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Abstract
In this paper, we prove some results on bi-Hölder extensions not only for biholo-
morphisms but also for more general Kobayashi metric quasi-isometries between the
domains. Furthermore, we establish the Gehring–Hayman type theorems on certain
complex domains which play an important role through the paper. Then by applying
the above results, we show the bi-Hölder equivalence between the Euclidean boundary
and the Gromov boundary of bounded convex domains which are Gromov hyperbolic
with respect to their Kobayashi metrics.
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1 Introduction

In this paper, we characterize the Kobayashi geodesic by generalizing the classi-
cal Gehring–Hayman Theorem. Then we apply these results to study the boundary
extension problems for biholomorphisms isometries and for more generally rough
quasi-isometries between domains in C

n(n ≥ 2), under some (geo)metric assump-
tions. Moreover, we also investigate the boundary correspondence between the
Gromov boundary and the Euclidean boundary of certain complex domains.

In the complex planeC, suppose domains�1 and�2 are bounded by closed Jordan
curves, then every biholomorphic map f : �1 → �2 extends to a homeomorphism
of D1 onto D2. In C

n, n > 1, the boundary extension problem is more interesting.
Suppose �1, �2 are C2-smooth bounded pseudoconvex domains with

1

C
δ

1
ν1
�1

(z) ≤ δ�2( f (z)) ≤ Cδ
ν1
�1

(z), ∀z ∈ �1,

and the Kobayashi metric

k�i (ω, v) ≥ C |v|
δ�i (ω)νi

, ∀ω ∈ �i , v ∈ C
n,

for some ν1, ν2, C > 0, where δ�i (z) := inf{|w − z|, w ∈ ∂�i }, i = 1, 2, then
the biholomorphic map f : �1 → �2 extends to a bi-Hölder continuous map of
�1. This kind of result holds in particular if �i are strictly pseudoconvex domains
and more generally pseudoconvex domains with finite type. Moreover, Mercer in
[20] introduced the class of m-convex domains which characterize the convex domain
without extra regularities. He also proves boundary extensions of biholomorphisms
between m-convex domains.

Theorem 1.1 (Propositions 2.6, [21]) Let �1, �2 be bounded m-convex domains, and
let f : �1 → �2 be a biholomorphic map. Then f extends to a bi-Hölder continuous
map on �1.

Usually, the Hopf Lemma and the estimates of |∇ f | play an important role in the proof
of relevant results (see [17], for example). There are many other generalizations, and
we refer the interested reader to the survey [11] by F. Forstneric̆. In this paper, we
prove a similar boundary extension result for isometries between m-convex domains
instead of biholomorphisms, with some extra boundary regularities.

Theorem 1.2 Let �i , i = 1, 2, be bounded m-convex domains in C
n(n ≥ 2) with Dini-

smooth boundary, and let �i be their Euclidean compactifications. Let f : �1 → �2
be an isometry with respect to the Kobayashi metrics K�i .Then f has a homeomorphic
extension f̄ : �1 → �2 such that the induced boundary map f̄

∣
∣
∂�1

: ∂�1 → ∂�2
is bi-Hölder continuous with respect to the Euclidean metric.

Remark 1.3 On strongly pseudoconvex domains with C2 smooth boundary, the result
was proved for more general rough quasi-isometries by Balogh and Bonk [1].
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Note that every biholomorphic map is an isometry with respect to the Kobayashi
metric. Thus, Theorem 1.2 clearly holds for biholomorphisms between the complex
domains. However, we do not add any regularities on the isometries; thus, we cannot
estimate |∇ f | here. The approach to Theorem 1.2 is also different from the discussions
in [1,4,7,21,28]. We could not only show the continuous extension of the biholomor-
phisms and (quasi-)isometries in general but also enable one to determine the regularity
of boundary extension map. Our strategy to prove Theorem 1.2 is to establish the
Gehring–Hayman Theorem and the Seperation property on complex domains.

Recall the following classical Gehring–Hayman Theorem on planar domains.

Theorem 1.4 [13] If � is a simply connected planar domain (� �= C), then there
exists C > 0 such that, for any x, y ∈ �,

ld([x, y]) ≤ Cld(γ ),

where [x, y] is the hyperbolic geodesic joining x and y, and γ ⊂ � is any curve with
end points x and y, and ld denotes the Euclidean length.

In this paper, we prove some results similar to Theorem 1.4 for m-convex domains
(resp. strongly pseudoconvex domains) with respect to the Kobayashi geodesics. Our
result in this direction is as follows, which shows that the Kobayashi geodesics (or
quasi-geodesics) are essentially also short in the Euclidean sense.

Theorem 1.5 Let � be a bounded m-convex domain in C
n (n ≥ 2) with Dini-smooth

boundary. Then for any 0 < c2 < 1/(8m2 − 4m), there exists a constant c1 > 0 such
that, for any x, y ∈ �,

ld([x, y]) ≤ c1|x − y|c2 ,

where [x, y] is a Kobayashi geodesic joining x and y in �.
If in addition, (�, K�) is Gromov hyperbolic and γ is a Kobayashi λ-quasi-

geodesic connecting x and y with λ ≥ 1, then there exists a constant c′
1 > 0 such that

ld(γ ) ≤ c′
1|x − y|c2 .

