ(z2) = ξ′(z2). Then
the symplectic closed edge invariants αk

r,J [ξ] and αk
r,J [ξ′] agree for all pairs of positive

integers k := (k1, k2) that sum to n, if and only if there exists a unipotent projective
transformation v in PGL(V ) such that v · ξ(p1) = ξ(p1), v · ξ(z1) = ξ′(z1) and
v · ξ(1)(w1) = ξ′(1)(w1).

Lemma 5.9 is an immediate consequence of the following lemma.

Lemma 5.10. Let H1, H2 be a transverse pair of flags in F(V ). For m = 1, 2, 3,

• let Fm be a flag in F(V ) such that (H1, Fm, H2) is a generic triple of flags in
F(V )[3],

• let Pm ∈ P(V ) be a line in V such that Pm + H
(k1)
1 + F

(k2−1)
m = V for all pairs

k := (k1, k2) of integers that sum to n with k1 = 0, . . . , n − 1, and
• let um be the unipotent projective transformation in PGL(V ) that fixes H1

and satisfies um · Fm = H2.

Then the equality Ck
(

H1, u1 ·P1, H2, u2 ·P2

)

= Ck
(

H1, u1 ·P1, H2, u3 ·P3

)

holds for
all k if and only if there exists a unipotent projective transformation u in PGL(V )
that fixes H1 and satisfies u · F2 = F3 and u · P2 = P3.

Proof. First, observe that for m = 1, 2, 3 and any k, we have

V = um · V = um · Pm + um · H
(k1)
1 + um · F (k2−1)

m = um · Pm + H
(k1)
1 + H

(k2−1)
2 .

Thus, both Ck
(

H1, u1 ·P1, H2, u2 ·P2

)

and Ck
(

H1, u1 ·P1, H2, u3 ·P3

)

are well-defined
for all k.

Now, suppose that the unipotent projective transformation u exists. Then u2 =
u3u because both u3u and u2 are unipotent projective transformations that fix H1

and send F2 to H2. In particular, we have u2 · P2 = u3u · P2 = u3 · P3. This implies
that Ck

(

H1, u1 ·P1, H2, u2 ·P2

)

= Ck
(

H1, u1 ·P1, H2, u3 ·P3

)

for all pairs of positive
integers k that sum to n.

Conversely, suppose that Ck
(

H1, u1 ·P1, H2, u2 ·P2

)

= Ck
(

H1, u1 ·P1, H2, u3 ·P3

)

for all pairs of positive integers k that sum to n. A straightforward computation
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verifies that u2 · P2 = u3 · P3. Setting u := u−1
3 u2, it is clear that u · H1 = H1,

u · F2 = F3 and u · P2 = P3. Since u2 and u3 are both unipotent and fix H1, this
implies that u is also unipotent. �

Next, we determine how the k-symplectic closed edge invariant along r changes
under the k-elementary shearing flow along r.

Lemma 5.11. Let ξ : ∂Γ → F(V ) be a Frenet curve, let k := (k1, k2) be a pair of
positive integers that sum to n, and let

(

ψk
r

)

t
be the k-elementary shearing flow

with respect to r. We set ξt :=
(

ψk
r

)

t
(ξ). Then

αk
r,J [ξt] = αk

r,J [ξ] + t.

Proof. For m = 1, 2, let um be the unipotent projective transformation in PGL(V )
that fixes ξ(pm) and sends ξ(zm) to ξ(qm). Similarly, let um(t) be the unipotent
projective transformation that fixes ξt(pm) and sends ξt(zm) to ξt(qm). Let d(t) :=
dk

ξ(r)(t), where dk
ξ(r)(t) is the projective transformation used to define the k-elementary

shearing flow along r (see Section 3.2). By definition,

d(t) · ξ(z1) = ξt(z1), d(t) · ξ(w1) = ξt(w1),

and d(t) fixes both ξ(r1) = ξt(r1) and ξ(r2) = ξt(r2). Therefore the product u1(t)d(t)
u−1

1 fixes ξ(p1) and

u1(t)d(t)u−1
1 · ξ(q1) = u1(t)d(t) · ξ(z1)

= u1(t) · ξt(z1)
= ξt(q1)
= ξ(q1).

This implies that in the basis {f1, . . . , fn} of V such that, for all i = 1, . . . ,
n − 1, the vector fi lies in ξ(i)(p1) ∩ ξ(n−i+1)(q1), both u1(t)d(t)u−1

1 and d(t) are
represented by diagonal matrices and both u1(t) and u1 are represented by upper-
triangular unipotent matrices. Hence, u1(t)d(t)u−1

1 = d(t), so we can conclude that

u1(t) · ξt(w1) = u1(t)d(t) · ξ(w1)
= u1(t)d(t)u−1

1 · (u1 · ξ(w1))
= d(t) · (u1 · ξ(w1)).

Similarly, we also have that u2(t) · ξt(w2) = d(t)−1 · (u2 · ξ(w2)). This allows us to
conclude that

αk
r,J [ξt] = log

(

− Ck
(

ξt(r1), u2(t) · ξt(w2), ξt(r2), u1(t) · ξt(w1)
)

)

= log
(

− Ck
(

ξ(r1), d(t)−1 · (u2 · ξ(w2)), ξ(r2), d(t) · (u1 · ξ(w1))
)

)

= log
(

− et · Ck
(

ξ(r1), u2 · ξ(w2), ξ(r2), u1 · ξ(w1)
)

)

= αk
r,J [ξ] + t.
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where the second last equality follows from the same computation as the one per-
formed in the proof of Proposition 3.13 (1). �

5.3 Parametrizing the Hitchin component. In this section we review the
Bonahon-Dreyer parametrization of the Hitchin component HitV (S) ⊂ Fre(V ),
viewed as the locus of PGL(V )-orbits of Frenet curves that are ρ-equivariant for
some representation ρ : Γ → PGL(V ). We then give a slight reparametrization using
the symplectic closed edge invariants.

We first observe, that for a Frenet curve ξ : ∂Γ → F(V ) that is ρ-equivariant,
the edge invariants along non-isolated edges do not depend on the chosen bridge.
More precisely, let {r1, r2} be a non-isolated edge of ˜T , and let J1, J2 be two bridges
in ˜J across {r1, r2}. (Recall that J is the chosen bridge system that is compatible
to the ideal triagulation T .) Then for any pair k := (k1, k2) of positive integers that
sum to n the k-edge invariants along r := (r1, r2) agree: σk

r,J1
= σk

r,J2
. So, we can

safely drop the dependence on the bridge from the notation.
Note that the edge invariants and triangle invariants are Γ-invariant: for any

γ ∈ Γ, we have σk
r = σk

γ·r and τ i
x = τ i

γ·x. Thus, the map given in Proposition 5.4,

Φ : Fre(V ) → R
| ˜P|·| ˜J |·(n−1) × R

| ˜Q|·(n−1) × R
|˜Θ|· (n−1)(n−2)

2 ,

where ˜Q and ˜P are respectively the set of isolated and non-isolated edges in ˜T ,
restricts to an injective map

Φ|HitV (S) : HitV (S) → R
|T |·(n−1) × R

|Θ|· (n−1)(n−2)
2 . (5.1)

Bonahon and Dreyer [BD14, Section 4] explicitly characterize the image of the
map, by a family of equalities, called the closed leaf equalities, and a family of in-
equalities, called closed leaf inequalities, which hold on the image. Each such equality
and inequality is associated to a non-isolated edge in T .

To specify the closed leaf equalities and inequalities, recall that Labourie [Lab06,
Theorem 1.5] showed that for any Hitchin representation ρ : Γ → PGL(V ) the
following holds: for any γ ∈ Γ \ {id}, ρ(γ) has a (necessarily unique) lift to SL(V )
that is diagonalizable over R with positive, pairwise distinct eigenvalues, which we
denote by

λ1(ρ(γ)) > · · · > λn(ρ(γ)).

To obtain the closed leaf equalities, Bonahon and Dreyer observed that the eigen-
value data of ρ(γm) can be expressed in terms of the triangle and edge invariants.
In order to write this down, we introduce a notation to label the triangles to the left
and the right of the (oriented) geodesic r := (r1, r2), see Figure 8. (We will use this
notation also in Section 7, where we recall it, and advise the reader to then have a
look back at Figure 8.)



GAFA FLOWS ON THE PGL(V )-HITCHIN COMPONENT 643

p1 = q2 q1 = p2

T1
T1,2

T1,H1+1 = γ1 · T1

T2,1 = T2

γ−1
2 · T2

z1 = z1,0 w1 = z1,1

γ1 · z1 = z1,H1

γ1 · w1 = z1,H1+1

γ−1
2 · w2 γ−1

2 · z2

w2 = z2,1

z2 = z2,0

Figure 8: The thick (red) line is {r1, r2} and the thin (blue) lines are isolated edges in ˜Q,
and the (green) dotted lines are bridges in ˜J , and the second bridge from the left is {T1, T2}
(Color figure online).

Notation 5.12. Let J = {T1, T2} be a bridge across the non-isolated edge {r1, r2},
and let T1 and T2 lie to the left and right of (r1, r2) respectively. For m = 1, 2, let
pm (resp. qm) be the vertex of the edge {r1, r2} that is (resp. is not) a vertex of Tm.
Then let γm be the primitive group element in Γ with pm, qm as its repelling and
attracting fixed points respectively. Also, for all integers h, let Tm,h denote the ideal
triangle in ˜Θ defined by the following properties (see Figure 8 when p1 = q2):

• Tm,1 = Tm,
• Tm,h has pm as a vertex for all integers h,
• Tm,h and Tm,h+1 share a common edge, denoted em,h, for all integers h,
• there is a positive integer Hm such that Tm,kHm+h = γk

m · Tm,h for all integers
h, k.

Let zm,h denote the vertex of em,h that is not pm, set pm,h := (pm, zm,h), and set

tm,h :=
{

(pm, zm,h−1, zm,h) if pm = rm;
(pm, zm,h, zm,h−1) if pm = r3−m.

Remark 5.13. The triple tm,h is cyclically ordered.

Definition 5.14. Let J = {T1, T2} be a bridge in ˜J . For m = 1, 2 and any integer
h, let Tm,h be the ideal triangle and let Hm be the integer as defined in Notation 5.12.

The subset ˜Θ(J, Tm) := {Tm,1, Tm,2, . . . , Tm,Hm
} of ˜Θ is a closed edge subset.

For any i = 1, . . . , n − 1 and m = 1, 2, set

�i
ρ(γm) := log

λi(ρ(γm))
λi+1(ρ(γm))

. (5.2)
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Bonahon and Dreyer computed a formula for �i
ρ(γm) in terms of the triangle invari-

ants of the ideal triangles in the closed edge subset ˜Θ(J, Tm), and the edge invariants
along the edges of the ideal triangles in ˜Θ(J, Tm). Explicitly,

�n−i
ρ (γm) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Hm
∑

h=1

⎛

⎝σ
(i,n−i)
pm,h

[ξ] +
∑

j+k=n−i

τ
(i,j,k)
tm,h

[ξ]

⎞

⎠ if pm = rm;

−
Hm
∑

h=1

⎛

⎝σ
(i,n−i)
pm,h

[ξ] +
∑

j+k=n−i

τ
(i,j,k)
tm,h

[ξ]

⎞

⎠ if pm = r3−m.

. (5.3)

As an immediate consequence, the edge invariants and triangle invariants have
to satisfy the following inequalities, called the closed leaf inequalities associated to
the non-isolated edge {r1, r2} in ˜T :

• If pm = rm, then for all i = 1, . . . , n − 1,

Hm
∑

h=1

⎛

⎝σ
(i,n−i)
pm,h

[ξ] +
∑

j+k=n−i

τ
(i,j,k)
tm,h

[ξ]

⎞

⎠ > 0.

• If pm = r3−m, then for all i = 1, . . . , n − 1,

Hm
∑

h=1

⎛

⎝σ
(i,n−i)
pm,h

[ξ] +
∑

j+k=n−i

τ
(i,j,k)
tm,h

[ξ]

⎞

⎠ < 0.

There are n − 1 such inequalities for each non-isolated edge in T .
Also, since γ1 = γ2 if p1 = p2 and γ1 = γ−1

2 if p1 �= p2, the edges invariants
and triangle invariants have to satisfy the following equalities, called the closed leaf
equalities associated to the non-isolated edge {r1, r2} in ˜P:

(1) If p1 �= p2, then for all i = 1, . . . , n − 1,

H1
∑

h=1

⎛

⎝σ
(i,n−i)
p1,h [ξ] +

∑

j+k=n−i

τ
(i,j,k)
t1,h

[ξ]

⎞

⎠ =
H2
∑

h=1

⎛

⎝σ
(n−i,i)
p2,h [ξ] +

∑

j+k=i

τ
(n−i,j,k)
t2,h

[ξ]

⎞

⎠ .

(2) If p1 = p2, then for all i = 1, . . . , n − 1,

H1
∑

h=1

⎛

⎝σ
(i,n−i)
p1,h [ξ] +

∑

j+k=n−i

τ
(i,j,k)
t1,h

[ξ]

⎞

⎠ = −
H2
∑

h=1

⎛

⎝σ
(i,n−i)
p2,h [ξ] +

∑

j+k=n−i

τ
(i,j,k)
t2,h

[ξ]

⎞

⎠ .

There are n − 1 such identities for each non-isolated edge in T . These are sums
of invariants associated to the closed edge subset ˜Θ(J, T1) versus those associated
to the closed edge subset ˜Θ(J, T2). Observe also that the closed leaf equalities and
inequalities are associated to the non-isolated edge {r1, r2}. They do not depend on
the choice of bridge across {r1, r2} because of the ρ-equivariance of ξ.
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Remark 5.15. In Bonahon and Dreyer’s [BD14] description of the closed leaf equal-
ities and inequalities, they chose orientations on the edges of T . However, that choice
is only for notational convenience, and is not necessary to specify the closed leaf
equalities and inequalities.

Notation 5.16. Let WT be the vector subspace of R|T |·(n−1) × R
|Θ|· (n−1)(n−2)

2 cut out
by the closed leaf equalities, and let CT be the convex polytope in WT cut out by
the closed leaf inequalities.

The following theorem of Bonahon and Dreyer states that the closed leaf equali-
ties and inequalities are the only relations between the edge and triangle invariants.

Theorem 5.17 [BD14, Theorem 17]. The edge and triangle invariants give a real
analytic diffeomorphism from HitV (S) to CT .

In particular, this classifies the image of the map Φ|HitV (S) defined by (5.1), and
thus gives a real analytic parametrization of HitV (S) by CT .

Remark 5.18. Note that CT only depends on the ideal triangulation T , and not on
a choice of associated bridge system J . However the explicit identification Φ|HitV (S)

of HitV (S) with CT depends on the choice of J .

The goal of the rest of this section is to prove that an analogous theorem holds
when we replace the edge invariants along non-isolated edges by the symplectic
closed edge invariants described in Section 5.2.

Notation 5.19. For each edge in T , we choose one representative {r1, r2} in ˜T and an
orientation (r1, r2) on {r1, r2}. Then let ̂T denote the collection of all such choices,
one for each edge in T . Similarly, define ̂P and ̂Q using only the non-isolated edges
and isolated edges respectively. Also, for each ideal triangle in Θ, we choose one
representative {x1, x2, x3} in ˜Θ, and an order x := (x1, x2, x3) on {x1, x2, x3} that is
cyclically ordered. Then let ̂Θ denote the collection of all such choices, one for each
ideal triangle in Θ.

Theorem 5.20. The map

Ω = ΩT ,J : HitV (S) → R
|Q|·(n−1) × R

|P|·(n−1) × R
|Θ|· (n−1)(n−2)

2

[ξ] �→ (Σ1, Σ2, Σ3),

with

Σ1 :=
(

σk
r [ξ]

)

k∈A; r∈ ̂Q
,

Σ2 :=
(

αk
r [ξ]

)

k∈A; r∈ ̂P
,

Σ3 :=
(

τ i
x[ξ]

)

i∈B;x∈̂Θ
.

is a real-analytic diffeomorphism onto the convex polytope CT defined in Nota-
tion 5.16. Here, A is the set of pairs of positive integers that sum to n, and B is the
set of triples of positive integers that sum to n.
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Remark 5.21. From the symmetry properties of the triangle invariants, the edge
invariants along isolated edges, and the symplectic closed edge invariant, we see that
Ω does not depend on the choice of ̂Q, ̂P and ̂Θ.

Using Lemma 5.11, we now prove the equivalence between the Bonahon-Dreyer
edge invariants along non-isolated edges and the symplectic closed edge invariants.

Lemma 5.22. Given any projective class of Frenet curves [ξ0] in HitV (S) ⊂ Fre(V ),
let HitV (S)[ξ0] denote the set of points [ξ] in HitV (S) such that all the triangle
invariants and edge invariants along isolated edges of ˜T agree for [ξ0] and [ξ]. Then
the map A : HitV (S)[ξ0] → R

|P|·(n−1) given by

A : [ξ] �→
(

αk
r [ξ]

)

r∈ ̂P;k∈A,

where A is the set of pairs of positive integers that sum to n, is a real-analytic
diffeomorphism.

