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1. Introduction

Let S = Sg,n be a connected oriented surface of genus g with n punctures such that 
3g−3 +n > 1. The Teichmüller space T (S) is the space of equivalence classes of marked 
conformal structures of analytically finite type on S. It is well known that T (S) is a 
complex manifold of dimension 3g − 3 + n. The Teichmüller metric is a Finsler metric 
on T (S) which is equal to the Kobayashi metric [22].

It is a classical result that the Teichmüller space with the Teichmüller metric is not a 
metric space of non-positive curvature. This was first proved by Masur [15] by construct-
ing two Teichmüller geodesic rays originating at the same point which are not divergent 
at infinity. Masur and Wolf [17] proved that the Teichmüller space with the Teichmüller 
metric is not Gromov hyperbolic. Moreover, the Teichmüller metric is known to exhibit 
features of positive curvature near the thin regions of Teichmüller space [18].

In this paper, we show that the Teichmüller space with the Teichmüller metric is not 
a metric space of “curvature bounded from above”.

Theorem 1.1. The Teichmüller space with the Teichmüller metric is not a CAT(k) space 
for any k ∈ R.

The proof uses an estimation for the Teichmüller distance function (Theorem 3.1) to 
show that the angles between Teichmüller geodesic rays issuing from a common point, 
defined by using the law of cosines, do not always exist.

Theorem 1.2. For any X ∈ T (S), there exist two Teichmüller geodesic rays ri, i = 1, 2, 
issuing from X such that the angle between r1 and r2 at X does not exist.

The idea is that, since the Teichmüller metric is Finsler but not Riemannian when 
3g − 3 + n > 1, the analogous notion of Riemannian angle does not adapt to the Te-
ichmüller metric. We define the angle (if it exists) between two Teichmüller geodesic 
rays by using the law of cosines for approximated geodesic triangles. The existence of 
angles for all pairs of Teichmüller geodesic rays (this is true under the CAT(k) assump-
tion) would imply that the Teichmüller norm arises from an inner product, which is a 
contradiction.

Since any Teichmüller disk is isometric to the Poincaré disk, the angle between two 
geodesic rays on the same Teichmüller disk exists. Beyond that, we do not know any 
other explicit example about the existence of angle. In §4, we discuss some necessary 
conditions for the existence of angle. Our study may be related to locally holomorphic 
rigidity for Teichmüller spaces.

Conjecture 1.3. The angle between two Teichmüller geodesic rays (issuing from a com-
mon point) exists if and only if they lie on the same Teichmüller disk.
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Remark 1.4. There are many important results on the metric geometry of the Teichmüller 
metric, especially recent works of Farb and Masur on the asymptotic cone of the moduli 
space [8], and the results of Rafi [19] on lack of hyperbolicity. We recommend the survey 
[16] for a general reference.
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2. Preliminaries

2.1. Teichmüller space

We refer to [11] and [13] for basic knowledge on Teichmüller theory.
A marked Riemann surface (X, f) is a conformal structure X of analytically finite 

type on S, equipped with an orientation-preserving homeomorphism f : S → X. The 
Teichmüller space of S, denoted by T (S), is the set of equivalence classes of marked 
Riemann surfaces, where (X1, f1) and (X2, f2) are equivalent if there is a conformal map 
g : X1 → X2 homotopic to f2◦f−1

1 . In this paper, we shall denote the equivalence class of 
a marked Riemann surface (X, f) by X for the sake of simplicity, if no confusion arises.

A measurable (−1, 1)-form μ = μ(z)dz̄dz on X such that

‖μ‖∞ = ess sup
z∈X

|μ(z)| < ∞

is called a Beltrami differential. Let B(X) be the space of Beltrami differentials on X.
Given X ∈ T (S) and μ ∈ B(X) with ‖μ‖∞ < 1, the solution of the Beltrami equation

∂f

∂z̄
= μ(z)∂f

∂z

gives rise to a quasiconformal deformation of X. Denote the solution by fμ (the solution 
is unique if we consider the equation on the universal cover H2 and require that f fixes 
0, 1, ∞ ∈ ∂H2). Let Xμ = fμ(X). Two Beltrami differentials μ and ν are Teichmüller 
equivalent, denoted by μ ∼ ν, if (Xμ, fμ) is Teichmüller equivalent to (Xν , fν). We 
denote the equivalence class of μ by [μ]. Note that the equivalence classes of Beltrami 
differentials parametrize the Teichmüller space T (X) ∼= T (S).