In order to prove Theorem 1.5, we need the following result.

Lemma 1.6 Let � be a bounded m-convex domain in C
n with n ≥ 2, and let [x, y] ⊂ �

be a Kobayashi geodesic joining x and y. Then for any α > 2m2 − m, there exists a
constant C̃ > 0 such that, for every ω ∈ [x, y],

δ�(ω) ≥ C̃ min{ld([x, ω]), ld([ω, y])}α, (1)

where δ�(ω) is the Euclidean distance from ω to ∂�.
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Note that we may compare Lemma 1.6 with the Separation property. It states that
whenever [x, y] is a geodesic in (�, K�), z ∈ [x, y] and γ is a curve in � connecting
the subcurves [x, z) and (z, y] of [x, y], then for some a > 0,

B(z, aδ�(z)) ∩ γ �= ∅.

In fact, Lemma 1.6 gives that

B(z, δ
1
α

�(z)/C̃) ∩ γ �= ∅.

We refer the reader to [2,6,16] for more background information in this topic.
We can also apply the above results to problems relevant to Gromov hyperbolicity.

In [1],Balogh andBonk investigated theGromov hyperbolicityof theKobayashimetric
for bounded strictly pseudoconvex domains in C

n . Recently, Zimmer [28] discussed
the Gromov hyperbolicity and the Kobayashi metric on bounded convex domains of
finite type.

In [1], Balogh and Bonk proved that a strongly pseudoconvex domain � endowed
with its Kobayashi metric is Gromov hyperbolic, and its Gromov boundary coincides
with its Euclidean boundary.Moreover, the Carnot-Carathéodorymetric dH on ∂� lies
in (and, thus, determines) the canonical class of snowflake equivalent metrics on ∂G�.
This actually means that the map between the Euclidean boundary and the Gromov
boundary (equipped with a visual metric) is bi-Hölder.

Recently, Bracci, Gaussier, and Zimmer [7] demonstrated the following homeo-
morphic extension result on convex domains.

Theorem 1.7 (Theorem 1.4, [7]) Let � be a C-proper convex domain on C
n . If

(�, K�) is Gromov hyperbolic, then the identity map id: � → � extends to a home-

omorphism (still use the same name) id: �

 → �

G
where �



denotes the Euclidean

end compactification of � and �
G

is the Gromov compactification of the metric space
(�, K�).

As an application of the Theorem 1.5 and Lemma 1.6, we obtain the following result:

Proposition 1.8 Let � be a bounded domain in C
n(n ≥ 2) and suppose that � satisfies

either

(a) � is convex with Dini-smooth boundary and (�, K�) is Gromov hyperbolic; or
(b) � is strongly pseudoconvex with C2-smooth boundary.

Then the identity map id : � → � extends to a bi-Hölder homeomorphism

id : (∂�, | · |) → (∂G�, ρG)

between the boundaries, where ρG is a visual metric on the Gromov boundary of
(�, K�).

Remark 1.9 (1) The assertion for Case (b) in Theorem 1.8 follows from Balogh and
Bonk’s result in [1], and the assertion for Case (a) can be deduced from the recent
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result of Zimmer [29, Propsition 12.2] even without the Dini-smooth assumptions.
We still write down the proof since the approach is different.

(2) Gromov boundary equipped with any two visual metrics is power quasisymmet-
rically and so bi-Hölder equivalent to each other. Thus, the boundary extension of
the identity map in Proposition 1.8 is bi-Hölder with respect to any visual metric
on the Gromov boundary.

We can now apply this boundary correspondence to investigate boundary exten-
sion results for quasi-isometries with respect to the Kobayashi metrics between the
domains. In [1], Balogh and Bonk generalized this kind of results for rough quasi-
isometries in the Kobayashi metrics. Then, Baharali and Zimmer defined a class of
complex domains named ’Goldilock’ domains and they showed the following:

Theorem 1.10 (Theorem 1.7, [4]) Let �1 be a bounded domain in C
n and suppose

that (�1, K�1) is Gromov hyperbolic. Let �2 ∈ C
n be a Goldilock domain. If f :

(�1, K�1) → (�2, K�2) is a continuous quasi-isometric embedding, then f extends

continuously to a continuous map f̄ : �
G
1 → �2.

Moreover, recently Bracci, Gaussier, and Zimmer [7] proved the following result:

Theorem 1.11 Let �1 and �2 be domains in C
n. Assume

(1) �1 is either a bounded, C2-smooth strongly pseudoconvex domain, or a convex
C-proper domain such that

(

�1, K�1

)

is Gromov hyperbolic,
(2) �2 is convex.

Then every roughly quasi-isometric homeomorphism f : (

�1, K�1

) → (

�2, K�2

)

extends to homeomorphism f̄ : �



1 → �



2, where �



i is the Euclidean end compacti-
fication of �i , i = 1, 2.

As a corollary of Proposition 1.8, we prove the following bi-Hölder homeomor-
phism extension result, which gives the regularity of f̄

∣
∣
∂�1

.

Corollary 1.12 For i = 1, 2, suppose that �i ⊂ C
n (n ≥ 2) are bounded domains,

and �i satisfy either condition (1) or (2):

(1) �i is a convex domain with Dini-smooth boundary and (�i , K�i ) is Gromov
hyperbolic;

(2) �i is a strongly pseudoconvex domain with C2-smooth boundary.