Theorem 5.20 then follows immediately from Lemma 5.22 and Theorem 5.17.

Proof of Lemma 5.22. It follows immediately from Theorem 5.17 that if ξt is a one-
parameter family of Frenet curves corresponding to a real-analytic family of Hitchin
representations ρt : Γ → PGL(V ), then for any point p in ∂Γ, ξt(p) is a real-analytic
path in F(V ). This implies the real-analyticity of A.

Next, we show that A is a bijection. For any pair r := (r1, r2) in ̂P and any pair
of positive integers k := (k1, k2) that sum to n, recall that σk

r denotes the Bonahon-
Dreyer edge invariants along the non-isolated edge {r1, r2}. Since all the triangle
invariants and edge invariants along isolated edges are constant on HitV (S)[ξ0], it
follows from Lemma 5.11 and (1) of Proposition 3.13 that αk

r −σk
r is also a constant

on HitV (S)[ξ0]. Since Theorem 5.17 implies that the map HitV (S)[ξ0] → R
|P|·(n−1)

given by [ξ] �→
(

σk
r [ξ]

)

r∈ ̂P;k∈A is a bijection, the same is true for A. �

6 Deforming Hitchin Representations

In this section we use the elementary eruption and shearing flows defined in Section 3
to construct flows on HitV (S) ⊂ Fre(V ). The idea is straight forward: we choose an
ideal triangulation T on S, and perform elementary eruption flows and shearing
flows on the ideal triangles and edges of ˜T in a “Γ-invariant” way to obtain a flow
in HitV (S). However, the Γ-orbits of edges in ˜T and triangles in ˜Θ are infinite, so
defining these flows in a Γ-invariant way involves taking the product of infinitely
many elementary eruption and shearing flows. In general, such products do not
converge. The main goal of this section is to describe how to resolve these convergence
issues.
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6.1 The tangent space to HitV (S). Let us fix an ideal triangulation T on
S and a compatible bridge system J . Recall that Θ denotes the set of triangles of
T . We denote by

W = WT ⊂ R
|T |·(n−1) × R

|Θ|· (n−1)(n−2)
2

the linear subspace cut out by the closed leaf equalities (see Notation 5.16). The
image of the diffeomorphism

Ω : HitV (S) → R
|T |·(n−1) × R

|Θ|· (n−1)(n−2)
2

given by Theorem 5.20 is an open subset of W . Thus, for every [ξ] in HitV (S) we
identify W with T[ξ]HitV (S).

Our goal now is to assign to every tangent vector μ in W = T[ξ]HitV (S) a flow
φμ

t on HitV (S) that is defined by performing the elementary shearing and eruption
flows on Fre(V ) in a “Γ-invariant” way. More precisely, following Notation 5.19, we
choose an oriented representative for each edge in T = ˜T /Γ, and denote the set of
such choices by ̂T . Similarly, we choose a cyclically ordered representative for each
ideal triangle in Θ = ˜Θ/Γ, and denote the set of all such choices by ̂Θ. With this
notation, a vector μ in W is a tuple of real numbers

μ =
(

(

μk
r

)

k∈A;r∈ ̂T
,
(

μi
x

)

i∈B;x∈̂Θ

)

,

where A is the set of pairs of positive integers that sum to n, B is the set of triples
of positive integers that sum to n. The map φμ

t is an infinite product of the k-
elementary shearing flows along all Γ-translates of r in ̂T , rescaled by μk

r , and the
i-elementary eruption flows with respect to all Γ-translates of x in ̂Θ, rescaled by
μi

x. The key point is to show that this infinite product gives rise to a well-defined
flow on HitV (S). In order to do this we decompose the product and write it as limits
of special finite products of elementary flows. We call these finite products semi-
elementary flows. Their definition relies on an exhaustion of the ideal triangulation
˜T and the set of triangles ˜Θ by finite subsets.

6.2 Semi-elementary flows. We introduce the class of semi-elementary flows
on Fre(V ), which are products of elementary flows on a larger and larger collection
of ideal triangles and edges.

We first specify this larger and larger collection. For this, recall that for any
bridge J = {T1, T2} in the bridge system ˜J and any m = 1, 2, we defined the closed
edge subset ˜Θ(J, Tm) ⊂ ˜Θ (see Definition 5.14). Denote the collection of all closed
edge subsets of ˜Θ by D. To specify our larger and larger collection, we define a graph
whose vertex set is D, and construct an exhaustion of this graph.

Definition 6.1.

• A pair of distinct ideal triangles T, T ′ in ˜Θ are adjacent if T and T ′ share a
common edge in ˜T , or if {T, T ′} is a bridge in ˜J .
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Figure 9: The two closed edge subsets given by the yellow striped region and the purple
region are adjacent (Color figure online).

Figure 10: The two closed edge subsets given by the yellow striped region and the purple
region are opposite (Color figure online).

• A pair of distinct closed edge subsets ˜Θ(J1, T1), ˜Θ(J2, T2) in D are adjacent if
there exist triangles T in ˜Θ(J1, T1) and T ′ in ˜Θ(J2, T2) such that T and T ′ are
adjacent (see Figure 9).

• A pair of distinct closed edge subsets ˜Θ(J1, T1) and ˜Θ(J2, T2) in D are opposite
if J1 = J2 = {T1, T2} (see Figure 10).

Being opposite defines an equivalence relation on D where each equivalence class
contains exactly two points in D. Furthermore, if two points in D are opposite, then
they are adjacent. Adjacency allows us to define the closed edge graph.

Definition 6.2. The closed edge graph is the graph whose vertex set is D, and two
vertices are joined by an edge if they are adjacent in the sense of Definition 6.1.

In order to define an exhaustion of the closed edge graph, we choose a closed edge
subset p0 in D as a base point, and let K1 := {p0}. Then for all positive integers j,
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let

K ′
j := Kj ∪ {p ∈ D : p is adjacent to some p′ ∈ Kj},

Kj+1 := K ′
j ∪ {p ∈ D : p is opposite to some p′ ∈ K ′

j}.

This iteratively defines a nested sequence (K1, K2, . . . ) of subsets of D such that
∞
⋃

j=1

Kj = D.

Recall that ˜Q denotes the set of isolated edges in ˜T . From the exhaustion
(K1, K2, . . . ) of D, we get an exhaustion of ˜Q ∪ ˜Θ as follows. For each positive
integer j, let Nj denote the set of ideal triangles that lie in some closed edge subset
in Kj , i.e.

Nj := {T ∈ ˜Θ : T ∈ p for some p ∈ Kj}.

Using this, define Mj to be the union of the ideal triangles in Nj and the edges of
the ideal triangles in Nj , i.e.

Mj := {o ∈ ˜Q ∪ ˜Θ : o ∈ Nj or o is an edge of an ideal triangle in Nj}.

Note that each Mj is a finite set, and (M1, M2, . . . ) is a nested sequence whose union
is ˜Q ∪ ˜Θ. We use these sets Mj to define the semi-elementary flows on Fre(V ).

Given a vector μ in W and any o in ˜T ∪ ˜Θ, we define the flow (φμ
o )t on Fre(V )

as follows. Recall that A denotes the set of pairs of positive integers that sum to n,
and B denotes the set of triples of positive integers that sum to n.

• If o = {r1, r2} is an edge in ˜T , let rm := (rm, rm+1) for m = 1, 2, where the
arithmetic in the subscripts are done modulo 2. Define

(φμ
o )t :=

∏

k∈A

(

ψk
r1

)

μk
r1

·t
=

∏

k∈A

(

ψk
r2

)

μk
r2

·t
,

where
(

ψk
r

)

t
is the k-elementary shearing flow with respect to r.

• If o = {x1, x2, x3} is an ideal triangle in ˜Θ and (x1, x2, x3) is cyclically ordered,
we set xm := (xm, xm+1, xm−1) for m = 1, 2, 3, where the arithmetic in the
subscripts are done modulo 3. Define

(φμ
o )t :=

∏

i∈B

(

εix1

)

μi
x1

·t
=

∏

i∈B

(

εix2

)

μi
x2

·t
=

∏

i∈B

(

εix3

)

μi
x3

·t
,

where (εix)t is the i-elementary eruption flow with respect to x.

Definition 6.3. Let Mj be the subset of ˜Q ∪ ˜Θ as defined above, and let μ be a
vector in W (see Notation 5.16). The (μ, Mj)-semi elementary flow is defined by

(

φμ
Mj

)

t
:=

∏

o∈Mj

(φμ
o )t : Fre(V ) → Fre(V ).
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Since Mj is a finite set for all positive integers j, Proposition 3.21 ensures that
(

φμ
Mj

)

t
is a commuting product, and is well-defined for all real numbers t.

6.3 (T ,J )-parallel flows. Using the semi-elementary flows just introduced,
we now define the (T , J )-parallel flow on HitV (S) in the direction of a tangent
vector μ in W = T[ξ]HitV (S), where we identify HitV (S) with the locus of projective
classes of Frenet curves in Fre(V ) that are ρ-equivariant for some representation
ρ : Γ → PGL(V ).

For this we first consider the flow
(

φμ
Q,Θ

)

t
: HitV (S) → HitV (S),

which is defined to be
(

φμ
Q,Θ

)

t
[ξ] := lim

j→∞

(

φμ
Mj

)

t
[ξ],

where (M1, M2, . . . ) is the exhaustion of ˜Q ∪ ˜Θ defined in Section 6.2.
We prove in Proposition 7.11 that

(

φμ
Q,Θ

)

t
is a well-defined flow and does

not depend on the choice of the base point p0 we chose to define the exhaustion
(M1, M2, . . . ). We emphasize that, as a flow on HitV (S),

(

φμ
Q,Θ

)

t
is not necessarily

defined for all t; it is possible to find a vector μ in W such that for some group
element γ in Γ, the i-length �i

ρ(γ) of γ defined by (5.2) descreases linearly with t

under the flow
(

φμ
Q,Θ

)

t
. Also, note that the flow

(

φμ
Q,Θ

)

t
does not yet involve the

invariants along the non-isolated edges of T .
We now define the counterpart which involves the invariants along the non-

isolated edges of T . Let c be a non-isolated edge of T , and let Γ · {r1, r2} ⊂ ˜T be
the Γ-orbit determined by c. Choose an enumeration {o1, o2, . . . } of Γ · {r1, r2}. For
any vector μ in W , consider the flow

(φμ
c )t : HitV (S) → HitV (S),

which is defined to be

(φμ
c )t [ξ] :=

∞
∏

l=1

(

φμ
ol

)

t
[ξ] = lim

r→∞

r
∏

l=1

(

φμ
ol

)

t
[ξ].

By Proposition 3.21,
∏r

l=1 (φμ
ol)t is a commuting product for all positive integers

r, and is a well-defined flow on Fre(V ) for all real numbers t. The fact that (φμ
c )t is

well-defined for all real numbers t is a consequence of Proposition 7.1.

Remark 6.4. The flows (φμ
c )t are examples of generalized twist flows which have

been studied by Goldman in the context of representation varieties of surface groups
into reductive Lie groups [Gol86].
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Using (φμ
c )t and

(

φμ
Q,Θ

)

t
, we can now give the proper definition of the (T , J )-

parallel flow on HitV (S) associated to any vector μ in W .

Definition 6.5. For any vector μ in W , define the (T , J )-parallel flow associated
to μ, φμ

t : HitV (S) → HitV (S) to be

φμ
t :=

(

∏

c∈P
(φμ

c )t

)

◦
(

φμ
Q,Θ

)

t
. (6.1)

The next theorem relates the (T , J )-parallel flows to the parametrization Ω =
ΩT ,J of HitV (S) defined in Theorem 5.20.

Theorem 6.6. Let Ω : HitV (S) → CT be the real-analytic diffeomorphism defined
in Theorem 5.20. For any projective class of Frenet curves [ξ] in HitV (S) and any
vector μ in W , let

I[ξ],μ := {t ∈ R : Ω[ξ] + t · μ satisfy the closed leaf inequalities}.

Then for any t ∈ I[ξ],μ,

φμ
t [ξ] = Ω−1

(

Ω[ξ] + tμ
)

.

Theorem 6.6 implies in particular that (6.1) is a commuting product. A corollary
of Theorem 6.6 is the following.

Corollary 6.7. Every pair of (T , J )-parallel flows on HitV (S) commute, and the
space of (T , J )-parallel flows on HitV (S) is naturally in bijection with T[ξ]HitV (S).
In particular, the pair (T , J ) determines a trivialization of THitV (S).

In the upcoming companion paper [SZ17], it is shown that this trivialization of
THitV (S) is in fact symplectic with respect to the Goldman symplectic form on
HitV (S), and that every (T , J )-parallel flow is a Hamiltonian flow.

Theorem 6.6 follows from Proposition 7.1 and Proposition 7.11 below.

7 Well-Definedness of (T ,J )-Parallel Flows

We show now that the (T , J )-parallel flows are well-defined. For this we treat the
flows (φμ

c )t associated to a non-isolated edge c, and the flows
(

φμ
Q,Θ

)

t
separately. We

start with the flows associated to a non-isolated edge, since here the situation is sig-
nificantly simpler. Even though (φμ

c )t is a composition of infinitely many elementary
shearing flows, the edges along which the shearing happen are locally finite. In the
case of

(

φμ
Q,Θ

)

t
however, the neighborhoods of the non-isolated edges are deformed

by infinitely many elementary eruption and shearing flows.
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7.1 Well-definedness of
(

φμ
c

)

t
. We consider the linear subspace

W = WT ⊂ R
|T |·(n−1) × R

|Θ|· (n−1)(n−2)
2

that is cut out by the closed leaf equalities (see Notation 5.16). At every point [ξ] in
HitV (S), we identify the tangent space T[ξ]HitV (S) with W , using the parametriza-
tion of HitV (S) given in Theorem 5.20.

Recall that we chose for every edge in the ideal triangulation T = ˜T /Γ an oriented
representative, and denoted the set of these representatives by ̂T . Similarly, for any
ideal triangle in Θ = ˜Θ/Γ we choose a cyclically ordered representative and denoted
the set of these representatives by ̂Θ (see Notation 5.19). With this a tangent vector
μ in W can be identified with a tuple of real numbers

μ =
(

(

μk
r

)

k∈A;r∈ ̂T
,
(

μi
x

)

i∈B;x∈̂Θ

)

,

where A is the set of ordered pairs of positive integers that sum to n, B is the set of
ordered triples of positive integers that sum to n.

Let c be a non-isolated edge in T , and let r := (r1, r2) be the corresponding
ordered pair in ̂T . We define

Wc :=

{

μ ∈ W :
μi

x = 0 for all x ∈ ̂Θ and i ∈ B
μk

s = 0 for all s ∈ ̂T \ {r} and k ∈ A

}

.

Note that Wc ⊂ W is a (n − 1)-dimensional linear subspace. Furthermore, from the
closed leaf inequalities, one verifies that Ω[ξ]+ tμ lies in the image of Ω : HitV (S) →
W (see Theorem 5.20) for any real number t, any vector μ in Wc, and any [ξ] in
HitV (S). In other words, I[ξ],μ = R for all vectors μ in Wc.

Let Πc : W → Wc be the projection defined by

• Πc(μ)ks =
{

μk
s if s = r;

0 otherwise
for all k ∈ A,

• Πc(μ)ix = 0 for all x ∈ ̂Θ and for all i ∈ B.

Choose an enumeration Γ·{r1, r2} = {o1, o2, . . . }, and observe that (φμ
ol)t =

(

φ
Πc(μ)
ol

)

t
for all positive integers l. The next proposition implies a special case of Theorem 6.6
when φμ

t = (φμ
c )t, i.e. when μ lies in Wc.

Proposition 7.1. Let ξ be a representative of [ξ] in HitV (S), let μ be a vector in
W , let t be a real number, let c be a non-isolated edge in T , and let

[ξ0] := Ω−1 (Ω[ξ] + tΠc(μ)) ∈ HitV (S).

Pick any triangle {x1, x2, x3} in ˜Θ, and choose representatives ξj (resp. ξ0) of
∏j

l=1 (φμ
ol)t [ξ] (resp. [ξ0]) such that

ξj(x1) = ξ(x1), ξj(x2) = ξ(x2) and ξ
(1)
j (x3) = ξ(1)(x3)
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for all non-negative integers j. Then

lim
j→∞

ξj = ξ0.

Remark 7.2. Proposition 7.1 implies in particular that (φμ
c )t is well-defined, and

that it does not depend on the enumeration of Γ · {r1, r2}.

In order to prove Proposition 7.1 we use the following lemma that gives a conve-
nient expression for how the Frenet curve ξj =

∏j
l=1 (φμ

ol)t [ξ] changes with t. Recall
that if E := (E1, E2) is a pair of transverse flags and k := (k1, k2) is a pair of positive
integers that sum to n, then ckE(t) is the projectivization of the linear map that acts
as the identity on E

(k1)
1 and as scaling by e−t on E

(k2)
2 (see (3.4) in Section 3.2).