The maximal dilatation of a quasiconformal mapping f with Beltrami differential μ, 
denoted by K(f), is given by

K(f) = 1 + ‖μ‖∞
.
1 − ‖μ‖∞
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For X1, X2 ∈ T (S), the Teichmüller distance between X1 and X2 is defined by

d(X1, X2) = 1
2 log inf

g�f2◦f−1
1

K(g),

where the infimum is taken over all quasiconformal maps g : X1 → X2 homotopic to 
f2 ◦ f−1

1 .
A holomorphic quadratic differential ϕ on X is a (2, 0)-form locally of the form ϕ =

ϕ(z)dz2, where ϕ(z) is holomorphic. A holomorphic quadratic differential ϕ is integrable
if

‖ϕ‖ =
¨

X

|ϕ(z)|dxdy < ∞.

Let Q(X) be the space of all integrable holomorphic quadratic differentials on X. Denote 
the unit sphere of Q(X) by Q1(X).

A Beltrami differential μ on X is said to be extremal in [μ] if

‖μ‖∞ = inf
μ′∈[μ]

‖μ′‖∞.

For any extremal μ ∈ B(X) with ‖μ‖∞ < 1, there exist unique 0 < k < 1 and ϕμ ∈
Q1(X) satisfying

μ = k
|ϕμ|
ϕμ

.

For any X, Y ∈ T (S), there exists a unique extremal quasiconformal map, called the 
Teichmüller map, in the homotopy class between X and Y . The Beltrami differential 
of the Teichmüller map is of the form k |ϕ|

ϕ , for some ϕ ∈ Q1(X) and 0 < k < 1. The 
Teichmüller distance d(X, Y ) is equal to

1
2 log 1 + k

1 − k
.

2.2. Finsler structure of the Teichmüller metric

Let M be a smooth manifold. Denote by TM the tangent bundle of M. A Finsler 
structure on M is defined by a continuous map

F : TM → R

such that the restriction of F on each TpM, p ∈ M (the tangent space to M at p) is a 
norm in the weak sense, that is,
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• F (p, v) ≥ 0, ∀ v ∈ TpM \ {0}, and F (p, v) > 0 if v 
= 0;
• F (p, kv) = kF (p, v), ∀ k > 0;
• F (p, v + w) ≤ F (p, v) + F (p, w), ∀ v, w ∈ TpM.

If γ : [0, 1] → M is a C1 curve then its Finsler length is defined by

L(γ) =
1ˆ

0

F (γ(t), γ′(t))dt.

For any two points p, q ∈ M the Finsler distance is defined by

dF (p, q) = inf
γ

L(γ)

where the infimum is taken over all piecewise C1 curve joining p to q.
Now we can describe the Finsler structure of the Teichmüller space. There is a natural 

pairing between B(X) and Q(X) defined by

(μ, ϕ) =
¨

X

μ(z)ϕ(z)dxdy,

where μ ∈ B(X) and ϕ ∈ Q(X).
A Beltrami differential μ ∈ B(X) is called infinitesimally trivial if

¨

X

μ(z)ϕ(z)dxdy = 0

for any ϕ ∈ Q(X). Denote the set of infinitesimal trivial Beltrami differentials on X by 
N(X). It is known that μ ∈ N(X) if and only if f tμ (for t small) represents a trivial 
deformation of X. With the above notations, we can identify the (holomorphic) tangent 
space of T (S) at X as B(X)/N(X). The cotangent space, dual to B(X)/N(X), is Q(X).

We let

〈μ, ϕ〉 = Re
¨

X

μ(z)ϕ(z)dxdy.

For μ ∈ B(X), we define the infinitesimal norm

‖μ‖T = sup
ϕ∈Q1(X)

〈μ, ϕ〉.

It follows that the infinitesimal Teichmüller norm ‖ · ‖T is just the quotient norm on 
B(X)/N(X), that is,
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‖μ‖T = inf ||μ− ν||∞,

where ν ranges over N(X).
We can think of an extremal Beltrami differential μ ∈ B(X) as representing an in-

finitesimal quasiconformal mapping f εμ : X → Xεμ. The Teichmüller distance satisfies

d(X,Xεμ) = 1
2 log 1 + ε‖μ‖T

1 − ε‖μ‖T
≈ ε‖μ‖T + o(ε).

Using the definition of Finsler metric, one can show that ‖ ·‖T is the infinitesimal Finsler 
norm of the Teichmüller distance [10,22]. In other words, the Finsler metric dual to the 
L1 norm on Q1(X) induces the Teichmüller metric on T (S).

In the following, we shall identify the tangent space of T (S) at X as B(X)/N(X), 
endowed with either the Teichmüller norm or the quotient norm.

2.3. CAT(k) space

This section reviews some basic definitions and results in comparison geometry; for 
further background see [4].

Let (M, d) be a complete metric space. A geodesic in M is an isometric image of an 
interval of the real line. The isometric image of the positive real line is called a geodesic 
ray and the isometric image of a closed connected interval of the real line is called a 
geodesic segment. M is called a geodesic metric space if every two points in M are joined 
by a (not necessarily unique) geodesic. M is straight if any two points can be connected 
by a unique geodesic which extends uniquely to an isometric image of the real line.