Let f : �1 → �2 be a homeomorphism that is a rough quasi-isometry with respect
to the Kobayashi metrics K�i . Then f has a homeomorphic extension f̄ : �1 → �2
such that the induced boundary map f̄

∣
∣
∂�1

: ∂�1 → ∂�2 is bi-Hölder with respect
to the Euclidean metric.

The rest of this paper is organized as follows. In Sect. 2, we recall some defini-
tions and preliminary results. Section 3 focuses on the proofs of Theorem 1.5 and
Lemma 1.6. In Sect. 4, we prove similar results for strongly pseudoconvex domains.
Section 5 is devoted to the proof of Theorem 1.2 and Sect. 6 is devoted to proving
Proposition 1.8 and Corollary 1.12.
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2 Preliminaries

2.1 Notation

(1) For z ∈ C
n , let | · | and d denote the standard Euclidean norm, and let |z1 − z2|

and d(z1, z2) be the standard Euclidean distance of z1, z2 ∈ C
n .

(2) Given an open set � � C
n, x ∈ � and v ∈ C

n\{0}, denote

δ�(x) = inf {d(x, ξ) : ξ ∈ ∂�}

as before, and denote

δ�(x, v) = inf{d(x, ξ) : ξ ∈ ∂� ∩ (x + Cv)}.

(3) For any curve σ , we denote its Euclidean length by ld(σ ) and the Kobayashi
length by lk(σ ).

(4) For any z0 ∈ C
n and ε > 0, we denote by Bε(z0) or B(z0, ε) the open ball

Bε(z0) = {z ∈ C
n| |z − z0| < ε}.

(5) For all real numbers a, b, we denote a∨b := max{a, b} and a∧b := min{a, b}.

2.2 m-Convex Domains and Strongly Pseudoconvex Domains

In [20], Mercer introduced the class of m-convex domains. Now we give the definition
of m-convex domains as follows.

Definition 2.1 A bounded convex domain � ⊂ C
n with n ≥ 2 is called m-convex for

some m ≥ 1 if there exists C > 0 such that, for any z ∈ � and non-zero v ∈ C
n ,

δ�(z; v) ≤ Cδ
1
m
� (z). (2)

Note that the m-convexity is related to the finite type by the following proposition.

Proposition 2.2 (Proposition 9.1, [28]) Given a bounded convex domain � ⊂ C
n(n ≥

2) with smooth boundary, then � is m-convex for some m ∈ N if and only if ∂� has
finite line type in the sense of D’Angelo.

Definition 2.3 A domain � = {z|ρ(z) < 0} in C
n(n ≥ 2) with C2-smooth boundary

is called strongly pseudoconvex if the Levi form of the boundary

Lρ(p; v) =
n

∑

ν,μ=1

∂2ρ

∂zν∂ z̄μ

(p)vνv̄μ, for v = (v1, . . . , vn) ∈ C
n

is positive definite for every p ∈ ∂�.
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2.3 The Kobayashi Metric

Given a domain � ⊂ C
n(n ≥ 2), the (infinitesimal) Kobayashi metric is the pseudo-

Finsler metric defined by

k�(x; v) = inf {|ξ | : f ∈ Hol(D,�), with f (0) = x, d( f )0(ξ) = v} .

Define the Kobayashi length of any curve σ : [a, b] → � to be

lk(σ ) =
∫ b

a
k�

(

σ(t); σ ′(t)
)

dt .

It is a consequence of a result due to Venturini [26], which is based on an observation
by Royden [23] that the Kobayashi pseudo-distance can be given by

K�(x, y) = inf
σ

{

lk(σ )| σ : [a, b] → � is any absolutely continuous curve

with σ(a) = x and σ(b) = y
}

.

There are some estimates concerning the Kobayashi metric on convex domains.

Lemma 2.4 [15]. If � ⊂ C
n is a bounded convex domain, then for all x ∈ � and for

every v ∈ C
n,

|v|
2δ�(x; v)

≤ k�(x; v) ≤ |v|
δ�(x; v)

. (3)

Lemma 2.5 (Proposition 2.4, [20]) Suppose that � ⊂ Cn is a bounded convex domain,
for any x, y ∈ �, we have

K� (x, y) ≥ 1

2

∣
∣
∣
∣
log

δ�(x)

δ�(y)

∣
∣
∣
∣
. (4)

Recall that a C1-smooth boundary point p of a domain � in C
n is said to be Dini-

smooth (or Lyapunov-Dini-smooth), if the inner unit normal vector n to ∂� near p is
a Dini-continuous function. This means that there exists a neighborhood U of p such
that

∫ 1

0

ω(t)

t
dt < +∞,

where

ω(t) = ω(n, ∂� ∩ U , t) := sup
{|nx − ny | : |x − y| < t, x, y ∈ ∂� ∩ U

}

is the respective modulus of continuity. Note that Dini-smooth is a weaker condition
than C1,ε-smooth. Here a Dini-smooth domain means that each boundary point of �

is a Dini-smooth point. Then we have
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Lemma 2.6 (Corollary 8, [22]) Let � be a Dini-smooth bounded domain in C
n and

x, y ∈ �. Then there exists a constant A > 1 + √
2/2 such that

K�(x, y) ≤ log

(

1 + A|x − y|√
δ�(x)δ�(y)

)

. (5)

Proposition 2.7 [3] If � is a C-proper convex domain in C
n (n ≥ 2), then the

Kobayashi metric K� is complete.