Lemma 7.3. Let ξ : ∂Γ → F(V ) be Frenet, let o = {r1, r2} be an edge in ˜T , and let
{f1, . . . , fn} be a basis of V such that ξ(l)(r1) = SpanR(f1, . . . , fl) for all l = 1, . . . ,
n − 1. For m = 1, 2, let rm := (rm, rm+1). There is a representative ξt of (φμ

o )t [ξ]
such that

ξt(x) =
{

ξ(x) if r2 ≤ x ≤ r1;
cξ(r1)(t) · ξ(x) if r1 ≤ x ≤ r2

where cξ(r1)(t) is the commuting product given by

cξ(r1)(t) :=
∏

k∈A
ckξ(r1)

(

μk
r1

· t
)

∈ PGL(V ). (7.1)

In particular, cξ(r1)(t) is represented by an upper triangular matrix
⎡

⎢

⎢

⎢

⎢

⎢

⎣

λ1 ∗ . . . ∗ ∗
0 λ2 . . . ∗ ∗
...

...
. . .

...
...

0 0 . . . λn−1 ∗
0 0 . . . 0 λn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

in the basis {f1, . . . , fn}, where λk

λk+1
= exp

(

μ
(k,n−k)
r1 · t

)

for all k = 1, . . . , n − 1.

Furthermore, if SpanR{fn, . . . , fn−i+1} = ξ(i)(r2) for all i = 1, . . . , n − 1, then the
matrix representing cξ(r1)(t) in the basis {f1, . . . , fn} is diagonal.

Proof. The first claim follows from (3.5) and the observation that for any pair k :=
(k1, k2) of positive integers that sum to n, if

ξ̄(x) =
{

ξ(x) if r2 ≤ x ≤ r1;
ckξ(r1)

(

μk
r1

· t
)

· ξ(x) if r1 ≤ x ≤ r2,

then ξ(r1) = ξ̄(r1). This implies that clξ(r1)

(

μl
r1

· t
)

= cl
ξ̄(r1)

(

μl
r1

· t
)

for all pairs l :=
(l1, l2) of positive integers that sum to n. The rest is a consequence of Lemmas 3.9,
3.12, and a straight forward computation. �
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Proof of Proposition 7.1. By Lemma 4.1, it is sufficient to prove that ξj converges
to ξ0 on the vertices of ˜T . We may assume without loss of generality that x :=
(x1, x2, x3) is a cyclically ordered triple. Proposition 3.13(3), implies that for any
triple of positive integers i := (i1, i2, i3) that sum to n, we have

T i(ξj(x)) = T i(ξ0(x)).

Proposition 2.19 then implies that ξj(x3) = ξ0(x3) for all j.
Now, let y be any vertex of ˜T that is not x1 x2 or x3. We use the combinatorial

description of pairs of distinct points in ˜T developed in Section 4.3 to prove that
ξj(y) converges to ξ0(y). After possibly relabelling the vertices of {x1, x2, x3}, we may
assume without loss of generality that {x2, x3} is the minimal element of E(x1,y). We
decompose

E(x1,y) =
k

⋃

s=1

E(x1,y),s ∪
k

⋃

s=0

E(x1,y),s,s+1 =
k

⋃

s=1

Es ∪
k

⋃

s=0

Es,s+1

as we described in Section 4.3. We have already established that for all j, ξj and ξ0

agree on {x1, x2, x3}, which is the backward end of E0,1. Also, observe that all the
ends of Es and Es,s+1 are ideal triangles, except possibly the forward end of Ek, in
which case Ek,k+1 is empty (see Remark 4.4). Thus, by Remark 2.7, to prove that
limj→∞ ξj(y) = ξ0(y), it is sufficient to prove that for all E with E = Es,s+1 or E = Es,
the following holds:

(†) If limj→∞ ξj and ξ0 agree on the backward end Δ− of E , then they must agree
on its forward end Δ+ as well.

We first prove (†) in the case when E = Es,s+1. Since all the edges in Es,s+1 are
isolated, it is clear that for all positive integers j, the sextuples (ξj(Δ−), ξj(Δ+)) and
(ξ(Δ−), ξ(Δ+)) are projectively equivalent. Furthermore, Proposition 2.19 implies
that (ξ0(Δ−), ξ0(Δ+)) and (ξ(Δ−), ξ(Δ+)) are projectively equivalent. Remark 2.7
immediately implies (†) in this case.

Next, we prove (†) when E = Es. Recall that Γ · {r1, r2} is the Γ-orbit in ˜T
corresponding to the non-isolated edge c in T . We orient the unique non-isolated
edge es in Es such that x1 and y lie to the left and right of es respectively. If es does
not lie in Γ · {r1, r2}, or es is the maximum of Es (in which case s = k and Ek,k+1 is
empty), then the same argument as above implies (†).

On the other hand, if es lies in Γ·{r1, r2}, we can assume without loss of generality
that r1 and r2 are respectively the backward and forward endpoints of es. Let r :=
(r1, r2), and let {f1, . . . , fn} be a basis of V such that fi lies in ξ(i)(r1)∩ξ(n−i+1)(r2).
Lemma 7.3 implies that for sufficiently large j, (ξj(Δ−), ξj(Δ+)) and (ξ(Δ−), cξ(r)(t)·
ξ(Δ+)) are projectively equivalent. Furthermore, cξ(r)(t) is represented in the basis
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{f1, . . . , fn} by the diagonal matrix
⎡

⎢

⎣

λ1 . . . 0
...

. . .
...

0 . . . λn

⎤

⎥

⎦
(7.2)

where λk1
λk1+1

= exp
(

μk
r · t

)

for all pairs of positive integers k := (k1, k2) that sum to
n.

Let J = {T1, T2} be a bridge in ˜J across {r1, r2}, such that T1 and T2 lie to the
left and right of (r1, r2) respectively. Let γm be the primitive element that fixes r1

and r2, where the repelling fixed point of γm is the point which is a vertex of the
triangle Tm. Proposition 2.19 implies that for m = 1, 2, there is a unique projective
transformation gm in PGL(V ) such that ξ0(p) = gm · ξ(p) for every vertex p of the
ideal triangles in

∞
⋃

d=−∞
γd

m · ˜Θ(J, Tm),

the union of the γm translates of the closed edge subset ˜Θ(J, Tm) (see Defini-
tion 5.14).

Since r1 and r2 are the accumulation points of the vertices of these ideal triangles,
the continuity of ξ and ξ0 implies that

ξ0(r1) = gm · ξ(r1) and ξ0(r2) = gm · ξ(r2)

for both m = 1, 2. In particular, the projective transformation g−1
1 g2 is represented in

the basis {f1, . . . , fn} by a diagonal matrix, and (ξ0(Δ−), ξ0(Δ+)) and (ξ(Δ−), g−1
1 g2·

ξ(Δ+)) are projectively equivalent.
Since by assumption limj→∞ ξj(Δ−) = ξ0(Δ−), to finish the proof of (†) in

this case, it is sufficient to show that (ξj(Δ−), ξj(Δ+)) and (ξ0(Δ−), ξ0(Δ+)) are
projectively equivalent for sufficiently large j, which is equivalent to showing that
g−1
1 g2 = cξ(r)(t). Let

η1(x) :=
{

ξ(x) if r1 ≤ x ≤ r2;
cξ(r)(t) · ξ(x) if r2 ≤ x ≤ r1,

and

η2(x) :=
{

ξ(x) if r1 ≤ x ≤ r2;
g−1
1 g2 · ξ(x) if r2 ≤ x ≤ r1.

By Lemma 5.11

αk
r,J [η1] = αk

r,J [ξ] + μk
r · t = αk

r,J [ξ0] = αk
r,J [η2]

for all pairs of positive integers k := (k1, k2) that sum to n. Denote the vertices of T2

by p2, z2, w2 such that p2 lies in {r1, r2} and either (p2, z2, w2, q2) or (q2, w2, z2, p2)
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are cyclically ordered, where q2 is the point in {r1, r2} that is not p2. Lemma 5.9
then implies that there is some unipotent projective transformation u in PGL(V )
that fixes ξ(p2), sends g−1

1 g2 · ξ(z2) to cξ(r)(t) · ξ(z2), and sends g−1
1 g2 · ξ(1)(w2) to

cξ(r)(t)·ξ(1)(w2). Since g−1
1 g2 and cξ(r)(t) both fix ξ(p2), this allows us, using Remark

2.7, to deduce that ug−1
1 g2 = cξ(r)(t). In the basis {f1, . . . , fn}, g−1

1 g2 and cξ(r)(t)
are both diagonal, and u is a unipotent matrix. Hence, u = id and g−1

1 g2 = cξ(r)(t).
�

7.2 Behavior near the non-isolated edges. We would like to apply a similar
argument as in the proof Proposition 7.1 to prove that

(

φμ
Q,Θ

)

t
is well-defined.

However, the argument is more delicate now, since neighbourhoods around non-
isolated edges are deformed by infinitely many elementary eruption and shearing
flows. We thus have to be more careful in describing the limit of the semi-elementary
flows near the non-isolated edges.

7.2.1 Main technical statement. Our next goal is to state the main technical
theorem we need to prove that

(

φμ
Q,Θ

)

t
is well-defined. We first need the following

lemma, which gives an explicit description of a representative in the projective class
of Frenet curves (φμ

o )t [ξ] when o is an ideal triangle in ˜Θ. This is the counterpart
of Lemma 7.3, which gives such an explicit description when o is an edge in ˜T .
Recall that for any triple of generic flags F := (F1, F2, F3), and any triple of positive
integers i := (i1, i2, i3) that sum to n, ai

F(t) is the projectivization of the linear map
that acts as scaling by e

2t
3 on F

(i1)
1 and scaling by e− t

3 on F
(i2)
2 + F

(i3)
3 (see (3.1) in

Section 3.1). Also, for all j = 1, . . . , n − 2, let Bj,2 := {(i1, i2, i3) ∈ B : i2 = j} and
Bj,3 := {(i1, i2, i3) ∈ B : i3 = j}.

Lemma 7.4. Let ξ : ∂Γ → F(V ) be Frenet, and let o be an ideal triangle in ˜Θ with
vertices x1, x2, x3, enumerated such that x := (x1, x2, x3) is cyclically ordered. For
m = 1, 2, 3, let xm := (xm, xm+1, xm−1). If {f1, . . . , fn} is a basis of V such that
ξ(l)(x1) = SpanR(f1, . . . , fl) for all l = 1, . . . , n − 1, then there is a representative ξt

of (φμ
o )t [ξ] such that

ξt(x) =

⎧

⎨

⎩

ξ(x) if x3 ≤ x ≤ x1;
aξ(x1)(t) · ξ(x) if x1 ≤ x ≤ x2;
a′

ξ(x3)
(t) · ξ(x) if x2 ≤ x ≤ x3,

where aξ(x1)(t) := a1
ξ(x1)

(t)a2
ξ(x1)

(t) . . . an−2
ξ(x1)

(t) and a′
ξ(x3)

(t) := a′1
ξ(x3)

(t)a′2
ξ(x3)

(t) . . .

a′n−2
ξ(x3)

(t). Here, for all j = 1, . . . , n − 2, aj
ξ(x1)

(t) and a′j
ξ(x3)

(t) are the commuting

products given by

aj
ξ(x1)

(t) :=
∏

i∈Bj,2

ai
ξ(x1)

(

μi
x1

· t
)

, a′j
ξ(x3)

(t) :=
∏

i∈Bj,3

ai
ξ(x3)

(

−μi
x3

· t
)

∈ PGL(V ).
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In particular, aξ(x1)(t) is represented by an upper-triangular matrix

⎡

⎢

⎢

⎢

⎢

⎢

⎣

λ1 ∗ . . . ∗ ∗
0 λ2 . . . ∗ ∗
...

...
. . .

...
...

0 0 . . . λn−1 ∗
0 0 . . . 0 λn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

in the basis {f1, . . . , fn}, where

λk

λk+1
= exp

(

∑

i2+i3=n−k

μ
(k,i2,i3)
x1 · t

)

for all k = 1, . . . , n − 1. Furthermore, aξ(x1)(t) fixes ξ(1)(x2).

Proof. By Corollary 3.6, both aj
ξ(x1)

(t) and a′j
ξ(x3)

(t) are commuting products. The
first claim is then a consequence of (3.2) and the following observation: If

ξ̄(x) =

⎧

⎪

⎨

⎪

⎩

ξ(x) if x3 ≤ x ≤ x1;
aj

ξ(x1)
(−t) · ξ(x) if x1 ≤ x ≤ x2;

a′j
ξ(x3)

(−t) · ξ(x) if x2 ≤ x ≤ x3,

for some j = 1, . . . , n−2, then ξ̄(x3) = ξ(x3), ξ̄(x1) = ξ(x1), and ξ̄(j)(x2) = ξ(j)(x2).
In particular, ai

ξ(x1)
(t) = ai

ξ̄(x1)
(t) and a′i

ξ(x3)
(t) = a′i

ξ̄(x3)
(t) for all i ≤ j. The rest is

a consequence of Lemma 3.1, Lemma 3.5, and a straight forward computation. �

Recall that for any non-isolated edge {r1, r2} in ˜T , any bridge J = {T1, T2}
across {r1, r2}, and any m = 1, 2, we defined the closed edge subset ˜Θ(J, Tm) ⊂ ˜Θ
(see Definition 5.14). Assume without loss of generality that T1 and T2 lie to the left
and right of the oriented edge (r1, r2) respectively, and let pm be the vertex of Tm

that is either r1 or r2. Recall that in Notation 5.12, we defined a collection of ideal
triangles {. . . , Tm,−1, Tm,0, Tm,1, Tm,2, . . . } such that all these triangles share pm as a
common vertex, Tm,1 = Tm, and Tm,h shares a common edge em,h with Tm,h+1. Also,
we defined a positive integer Hm such that ˜Θ(J, Tm) = {Tm,1, Tm,2, . . . , Tm,Hm

} (see
Figure 8). Let zm,h denote the vertex of em,h that is not pm, set pm,h := (pm, zm,h),
and set

tm,h :=
{

(pm, zm,h−1, zm,h) if pm = rm;
(pm, zm,h, zm,h−1) if pm = r3−m.

Let [ξ] be a projective class of Frenet curves in HitV (S), let μ be a vector in W ,
and let t be a real number. For each triple in tm,h, define

aξ(tm,h)(t) := a1
ξ(tm,h)(t)a

2
ξ(tm,h)(t) . . . an−2

ξ(tm,h)(t), (7.3)
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where for all j = 1, . . . , n − 2, aj
ξ(tm,h)(t) is the commuting product given by

aj
ξ(tm,h)(t) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∏

i∈Bj,2

ai
ξ(tm,h)

(

−μi
tm,h

· t
)

if pm = rm;

∏

i∈Bj,2

ai
ξ(tm,h)

(

μi
tm,h

· t
)

if pm = r3−m.

Also, for each pair pm,h, define

cξ(pm,h)(t) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∏

i∈A
ckξ(pm,h)

(

−μk
pm,h

· t
)

if pm = rm;

∏

i∈A
ckξ(pm,h)

(

μk
pm,h

· t
)

if pm = r3−m.
(7.4)

Here, recall that μi
tm,h

and μk
pm,h

are the entries of the vector μ (see Section 6.1).
Using this, we set

am(t) = aξ,m(t) := aξ(tm,1)(t)cξ(pm,1)(t) . . . aξ(tm,Hm)(t)cξ(pm,Hm)(t). (7.5)

It follows from Lemmas 7.3 and 7.4 that each aξ(tm,h)(t) and each cξ(pm,h)(t) fixes
ξ(pm), so am(t) also fixes ξ(pm). In other words, if {f1, . . . , fn} is a basis of V such
that fi lies in ξ(i)(r1) ∩ ξ(n−i+1)(r2), then am(t) is upper triangular if pm = r1

and lower triangular if pm = r2. Let um(t) = uξ,m(t) be the unipotent projective
transformation that fixes ξ(pm) such that

am(t) = um(t)hm(t)

for some projective transformation hm(t) = hξ,m(t) that fixes both ξ(r1) and ξ(r2).

We consider the exhaustion (M1, M2, . . . ) of ˜Q ∪ ˜Θ used to define
(

φμ
Q,Θ

)

t
(see

Section 6.2). The following is the main technical theorem that we prove here. Infor-
mally, it tells us how

(

φμ
Q,Θ

)

t
, evaluated at the vertices of a non-isolated edge and at

the vertices of the two ideal triangles associated to a bridge across this non-isolated
edge, changes with t.

Let qm be the vertex of the non-isolated edge {r1, r2} that is not pm, and let
γm be the primitive element in Γ that has pm and qm as its repellor and attractor
respectively (see Notation 5.12).