Remark 2.1. It is well known that the Teichmüller space T (S) with Teichmüller metric 
is straight.

Given a real number k, the metric space Mn
k , n ≥ 2 is defined by:

(i) If k = 0, then Mn
0 is the Euclidean space En.

(ii) If k > 0, then Mn
k is obtained from the sphere Sn by multiplying the distance 

function by the constant 1/
√
k.

(iii) If k < 0, then Mn
k is obtained from hyperbolic space Hn by multiplying the distance 

function by the constant 1/
√
−k.

In other words, Mn
k is the connected, simple connected Riemannian space with constant 

curvature k.
A geodesic triangle in (M, d) consists of three point p, q, r ∈ M , its vertices, and a 

choice of three geodesic segment [p, q], [q, r], [r, q] joining them, its sides. Such a geodesic 
triangle will be denoted by Δ([p, q], [q, r], [r, q]) or Δ(p, q, r). If a point x ∈ M lies in the 
union of [p, q], [q, r] and [r, q], then we denote x ∈ Δ(p, q, r).
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A geodesic triangle Δ = Δ(p̄, q̄, ̄r) in M2
k is a comparison triangle for Δ = Δ(p, q, r)

if d(p̄, q̄) = d(p, q), d(q̄, ̄r) = d(q, r) and d(p̄, ̄r) = d(p, r). In the case of k > 0, we require 
the perimeter d(p, q) + d(q, r) + d(r, p) of Δ to be less than 2π/

√
k. Then a comparison 

triangle Δ ⊂ M2
k always exists and it is unique up to isometry. A point x̄ ∈ [q̄, ̄r] is 

called a comparison point for x ∈ [q, r] if d(q, x) = d(q̄, ̄x). Comparison points on [p̄, q̄]
and [p̄, ̄r] are defined in the same way. The interior angle of Δ(p̄, q̄, ̄r) at p̄ is called the 
comparison angle between q and r at p and is denoted by ∠p(q, r).

A geodesic metric space (M, d) is called a CAT(k) space if all the geodesic triangles 
Δ satisfy

d(x, y) ≤ d(x̄, ȳ),

for all x, y ∈ Δ with comparison points x̄, ȳ ∈ Δ.
A metric space (M, d) is said to be of curvature ≤ k if it is locally a CAT(k) space. If 

(M, d) is of curvature ≤ 0, then we say that (M, d) is of non-positively curved.
Next we introduce the concept of Alexandrov angle between geodesics in a geodesic 

metric space.
Let (M, d) be a geodesic metric space. Let c : [0, a] → M and c′ : [0, a′] → M , 

c(0) = c′(0), be two geodesic segments. For t ∈ (0, a) and t′ ∈ (0, a′), we consider 
the comparison triangle Δ(c(0), c(t), c′(t′)), modeled on En, and the comparison angle 
∠c(0)(c(t), c′(t′)). We recall that

cos∠c(0)(c(t), c′(t′)) = d(c(0), c(t))2 + d(c(0), c′(t′))2 − d(c(t), c′(t′))
2d(c(0), c(t))d(c(0), c′(t′)) .

The Alexandrov (upper) angle between the geodesic segments c and c′ is the number 
∠A(c, c′) ∈ [0, π] defined by

∠A(c, c′) = lim
t,t′→0

∠c(0) (c(t), c′(t′)) .

(See [4].)

Definition 2.2 (Angle). With the above notation, if the limit

∠(c, c′) = lim
t,t′→0

∠c(0)(c(t), c′(t′))

exists, then we say that the angle exists, and the limit is called the angle between c and 
c′.

We remark that the above notion of angles, if existed, would satisfy the following 
axiom of generalized angle (we denote by c, c′, c′′ a triple of geodesics issuing from a 
point):
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(i) A(c, c′) ∈ [0, π];
(ii) A(c, c′) = A(c′, c);
(iii) A(c, c′′) ≤ A(c, c′) + A(c′, c′′);
(iv) if c is the restriction of c′ to an initial segment of its domain, then A(c, c′) = 0;
(v) if c : [−a, a] → M is a geodesic and c−, c+ : [0, a] → M are defined by c−(t) = c(−t)

and c+(t) = c(t), then A(c−, c+) = π.

The following result implies that in a (locally) CAT(k) space angles between geodesics 
always exist.

Proposition 2.3 ([4], II.3.1). Let M be a CAT(K) space and let c : [0, a] → X and 
c′ : [0, d] → X be two geodesic segments issuing from the same point c(0) = c′(0). Then 
the K-comparison angle ∠c(0)(c(t), c′(t′)) is a non-decreasing function of both t, t′ ≥ 0, 
and the Alexandrov angle ∠A(c, c′) is equal to

lim
t,t′→0

∠c(0)(c(t), c′(t′)) = lim
t→0

∠c(0)(c(t), c′(t)).