HereC-propermeans that� does not contain any entire complex affine lines. Since all
bounded domains are C-proper; thus, for a bounded convex domain �, the Kobayashi
metric K� of � is a complete length metric. Therefore, (�, K�) is a geodesic space.

2.4 Quasi-geodesic

Definition 2.8 Suppose that (X , ρ) is a metric space and I ⊂ R is an interval. A map
σ : I → X is called a geodesic if for all s, t ∈ I ,

ρ(σ(s), σ (t)) = |t − s|.

For λ ≥ 1 and κ ≥ 0, a curve σ : I → � is called a (λ, κ)-quasi-geodesic, if for all
s, t ∈ I ,

1

λ
|t − s| − κ ≤ ρ(σ(s), σ (t)) ≤ λ|t − s| + κ.

In particular if κ = 0, it is called a (λ, 0)-quasi-geodesic or λ-quasi-geodesic.

2.5 Uniformly Squeezing Property

Following Liu et al. [18,19], a domain � ⊂ C
n with n ≥ 2 is said to be holomorphic

homogeneous regular (HHR) or uniformly squeezing (USq), if there exists s > 0
with the following property: for every z ∈ �, there exists a holomorphic embedding
φ : � → C

n with φ(z) = 0 and

Bs(0) ⊂ φ(�) ⊂ B1(0),

where B1(0) ⊂ C
n is the unit ball.

Examples of USq domains include

(1) Tg,n , the Teichmüller space of hyperbolic surfaces with genus g > 1 and n punc-
tures;

(2) bounded convex domains [12];
(3) strongly pseudoconvex domains [9,10].

It was shown in [18,19,27] that in a HHR/USq domain�, the Carathéodory metric,
Kobayashi metric, Bergman metric and Kähler-Einstein metric of � are bilipschitzly
equivalent to each other.
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2.6 Gromov Product and Gromov Hyperbolicity

Definition 2.9 Let (X , ρ) be a metric space. Given three points x, y, o ∈ X , the
Gromov product of x, y with respect to o is given by

(x |y)o = 1

2

(

ρ(x, o) + ρ(o, y) − ρ(x, y)
)

.

A proper geodesic metric space (X , ρ) is called Gromov hyperbolic (or δ-hyperbolic),
if there exists δ ≥ 0 such that, for all o, x, y, z ∈ X ,

(x |y)o ≥ min {(x |z)o, (z|y)o} − δ.

By the triangle inequality, we know that

(x |y)o ≤ ρ(o, [x, y]),

where [x, y] is a geodesic connecting x and y in (X , ρ). Moreover, if X is Gromov
hyperbolic, then

|(x |y)o − ρ(o, [x, y])| ≤ δ′ (6)

for some δ′ > 0.
Note that the large-scale behavior of quasi-geodesics in Gromov hyperbolic spaces

mimics that of geodesics rather closely.

Theorem 2.10 (Stability of quasi-geodesics, p. 401, [8]). For all δ > 0, λ ≥ 1 and
ε > 0, there exists a constant R = R(δ, λ, ε) with the following property:

If X is a δ-hyperbolic geodesic space, γ is a (λ, ε)-quasi-geodesic in X and [x, y]
is a geodesic segment joining the endpoints of γ , then the Hausdorff distance between
[x, y] and the image of γ is no more than R.

Now we introduce the definition of rough quasi-isometric maps as follows.

Definition 2.11 Let f : X → Y be a map between metric spaces X and Y , and let
L ≥ 1 and M ≥ 0 be constants.

(1) If for all x, y ∈ X ,

L−1dX (x, y) − M ≤ dY ( f (x), f (y)) ≤ LdX (x, y) + M,

then f is called an (L, M)-roughly quasi-isometric map (cf. [5]). If L = 1, then
f is called an M-roughly isometric.

(2) Moreover, if f is a homeomorphism and M = 0, then it is called an L-bilipschitz
or L-quasi-isometry.

The following result states that Gromov hyperbolicity is preserved under rough
quasi-isometries.
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Theorem 2.12 [8, p. 402] Let X and X ′ be geodesic metric spaces and f : X → X ′ be
a rough quasi-isometry. If X is Gromov hyperbolic, then X ′ is also Gromov hyperbolic.

Remark 2.13 In [1], Balogh and Bonk proved that every bounded strongly pseudocon-
vex domain in C

n(n ≥ 2) equipped with the Kobayashi metric is Gromov hyperbolic.
Recently, Zimmer [28] demonstrated that smooth bounded convex domains inC

n(n ≥
2) equipped with the Kobayashi metrics are Gromov hyperbolic if and only if they are
of finite type.

3 m-Convex Domains

In this section, wewill investigate the geometric properties of the Kobayashi geodesics
on m-convex domains. We first prove Lemma 1.6 via the idea from [6,14], the differ-
ences between the Kobayashi metric and the quasihyperbolic metric necessitate some
changes in the proof.