Theorem 7.5. Let {r1, r2} be a non-isolated edge in ˜P and let J = {T1, T2} be a
bridge in ˜J across {r1, r2}. Suppose that [ξ] is a projective class of Frenet curves in

HitV (S) and let ξ be a representative of [ξ]. Let ξj be the representative of
(

φμ
Mj

)

t
[ξ]

normalized such that ξj(p1) = ξ(p1), ξj(z1,0) = ξ(z1,0) and ξ
(1)
j (z1,1) = ξ(1)(z1,1).
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(1) The infinite product

um,∞(t) := lim
d→∞

(

um(t)hm(t)ρ(γm)
)d ·

(

hm(t)ρ(γm)
)−d (7.6)

is a well-defined unipotent projective transformation in PGL(V ) that fixes
ξ(pm). Furthermore,

lim
j→∞

ξj(r1) = u1,∞(t) · ξ(r1),

lim
j→∞

ξj(r2) = u1,∞(t) · ξ(r2),

lim
j→∞

ξj(z2,0) = u1,∞(t)u2,∞(t)−1 · ξ(z2,0),

lim
j→∞

ξ
(1)
j (z2,1) = u1,∞(t)u2,∞(t)−1 · ξ(1)(z2,1).

(2) lim
d→∞

lim
j→∞

ξj(γd
m · zm,0) = lim

j→∞
ξj(qm).

7.2.2 The proof of Theorem 7.5. Recall that ˜Θ(J, Tm) = {. . . , Tm,−1, Tm,0, Tm,1,

Tm,2, . . . } denotes a closed edge subset (see Definition 5.14). We denote by ˜T (J, Tm)
the set of edges of the triangles contained in the closed edge subset ˜Θ(J, Tm),
˜T (J, Tm) = {em,1, . . . , em,Hm

}.
It is a direct consequence of the definition of the sets Mj in the exhaustion of

˜Θ ∪ ˜Q that there is an integer D′ such that for sufficiently large j

• γd
m ·

(

˜Θ(J, Tm) ∪ ˜T (J, Tm)
)

⊂ Mj for all 0 ≤ d ≤ j + D′, and

• γd
m ·

(

˜Θ(J, Tm) ∪ ˜T (J, Tm)
)

∩ Mj = ∅ for all d > j + D′.

For any sufficiently large j, set D := j + D′, and let E := 2(D + 1)(H1 + H2). We
enumerate the set

D
⋃

d=0

2
⋃

m=1

γd
m ·

(

˜Θ(J, Tm) ∪ ˜T (J, Tm)
)

= {o1, o2, o3, . . . oE} ⊂ ˜Q ∪ ˜Θ,

in the following order:

T1,1, e1,1, . . . , T1,H1 , e1,H1 ,
T2,1, e2,1, . . . , T2,H2 , e2,H2 ,
T1,H1+1, e1,H1+1, . . . , T1,2H1 , e1,2H1 ,
T2,H2+1, e2,H2+1, . . . , T2,2H2 , e2,2H2 ,

...
T1,DH1+1, e1,DH1+1, . . . , T1,(D+1)H1

, e1,(D+1)H1
,

T2,DH2+1, e2,DH2+1, . . . , T2,(D+1)H2
, e2,(D+1)H2

.
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Remark 7.6. Fix a sufficiently large positive integer j. Observe that the projective
classes of Frenet curves

(

φμ
Mj

)

t
[ξ] and

E
∏

h=1

(

φμ
oh

)

t
[ξ]

contain representatives that when restricted to the vertices of the ideal triangles in

∞
⋃

d=−∞
γd

m · ˜Θ(J, Tm),

are projectively equivalent. To prove Theorem 7.5, we work with
∏E

h=1 (φμ
oh)t in

place of
(

φμ
Mj

)

t
.

Notation 7.7. For all positive integers h, let ξm,h be the representative of

h
∏

r=1

(

φμ
or

)

t
[ξ]

such that ξm,h(pm) = ξ(pm), ξm,h(zm,0) = ξ(zm,0), and ξ
(1)
m,h(zm,1) = ξ(1)(zm,1).

The first step is to prove the following lemma, which is an analog of Theorem 7.5
for the flows

∏2(H1+H2)
h=1 (φμ

oh)t, i.e. it tells us how ξt :=
∏2(H1+H2)

h=1 (φμ
oh)t (ξ), evalu-

ated at r1 and r2 and at the vertices of the two ideal triangles associated to a bridge
across {r1, r2}, changes with t.

Lemma 7.8. Let J be a bridge in ˜J across the non-isolated edge {r1, r2} of ˜T . Let
ξ : ∂Γ → F(V ) be any Frenet curve, and let {f1, . . . , fn} be a basis of V such that
fi lies in ξ(i)(r1) ∩ ξ(n−i+1)(r2) for all i = 1, . . . , n. Then for all real numbers t, the
projective transformation am(t) in PGL(V ) defined by (7.5) satisfies the following
properties.

(1) am(t) fixes the flag ξ(pm).
(2) Let λm,1, . . . , λm,n be the diagonal entries down the diagonal of the matrix

representing am(t) in the basis {f1, . . . , fn}. Then for all k = 1, . . . , n − 1,

λ1,k

λ1,k+1
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

exp

(

−
H1
∑

h=1

(

μ
(k,n−k)
p1,h +

∑

i2+i3=n−k

μ
(k,i2,i3)
t1,h

)

t

)

if p1 = r1;

exp

(

H1
∑

h=1

(

μ
(n−k,k)
p1,h +

∑

i2+i3=k

μ
(n−k,i2,i3)
t1,h

)

t

)

if p1 = r2,

(7.7)
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and

λ2,k

λ2,k+1
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

exp

(

H2
∑

h=1

(

μ
(k,n−k)
p2,h +

∑

i2+i3=n−k

μ
(k,i2,i3)
t2,h

)

t

)

if p2 = r1;

exp

(

−
H2
∑

h=1

(

μ
(n−k,k)
p2,h +

∑

i2+i3=k

μ
(n−k,i2,i3)
t2,h

)

t

)

if p2 = r2.

(7.8)

In particular, the closed leaf equalities imply that all the diagonal entries of
a1(t) and a2(t) agree.

(3) ξm,2(H1+H2)(z) = am(t) · ξ(z) for all

z ∈
∞
⋃

d=1

2
⋃

m=1

γd
m · {zm,1, . . . , zm,Hm

} ∪ {r1, r2}.

(4) ξm,2(H1+H2)(z3−m,0) = am(t)a3−m(t)−1 · ξ(z3−m,0)

(5) ξ
(1)
m,2(H1+H2)

(z3−m,1) = am(t)a3−m(t)−1 · ξ(1)(z3−m,1)

Proof. (1) and (2) are immediate consequences of Lemmas 7.3 and 7.4 and a straight-
forward computation. We prove (3), (4), (5) in the case when m = 1; the case when
m = 2 is identical.

By Lemma 7.4, we see that ξ1,1(p1) = ξ(p1), ξ1,1(z1,0) = ξ(z1,0), ξ
(1)
1,1(z1,1) =

ξ(1)(z1,1), and ξ1,1(z) = aξ(t1,1)(t) · ξ(z), for all

z ∈
∞
⋃

d=0

γd
1 · {z1,1, . . . , z1,H1} ∪

∞
⋃

d=−∞
γd

2 · {z2,1, . . . , z2,H2} ∪ {r1, r2},

where aξ(t1,1)(t) is the projective transformation in PGL(V ) defined by (7.3).

By definition, ξ1,2(p1) = ξ1,1(p1) = ξ(p1), ξ1,2(z1,0) = ξ1,1(z1,0) = ξ(z1,0), ξ
(1)
1,2(z1,1)

= ξ
(1)
1,1(z1,1) = ξ(1)(z1,1), and ξ1,2(z1,1) = ξ1,1(z1,1). Then by Lemma 7.3, ξ1,2(z) =

cξ1,1(p1,1)(t) · ξ1,1(z) for all

z ∈ {z1,2, . . . , z1,H1} ∪
∞
⋃

d=1

γd
1 · {z1,1, . . . , z1,H1} ∪

∞
⋃

d=−∞
γd

2 · {z2,1, . . . , z2,H2} ∪ {r1, r2},

where cξ1,1(p1,1)(t) is the projective transformation in PGL(V ) defined by (7.4). The
following is a key observation for this proof:

ξ1,2(z) = cξ1,1(p1,1)(t)aξ(t1,1)(t) · ξ(z) = aξ(t1,1)(t)cξ(p1,1)(t) · ξ(z),

for all

z ∈ {z1,2, . . . , z1,H1} ∪
∞
⋃

d=1

γd
1 · {z1,1, . . . , z1,H1} ∪

∞
⋃

d=−∞
γd

2 · {z2,1, . . . , z2,H2} ∪ {r1, r2}.

Iterating the above procedure H1 times proves that ξ1,2H1 satisfies the following:



662 Z. SUN ET AL. GAFA

• ξ1,2H1(p1) = ξ(p1), ξ1,2H1(z1,0) = ξ(z1,0), and ξ
(1)
1,2H1

(z1,1) = ξ(1)(z1,1),
• ξ1,2H1(z) = a1(t) · ξ(z) for all

z ∈
∞
⋃

d=1

γd
1 · {z1,1, . . . , z1,H1} ∪

∞
⋃

d=−∞
γd

2 · {z2,1, . . . , z2,H2} ∪ {r1, r2},

• ξ1,h(z) = ξ1,2H1(z) for all z ∈ {p1, z1,0, z1,1, . . . , z1,H1 = γ1 · z1,0} and h ≥ 2H1,
and

• ξ
(1)
1,h(γ1 · z1,1) = ξ

(1)
1,2H1

(γ1 · z1,1) for all h ≥ 2H1.

From the above properties of ξ1,2H1 , we see that a1(t) sends ξ2,2H1(p2) = ξ(p2),
ξ2,2H1(z2,0) = ξ(z2,0), and ξ

(1)
2,2H1

(z2,1) = ξ(1)(z2,1) to ξ1,2H1(p2), ξ1,2H1(z2,0), and

ξ
(1)
1,2H1

(z2,1) respectively. Since ξ1,2H1 and ξ2,2H1 differ by a projective transformation,
Remark 2.7 implies that ξ2,2H1 = a1(t)−1 · ξ1,2H1 . We can thus repeat the above
argument for the case when m = 2 (with ξ2,2H1 in place of ξ) to prove that ξ2,2(H1+H2)

satisfies the following:

• ξ2,2(H1+H2)(p2) = ξ(p2), ξ2,2(H1+H2)(z2,0) = ξ(z2,0), and ξ
(1)
2,2(H1+H2)

(z2,1) =

ξ(1)(z2,1),
• ξ2,2(H1+H2)(z) = a2(t) · ξ2,2H1(z) for all

z ∈
∞
⋃

d=1

γd
2 · {z2,1, . . . , z2,H2} ∪

∞
⋃

d=−∞
γd

1 · {z1,1, . . . , z1,H1} ∪ {r1, r2},

• ξ2,h(z) = ξ2,2(H1+H2)(z) for all z ∈ {p2, z2,0, z2,1, . . . , z2,H2 = γ2 · z2,0} and
h ≥ 2(H1 + H2), and

• ξ
(1)
2,h(γ2 · z2,1) = ξ

(1)
2,2(H1+H2)

(γ2 · z2,1) for all h ≥ 2(H1 + H2).

Again from the above properties of ξ2,2(H1+H2), observe that a1(t)a2(t)−1 sends

ξ2,2(H1+H2)(p1), ξ2,2(H1+H2)(z1,0), and ξ
(1)
2,2(H1+H2)

(z1,1) to ξ(p1) = ξ1,2(H1+H2)(p1),

ξ(z1,0) = ξ1,2(H1+H2)(z1,0), and ξ(1)(z1,1) = ξ
(1)
1,2(H1+H2)

(z1,1) respectively. Since
ξ2,2(H1+H2) and ξ1,2(H1+H2) differ by a projective transformation, Remark 2.7 im-
plies that a1(t)a2(t)−1 · ξ2,2(H1+H2) = ξ1,2(H1+H2). As a consequence, we see that
ξ1,2(H1+H2)(z) = a1(t)a2(t)−1 · ξ2,2(H1+H2)(z) = ξ1,2H1(z) = a1(t) · ξ(z) for all

z ∈
∞
⋃

d=1

2
⋃

m=1

γd
1 · {zm,1, . . . , zm,2H1} ∪ {x1, x2},

so (3) holds. Similarly,

ξ1,2(H1+H2)(z2,0) = a1(t)a2(t)−1 · ξ2,2(H1+H2)(z2,0) = a1(t)a2(t)−1 · ξ(z2,0),

so (4) holds. The same computation proves (5). �
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When the Frenet curve ξ : ∂Γ → F(V ) is ρ-equivariant for some representation
ρ : Γ → PGL(V ), we can prove the following lemma, which is an analog of Lemma 7.8
for the flows

∏E
h=1 (φμ

oh)t. Here, recall that E := 2(D + 1)(H1 + H2).

Lemma 7.9. Let J be a bridge in ˜J across the non-isolated edge {r1, r2} of ˜T . Let
ξ : ∂Γ → F(V ) be a ρ-equivariant Frenet curve for some representation ρ : Γ →
PGL(V ) and let am(t) be the projective transformation in PGL(V ) defined by (7.5).
For all non-negative integers d, set

a′
m,d(t) := ρ(γm)dam(t)ρ(γm)−d and am,d(t) := a′

m,0(t)a
′
m,1(t) . . . a′

m,d(t).

Then the following statements hold:

(1) am,d(t) fixes the flag ξ(pm).
(2) ξm,E(γd

m · zm,0) = am,d−1(t) · ξ(γd
m · zm,0) and ξ

(1)
m,E(γd

m · zm,1) = am,d−1(t) ·
ξ(1)(γd

m · zm,1) for all d = 0, . . . , D, where am,−1(t) := id.
(3) ξm,E(z) = am,D(t) · ξ(z) for all

z ∈
∞
⋃

d=D+1

2
⋃

m=1

γd
m · {zm,1, . . . , zm,Hm

} ∪ {r1, r2}.

(4) ξm,E(z3−m,0) = am,D(t)a3−m,D(t)−1 · ξ(z3−m,0).
(5) ξ

(1)
m,E(z3−m,1) = am,D(t)a3−m,D(t)−1 · ξ(1)(z3−m,1).

Proof. In the proof of Lemma 7.8, we stopped the iterative procedure after D(H1 +
H2) iterations. To prove this lemma, apply the iterative procedure (D+1)(H1 +H2)
times, and use the observation that since ξ is ρ-equivariant, we have

ρ(γm)dam(t)ρ(γm)−d

= aξ(tm,dHm+1)(t)cξ(pm,dHm+1)(t) . . . aξ(tm,(d+1)Hm)(t)cξ(pm,(d+1)Hm)(t)

for all m = 1, 2 and d = 0, . . . , D. �
Observe that am,d(t) defined in Lemma 7.9 can be rewritten as

am,d(t) = (am(t)ρ(γm))d+1ρ(γm)−d−1.

We need to understand the limit as d grows to infinity of the unipotent part of
am,d(t). This motivates the following lemma.

Lemma 7.10. Let X be an n×n diagonal matrix whose diagonal entries are positive
and strictly decreasing down the diagonal, and let U be an n × n unipotent upper
triangular matrix, i.e.

X =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ1 0 . . . 0 0
0 λ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . λn−1 0
0 0 . . . 0 λn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 u1,2 · · · u1,n−1 u1,n

0 1 . . . u2,n−1 u2,n
...

...
. . .

...
...

0 0 . . . 1 un−1,n

0 0 . . . 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠
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where 0 < λ1 < · · · < λn. Then the sequence

{Vd := (UX)dX−d}∞
d=1

converges to a unipotent upper-triangular matrix whose (i, j)-entry for all j > i is

j−i
∑

k=0

∑

i=t0<t1<···<tk=j

⎛

⎝

k−1
∏

s=1

uts,ts+1

(

λts

λtk

)

1 − λts

λtk

⎞

⎠ · ut0,t1

1 − λt0
λtk

.

Proof. First, by induction on d, one can prove that Vd is a unipotent upper triangular
matrix whose (i, j)-entry Vi,j,d is given by

Vi,j,d =
j−i
∑

k=1

∑

i=t0<···<tk=j

(

ut0,t1ut1,t2 · · ·utk−1,tk

·
∑

k≤l1+···+lk≤d

(

λt0

λtk

)l1−1 (

λt1

λtk

)l2

· · ·
(

λtk−1

λtk

)lk

⎞

⎠ .

for all j > i. Here, the second summation is over positive integers t1, · · · , tk−1 such
that i = t0 < t1 < · · · < tk−1 < tk = j, and the last summation is over positive
integers l1, · · · , lk such that k ≤ l1 + · · · + lk ≤ d.

Since 0 < λ1 < · · · < λn, it is easy to see that if i = t0 < t1 < · · · < tk = j, then

lim
d→∞

⎛

⎝

∑

k≤l1+···+lk≤d

(

λt0

λtk

)l1−1 (

λt1

λtk

)l2

· · ·
(

λtk−1

λtk

)lk

⎞

⎠ =
k−1
∏

s=1

λts

λtk

1 − λts

λtk

· 1

1 − λt0
λtk

.