3. Teichmüller distance and angles

Denote by d the distance function of the Teichmüller metric. Let X ∈ T (S) and 
0 < s < 1. For any Beltrami differential μ on X with norm ‖μ‖∞ = 1, we consider the 
quasiconformal deformations of X with Beltrami differential sμ and denote the image of 
X by Xsμ = fsμ(X).

The first part of this section aims to establish the following estimation for the Teich-
müller distance:

Theorem 3.1. Let X ∈ T (S) and let μ, ν be a pair of extremal Beltrami differentials on 
X with ‖μ‖∞ = ‖ν‖∞ = 1. For small s, t ∈ R+, the Teichmüller distance between Xsμ

and Xtν satisfies

d(Xsμ, Xtν) = sup
ϕ

Re
¨

X

(sμ− tν)ϕ + O((s + t)2),

where the supremum is taken over the L1 unit sphere of the space of holomorphic 
quadratic differentials on X.

The following formula of Hu-Shen [12] is a consequence of Theorem 3.1.

Corollary 3.2. With the above notation, we have

d(Xtμ, Xtν) = t sup
ϕ

Re
¨

X

(μ− ν)ϕ + o(t)

= t‖μ− ν‖T + o(t).
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Remark 3.3. The above formula in [12] was used to study the Teichmüller geodesic 
triangle through a notion of “symmetric angle” between Teichmüller geodesic rays. See 
also [14,7].

Let X ∈ T (S). For any μ ∈ B(X) and small t ∈ R+, we have (see [22, Page 370], [10, 
Page 133])

d(X, f tμ(X)) = t sup
ϕ∈Q1(X)

Re
¨

X

μϕdxdy + O(t2).

Earle [6] showed that d is a C1-function on d−1((0, ∞)) and obtained a formula for the 
first-order derivative of the Teichmüller distance.

Theorem 3.4 (Earle). If Y = fν(X), with ν = k |ϕ|
ϕ , 0 < k < 1, ϕ ∈ Q1(X). Then

lim
t→0

1
t

(
d(Y, f tμ(X)) − d(Y,X)

)
= −Re

¨

X

μϕdxdy.

The first variational formula was also proved by Gardiner [9] as an application of the 
Reich-Strebel inequality. More recently, Rees [20,21] proved that d is C2 on d−1((0, ∞))
but not C2+ε for any ε > 0.

Our proof of Theorem 3.1 follows the argument in [9,10]. As was pointed out by 
Gardiner, most of the known results about the infinitesimal theory of the Teichmüller 
metric can be derived from the Reich-Strebel inequality, without using deep theorems 
from real analysis.

3.1. Proof of Theorem 3.1

Let μ, ν ∈ B1(X) and let s, t ∈ R+ be small. Denote f = f tν ◦ (fsμ)−1. The Beltrami 
differential ζ of f satisfies

ζ ◦ f(z)
∂
∂z f(z)
∂
∂z f(z)

= sμ(z) − tν(z)
1 − stν(z)μ(z)

in local coordinate z on X. We set

η(z) = sμ(z) − tν(z)
1 − stν(z)μ(z)

.

Then we have ||η||∞ = ||ζ||∞.
To estimate the Teichmüller distance d(Xsμ, Xtν), we need the following variant of 

the Reich-Strebel inequality. See [10, §6.4].
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Theorem 3.5 (The fundamental inequalities). Let X ∈ T (S) and let f be the quasi-
conformal map with Beltrami differential η on X. Let K0 be the maximal dilatation of 
the extremal map in the class [f ]. Then

1
K0

≤
¨

X

|1 − η ϕ
|ϕ| |2

1 − |η|2 |ϕ|dxdy, (1)

for all ϕ ∈ Q1(X), and

K0 ≤ sup
ϕ∈Q1(X)

¨

X

|1 + η ϕ
|ϕ| |2

1 − |η|2 |ϕ|dxdy. (2)

The fundamental inequalities give upper and lower estimates on the dilatation of an 
extremal representative of a given Teichmüller class of maps between Riemann surfaces.

In the following, O((s + t)2) denotes a function g(s, t) satisfying

|g(s, t)| ≤ C(s + t)2

for some constants C > 0, δ > 0 and for any 0 < s, t < δ.

Lemma 3.6. For two extremal Beltrami differentials μ, ν ∈ B1(X), let K = K(s, t) be the 
maximal dilatation of the extremal quasi-conformal map in the class of f : Xsμ → Xtν

for s, t ∈ R>0 sufficiently small, and let k = K−1
K+1 . Then we have

k = sup
ϕ∈Q1(X)

Re
¨

X

(sμ− tν)ϕdxdy + O((s + t)2). (3)

Proof. It is not hard to see that K is equal to the maximal dilatation of the extremal 
quasi-conformal map in the class of fη : X → Xη, that is, the Teichmüller distance 
d(Xsμ, Xtν) = d(X, Xη).