In order to prove Lemma 1.6, we need to verify the following result.

Lemma 3.1 Suppose that � is a bounded m-convex domain in C
n(n ≥ 2), and that

γ ⊂ � is a λ-quasi-geodesic in the Kobayashi metric K� connecting y1 and y2 with
λ ≥ 1. Then for any α > 2m2 − m, there exists a constant C̃ > 0 such that, for every
ω = γ (t) ∈ γ ,

δ�(ω) ≥ C̃ (ld(γ |[0, t]) ∧ ld(γ |[t, 1]))α .

Remark 3.2 This result tells us that for any curve γ ′ connecting γ |[0, t] and γ |[t, 1],
we always have

B(ω, δ
1
α

�(ω)/C̃) ∩ γ ′ �= ∅.

Proof Put

D = max
z∈γ

δ�(z).

For i = 1, 2, let Ni denote the unique integer such that

D

2Ni +1 ≤ δ�(yi ) <
D

2Ni
.

For k = 0, 1, . . . , N1, let x1k be the first point on γ with

δ�(x1k ) = D

2k

when a point travels from y1 towards y2.
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Similarly, we can define x2k for k = 0, 1, ..., N2 with travel direction from y2 to y1.
By using points x1k and x2k together with the end points y1 and y2, we can divide γ into
N1+N2+3non-overlapping (modulo end points) subcurvesγν , ν ∈ [−N1−1, N2+1].
Note that a curve containing one end point of γ , aswell as themiddle subcurve between
x10 and x20 ,may degenerate.All subcurves γν areKobayashiλ-quasi-geodesics between
their respective end points, and

δ�(z) ≤ D

2|ν|−1 , if z ∈ γν,

δ�(z) ≥ D

2|ν| , if z is one end point of γν. (7)

It, thus, follows from (5),(7) and the definition of the quasi-geodesic that there exists
a constant A > 2 such that

lk(γν) ≤ λ log

(

1 + A
2|ν|

D
ld(γν)

)

. (8)

And by (2) and (3), we have

lk(γν) ≥ ld(γν)

2C
(

D
2|ν|−1

) 1
m

= 2
|ν|−1

m

2C D
1
m

ld(γν),

where C is the constant in Definition 2.1. It is easy to see that, for any N ∈ N, there
exists C(N ) > 0 such that

log(1 + x) ≤ C(N )x1/N ,

for x ≥ 0. Then for all N > m, clearly

2
|ν|−1

m

2C D
1
m

ld(γν) ≤ lk(γν) ≤ λC(N )A
1
N
2

|ν|
N

D
1
N

l
1
N

d (γν), (9)

which implies that

ld(γν) ≤ C ′
(

D

2|ν|

)
1
m − 1

N
1− 1

N , (10)

where C ′ =
(

21+ 1
m λC(N )A

1
N C

) 1
1−1/N

. Hence, if γ (t) ∈ γν ,

ld(γ |[0, t]) ∧ ld(γ |[t, 1]) ≤ C ′ ∑

j≥|ν|

(
D

2 j

)
1
m − 1

N
1− 1

N ≤ 2C ′
(

D

2|ν|

)
1
m − 1

N
1− 1

N . (11)
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Moreover, by formulas (8) and (10), we obtain

lk(γν) ≤ log

⎛

⎜
⎝1 + 2AC ′

(
D

2|ν|

)
1
m −1

1− 1
N

⎞

⎟
⎠ .

Therefore, we only need to estimate δ�(ω) for ω = γ (t) ∈ γν .
Let x be one end point of γν . By the estimate (4), we conclude that

K� (x, ω) ≥ 1

2

∣
∣
∣
∣
log

δ�(x)

δ�(ω)

∣
∣
∣
∣
.

Therefore, it follows from Definition 2.1 that

1

2
log

δ�(x)

δ�(ω)
≤ K�(x, ω) ≤ lk(γν) ≤ log

⎛

⎜
⎝1 + 2AC ′

(
D

2|ν|

)
1
m −1

1− 1
N

⎞

⎟
⎠ .

This guarantees that

δ�(x)

δ�(ω)
≤

⎛

⎜
⎝1 + 2AC ′

(
D

2|ν|

)
1
m −1

1− 1
N

⎞

⎟
⎠

2

,

and

δ�(ω) ≥ δ�(x)

C ′′
(

D
2|ν|

)
1
m −1

1− 1
N

·2
≥ 1

C ′′

(
D

2|ν|

)1− 2−2m
1−1/N

,

where C ′′ = (4AC ′)2. Hence by (11), it follows that

δ�(ω) ≥ C̃ (ld(γ |[0, t]) ∧ ld(γ |[t, 1]))α , (12)

where

α = 2m − 1 − 1
N

1
m − 1

N

and C̃ = C ′′

2C ′ .

By taking N → ∞, we have

α → 2m2 − m.

Therefore, for any α > 2m2 − m, there exists C̃ such that (12) holds.
This completes the proof. ��
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The following result is a direct consequence of the estimate (4).

Lemma 3.3 Let � be a bounded convex domain in C
n with n ≥ 2 and ω0 ∈ �. Then

there exists K > 0 such that the Kobayashi metric

K�(z, ω0) ≥ 1

2
log

1

δ�(z)
− K . (13)

By using Lemma 3.1, we are now in a position to prove Theorem 1.5.