Thus,

lim
d→∞

Vi,j,d =
j−i
∑

k=0

∑

i=t0<t1<···<tk=j

⎛

⎝

k−1
∏

s=1

uts,ts+1

(

λts

λtk

)

1 − λts

λtk

⎞

⎠ · ut0,t1

1 − λt0
λtk

(7.9)

for all j > i. Since Vd is upper triangular and unipotent for all d, the same is true
for limd→∞ Vd. �

By making an appropriate change of basis, we see that Lemma 7.10 also holds if
U is a unipotent lower triangular matrix and X is a diagonal matrix whose entries
are decreasing down the diagonal.

Proof of Theorem 7.5. Let {f1, . . . , fn} be the basis of V such that fi lies in ξ(r1)(i)∩
ξ(r2)(n−i+1) for all i = 1, . . . , n.

Proof of (1). For m = 1, 2, let am(t) be the projective transformation in PGL(V )
defined by (7.5). Then we can write

am(t) = um(t)hm(t)
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where um(t) is a unipotent projective transformation that fixes ξ(pm) = ξm,2Hm
(pm)

and hm(t) is a projective transformation that fixes ξ(r1) and ξ(r2). By Lemma
7.8(2), h1(t) = h2(t) is explicitly represented in the basis {f1, . . . , fn} by the unique
determinant 1, diagonal matrix whose diagonal entries λ1, . . . , λn down the diagonal
satisfy, and in fact are determined by, the equation (7.7) and (7.8) for all k = 1, . . . ,
n − 1.

Observe that hm(t) commutes with ρ(γm) since they have the same attracting
and repelling fixed flags. Also, since t ∈ I[ξ],μ, we see from the description of the
closed leaf inequalities in Section 5.3 that the matrix representative of ρ(γm)hm(t)
in the basis {f1, . . . , fn} has diagonal entries that are increasing down the diagonal if
pm = r1 and decreasing down the diagonal if pm = r2. At the same time, the matrix
representing um(t) in the basis {f1, . . . , fn} is upper triangular when pm = r1 and
lower triangular when pm = r2. Thus, by Lemma 7.10, the limit

um,∞(t) := lim
d→∞

(

um(t)hm(t)ρ(γm)
)d(

hm(t)ρ(γm)
)−d

exists, and is a unipotent projective transformation that fixes ξ(pm).
We previously observed that for the purposes of Theorem 7.5, we may use

∏E
h=1 (φμ

oh)t in place of
(

φμ
Mj

)

t
(see Remark 7.6). Also, recall that we denote by

ξm,h the representative of

h
∏

r=1

(

φμ
or

)

t
[ξ]

such that ξm,h(pm) = ξ(pm), ξm,h(zm,0) = ξ(zm,0), and ξ
(1)
m,h(zm,1) = ξ(1)(zm,1) (see

Notation 7.7). It is thus sufficient to show that

lim
D→∞

ξ1,E(q1) = u1,∞(t) · ξ(q1),

lim
D→∞

ξ1,E(z2,0) = u1,∞(t)u2,∞(t)−1 · ξ(z2,0),

lim
D→∞

ξ
(1)
1,E(z2,1) = u1,∞(t)u2,∞(t)−1 · ξ(1)(z2,1).

By Lemma 7.9(3),

lim
D→∞

ξ1,E(q1) = lim
D→∞

a1,D(t) · ξ(q1)

= lim
D→∞

(

a1(t)ρ(γ1)
)D+1

ρ(γ1)−D−1 · ξ(q1)

= lim
D→∞

(

u1(t)h1(t)ρ(γ1)
)D+1(

h1(t)ρ(γ1)
)−D−1 · ξ(q1)

= u1,∞(t) · ξ(q1). (7.10)
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Since h1(t) = h2(t) commute with ρ(γ1) and ρ(γ2), Lemma 7.9(4) implies

lim
D→∞

ξ1,E(z2,0)

= lim
D→∞

a1,D(t)a2,D(t)−1 · ξ(z2,0)

= lim
D→∞

(

u1(t)h1(t)ρ(γ1)
)D+1

ρ(γ1)−D−1ρ(γ2)D+1
(

u2(t)h2(t)ρ(γ2)
)−D−1 · ξ(z2,0)

= u1,∞(t)u2,∞(t)−1 · ξ(z2,0).

Similarly, using Lemma 7.9(5) in place of Lemma 7.9(4),

lim
D→∞

ξ
(1)
1,E(z2,1) = u1,∞(t)u2,∞(t)−1 · ξ(1)(z2,1).

(2) Using Lemma 7.9(3), the same computation as the equation (7.10) proves
that

lim
D→∞

ξm,E(qm) = um,∞(t) · ξ(qm).

At the same time, Lemma 7.9(2) tells us that for sufficiently large integers D and
any integer d ≥ 1,

ξm,E(γd
m · zm,0)

= am,d−1(t) · ξ(γd
m · zm,0)

=
(

um(t)hm(t)ρ(γm)
)d

ρ(γm)−d · ξ(γd
m · zm,0)

=
(

um(t)hm(t)ρ(γm)
)d(

hm(t)ρ(γm)
)−d(

hm(t)ρ(γm)
)d · ξ(zm,0).

Since the matrix representative of ρ(γm)hm(t) in the basis {f1, . . . , fn} has diagonal
entries that are increasing down the diagonal if pm = x1 and decreasing down the
diagonal if pm = x2, we see that limd→∞

(

hm(t)ρ(γm)
)d · ξ(zm,0) = ξ(qm). Hence,

lim
d→∞

lim
D→∞

ξm,E(γd
m · zm,0) = um,∞(t)ξ(qm).

This proves (2). �

7.3 Well-definedness of
(

φμ
Q,Θ

)

t
. Using Theorem 7.5, we are now ready to

prove that the flow
(

φμ
Q,Θ

)

t
defined in Section 6.3 is well-defined.

We consider the subspace WQ,Θ of W = TξHitV (S) given by

WQ,Θ := {μ ∈ W : μk
r = 0 for all r ∈ ̂P, k ∈ A},

where A is the set of pairs of positive integers that sum to n. Also, let Π : W → WQ,Θ

be the projection such that

• Π(μ)kr = μk
r for all r ∈ ̂Q and k ∈ A,

• Π(μ)kr = 0 for all r ∈ ̂P and k ∈ A,
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• Π(μ)ix = μi
x for all x ∈ ̂Θ and i ∈ B.

Since the closed leaf equalities only involve the invariants associated to Q∪Θ, Π
is indeed well-defined. Observe that, if defined,

(

φμ
Q,Θ

)

t
=

(

φ
Π(μ)
Q,Θ

)

t
because I[ξ],μ =

I[ξ],Π(μ), and the sequence (M1, M2, . . . ) defined in Section 6.2 is an exhaustion of
˜Q ∪ ˜Θ. The next proposition is the analog of Proposition 7.1, and relates the flow
(

φμ
Q,Θ

)

t
with the parametrization Ω of HitV (S) given in Theorem 5.20. In particular,

it implies that
(

φμ
Q,Θ

)

t
is well-defined, and does not depend on the choice of base

point p0 in D, even though the semi-elementary flows
(

φμ
Mj

)

t
obviously do.

Proposition 7.11. Let ξ be a representative of [ξ] in HitV (S), let μ be a vector in
W , let t be a real number in I[ξ],μ, and let

[ξ0] := Ω−1 (Ω[ξ] + tΠ(μ)) ∈ HitV (S).

Pick any ideal triangle {x1, x2, x3} in ˜Θ, and choose representatives ξj (resp. ξ0) of
(

φμ
Mj

)

t
[ξ] (resp. [ξ0]) such that

ξj(x1) = ξ(x1), ξj(x2) = ξ(x2) and ξ
(1)
j (x3) = ξ(1)(x3)

for all non-negative integers j. Then

lim
j→∞

ξj = ξ0.

Proof. By Proposition 4.1, it is sufficient to prove that ξj converges to ξ0 on the
vertices of ˜T . Since

lim
j→∞

T i(ξj(x1), ξj(x2), ξj(x3)) = T i(ξ0(x1), ξ0(x2), ξ0(x3))

for all ordered triples of positive integers i that sum to n, Proposition 2.19, implies
that limj→∞ ξj(x3) = ξ0(x3) for all j.

Let y be any vertex of ˜T that is not x1, x2 or x3. We again use the combinatorial
description of pairs of distinct points in ˜T developed in Section 4.3 to prove that
ξj(y) converges to ξ0(y). After possibly relabelling the vertices of {x1, x2, x3}, we
may assume without loss of generality that {x2, x3} is the minimal element of E(x1,y).
Recall the decomposition

E(x1,y) =
k

⋃

s=1

E(x1,y),s ∪
k

⋃

s=0

E(x1,y),s,s+1 =
k

⋃

s=1

Es ∪
k

⋃

s=0

Es,s+1.

We just observed that, limj→∞ ξj and ξ0 agree on {x1, x2, x3}, which is the backward
end of E0,1. Also, observe that all the ends of Es and Es,s+1 are ideal triangles, except
possibly the forward end of Ek, in which case Ek,k+1 is empty. Thus, by Remark 2.7,
to prove that limj→∞ ξj(y) = ξ0(y), it is sufficient to prove that for all E with
E = Es,s+1 or E = Es, the following holds:
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(†) If limj→∞ ξj and ξ0 agree on the backward end Δ− of E , then they must agree
on its forward end Δ+ as well.

First, we prove (†) when E = Es,s+1. Recall that the number of vertices of the
edges in Es,s+1 is finite. We can thus apply Propositions 3.7, 3.13 and 2.19 to these
vertices to deduce that the sequence of sextuples

{

(ξj(Δ−), ξj(Δ+)
}∞

j=1
converges

to (ξ0(Δ−), ξ0(Δ+)) up to projective transformations. This immediately implies (†).
Next, we prove (†) when E = Es. We orient the unique non-isolated edge es in

Es such that x1 and y lie to the left and right of es respectively. Let r1 and r2 be
respectively the backward and forward endpoints of es equipped with its orientation,
and let {f1, . . . , fn} be a basis of V such that fi lies in ξ(i)(r1) ∩ ξ(n−i+1)(r2). Let
J := {T1, T2} be a bridge across es, T1 and T2 lie to the left and right of r := (r1, r2)
respectively. The same argument that we used above proves (†) when es is the
maximum of Es, in which case s = k and Ek,k+1 is empty, and also that

• limj→∞ ξj(Δ−) = ξ0(Δ−) if and only if limj→∞ ξj(T1) = ξ0(T1),
• limj→∞ ξj(Δ+) = ξ0(Δ+) if and only if limj→∞ ξj(T2) = ξ0(T2).

Thus, we may assume that es is not the maximum of Es, and it is sufficient to prove
that if limj→∞ ξj(T1) = ξ0(T1), then limj→∞ ξj(T2) = ξ0(T2). To prove this, we recall
the following notation.

For m = 1, 2, let pm (resp. qm) be the vertex of the edge es that is (resp. is not)
a vertex of Tm, and let γm be the primitive group element in Γ with pm and qm

as its repelling and attracting fixed points respectively. Recall that the collection of
ideal triangles {. . . , Tm,−1, Tm,0, Tm,1, Tm,2, . . . }, specified in Notation 5.12 all share
pm as a common vertex, Tm,1 = Tm, and Tm,h shares a common edge em,h with
Tm,h+1. Also, Hm is the positive integer such that the closed edge subset ˜Θ(J, Tm)
(Definition 5.14) is given by ˜Θ(J, Tm) = {Tm,1, Tm,2, . . . , Tm,Hm

} (see Figure 8). Let
zm,h denote the vertex of em,h that is not pm, set pm,h := (pm, zm,h), and set

tm,h :=
{

(pm, zm,h−1, zm,h) if pm = rm;
(pm, zm,h, zm,h−1) if pm = r3−m.

Let ξ̂j be the representative of
(

φμ
Mj

)

t
[ξ] such that ξ̂j(p1) = ξ(p1), ξ̂j(z1,0) =

ξ(z1,0), and ξ̂
(1)
j (z1,1) = ξ(1)(z1,1). By Theorem 7.5(1),

lim
j→∞

ξ̂j(q1) = u1,∞(t) · ξ(q1),

lim
j→∞

ξ̂j(z2,0) = u1,∞(t)u2,∞(t)−1 · ξ(z2,0),

lim
j→∞

ξ̂
(1)
j (z2,1) = u1,∞(t)u2,∞(t)−1 · ξ(1)(z2,1).

for some unipotent elements u1,∞(t) and u2,∞(t) in PGL(V ) that fix ξ(p1) and ξ(p2)
respectively. In particular, Lemma 5.9 implies that for all pairs of positive integers
k := (k1, k2) that sum to n, limj→∞ αk

r [ξj ] = αk
r [ξ] = αk

r [ξ0].
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By Propositions 2.19, 3.7 and 3.13, we see that for m = 1, 2, there is a projective
transformation hm in PGL(V ) such that hm · limj→∞ ξj(pm) = ξ0(pm) and

hm · lim
j→∞

ξj(γd
m · zm,0) = ξ0(γd

m · zm,0)

for all integers d. By Theorem 7.5(2), we have

hm · lim
j→∞

ξj(qm) = hm · lim
d→∞

lim
j→∞

ξj(γd
m · zm,0)

= lim
d→∞

ξ0(γd
m · zm,0)

= ξ0(qm).

In particular, hm · limj→∞ ξj(rm) = ξ0(rm) for both m = 1, 2.
The assumption that limj→∞ ξj(T1) = ξ0(T1), together with Remark 2.7, im-

plies that h1 = id, i.e. limj→∞ ξj(rm) = ξ0(rm) for m = 1, 2 and limj→∞ ξj(γd
1 ·

z1,0) = ξ0(γd
1 · z1,0) for all non-negative integers d. In particular, h2 fixes both

limj→∞ ξj(p2) = ξ0(p2) and limj→∞ ξj(q2) = ξ0(q2).
Now, since limj→∞ αk

r [ξj ] = αk
r [ξ0] for all pairs of positive integers k := (k1, k2)

that sum to n, Lemma 5.10 implies that there is a unipotent projective transforma-
tion u that fixes ξ0(p2), sends limj→∞ ξj(z2,0) to ξ0(z2,0), and sends limj→∞ ξ

(1)
j (z2,1)

to ξ
(1)
0 (z2,1). It follows from Remark 2.7 that u = h2, so h2 = u = id. Thus,

limj→∞ ξj(T2) = ξ0(T2). �

7.4 Closed-form formulas for the (T ,J )-parallel flows. Fix an ideal tri-
angulation T of S and a compatible bridge system J . Let Θ denote the set of ideal
triangles of T . Also, fix a vector μ in WT (see Notation 5.16). Recall that φμ

t denotes
the (T , J )-parallel flow associated to the μ. Our proof of Theorem 6.6 allows us to
describe φμ

t explicitly, in the sense of the following pair of propositions.
Recall that A is the set of ordered pairs of positive integers that sum to n, B is

the set of ordered triples of positive integers that sum to n, and Bj,2 := {(i1, i2, i3) ∈
B : i2 = j} for all j = 1, . . . , n−2. Also, recall that for all triples of positive integers
that sum to n and all cyclically ordered triples x := (x1, x2, x3) in ∂Γ, ai

ξ(x) is the
projective transformation defined by (3.1) in Section 3.1. Similarly, for all pairs of
positive integers that sum to n and all distinct pairs r := (r1, r2) in ∂Γ, ckξ(r) is the
projective transformation defined by (3.4) in Section 3.2 respectively.

Proposition 7.12. Let x := (x1, x2, x3) and y := (y1, y2, y3) be cyclically or-
dered triples of points in ∂Γ such that {x1, x2, x3} and {y1, y2, y3} are ideal tri-
angles in ˜Θ. Let ξ be a Frenet curve whose projective class lies in HitV (S), let
t ∈ I[ξ],μ, and let ξt be the representative of φμ

t [ξ] such that
(

ξ(x1), ξ(x2), ξ(1)(x3)
)

=
(

ξt(x1), ξt(x2), ξ
(1)
t (x3)

)

.
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(1) If x1 = y2 and x2 = y1, let p := (y1, y2). Then
(

ξt(y1), ξt(y2), ξ
(1)
t (y3)

)

=
∏

k∈A
ckξ(p)

(

−μk
p · t

)

·
(

ξ(y1), ξ(y2), ξ(1)(y3)
)

.

(2) If x2 = y1, x3 = y2 and x1 = y3, then
(

ξt(y1), ξt(y2), ξ
(1)
t (y3)

)

= a1
ξ(y)(t)a

2
ξ(y)(t) . . . an−2

ξ(y)(t) ·
(

ξ(y1), ξ(y2), ξ(1)(y3)
)

where aj
ξ(y)(t) is the commuting product

aj
ξ(y)(t) :=

∏

i∈Bj,2

ai
ξ(y)

(

μi
y · t

)

for all j = 1, . . . , n − 2.

Furthermore, if {f1, . . . , fn} is a basis for V such that fi lies in ξ(i)(x1)∩ξ(n−i+1)(x2)
for all i = 1, . . . , n − 1, then

∏

k∈A
ckξ(p)

(

μk
p · t

)

and
∏

i∈B
ai

ξ(x)

(

μi
x · t

)

can be written as matrices whose entries have explicit algebraic formulas in terms
of the coordinates of the vector etμ.