Recall that

η(z) = sμ(z) − tν(z)
1 − stν(z)μ(z)

.

Since |η| = | sμ−tν
1−stνμ |, we have η = (sμ − tν)(1 +O(st)) and O(‖η‖2

∞) = O((s + t)2). There 
exists a unique ϕη ∈ Q1(X) realizing the supremum

sup
ϕ∈Q1(X)

〈η, ϕ〉 = sup
ϕ∈Q1(X)

Re
¨

ηϕdxdy.
X
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By definition,

‖η‖T = sup
ϕ∈Q1(X)

〈η, ϕ〉.

Denote k̃ = ‖η‖T and η̃ = η − k̃
|ϕη|
ϕη

. Then η̃ is infinitesimally trivial.
Then it follows from (2) that

K ≤ sup
ϕ∈Q1(X)

¨

X

|1 + η ϕ
|ϕ| |2

1 − |η|2 |ϕ|dxdy

≤ sup
ϕ∈Q1(X)

¨

X

1 + |η|2
1 − |η|2 |ϕ|dxdy + 2 sup

ϕ∈Q1(X)

¨

X

Re(ηϕ)
1 − |η|2 dxdy

≤ sup
ϕ∈Q1(X)

¨

X

1 + ‖η‖2
∞

1 − ‖η‖2
∞
|ϕ|dxdy + 2 sup

ϕ∈Q1(X)

¨

X

Re(ηϕ)
1 − ‖η‖2

∞
dxdy

= 1 + ‖η‖2
∞

1 − ‖η‖2
∞

+ 2
1 − ||η||2∞

¨

X

Re(ηϕη)dxdy

= 1 + 2‖η‖2
∞

1 − ‖η‖2
∞

+ 2〈η, ϕη〉
1 − ‖η‖2

∞

= 1 + 2‖η‖T + O(‖η‖2
∞).

On the other hand, by (1), we have

1
K

≤
¨

X

|1 − η
ϕη

|ϕη| |
2

1 − |η|2 |ϕη|dxdy

≤ 1 + ‖η‖2
∞

1 − ‖η‖2
∞

− 2Re
¨

X

ηϕη

1 − |η|2 dxdy

= 1 + ‖η‖2
∞

1 − ‖η‖2
∞

− 2Re
¨

X

(k̃ |ϕη|
ϕη

+ η̃)ϕη

1 − |η|2 dxdy

≤ 1 + 2‖η‖2
∞

1 − ‖η‖2
∞

− 2k̃ − 2Re
¨

X

η̃ϕη

1 − |η|2 dxdy

≤ 1 − 2‖η‖T + O(‖η‖2
∞).

The last inequality follows since
¨

η̃ϕηdxdy = 0

X
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and

1
1 − |η|2 = 1 + O(‖η‖2

∞).

By definition, k = K−1
K+1 . With the above inequalities, we have

k ≥ ‖η‖T −O(‖η‖2
∞)

1 − (‖η‖T −O(||η||2∞)) = ‖η‖T + O(‖η‖2
∞)

and

k ≤ ‖η‖T + O(‖η‖2
∞)

1 + (‖η‖T + O(||η||2∞)) = ‖η‖T + O(‖η‖2
∞).

The estimation (3) follows. �
Proof of Theorem 3.1. Since d(Xsμ, Xtν) = 1

2 logK and K = 1+k
1−k , Theorem 3.1 follows 

from Lemma 3.6 immediately. �
3.2. Remark on Theorem 3.1

Theorem 3.1 is similar to a known result in Finsler geometry. In the work of Deng 
and Hou [5], they proved an analogue of the famous Myers-Steenord Theorem for Finsler 
space. Their proof depends on the following key result on distance function (see [5, 
Theorem 1.2]).

Theorem 3.7 (Deng-Hou). Let (M, F, d) be a Finsler manifold and x ∈ M. Suppose that
the exponential map is a C1 diffeomorphism from a small tangent ball Bx(r) onto a 
neighborhood of x, then

F (x,A−B)
d(expx A, expx B) → 1

as (A, B) → (0, 0), where A, B ∈ Bx(r).

The above result on the distance function is more general. However, it is often assumed 
in the literature that the Finsler structure is of least C2 and the Hessian of F 2 is positive-
definite. For instance, in the book of Bao-Chern-Shen (see [3, §5.3]), the exponential is 
defined using the equation of geodesic, where the Christoffel symbols appear.