Proof of Theorem 1.5. Without loss of generality, we may assume that diam(�) ≤ 1
by scaling �. Fix ω ∈ �. By (5) and (13), it follows that the Gromov product (x |y)ω
satisfies

2(x |y)ω = K�(x, ω) + K�(y, ω) − K�(x, y)

≥ 1

2
log

1

δ�(x)
+ 1

2
log

1

δ�(y)
− 1

2
log

(
√

δ�(x)δ�(y) + A|x − y|)2
δ�(x)δ�(y)

− 2K

= 1

2
log

1

δ�(x)δ�(y) + |x − y|(2A
√

δ�(x)δ�(y) + A2|x − y|) − 2K

≥ 1

2
log

1

δ�(x)δ�(y) + (A2 + 2A)|x − y| − 2K ,

where A is the constant in Lemma 2.6 such that (5) holds.
In order to estimate the Euclidean length of the geodesic [x, y], there are two cases

to consider
Case a |x − y| ≥ (δ�(x)δ�(y))2. Hence,

(x |y)ω ≥ 1

4
log

1

(A + 1)2|x − y| 12
− K

≥ 1

8
log

1

|x − y| − K ′,

where K ′ = K − 1
4 log

1
(A+1)2

. By the definition of the Gromov product, it follows
that

K�(ω, [x, y]) ≥ (x |y)ω ≥ 1

8
log

1

|x − y| − K ′. (14)

Thus, by Lemma 2.6, for any z ∈ [x, y], we see that there exists K ′′ > 0 such that

1

2
log

1

δ�(z)
+ K ′′ ≥ K�(ω, z) ≥ 1

8
log

1

|x − y| − K ′.

Choosing a point z ∈ [x, y] with

ld([x, z]) = ld([z, y]) = 1

2
ld([x, y]),
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then by Lemma 3.1, we now have

ld([x, y]) ≤
(

2eK ′+K ′′

C̃

) 1
α

|x − y| 1
4α .

Therefore, Case a is proved.
Case b |x − y| ≤ (δ�(x)δ�(y))2. By diam(�) < 1, it follows from Lemma 2.4

that

k�(z; v) ≥ |v|
2δ�(z)

≥ |v|
2

.

Thus,

1

2
ld([x, y]) ≤ lk([x, y]) = K�(x, y) ≤ log

(

1 + A
|x − y|

δ�(x) ∧ δ�(y)

)

≤ log(1 + A|x − y| 12 )
≤ A|x − y| 12 , (15)

which implies that

ld([x, y]) ≤ c1|x − y|c2 ,

where

c1 =
(

2eK ′+K ′′

C̃

) 1
α

∨ 2A and c2 = 1

4α
<

1

8m2 − 4m
.

This completes the first part of the proof.
For the second part, we need only a minor modification of (14) and (15).
Assume that (�, K�) is Gromov hyperbolic (δ-hyperbolic). Then it follows from

Theorem 2.10 that the Kobayashi Hausdorff distance between [x, y] and the image
of γ is no more than R = R(δ, λ). Thus, we take

K�(ω, γ ) + R ≥ K�(ω, [x, y]) ≥ (x |y)ω ≥ 1

8
log

1

|x − y| − K ′

instead of (14) and take

1

2λ
ld(γ ) ≤ 1

λ
lk(γ ) ≤ lk([x, y]) = K�(x, y) ≤ log

(

1 + A
|x − y|

δ�(x) ∧ δ�(y)

)

instead of (15). Furthermore, noting that these changes make no difference on c2, we
complete the proof of the second part. ��
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Remark 3.4 Suppose that � is a bounded m-convex complex domain. For any two
points x, y ∈ �, there exists a complex geodesic which contains x, y in its image.
Due to a well-known result of Hardy and Littlewood, any complex geodesic in �

extends continuously to its boundary (see [20]).
Conversely,Mercer [20] proved that for any two points x, y ∈ �, there is a complex

geodesic whose continuous extension contains {x, y} in its image. Thus, the first part
of Theorem 1.5 also holds for x, y ∈ �.

4 Strongly Pseudoconvex Domains

In this part, we will establish a similar result for strongly pseudoconvex domains.

Theorem 4.1 Let � is a bounded strongly pseudoconvex domain with C2 smooth
boundary. Then for any c2 < 1

16 and λ > 1, there exists c1 > 0 such that ∀x, y ∈ �,

ld(γ ) ≤ c1|x − y|c2

where γ is a λ-quasi-geodesic joining x and y.

At first, we need some auxiliary results.

Lemma 4.2 (Lemma 4.1, [1]) Let � be a bounded strongly pseudoconvex domain in
C

n(n ≥ 2) with C2-smooth boundary. There exists C > 0 such that for any x, y ∈ �,

K�(x, y) ≥ 1

2

∣
∣
∣
∣
log

δ�(x)

δ�(y)

∣
∣
∣
∣
− C . (16)

The estimate also shows that (�, K�) is complete and, thus, it is a geodesic space.