Proof. This follows from a computation using Lemmas 3.5 and 3.12. �

The second proposition, Proposition 7.13, is the analogous statement for bridges.

Proposition 7.13. Let {r1, r2} be an edge in ˜T and let J = {T1, T2} be any bridge
across {r1, r2} such that T1 and T2 lie to the left and right of r := (r1, r2) respectively.
For m = 1, 2, let pm (resp. qm) be the vertex of the edge {r1, r2} that is (resp. is not)
a vertex of Tm, and let zm and wm be the other two vertices of Tm such that either
(pm, zm, wm, qm) or (qm, wm, zm, pm) is cyclically ordered (see Figure 7). Let ξ be a
Frenet curve whose projective class lies in HitV (S), let t ∈ I[ξ],μ, and let ξt be the

representative of φμ
t [ξ] such that

(

ξt(p1), ξt(z1), ξ
(1)
t (w1)

)

=
(

ξ(p1), ξ(z1), ξ(1)(w1)
)

.

Then
(

ξt(p2), ξt(z2), ξ
(1)
t (w2)

)

= u1,∞(t) · cξ(r)(t)
−1 · u2,∞(t)−1 ·

(

ξ(p2), ξ(z2), ξ(1)(w2)
)

,

where um,∞(t) is the unipotent projective transformation in PGL(V ) defined by
(7.6) in Theorem 7.5 and cξ(r)(t) is the projective transformation defined by (7.1)
in Lemma 7.3. Furthermore, if {f1, . . . , fn} is a basis for V such that fi lies in
ξ(i)(r1) ∩ ξ(n−i+1)(r2) for all i = 1, . . . , n − 1, then u1,∞(t) · cξ(r2)(t) · u2,∞(t)−1 can
be written as matrices whose entries have explicit algebraic formulas in terms of the
coordinates of the vector etμ.



GAFA FLOWS ON THE PGL(V )-HITCHIN COMPONENT 671

Proof of Proposition 7.13. Let ξt be the representative of
(

φμ
Q,Θ

)

t
[ξ] such that ξt(p1)

= ξ(p1), ξt(z1) = ξ(z1) and ξ
(1)
t (w1) = ξ(1)(w1). Then observe that

ξt(p2) = cξt(r)
(t)−1 · ξt(p2),

ξt(z2) = cξt(r)
(t)−1 · ξt(z2), and

ξ
(1)
t (w2) = cξt(r)

(t)−1 · ξ
(1)
t (w2).

By Theorem 7.5(1), ξt(r1) = u1,∞(t) · ξ(r1) and ξt(r2) = u1,∞(t) · ξ(r2), so

cξt(r)
(t)−1 = u1,∞(t)cξ(r)(t)

−1u1,∞(t)−1.

At the same time, Theorem 7.5(2) implies that

ξt(p2) = u1,∞(t) · ξ(p2) = u1,∞(t)u2,∞(t)−1 · ξ(p2),

ξt(w2) = u1,∞(t)u2,∞(t)−1 · ξ(w2), and

ξ
(1)
t (z2) = u1,∞(t)u2,∞(t)−1 · ξ(1)(z2).

This proves that
(

ξt(p2), ξt(z2), ξ
(1)
t (w2)

)

= u1,∞(t) · cξ(r)(t)
−1 · u2,∞(t)−1 ·

(

ξ(p2), ξ(z2), ξ(1)(w2)
)

.

From the proof of Theorem 7.5, we see that (7.9) in the proof of Lemma 7.10
gives an explicit algebraic formula for the entries of um,∞(t), and hence of

u1,∞(t) · cξ(r)(t)
−1 · u2,∞(t)−1, (7.11)

in terms of the coordinates of Ω([ξ]) and etμ. �

8 Pants Decompositions, Flows and Darboux Coordinates

In this section we consider a particular ideal triangulation and a particular com-
patible bridge system, that are subordinate to a pants decomposition of S. Using
this fixed data, we specify a family of special (T , J )-parallel flows on HitV (S). This
family consists of (2g − 2)(n2 − 1) = dim(HitV (S)) flows (that necessarily pairwise
commute) whose tangent fields form a global frame of the tangent bundle THitV (S).
Using this, we construct a particular coordinate system on HitV (S) whose coordi-
nate functions are explicitly given in terms of the parametrization Ω = ΩT ,J of the
Hitchin component. In the case when n = 2, this coordinate system agrees with the
Fenchel–Nielsen coordinates on Teichmüller space (up to scaling).

In the companion paper [SZ17], it is shown that at every point in HitV (S), the
tangent fields to the special (T , J )-parallel flows give a Darboux basis of the tangent
space to HitV (S) with respect to the Goldman symplectic structure. It follows that
the coordinate system we define is a global Darboux coordinate system for HitV (S),
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and every coordinate function is the Hamiltonian function of a special (T , J )-parallel
flow, see Section 8.3 for more details.

There are four different types of special (T , J )-parallel flows: the families of n−1
twist flows and of n−1 length flows that are associated to simple closed curves in the
pants decomposition, and the families of (n−1)(n−2)

2 eruption flows and of (n−1)(n−2)
2

hexagon flows that are associated to the pairs of pants. These are explained in more
detail in Section 8.2.

8.1 Triangulation subordinate to a pants decomposition. We specify the
ideal triangulation T and the compatible bridge system J subordinate to a pair of
pants decompositions of S. Let us fix an auxiliary hyperbolic structure on S. Let P
be a family of 3g − 3 pairwise non-intersecting simple closed geodesics on S. They
define a decomposition of S into 2g − 2 pairs of pants. We denote by P the set of
these 2g − 2 pairs of pants. For each pair of pants P in P, we choose peripheral
group elements αP,1, αP,2, αP,3 in π1(P ) such that αP,3αP,2αP,1 = id, and P lies to
the right of its boundary components, oriented according to αP,1, αP,2 and αP,3.

By choosing base points, the inclusion of P into S induces an inclusion of π1(P )
into Γ, so we can view αP,1, αP,2 and αP,3 as group elements in Γ. We can then
define a Γ-invariant ideal triangulation of the universal cover of S by

˜T :=
⋃

P∈P

3
⋃

m=1

Γ ·
{

{α−
P,m, α+

P,m}, {α−
P,m, α−

P,m+1}
}

,

where γ−, γ+ denote the repelling and attracting fixed points of the group element
γ in Γ respectively, and arithmetic in the subscripts are done modulo 3. Then T :=
˜T /Γ is an ideal triangulation (Figure 11). The set of non-isolated (equivalently
closed) edges of T is exactly P. The set of ideal triangles ˜Θ of the triangulation ˜T
is given by

˜Θ =
⋃

P∈P

Γ ·
{

{α−
P,1, α

−
P,2, α

−
P,3}, {α−

P,1, α
−
P,3, αP,3 · α−

P,2}
}

. (8.1)

We fix a bridge system J compatible with T , such that both endpoints of all the
bridges in ˜J lie in the ideal triangles in ˜Θ of the form γ · {α−

P,1, α
−
P,2, α

−
P,3} for some

P in P and some γ in Γ.
For the rest of this article, we assume that (T , J ) is of this type. Note that the

ideal triangulation and the bridge system do not depend on the auxiliary hyperbolic
metric on S.

8.2 The special flows. Next, we describe the special flows associated to (T , J ).
Recall that we identify the tangent space to HitV (S) with

W = WT ⊂ R
(9g−9)(n−1) × R

(2g−2)(n−1)(n−2),
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Figure 11: This figure shows the ideal triangulation of a single pair of pants and its lift to
the universal covering (Color figure online).

the linear subspace cut out by the (3g − 3)(n − 1) closed leaf equalities (see Sec-
tion 6.1). We denote an arbitrary vector μ in W by

μ =
(

(

μk
r

)

k∈A;z∈ ̂T ,
(

μi
x

)

i∈B;x∈̂Θ

)

,

where A is the set of ordered pairs of positive integers that sum to n, B is the set of
ordered triples of positive integers that sum to n, ̂T is a set of oriented representatives
for each Γ-orbit in ˜T , and ̂Θ is the set of cyclically ordered representatives for each
Γ-orbit in ˜Θ (see Notation 5.19). Recall that

μk1
γ·r1

= μk1
r1

= μk2
r2

,

for any γ in Γ, and any km := (km, km+1) and rm := (rm, rm+1) for m = 1, 2.
Similarly,

μi1
γ·x1

= μi1
x1

= μi2
x2

= μi3
x3

for any γ in Γ, and im := (im, im+1, im−1) and xm := (xm, xm+1, xm−1) for all m = 1,
2, 3.

In the previous sections, we split the parameters of the parametrization ΩT ,J
into two types, parameters associated to edges in T , and parameters associated to
ideal triangles in Θ. Here, we construct flows associated to the non-isolated edges
(simple closed curves) in P on the one hand, and to the pair of pants in P on the
other hand. Thus, it is more convenient to split the parameters in a different way.
Namely into those that are associated to non-isolated edges, and those that are
associated to ideal triangles in Θ. For this note that any isolated edge of T is the
side of an ideal triangle in Θ. Therefore a convenient way is to consider B, the set
of ordered triples j := (j1, j2, j3) of non-negative integers that sum to n, such that
0 ≤ j1, j2, j3 ≤ n − 1.

We can then denote an arbitrary vector μ in W by

μ =
(

(

μk
r

)

k∈A;z∈ ̂P ,
(

μj
x

)

j∈B;x∈̂Θ

)

.
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So, for example if j = (0, j2, j3), then μj
x = μ

(j2,j3)
(x2,x3)

is the parameter associated to
the isolated edge represented by (x2, x3).

We first introduce the eruption and the hexagon flow associated to a pair of pants
P in P.

For every pair of pants P in P, we need a way to label the two ideal triangles
in which it is cut. For this, set xm := α−

P,m for m = 1, 2, 3, and let y1 := α−
P,1,

y2 := α−
P3

, y3 := αP,3 · α−
P,2 in ∂Γ, where αP,1, αP,2 and αP,3 are the group elements

in π1(P ) corresponding to the peripheral curves in P as described in Section 8.1.
Observe that

• x1 = y1 < x2 < x3 = y2 < y3 < x1 = y1,
• [x1, x2, x3] and [y1, y2, y3] are the two ideal triangles that lie in P ,
• if {T1, T2} is a bridge in ˜J across a lift of a boundary curve of P , and [T1] is

the triangle in P , then [T1] = [x1, x2, x3].

Note that the conjugacy classes [αP,1], [αP,2], [αP,3] are naturally in bijection
with the three boundary components c1, c2, c3 of P , equipped with the orientation
so that P lies to the right of each boundary component. Therefore, specifying an
order on {c1, c2, c3} induces an order on {x1, x2, x3}.

Definition 8.1. Let c1, c2, c3 be the non-isolated edges in P that are the three
boundary components of P . An order on {c1, c2, c3} is said to be cyclic if the induced
order on the vertices of the ideal triangle {x1, x2, x3} is cyclically ordered.

The only cyclic orders on {c1, c2, c3} are (cm, cm+1, cm−1) for m = 1, 2, 3.
We set P := (P, c1, c2, c3), where P is a pair of pants in P, and (c1, c2, c3) is a cyclic

order on the boundary components of P . We then have a cyclic order x := (x1, x2, x3)
on the triangle [x1, x2, x3]. We will refer to any such choice of x as a triple associated
to P.

Notation 8.2. For any triple of positive integers i := (i1, i2, i3) that sum to n, let
i := (i1, i3, i2).

Definition 8.3. Let P, x, y be as above, and let i := (i1, i2, i3) be a triple of
positive integers that sum to n. The i-eruption flow associated to P is the (T , J )
parallel flow φμ

t as defined in Definition 6.5, where μ is the vector in W that satisfies

• for all pairs r := (r1, r2) such that {r1, r2} is a non-isolated edge in ˜T , and all
pairs of positive integers l := (l1, l2) that sum to n,

μl
r = 0,

• for all cyclically ordered triples t := (t1, t2, t3) such that {t1, t2, t3} is an ideal
triangle in ˜Θ, and all triples of integers j := (j1, j2, j3) that sum to n and
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x1 = y1

x2

x3 = y2

y3

1
2

− 1
2

1 −1

1 −1

1−1

1 −1

1 −1

1−1

Figure 12: A non-isolated edge of ˜P is drawn in red (thick), a bridge in ˜J across the non-
isolated edge is drawn in green (dotted), and isolated edges are draw in blue (thin). Each
colored dot in an ideal triangle represents an ordered triple of positive integers that sum to
n. The picture gives a diagramatic representation for the eruption flows (turquoise squares)
and hexagon flows (yellow discs). The numbers above each of the colored dots are the
corresponding coordinates of the vector μ in W . (Color figure online)

0 ≤ j1, j2, j3 ≤ n − 1,

μj
t =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2

if t = x and j = i;

−1
2

if t = y and j = i;

0 otherwise.

.

(see Figure 12). Let E i
P denote the tangent vector field of this flow. Collectively, we

refer to the i-eruption flows associated to P as the eruption flows associated to the
pair of pants P .

It is straightforward to verify that E i
P does not depend on the choices made.

More informally, the i-eruption flow associated to P is the flow with the property
that in time t, it increases τ i

x by 1
2 t, decreases τ i

y by 1
2 t, and keeps all other coordinate

functions of Ω constant. Observe that if we set im := (im, im+1, im−1) and Pm :=
(P, cm, cm+1, cm−1) for m = 1, 2, 3, then E i1

P1
= E i2

P2
= E i3

P3
. Thus, there are (n −

1)(n − 2)(g − 1) eruption flows, (n−1)(n−2)
2 for each pair of pants in P.

To define the hexagon flows, we use the following notation.
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Notation 8.4. Let i := (i1, i2, i3) be a triple of positive integers that sum to n. For
any triple of integers (a1, a2, a3) that sum to 0 such that −im ≤ am ≤ n− im − 1 for
m = 1, 2, 3, denote i(a1, a2, a3) := (i1 + a1, i2 + a2, i3 + a3).

Definition 8.5. Let P, x, y be as above, and let i := (i1, i2, i3) be a triple of positive
integers that sum to n. The i-hexagon flow associated to P is the (T , J )-parallel
flow φμ

t , where μ is the vector in W that satisfies

• for all pairs r := (r1, r2) such that {r1, r2} is a non-isolated edge in ˜T , and all
pairs of positive integers l := (l1, l2) that sum to n,

μl
r = 0,

• for all cyclically ordered triples t := (t1, t2, t3) such that {t1, t2, t3} is an ideal
triangle in ˜Θ, and all triples of integers j := (j1, j2, j3) that sum to n and
0 ≤ j1, j2, j3 ≤ n − 1,

μj
t =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 if t = x and j = i(0, 1, −1), i(−1, 0, 1) or i(1, −1, 0);
1 if t = y and j = i(0, −1, 1), i(1, 0, −1) or i(−1, 1, 0);
−1 if t = x and j = i(0, −1, 1), i(1, 0, −1) or i(−1, 1, 0);
−1 if t = y and j = i(0, 1, −1), i(−1, 0, 1) or i(1, −1, 0);
0 otherwise.

(see Figure 12). Let Hi
P denote the tangent vector field of this flow. Collectively, we

refer to the i-hexagon flows associated to P as the hexagon flows associated to the
pair of pants P .

Just like the eruption flows, observe that Hi
P does not depend on any of the

choices made. Also, if we set im := (im, im+1, im−1) and Pm := (P, cm, cm+1, cm−1)
for m = 1, 2, 3, then Hi1

P1
= Hi2

P2
= Hi3

P3
. Thus, there are (g − 1)(n − 1)(n − 2)

hexagon flows, (n−1)(n−2)
2 for each pair of pants in P.

The following lemma is an easy consequence of the definition of the eruption and
hexagon flows.

Lemma 8.6. Let P be a pair of pants in P. The eruption flows and the hexagon
flows associated to P do not change the representation restricted to S\P (up to
conjugation). In particular they preserve the eigenvalues of the holonomy along all
pants curves in P.

Remark 8.7. When n = 3, there is only one eruption flow and one hexagon flow for
each pair of pants P in P. In this case, any representation in the Hitchin component
is the holonomy of a convex real projective structure on S. The eruption flow has
a geometric realization which can be seen as changing certain gluing parameters of
convex projective triangles. The hexagon flow can be realized as a bulging flow with
respect to an edge of the triangulation that lies inside of P . We refer the reader
to [WZ17] for a geometric description of these flows.
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Next, we define the twist flows and length flows. These are associated to the
pants curves in P.

For any curve c in P, let c be c equipped with an orientation, and let P1 and
P2 be the pairs of pants that share c as a common boundary component (possibly
P1 = P2), such that P1 and P2 lie to the right and left of c respectively. Choose
an oriented, non-isolated edge d := (x1,1, x1,2) in ˜T that is a lift of c. We may
assume without loss of generality that the group element αPm

in π1(Pm) has x1,m

and x1,m+1 as its repelling and attracting fixed point respectively, and that {T1, T2}
is a bridge in ˜J , where Tm := {α−

Pm
, β−

Pm
, γ−

Pm
}. Then let x2,m := β−

Pm
, x3,m := γ−

Pm

and y1,m := α−
Pm

, y2,m := γ−
Pm

, y3,m := γPm
· β−

Pm
in ∂Γ. Observe that

• x1,1 < x2,2 < x3,2 < x1,2 < x2,1 < x3,1 < x1,1,
• [x1,m, x2,m, x3,m] and [y1,m, y2,m, y3,m] are the ideal triangles in Pm.