In the setting of the Teichmüller metric, the exponential map is always defined using 
the Teichmüller extremal maps. To be more precise, let X ∈ T (S) and Q1(X) be the 
unit sphere of Q(X) (equipped with the L1-norm). We denote the unit ball of Q(X)
by Q<1(X). The nonzero set Q<1(X) \ {0} can be identified with (0, 1) × Q1(X). The 
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Teichmüller map associated each (k, ϕ), 0 < k < 1, ϕ ∈ Q1(X) with a quasiconformal 
deformation of X:

Φ : (0, 1) ×Q1(X) → T (S)

k · ϕ �→ Xk·ϕ

such that the quasiconformal map from X to Xϕ has Beltrami differential k |ϕ|
ϕ . The 

Teichmüller distance between X and Xk·ϕ is equal to

1
2 log 1 + k

1 − k
.

Then Φ defines a homeomorphism between Q<1(X) and T (S). And for each ϕ 
= 0 the 
ray

t ∈ [0, 1) �→ Φ(e
2t − 1
e2t + 1 · ϕ)

is a Teichmüller geodesic ray.
To apply the theorem of Deng-Hou, we need to check that the exponential map is C1

for the Teichmüller space with the Teichmüller metric. As we have mentioned before, 
the regularity of the Teichmüller distance is studied by Earle, Gardiner and Rees. Rees 
proved that the Teichmüller distance is C2 on d−1((0, ∞)). This result implies that (see 
[20, Theorem 2]).

Theorem 3.8 (Rees). The “exponential map” Φ is a C1 homeomorphism between 
Q<1(X) \ {0} and T (S) \ {X}.

Due to the knowledge of the authors, there is no published results to show that the 
exponential map is C1 for the Teichmüller metric. As a result, we prefer a careful induc-
tion of Theorem 3.1 from the useful Reich-Strebel Inequalities. We regard the formula 
in Theorem 3.1 (and its proof) as a subsequence to earlier works done by Royden, Earle 
and Gardiner.

3.3. Nonexistence of angle

For any three distinct points X, Y and Z in T (S), we define the comparison angle
between Y and Z at X by

∠comp
X (Y,Z) = arccos d(X,Y )2 + d(X,Z)2 − d(Y,Z)2

2d(X,Y )d(X,Z) .

For X ∈ T (S) and extremal Beltrami differentials μ, ν ∈ B1(X), we consider the 
Teichmüller geodesic rays Xμ(s) = fsμ(X) and Xν(t) = fsν(X). Applying Definition 2.2, 
we define the angle between μ and ν at X as
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∠(μ, ν) = lim
s,t→0

∠comp
X (Xμ(s), Xν(t))

if the limit exists.

Remark 3.9. In [14,12,7], the authors studied the angle defined by

lim
t→0

∠comp
X (Xμ(t), Xν(t)).

The existence is confirmed by [12].

Lemma 3.10. Let X ∈ T (S) and let μ, ν ∈ B1(X) be two extremal Beltrami differentials. 
Let K be the maximal dilatation of the extremal map in the class of f : Xsμ → Xtν and 
k = K−1

K+1 . Then ∠(μ, ν) exists if and only if

lim
s,t→0

s2 + t2 − k2

2st

exists. Moreover, when the limit exists,

cos∠(μ, ν) = lim
s,t→0

s2 + t2 − k2

2st . (4)

Proof. By the definition of comparison angle, we have

cos∠comp
X (Xsμ, Xtν) =

d2(X,Xsμ) + d2(X,Xtν) − d2(Xsμ, Xtν)
2d(X,Xsμ)d(X,Xtν)

.

Since μ is extremal and ||μ||∞ = 1, the Teichmüller distance between X and Xsμ is given 
by

d(X,Xsμ) = 1
2 logK(fsμ) = 1

2 log 1 + ‖sμ‖∞
1 − ‖sμ‖∞

= 1
2 log 1 + s

1 − s

=
∞∑

n=0
(2n + 1)−1s2n+1.

We can represent d2(X, Xsμ) by a series

a1s
2 + a2s

4 + ... + ans
2n + ...

with a1 = 1. Similarly, we have
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d2(X,Xtν) =
∞∑

n=1
ant

2n

and

d2(Xsμ, Xtν) =
∞∑

n=1
ank

2n.

Note that k → 0 uniformly as s and t tend to 0. We have,

lim
s,t→0

n−1∑
m=0

(s2 + t2)n−1−mkm = 0

uniformly on n. It follows that

lim
s,t→0

∞∑
n=1

an(
n−1∑
m=0

(s2 + t2)n−1−mkm)

= lim
s,t→0

(a1 +
∞∑

n=2
an(

n−1∑
m=0

(s2 + t2)n−1−mkm))

= a1 = 1.