Lemma 4.3 (Proposition 1.2, [1]) Let � is a bounded strongly pseudoconvex domain
in C

n(n ≥ 2) with C2-smooth boundary, Then, for every ε > 0, there exists ε0 > 0
and C ≥ 0 such that, for all z ∈ Nε0(∂�) ∩ � and all v ∈ C

n,

(

1 − Cδ
1/2
� (z)

)
(

|vN |2
4δ2�(z)

+ (1 − ε)
Lρ (π(z); vH )

δ�(z)

)1/2

≤ K (z; v)

≤
(

1 + Cδ
1/2
� (z)

)
(

|vN |2
4δ2�(z)

+ (1 + ε)
Lρ (π(z); vH )

δ�(z)

)1/2

,

(17)

where π : � → ∂� is a map satisfying |x − π(x)| = δ�(x), vH is in the complex
tangential plane Hπ(z)∂�, vN in the complex one-dimensional subspace orthogonal
to Hπ(z)∂� and v = zH + vN .

By using Lemma 4.3, we immediately obtain that, for some C1 > 0,

k�(z; v) ≥ C1
|v|

δ
1
2
�(z)

. (18)
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If z ∈ Nε0(∂�) ∩ �, then (17) obviously implies (18). For those z ∈ �\Nε0(∂�), we
obtain

k�

(

z,
v

|v|
)

≥ δ0 > 0

for some δ0 > 0 and δ�(z) > ε0. Thus, we obtain the inequality (18) for someC1 > 0.
The following result is similar to Lemma3.1,which can be viewed as the (separation

property) geometric characteristic of the Kobayashi (quasi-) geodesic.

Lemma 4.4 Suppose that � is a bounded strongly pseudoconvex domain in C
n(n ≥ 2)

with C2-smooth boundary. And suppose thatγ is a Kobayashiλ-quasi-geodesic joining
y1 and y2 with λ ≥ 1. Then for any α > 4, there exists a constant C̃ > 0 such that,
for every ω = γ (t) ∈ γ ,

δ�(ω) ≥ C̃(ld(γ |[0, t]) ∧ ld(γ |[t, 1]))α. (19)

Proof Put

D = max
z∈[y1,y2]

δ�(z).

For i = 1, 2, let Ni be the unique integer such that

D

2Ni +1 ≤ δ�(yi ) <
D

2Ni
.

Define x1k , x2k and γν as in the proof of Lemma 3.1 and

δ�(z) ≤ D

2|ν|−1 , if z ∈ γν,

δ�(z) ≥ D

2|ν| , if z is one end point of γν. (20)

It, thus, follows from (5) and (20) and the definition of λ-quasi-geodesic that there
exists a constant A > 0 such that

lk(γν) ≤ λ log

(

1 + A
2|ν|

D
ld(γν)

)

, (21)

where A is the constant from Lemma 2.6 such that (5) holds.
By the estimate (18), we have

lk(γν) ≥ C1ld(γν)
(

D
2|ν|−1

) 1
2

= C12
|ν|−1
2

D
1
2

ld(γν).
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It is easy to see that for any N ∈ N, there exists C(N ) > 0 such that

log(1 + x) ≤ C(N )x
1
N ,

for x ≥ 0. Thus, if we take N > 2, we have

2
|ν|−1
2

C1D
1
2

ld(γν) ≤ lk(γν) ≤ λC(N )A
1
N
2

|ν|
N

D
1
N

l
1
N

d (γν),

which implies that

ld(γν) ≤ C ′
(

D

2|ν|

)
1
2− 1

N
1− 1

N , (22)

where C ′ = (2
1
2 λC(N )A

1
N C1)

N
N−1 . Therefore, if γ (t) ∈ γν ,

ld(γ |[0, t]) ∧ ld(γ |[t, 1]) ≤ C ′ ∑

j≥|ν|

(
D

2 j

)
1
2− 1

N
1− 1

N ≤ 2C ′
(

D

2|ν|

)
1
2− 1

N
1− 1

N . (23)

Moreover, by formulas (21) and (22), we get

lk(γν) ≤ log

⎛

⎜
⎝1 + 2AC ′

(
D

2|ν|

) − 1
2

1− 1
N

⎞

⎟
⎠ .

Suppose x is one end point of γν . Denoting ω = γ (t) ∈ γν , the estimation δ�(ω)

consists of two cases. With the constant C in Lemma 4.2, we have
Case I 1

2 | log δ�(x)
δ�(ω)

| ≤ NC . Hence,

δ�(ω) ≥ e−2NCδ�(x) = e−2NC D

2|ν| .

Case II 1
2 | log δ�(x)

δ�(ω)
| > NC . By Lemma 4.2, we obtain

K�(x, ω) ≥ 1

2

∣
∣
∣
∣
log

δ�(x)

δ�(ω)

∣
∣
∣
∣
− C ≥ N − 1

2N

∣
∣
∣
∣
log

δ�(x)

δ�(ω)

∣
∣
∣
∣
,

which implies that

N − 1

2N
log

δ�(x)

δ�(ω)
≤ K (x, ω) ≤ lk(γν) ≤ log

⎛

⎜
⎝1 + 2AC ′

(
D

2|ν|

) − 1
2

1− 1
N

⎞

⎟
⎠ .
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Thus, it follows that

δ�(x)

δ�(ω)
≤

⎛

⎜
⎝1 + 2AC ′

(
D

2|ν|

) − 1
2

1− 1
N

⎞

⎟
⎠

2N
N−1

and

δ�(ω) ≥ 1

C ′′

(
D

2|ν|

)1+ N2

(N−1)2

,

where C ′′ = (4AC ′)
2N

N−1 . Now (23) implies that

δ�(ω) ≥ C̃ (ld(γ |[0, t]) ∧ ld(γ |[t, 1]))α , (24)

where

C̃ = C ′′ ∧ e−2NC

C ′ and α =
(

1 + N 2

(N − 1)2

)

· 1 − 1
N

1
2 − 1

N

.