We will refer to any such choice of d as a pair associated to c.

Definition 8.8. Let c be an oriented simple closed curve in P and d a pair associ-
ated to c. Let k := (k1, k2) be a pair of positive integers that sum to n. The k-twist
flow associated to c is the (T , J )-parallel flow φμ

t , where μ is the vector in W that
satisfies

• for all pairs r := (r1, r2) such that {r1, r2} is a non-isolated edge in ˜T , and all
pairs of positive integers l := (l1, l2) that sum to n,

μl
r =

⎧

⎨

⎩

−1
2

l = k and r = d;

0 otherwise

• for all cyclically ordered triples t := (t1, t2, t3) such that {t1, t2, t3} is an ideal
triangle in ˜Θ, and all triples of integers that sum to n and 0 ≤ j1, j2, j3 ≤ n−1,

μj
t = 0,

(see Figure 13).

Let Sk
c denote the tangent vector field of this flow. We collectively refer to the k-

twist flows associated to c as the twist flows associated to the simple closed curve c
in P.

Observe that Sk
c does not depend on any of the choices made.

If we let c1 and c2 be the two orientations of c, and set km := (km, km+1) for
m = 1, 2, then Sk1

c1
= Sk2

c2
. As such, in total, there are (3g − 3)(n − 1) twist flows,

n − 1 for each simple closed curve in P.
These twist flows are generalized twist flows in the sense of Goldman [Gol86,

Section 1]. It is straightforward to verify the following lemma.
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x1,1 = y1,1

x2,1

x3,1 = y2,1

y3,1

x1,2 = y1,2

x2,2

x3,2 = y2,2

y3,2

− 1
2

1 −1
−1 1

1 −1
−1 1

1 −1
−1 1

1 −1
−1 1

Figure 13: A non-isolated edge of ˜P is drawn in red (thick), a bridge in ˜J across the non-
isolated edge is drawn in green (dotted), and isolated edges are draw in blue (thin). Each
colored dot in an ideal triangle represents an ordered triple of positive integers that sum to n,
and each dot along an edge represents an ordered pair of integers that sum to n. The picture
gives a diagramatic representation for the lozenge flows (purple discs) and twist flows (grey
squares). The numbers above each of the colored dots are the corresponding coordinates of
the vector μ in W (Color figure online).

Lemma 8.9. Let c be a simple closed curve in the pair of pants decomposition P.
The twist flows associated to c do not change (up to conjugation) the representation
restricted to S\c. They hence preserve the eigenvalues of the holonomy along all
pants curves in P.

To define the length flows, for any pair of positive integers k := (k1, k2) that sum
to n, we denote k1 := (0, k1, k2), k2 := (k1, 0, k2), and k3 := (k1, k2, 0).

Definition 8.10. Let c be an oriented simple closed curve in P and d a pair as-
sociated to c. Let k := (k1, k2) be a pair of positive integers that sum to n. For
m = 1, 2, set x(m) := (x1,m, x2,m, x3,m), and y(m) := (y1,m, y2,m, y3,m), and let
km := (km, km+1).
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(1) The k-lozenge flow associated to c is the (T , J )-parallel flow φμ
t , where μ is

the vector in W that satisfies
• for all pairs r := (r1, r2) such that {r1, r2} is a non-isolated edge in ˜T ,

and all pairs of positive integers l := (l1, l2) that sum to n,

μl
r = 0

• for all cyclically ordered triples t := (t1, t2, t3) such that {t1, t2, t3} is an
ideal triangle in ˜Θ, and all triples of integers j := (j1, j2, j3) that sum to
n and 0 ≤ j1, j2, j3 ≤ n − 1,

μj
t =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 if t = x(1) and j = k3
1 or k3

1(0, −1, 1);
1 if t = y(1) and j = k2

1 or k2
1(0, 1, −1);

1 if t = x(2) and j = k3
2 or k3

2(0, −1, 1);
1 if t = y(2) and j = k2

2 or k2
2(0, 1, −1);

−1 if t = x(1) and j = k3
1(1, −1, 0) or k3

1(−1, 0, 1);
−1 if t = y(1) and j = k2

1(1, 0, −1) or k2
1(−1, 1, 0);

−1 if t = x(2) and j = k3
2(1, −1, 0) or k3

2(−1, 0, 1);
−1 if t = y(2) and j = k2

2(1, 0, −1) or k2
2(−1, 1, 0);

0 otherwise;

where for any positive triple of integers i := (i1, i2, i3) that sum to n,
i(a1, a2, a3) := (i1 + a1, i2 + a2, i3 + a3), see Figure 13. Let Zk

c denote the
tangent vector field of this flow.

(2) The k-length flow associated to c is the flow whose tangent vector field Yk
c is

given by

Yk
c := Zk

c + Ek3
1(0,−1,1)

x(1) − Ek3
1(−1,0,1)

x(1) + Ek3
2(0,−1,1)

x(2) − Ek3
2(−1,0,1)

x(2) .

We collectively refer to the k-length flows associated to c as the length flows asso-
ciated to the simple closed curve c ∈ P.

The lozenge flow is simply an intermediate flow used to define the length flow.
Just like the twist flows, Yk

c and Zk
c do not depend on the choices made. Also, if we

let c1 and c2 be the two orientations of c, and set km := (km, km+1) for m = 1, 2,
then we have Yk1

c1
= Yk2

c2
and Zk1

c1
= Zk2

c2
. Hence, there are (3g − 3)(n − 1) length

flows, n − 1 for each simple closed curve in P.
The following lemma is immediate.

Lemma 8.11. The length flows associated to c do not change the representation
restricted to S \ (P1 ∪ P2).

Definition 8.12. A (T , J )-parallel flow is said to be special if it is an eruption,
hexagon, twist or length flow. The tangent vector fields of these flows are respectively
called the eruption, hexagon, twist and length fields, and are collectively referred to
the special (T , J )-parallel vector fields.
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8.3 A new coordinate system. For every special (T , J )-parallel vector field
X , let X ∗ be the special (T , J )-parallel vector field given by

X ∗ :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Sk
c if X = Yk

c ;
−Yk

c if X = Sk
c ;

E i
P if X = Hi

P;
−Hi

P if X = E i
P.

Remark 8.13. This notation is chosen because in the upcoming companion paper
[SZ17], it is shown that the pairing of any pair of special (T , J )-parallel vector fields
X1, X2 under the Goldman symplectic form ω on HitV (S) is given by

ω(X1, X2) =
{

1 if X1 = X ∗
2 ;

0 otherwise.

In order to define the coordinate system we show the following

Proposition 8.14. For any special (T , J )-parallel vector field X , there exists a
(necessarily unique) real-analytic function

H(X ) : HitV (S) → R

whose derivative in the direction of X ∗ is 1, and whose derivative in the direction
of all other special (T , J )-parallel flows is 0. Furthermore, H(X ) can be written
in the coordinate functions of the parametrization Ω given in Theorem 5.20. In
particular, the (T , J )-parallel vector fields define a global frame of the tangent
bundle THitV (S).

This is proven in Theorem 8.18 and Theorem 8.22 below. Since the special (T , J )-
parallel flows pairwise commute and their tangent vector fields form a basis of the
tangent space to HitV (S) at every point, we have the following corollary.

Corollary 8.15. The collection of functions

{H(X ) : X is a special (T , J )-parallel vector field}

defines a global coordinate system on HitV (S).

Remark 8.16. Using the results in [SZ17] discussed in Remark 8.13, the global
coordinate system in Corollary 8.15 is a Darboux coordinate system for the Goldman
symplectic form. As a consequence, we have the following corollary.

Corollary 8.17. The following submanifolds of HitV (S) are Lagrangian subman-
ifolds:

(1) The submanifold spanned by the n − 1 twist flows associated to the 3g − 3
simple closed curves in P and the (n−1)(n−2)

2 eruption flows associated to the
2g − 2 pairs of pants in P.
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(2) The submanifold spanned by the n − 1 twist flows associated to the 3g − 3
simple closed curves in P and the (n−1)(n−2)

2 hexagon flows associated to the
2g − 2 pairs of pants in P.

(3) The submanifold spanned by the n − 1 length flows associated to the 3g − 3
simple closed curves in P and the (n−1)(n−2)

2 eruption flows associated to the
2g − 2 pairs of pants in P.

(4) The submanifold spanned by the n − 1 length flows associated to the 3g − 3
simple closed curves in P and the (n−1)(n−2)

2 hexagon flows associated to the
2g − 2 pairs of pants in P.

The Lagrangian submanifolds in (1) and (2) are of particular interest since the length
functions of all simple closed curves in P are constant on them.

The functions H(X ) are explicitly given in the following two theorems.

Theorem 8.18. Let c be an oriented, non-isolated edge in T , let d := (d1, d2) be a
lift of c, and let k := (k1, k2) be a pair of positive integers that sum to n.

(1) Let Yk
c be the tangent vector field of the k-length flow with respect to c. Then

H(Yk
c ) = −2αk

d,

where αk
d : HitV (S) → R is the symplectic closed edge invariant defined in

Definition 5.8.
(2) Let Sk

c be the tangent vector field of the k-twist flow with respect to c. Let γ be
the primitive group element in Γ with d1 and d2 as its repelling and attracting
fixed points respectively. For any pair of positive integers j := (j1, j2) that sum

to n, let �jc : HitV (S) → R
+ be the function defined by �jc[ρ] := �j1

ρ (γ) (see
(5.2)). Then

H(Sk
c ) =

k1
∑

j1=1

k2j1

2n
· �jc +

k2−1
∑

j2=1

k1j2

2n
· �jc

In the proof of Theorem 8.18, we need the following notation.

Notation 8.19. For any pair of positive integers k := (k1, k2) that sum to n, and for
any integer a satisfying −k1 < a < k2, set k(a, −a) := (k1 + a, k2 − a).

Proof. To prove (1), we set Ik
c := −2αk

d. It is sufficient to show that if X is a special
(T , J )-parallel flow, then

X
(

Ik
c

)

=

{

1 if X = Sk
c ;

0 otherwise.

This follows immediately from Theorem 6.6.
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To prove (2), we set

Lk
c :=

k1
∑

j1=1

k2j1

2n
· �jc +

k2−1
∑

j2=1

k1j2

2n
· �jc

and show that if X is a special (T , J )-parallel flow, then

X
(

Lk
c

)

=

{

−1 if X = Yk
c ;

0 otherwise.

We previously observed in Lemmas 8.6 and 8.9 that the derivative of �jc, and hence
that of Lk

c , in the direction of any eruption, hexagon or twist field is zero. Also, one
can compute using Theorem 6.6 that for any length field Y l

b,

Y l
b(�jc) = Z l

b(�jc) =

⎧

⎪

⎨

⎪

⎩

2 if l = j(−1, 1) or j(1, −1), and c = b;
−4 if l = j and c = b;
0 otherwise.

It follows that

Y l
b(Lk

c ) = Z l
b(Lk

c ) =

{

−1 if l = k and c = b;
0 otherwise.

�

Notation 8.20. Recall that for any pair of positive integers k := (k1, k2) that sum
to n, we denoted k1 := (0, k1, k2), k2 := (k1, 0, k2), and k3 := (k1, k2, 0). Similar-
ily, for any cyclically ordered triple of points x := (x1, x2, x3) in ∂Γ, we denote
x1 := (x2, x3), x2 = (x1, x3), and x3 := (x1, x2). With this notation, the edge in-
variants along isolated edges σk

r , that were defined in Section 5.1.1 can be written
as degenerate triangle invariants:

τk1
x :=

1
2
σk
x1

, τk2
x :=

1
2
σk
x2

and τk3
x :=

1
2
σk
x3

.

Notation 8.21. For any triple of positive integers i := (i1, i2, i3) that sum to n, denote
i′ := (i1, i2 + i3).

Theorem 8.22. Let P := (P, c1, c2, c3) where P is a pair of pants in P, and (c1, c2, c3)
is a cyclic order on the boundary components of P . Let x := (x1, x2, x3) be a triple
of points in ∂Γ associated to P, and let y := (y1, y2, y3) be the triple of points in
∂Γ, such that y1 = x1, y2 = x3, and [y1, y2, y3] is the ideal triangle in Θ whose union
with [x1, x2, x3] is P . Let i := (i1, i2, i3) be a triple of positive integers that sum to
n, and for m = 1, 2, 3, set im := (im, im+1, im−1).
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x1 x3

x2

i

B1

B2

B3

Figure 14: Hamiltonian function for the eruption flow E i
x.

(1) For m = 1, 2, 3, let cm be the orientation on cm such that P lies to the right
of cm. For all positive integers k, we set

δk :=
{

1 if k = 1,
0 otherwise.

Let Hi
P be the tangent vector field of the i-hexagonal flow. Then

H(Hi
P) = τ i

x − τ i
y + δi3

(

H(S i′1
c1) − H(S i′1(1,−1)

c1 )
)

+δi1

(

H(S i′2
c2) − H(S i′2(1,−1)

c2 )
)

+ δi2

(

H(S i′3
c3) − H(S i′3(1,−1)

c3 )
)

.

Here, recall that for any pair of positive integers k := (k1, k2) that sum to n,
k(a, −a) := (k1 + a, k1 − a).

(2) Let B denote the set of ordered triples of integers j = (j1, j2, j3), 0 ≤ j1, j2, j3 ≤
n − 1 that sum to n and define

B1 := {j ∈ B : j1 ≥ i1 and j2 ≤ i2},

B2 := {j ∈ B : j2 ≥ i2 and j3 ≤ i3},

B3 := {j ∈ B : j3 ≥ i3 and j1 ≤ i1}
(see Figure 14). Further define for all triples j := (j1, j2, j3) in B

cji :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

i1j3 + i1j2 + i3j2

2n
if j ∈ B1;

i2j1 + i2j3 + i1j3

2n
if j ∈ B2;

i3j2 + i3j1 + i2j1

2n
if j ∈ B3.

Let E i
P be the tangent vevor field to the i-eruption flow. Then

H(E i
P) =

∑

j∈B

cji ·
(

τ j
x + τ j

y

)

.
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Here, recall that if j := (j1, j2, j3) is a triple of positive integers that sum to n,
then j := (j1, j3, j2).

Proof. For (1) we set

Gi
P := τ i

x − τ i
y + δi3

(

H(S i′1
c1) − H(S i′1(1,−1)

c1 )
)

+ δi1

(

H(S i′2
c2) − H(S i′2(1,−1)

c2 )
)

+ δi2

(

H(S i′3
c3) − H(S i′3(1,−1)

c3 )
)

.

It is sufficient to prove that for any special (T , J )-vector field X ,

X
(

Gi
P

)

=

{

1 if X = E i
P;

0 otherwise.

By Theorem 6.6, the derivative of Gi
P in the direction of any twist field is zero.

Also, by Theorem 6.6 and the symmetry of the hexagon fields, we see that the
derivative of τ i

x − τ i
y in the direction of any hexagon field is zero. Furthermore, by

Theorem 8.18(2), we know that the derivative of F i
P := Gi

P −τ i
x +τ i

y in the direction
of any hexagon field is also zero. Hence, the derivative of Gi

P in the direction of any
hexagon field is zero.

For any eruption field E j
P, let t be the triple of points in ∂Γ associated to P.

Using Theorem 6.6, one can compute that

E j
P(τ i

x − τ i
y) =

{

1 if j = i and t = x;
0 otherwise.

(8.2)

Furthermore, we know by (2) of Theorem 8.18 that the derivative of F i
P in the

direction of any eruption vector field is zero. Thus,

E j
P(Gi

P) =
{

1 if j = i and t = x;
0 otherwise.

To finish the proof of (1), we need to show that Yk
c (Gi

P) = 0 for any length field
Yk

c . Let X k
c := Yk

c − Zk
c and write

Yk
c (Gi

P) = Yk
c (F i

P) + X k
c (τ i

x − τ i
y) + Zk

c (τ i
x − τ i

y).

Again by Theorem 6.6 and the symmetry of the lozenge fields, Zk
c (τ i

x − τ i
y) = 0.

Also, if x := (x1, x2, x3) is a triple of points in ∂Γ associated to P and d := (d1, d2)
is a triple of points in ∂Γ associated to c, then by (2) of Theorem 8.18, Yk

c (F i
P) =

a1 + a2 + a3, where

am =

⎧

⎨

⎩

1 if im−1 = 1,k = i′m(1, −1) and d1 = xm;
−1 if im−1 = 1,k = i′m and d1 = xm;
0 otherwise,
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and c =: (c1, c2). Since X k
c is a sum of eruption fields and

am =

⎧

⎨

⎩

1 if im−1 = 1,k3(−1, 0, 1) = im and d1 = xm;
−1 if im−1 = 1,k3(0, −1, 1) = im and d1 = xm;
0 otherwise,

we can compute using (8.2) that X k
c (τ i

x − τ i
y) = −a1 − a2 − a3. Thus, Yk

c (Gi
P) =

Yk
c (F i

P) + X k
c (τ i

x − τ i
y) = 0.