Then

lim
s,t→0

d2(X,Xsμ) + d2(X,Xtν) − d2(Xsμ, Xtν)
2d(X,Xsμ)d(X,Xtν)

= lim
s,t→0

∑∞
n=1 an(s2n + t2n − k2n)

2st(1 + O(s + t))

= lim
s,t→0

∑∞
n=1 an((s2 + t2)n − k2n + O(s2t2))

2st

= lim
s,t→0

∑∞
n=1 an(s2 + t2 − k2)(

∑n−1
m=0(s2 + t2)n−1−mkm)

2st + O(st)

= lim
s,t→0

s2 + t2 − k2

2st ·
( ∞∑

n=1
an(

n−1∑
m=0

(s2 + t2)n−1−mkm)
)

= lim
s,t→0

s2 + t2 − k2

2st .

The lemma follows. �
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Proof of Theorem 1.2. Let X ∈ T (S) and μ, ν ∈ B1(X) be extremal Beltrami differen-
tials. For any s̃, ̃t > 0, ε > 0, let s = εs̃, t = εt̃. Lemma 3.6 implies that

k = ‖tμ− sν‖T + O((t + s)2)

= ε‖t̃μ− s̃ν‖T + O(ε2).

Now suppose that the angle ∠(μ, ν) exists for any μ and ν, then

cos∠(μ, ν) = lim
t,s→0

cos∠comp
X (Xtμ, Xsν)

= lim
t,s→0

t2 + s2 − k2

2ts

= lim
ε→0

ε2t̃2 + ε2s̃2 − (ε‖t̃μ− s̃ν‖T + O(ε2))2

2ε2t̃s̃

= lim
ε→0

‖t̃μ‖2
T + ‖s̃ν‖2

T − ‖t̃μ− s̃ν‖2
T

2‖t̃μ‖T ‖s̃ν‖2
T

+ O(ε) ×
‖t̃μ− s̃ν‖T

2t̃s̃

=
‖t̃μ‖2

T + ‖s̃ν‖2
T − ‖t̃μ− s̃ν‖2

T

2‖t̃μ‖T ‖s̃ν‖T
.

By identifying the tangent space TXT (S) with B(X)/N(X), it follows that the normed 
vector space (TXT (S), ‖ · ‖T ) satisfies the law of cosine, that is,

∠(u, v) = arccos
t̃2‖u‖2

T + s̃2‖v‖2
T − ‖t̃u− s̃v‖2

T

2t̃s̃‖u‖T ‖v‖T

for any u, v ∈ TXT (S) and t̃, ̃s > 0.
Note that:

(i) If a normed vector space (V, ‖ · ‖) satisfies the law of cosine, then the norm satisfies 
the equality

‖w + v‖2 + ‖w − v‖2 = 2(‖v‖2 + ‖w‖2) (5)

for any v, w ∈ (V, ‖ · ‖). See [4], I.4.5.
(ii) The equality (5) holds for the normed vector space (V, ‖ · ‖) if and only if the norm 

‖ · ‖ arises from a scalar product (see [4], I.4.4 for the proof).

As a result, the existence of angle ∠(μ, ν) for any μ, ν contradicts with the fact that the 
Teichmüller metric is not a Riemannian metric. We are done. �

Theorem 1.1 is a direct corollary of Proposition 2.3 and Theorem 1.2. In fact, we have 
shown that
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Corollary 3.11. The Teichmüller space T (S) with the Teichmüller metric is not a locally 
CAT(k) space, i.e., a metric space of curvature ≤ k, for any k ∈ R.

4. Characterization on the existence of angle

4.1. A necessary condition for the existence of angle

Let 0 < λ < ∞ be a constant.

Lemma 4.1. By setting s = λt, the limit

∠λ(μ, ν) = lim
t→0

∠comp
X (fλtμ(X), f tν(X))

exists and satisfies

cos∠λ(μ, ν) = 1
2λ

(
λ2 + 1 − sup

ϕ∈Q1(X)
〈λμ− ν, ϕ〉2

)
. (6)

Proof. Let k(t) = K(t)−1
K(t)+1 , where K(t) be the maximal dilatation of the extremal quasi-

conformal map in the class of Xλtμ → Xtν . Then by Lemma 3.10 we have

lim
t→0

cos∠comp
X (fλtμ(X), f tν(X))

= lim
t→0

1
2λt2

(
λ2t2 + t2 − k(t)2

)

= lim
t→0

1
2λ

(
λ2 + 1 − ( sup

ϕ∈Q1(X)
〈λμ− ν, ϕ〉)2 + O(t)2

)

= 1
2λ

(
λ2 + 1 − ( sup

ϕ∈Q1(X)
〈λμ− ν, ϕ〉)2

)
. �

Remark 4.2. In a metric space, we say that two non-trivial geodesic rays issuing from 
a point are equivalent if their Alexandrov angle is zero. The Alexandrov angle ∠Alex

induces a metric on the set of equivalence classes. The resulted metric space is called the 
space of directions at the point. The Euclidean cone over the space of direction is called 
the tangent cone.

For any X ∈ T (S) and two Teichmüller geodesic rays γ and γ′ issuing from X, the 
corresponding Alexandrov angle

∠Alex(γ, γ′) ≥ ∠1(γ, γ′) > 0.

As a result, the tangent cone at X can be identified (in setwise) with B(X)/N(X).
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Let φλ be the quadratic differential in Q1(X) realizing the supremum

sup
ϕ∈Q1(X)

〈λμ− ν, ϕ〉.

We can represent (6) as

1
2λ (λ2 + 1 − 〈λμ− ν, φλ〉2)

= 〈μ, φλ〉〈ν, φλ〉 + 1 − 〈μ, φλ〉2
2 λ + 1 − 〈ν, φλ〉

2
1 + 〈ν, φλ〉

λ
= I + II + III.

By continuity, limλ→0 φλ = −ϕν . This implies that

lim
λ→0

I = 〈μ, ϕν〉.

It is obvious that

lim
λ→0

II = 0.

It follows from the definition of φλ that

〈λμ− ν,−ϕν〉 ≤ 〈λμ− ν, φλ〉.

Thus

1 + 〈ν, φλ〉 ≤ 1 + 〈ν,−ϕν〉 + 〈λμ, φλ + ϕν〉 = λ〈μ, φλ + ϕν〉.

We have

III ≤
1
2〈μ, φλ + ϕν〉(1 − 〈ν, φλ〉).

Again, since limλ→0 φλ = −ϕν , we have

lim
λ→0

III = 0.

By making λ → 0, it follows from the above discussions that

lim
λ→0

∠λ(μ, ν) = cos−1〈μ, ϕν〉.

By interchanging μ and ν, or by letting λ → ∞, we have shown that:
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Proposition 4.3. For X ∈ T (S), let μ and ν be two extremal Beltrami differentials with 
unit norm on X. Suppose that μ = |ϕμ|

ϕμ
and ν = |ϕν |

ϕν
. If the angle ∠(μ, ν) exists, then

Re
¨

X

μϕν = Re
¨

X

νϕμ. (7)

Example 4.4. Let B1(X) = {μ ∈ B(X) | ‖μ‖∞ = 1}. Given an extremal Beltrami 
differential μ ∈ B1(X), the subset of T (S) defined by

D(μ) = {f tμ(X) | t ∈ C, |t| < 1}

is called a Teichmüller disk. Endowed with the Teichnmüller distance, D(μ) is isometric 
to the Poincaré disk.

If ν ∈ B1(X) is extremal and D(ν) = D(μ), then there exists some θ such that 
ν = eiθμ. It is obvious that ∠(μ, ν) = θ. By our definition,

cos∠λ(μ, ν) = 1
2λ

(
λ2 + 1 − sup

ϕ∈Q1(X)
〈(λ− eiθ)μ, ϕ〉2

)

= 1
2λ

(
λ2 + 1 − |λ− cos θ − i sin θ|2

)
= cos θ.

Conjecture 4.5. The angle between two extremal Beltrami differentials μ, ν ∈ B1(X)
exists if and only if the Teichmüller disks D(μ) and D(ν) coincide.

A confirmation of the above conjecture would imply a recent result of Antonakoudis 
[1] that every totally-geodesic isometry from the Poincaré disk to T (S), endowed with 
the Teichmüller metric, is a Teichmüller disk.

4.2. An equation related to the angle

We set

g(λ) = ‖λμ− ν‖2
T .

Note that g(λ) is C1 [22]. By Lemma 4.1,

cos∠λ(μ, ν) = 1
2λ (λ2 + 1 − g(λ)).

If ∠(μ, ν) exists, we denote θ = ∠(μ, ν). In this case, g(λ) satisfies the following equation:

λ2 + 1 − g(λ) = 2λ cos θ. (8)
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Example 4.4 shows that

h(λ) = ‖λμ− eiθμ‖2
T

is a solution of the above equation.
Consider the derivative of (8), we have

2λ− g′(λ) = 2 cos θ.

Thus g′(λ) = h′(λ) and g(λ) = h(λ) + C. By (8) again, C = 0. As a result, h(λ) is the 
unique C1-solution, that is,

‖λμ− ν‖2
T = ‖λμ− eiθμ‖2

T . (9)

As a result, the Teichmüller norm ‖λμ − ν‖T (with μ, ν fixed and λ varied) is induced 
by a Riemannian inner product. This gives some evidence for Conjecture 4.5. In fact, 
Antonakoudis [2] announced that there is no complex linear isometric embedding from 
(C2, ‖ · ‖2) to (Q(X), ‖ · ‖1). We wish to have a complexification of the equation (9)
and show that the existence of angle may lead to a complex linear isometry between 
(C2, ‖ · ‖2) and subspace of (Q(X), ‖ · ‖1) with complex dimension 2, when μ and ν span 
a complex space of dimension 2.
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