For (2) we set

Ki
P :=

∑

j∈B

cji ·
(

τ j
x + τ j

y

)

.

We need to show that for any special (T , J )-parallel vector field X ,

X
(

Ki
P

)

=

{

−1 if X = Hi
P;

0 otherwise.

By Theorem 8.18(2), the derivative of Ki
P in the direction of any twist field is

zero. Theorem 8.18(2) and the anti-symmetry of the eruption fields, imply that the
derivative of Ki

P in the direction of any eruption vector field is zero.
We now prove that Yk

c (Ki
P) = 0 for any length vector field Yk

c . Let x :=
(x1, x2, x3) be a triple of points in ∂Γ associated to P and let d := (d1, d2) be a
pair of points in ∂Γ associated to c. This is an obvious consequence of Theorem 6.6
when neither d1 nor d2 is a Γ-translate of x1, x2 or x3. Thus, we can assume that
either d1 or d2 is x1, x2 or x3. Further assume without loss of generality that c1 = x1;
the other cases are similar.

For any i := (i1, i2, i3) ∈ B, denote i′′ := (i1 + i2, 0, i3) and i′′′ := (i1 + i3, i2, 0).
Observe that if j := (j1, j2, j3) is a triple in B1 ∪ B2, then

cji = cj
′′

i + cj
′′′

i (8.3)

(see Notation 8.21). Thus,

−c
k3(1,−1,0)
i + c

k3(0,−1,1)
i = c

(n−1,0,1)
i = c

k3(−1,0,1)
i − ck

3

i

(see Notation 8.4). Theorem 6.6 then implies that Zk
c (Ki

P) = 0. Since we already
know that the derivative of Ki

P is zero in the direction of any eruption field, this
proves that Yk

c (Ki
P) = 0.

Next, we consider Hj
P′(Ki

P) for any hexagon field Hj
P′ . Let y =: (y1, y2, y3) be

the triple of points in ∂Γ associated to P′. It follows from Theorem 6.6 that if
[y1, y2, y3] �= [x1, x2, x3] as ideal triangles in Θ, then Hj

P′(Ki
P) = 0. Thus, we may

assume without loss of generality that y = x. If j �= i, then one of B1 ∪ B2, B2 ∪ B3

or B3 ∪ B1 contains

j(0, 1, −1), j(−1, 1, 0), j(−1, 0, 1), j(0, −1, 1), j(1, −1, 0) and j(1, 0, −1).
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Without loss of generality, suppose that they lie in B1 ∪ B2. Then by (8.3),

Hj
P(Ki

P) = c
j(0,1,−1)
i − c

j(−1,1,0)
i + c

j(−1,0,1)
i − c

j(0,−1,1)
i + c

j(1,−1,0)
i − c

j(1,0,−1)
i

= c
j′′(1,0,−1)
i + c

j′′′(−1,1,0)
i − cj

′′

i − c
j′′′(−1,1,0)
i + c

j′′(−1,0,1)
i + cj

′′′

i

−c
j′′(−1,0,1)
i − c

j′′′(1,−1,0)
i + cj

′′

i + c
j′′′(1,−1,0)
i − c

j′′(1,0,−1)
i − cj

′′′

i

= 0.

Finally, if k = i, then

Hi
P(Ki

P) = 2
(

c
i(0,1,−1)
i − c

i(−1,1,0)
i + c

i(−1,0,1)
i − c

i(0,−1,1)
i + c

i(1,−1,0)
i − c

i(1,0,−1)
i

)

= 2
(

i2i1 + (i1 + i2)(i3 − 1)
2n

− i2(i1 − 1) + (i1 + i2)i3
2n

+
i3i2 + (i2 + i3)(i1 − 1)

2n
− i3(i2 − 1) + (i2 + i3)i1

2n

+
i1i3 + (i1 + i3)(i2 − 1)

2n
− i1(i3 − 1) + (i1 + i3)i2

2n

)

= −1. �
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Appendix A. Proof of Proposition 2.23

In this appendix, we give a proof of Proposition 2.23, which we restate here for the
convenience of the reader.

Proposition. Let (F1, . . . , Fk) be a positive k-tuple of flags in F(V ). Then for any
positive integers n1, . . . , nk that sum to d ≤ n, we have that

dim

⎛

⎝

k
∑

j=1

F
(nj)
j

⎞

⎠ = d.

We start with the following two notions.

Definition A.1.

(1) A map ζ : S1 → P(V ) is convex if ζ(x1) + · · · + ζ(xk) is a direct sum for all
k ≤ n := dim(V ) and for all pairwise distinct x1, . . . , xk in S1.
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(2) Let F be a flag in F(V ) and let ζ : S1 → P(V ) be a convex curve. We say ζ
osculates F if there is some point x in S1 such that ζ(x) = F (1), and for all
l = 1, . . . , d − 1,

lim
i→∞

ζ(x1,i) + .. + ζ(xl,i) = F (l)

for all pairwise distinct points l-tuples of points (x1,i, ..., xl,i) in S1 such that
limi→∞(x1,i, . . . , xl,i) = (x, . . . , x).

For the proof, we use the following facts. The first is due to Fock and Goncharov [FG06,
Theorem 1.3 and Section 9.11].

Theorem A.2. ([FG06]). Let (F1, . . . , Fk) be a positive triple of flags in F(V ). Then
there is a continuous convex map ζ : S1 → F(V ) that osculates Fl for all l = 1, . . . ,
k.

The second is an immediate consequence of Proposition 2.11.

Proposition A.3. The space F(V )3+ of positive triples of flags in V is a connected

component of the space of F(V )[3] of generic triples of flags in V .

Using these, we prove the following key lemma.

Lemma A.4. Let k ≥ 4 be an integer, let (F1, . . . , Fk) be a positive k-tuple of flags
in F(V ) and let m = 1, . . . , n − 1. Let H be the flag defined by

H(i) :=

{

F
(i)
2 if i ≤ m;

F
(m)
2 + F

(i−m)
3 if i > m.

Then (F1, H, F4, . . . , Fk) is a positive (k − 1)-tuple of flags.

Proof. Note that (F1, F2, F4, . . . , Fk) is a positive k-tuple of flags and H(1) = F
(1)
2 .

Thus, by Proposition 2.19, it is sufficient to prove that (F1, H, F4) is a positive triple
of flags.
Let ζ be a continuous convex map that osculates the flags F1, . . . , F4. For all l = 1,
. . . , 4, let xl be the point in S1 such that ζ(xl) = F

(1)
l . It is a consequence of

Proposition 2.19 that F(V )4+ is open in the space of pairwise transverse quadruple
of flags. Thus, there are pairwise disjoint open intervals I1, . . . , I4 ⊂ S1 such that
Il contains xl, and satisfy the following property: For all cyclically ordered (n − 1)-
tuple of points yl := (yl,1, . . . , yl,n−1) in Il, let Fyl

be the flag in F(V ) given by
F

(i)
yl

:=
∑i

j=1 ζ(yl,j). Then (Fy1 , . . . , Fy4) is a positive quadruple of flags.
Now, for each i = 1, . . . , n − 1, let fi : [0, 1] → S1 be continuous paths such that

• fi(0) = y2,i.

• fi(1) =
{

y2,i if i ≤ m;
y3,i−m if i > m.
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• fi(0) ≤ fi(t) ≤ fi(1) ≤ fi(0) for all t in [0, 1].
•

(

f1(t), . . . , fn−1(t)
)

is a cyclically ordered (n − 1)-tuple of points in ∂Γ for all
t in [0, 1].

Such paths fi exist because (y2,y3) is a cyclically ordered (2n − 2)-tuple of points.
Since ζ is convex, we may define G(t) = G(y2,y3, t) to be the flag in F(V ) given by
G(t)(j) :=

∑j
i=1 ζ(fi(t)). Since G(0) = Fy2 , we see that (Fy1 , G(0), Fy4) is a positive

triple of flags. The convexity of ζ also implies that (Fy1 , G(t), Fy4) is a generic for
all t. Since F(V )3+ is a connected component of F(V )[3] and t �→ G(t) is continuous,
it follows that (Fy1 , G(1), Fy4) is also a positive triple of flags.
Observe that

• for l = 1, 4, the limit of Fyl
as yl converges to (xl, . . . , xl) is Fl,

• the limit of G(y2,y3, 1) as (y2,y3) converges to (x2, . . . , x2, x3, . . . , x3) is H.

Since F(V )3+ is closed in the space of pairwise transverse triple of flags, this implies
that (F1, H, F4) is a positive triple of flags. �

Proof of Proposition 2.23. We prove this by induction on k. For the base case k = 3,
this is an immediate consequence of Proposition 2.11.
Next, we prove the inductive step. Suppose that k ≥ 4. Let H be the flag in F(V )
defined by

H(i) :=

{

F
(i)
2 if i ≤ n2;

F
(n2)
2 + F

(i−n2)
3 if i > n2.

By Lemma A.4, we see that (F1, H, F4, . . . , Fk) is a positive (k − 1)-tuple of flags.
We further observe that

k
∑

j=1

F
(nj)
j = F

(n1)
1 + H(n2+n3) +

k
∑

j=4

F
(nj)
j .

The statement now follows by applying the inductive hypothesis to the right hand
side. �

Appendix B. Proof of Lemma 4.1

In this appendix, we prove Lemma 4.1, which we restate here for the reader’s con-
venience.

Lemma. Let V denote the set of vertices of ˜T , and for non-negative integers j, let
ξj be a Frenet curve in ˜Fre(V ). If limj→∞ ξj(p) = ξ0(p) for all vertices p in ˜V, then
limj→∞ ξj(p) = ξ0(p) for all points p in ∂Γ.
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Let x, y, z be the vertices of a triangle in ˜Θ, let w be any point in ∂Γ\V, and assume
without loss of generality that y < z < x < w < y in this cyclic order in S1. By
Proposition 2.19, to conclude that limj→∞ ξj(w) = ξ0(w), it is sufficient to show
that

(1) For any pair i of positive integers that sum to n,

Ci(ξ0(x), ξ0(z), ξ0(y), ξ0(w)) = lim
j→∞

Ci(ξj(x), ξj(z), ξj(y), ξj(w)).

(2) For any triple of positive integers i that sum to n,

T i(ξ0(x), ξ0(w), ξ0(y)) = lim
j→∞

T i(ξj(x), ξj(w), ξj(y)).

Since V is dense in ∂Γ, there are sequences {ak}∞
k=1 and {bk}∞

k=1 in V such that
limk→∞ ak = limk→∞ bk = w and y < z < x < ak < w < bk < y for all k.

Proof of (1). Since ξ0 is continuous, we have

lim
k→∞

Ci(ξ0(x), ξ0(z), ξ0(y), ξ0(ak)) = lim
k→∞

Ci(ξ0(x), ξ0(z), ξ0(y), ξ0(bk))

= Ci(ξ0(x), ξ0(z), ξ0(y), ξ0(w))

for all pairs of positive integers i that sum to n. Furthermore, it is also well-known
(see for example Proposition 2.12 of [Zha15a]) that

Ci(ξj(x), ξj(ak), ξj(y), ξj(w)), Ci(ξj(x), ξj(w), ξj(y), ξj(bk)) > 1

for all non-negative integers j and all positive integers k. In particular,

Ci(ξj(x), ξj(z), ξj(y), ξj(ak)) > Ci(ξj(x), ξj(z), ξj(y), ξj(w))
> Ci(ξj(x), ξj(z), ξj(y), ξj(bk)).

Since limj→∞ ξj(p) = ξ0(p) for any vertex p in V, we see that

Ci(ξ0(x), ξ0(z), ξ0(y), ξ0(w)) = lim
k→∞

Ci(ξ0(x), ξ0(z), ξ0(y), ξ0(ak))

= lim
k→∞

lim
j→∞

Ci(ξj(x), ξj(z), ξj(y), ξj(ak))

≥ lim
j→∞

Ci(ξj(x), ξj(z), ξj(y), ξj(w))

≥ lim
k→∞

lim
j→∞

Ci(ξj(x), ξj(z), ξj(y), ξj(bk))

= lim
k→∞

Ci(ξ0(x), ξ0(z), ξ0(y), ξ0(bk))

= Ci(ξ0(x), ξ0(z), ξ0(y), ξ0(w)).

This proves (1). �
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To prove (2), we need to use the following lemma. Let i := (i1, i2, i3) be a triple of
positive integers that sum to n. For any generic quadruple of flags F1, F2, F3, F4 in
F(V ), define

T (i1,i2,F4,i3)(F1, F2, F3)

:=
F

(i1+1)
1 ∧ F

(i2)
2 ∧ F

(i3−1)
3 · F

(i1−1)
1 ∧ F

(i2)
2 ∧ F

(1)
4 ∧ F

(i3)
3 · F

(i1)
1 ∧ F

(i2−1)
2 ∧ F

(i3+1)
3

F
(i1+1)
1 ∧ F

(i2−1)
2 ∧ F

(i3)
3 · F

(i1)
1 ∧ F

(i2)
2 ∧ F

(1)
4 ∧ F

(i3−1)
3 · F

(i1−1)
1 ∧ F

(i2)
2 ∧ F

(i3+1)
3

Lemma B.1. Let ξ : S1 → F(V ) be a Frenet curve and let x1 < x4 < x2 < x5 <
x3 < x1 lie in S1 in this cyclic order. For each m = 1, . . . , 5, let Fm := ξ(xm), then

T (i1,i2,F4,i3)(F1, F2, F3) > T i(F1, F2, F3) > T (i1,i2,F5,i3)(F1, F2, F3).

(Recall that we assume dim(V ) ≥ 3.)

Proof. Let K := F
(i1−1)
1 + F

(i2−1)
2 + F

(i3−1)
3 . For m = 1, 2, 3, let Lm ⊂ V be

a line such that F
(im−1)
m + Lm = F

(im)
m , and let Pm ⊂ V be a plane such that

F
(im−1)
m + Pm = F

(im+1)
m . For any point x in S1, let

Lx :=
{

ξ(1)(x) if x �= x1, x2, x3;
Lm if x = xm; m = 1, 2, 3,

Px :=
{

ξ(2)(x) if x �= x1, x2, x3;
Pm if x = xm; m = 1, 2, 3,

and let H := Lx1 + Lx2 + Lx3(= L1 + L2 + L3). Then define ξ′ : S1 → F(H) by

ξ′(1)(x) := (K + Lx) ∩ H, ξ′(2)(x) := (K + Px) ∩ H.

One can verify that ξ′ does not depend on the choices of Lm and Pm, and is Frenet.
Furthermore, from the definition of the triple ratio, we see that

T (i1,i2,F4,i3)(F1, F2, F3) = T (1,1,ξ′(x4),1)(ξ′(x1), ξ′(x2), ξ′(x3)),
T i(F1, F2, F3) = T (1,1,1)(ξ′(x1), ξ′(x2), ξ′(x3)),

T (i1,i2,F5,i3)(F1, F2, F3) = T (1,1,ξ′(x5),1)(ξ′(x1), ξ′(x2), ξ′(x3)).

Thus, it is sufficient to prove this lemma in the case when dim(V ) = 3. That is a
straightforward computation (see Proposition 2.3.4 of [Zha15b]). �

Proof of (2). The Frenet property of ξ0 implies that

lim
k→∞

T (i1,i2,ξ0(ak),i3)(ξ0(x), ξ0(w), ξ0(y)) = T i(ξ0(x), ξ0(w), ξ0(y))

= lim
k→∞

T (i1,i2,ξ0(bk),i3)(ξ0(x), ξ0(w), ξ0(y))

for all ordered triples of positive integers i := (i1, i2, i3) that sum to n. Also, by
Lemma B.1, we have

T (i1,i2,ξj(ak),i3)(ξj(x), ξj(w), ξj(y)) > T i(ξj(x), ξj(w), ξj(y))
> T (i1,i2,ξj(bk),i3)(ξj(x), ξj(w), ξj(y))
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for all non-negative integers j and all positive integers k.
Since limj→∞ ξj(p) = ξ0(p) for all vertices p in V, this implies that

T i(ξ0(x), ξ0(w), ξ0(y)) = lim
k→∞

T (i1,i2,ξ0(ak),i3)(ξ0(x), ξ0(w), ξ0(y))

= lim
k→∞

lim
j→∞

T (i1,i2,ξj(ak),i3)(ξj(x), ξj(w), ξj(y))

≥ lim
j→∞

T i(ξj(x), ξj(w), ξj(y))

≥ lim
k→∞

lim
j→∞

T (i1,i2,ξj(bk),i3)(ξj(x), ξj(w), ξj(y))

= lim
k→∞

T (i1,i2,ξ0(bk),i3)(ξ0(x), ξ0(w), ξ0(y))

= T i(ξ0(x), ξ0(w), ξ0(y)).

This proves (2). �
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