Noting that lim
N→∞ α = 4, thus for any α > 4, there exists C̃ > 0 such that (24)

holds, which completes the proof. ��

We remark that the proof of Theorem 4.1 follows almost the same line as the proof
of Theorem 1.5. We need only a minor modification for the estimate of the Kobayashi
metric. For the sake of completeness, we present its simple proof here.

The proof of Theorem 4.1. Scaling domain as necessary, we assume without loss of
generality that diam(�) ≤ 1. Fix a point ω ∈ �. By using (16), we obtain

K�(z, ω) ≥ 1

2
log

1

δ�(z)
− K ,

for some K > 0. Then by (5), we deduce that the Gromov product (x |y)ω satisfies

2(x |y)ω = K�(x, ω) + K�(y, ω) − K�(x, y)

≥ 1

2
log

1

δ�(x)δ�(y) + (A2 + 2A)|x − y| − 2K ,

where A is the constant from Lemma 2.6 such that (5) holds.
Next, to estimate the Euclidean length of γ , we consider two cases:

123



Bi-Hölder Extensions of Quasi-isometries on Complex Domains Page 19 of 29 38

Case A |x − y| ≥ (δ�(x)δ�(y))2. By the assumption, it follows that

(x |y)ω ≥ 1

4
log

1

(A + 1)2|x − y| 12
− K

≥ 1

8
log

1

|x − y| − K ′,

where K ′ = K − 1
4 log

1
(A+1)2

. By the definition of the Gromov product, we obtain

K�(ω, [x, y]) ≥ (x |y)ω ≥ 1

8
log

1

|x − y| − K ′,

where [x, y] denotes a Kobayashi geodesic connecting x and y in �. Now it follows
from Theorem 2.10 and Remark 2.13 that, there exists R > 0 such that

K�(ω, [x, y]) ≤ K�(ω, γ ) + R.

Thus by (5) for any z ∈ γ , there exists K ′′ > 0 such that

1

2
log

1

δ�(z)
+ K ′′ ≥ K�(ω, z) ≥ 1

8
log

1

|x − y| − K ′.

Take a point z = γ (t) with

ld(γ |[0, t]) = ld(γ |[t, 1]) = 1

2
ld(γ ).

Therefore, Lemma 4.4 gives

ld(γ ) ≤
(

2eK ′+K ′′

C̃

) 1
α

|x − y| 1
4α .

Case B |x − y| ≤ (δ�(x)δ�(y))2. By the estimate (18) and the fact that diam(�) ≤
1, we obtain that, for any z ∈ � and 0 �= v ∈ C

n ,

k�(z; v) ≥ C1|v|,

which implies that

C1

λ
ld(γ ) ≤ 1

λ
lk(γ ) ≤ K�(x, y) ≤ log

(

1 + A
|x − y|

δ�(x) ∧ δ�(y)

)

≤ log(1 + A|x − y| 12 )
≤ A|x − y| 12 .
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Hence,

ld([x, y]) ≤ c1|x − y|c2 ,

where

c1 =
(

2eK ′+K ′′

C̃

) 1
α

∨ Aλ

C1
and c2 = 1

4α
.

This completes the proof. ��
Recall that bounded convex domains and strongly pseudoconvex domains are both

uniformly squeezing (see Sect. 2.5 for the precise definition). Therefore, theKobayashi
metric, Bergman metric, Carathéodory metric, and Kähler-Einstein metric are bilips-
chitzly equivalent to each other. Thus, we have

Corollary 4.5 Suppose that � is a bounded domain in C
n(n ≥ 2) and that � satisfies

either

(a) � is m-convex domain with Dini-smooth boundary; or
(b) � is strongly pseudoconvex with C2-smooth boundary.

Then there exists c1, c2 > 0 such that, ∀x, y ∈ �,

ld(γ ) ≤ c1|x − y|c2 ,

where γ is a λ-quasi-geodesic from x to y with respect to the metric ��, and �� is one
of the Kobayashi metric, Bergman metric, Carathéodory metric and Kähler-Einstein
metric of �.

Proof Let γ be a λ-quasi-geodesic joining x and y with respect to one of the Bergman
metric, Carathéodory metric, and Kähler-Einstein metric of �. Then by using the fact
recorded in Sect. 2.5, we know that γ is also a (Cλ)-quasi-geodesic for the Kobayashi
metric for some C > 0. Thus, we can complete the proof by using Theorems 1.5 and
4.1. ��

5 Proof of Theorem 1.2

By Remark 3.4, for any x, y ∈ �, there exists a geodesic joining x and y; thus, we
can write [x, y] for x, y ∈ �. Now we prove the Theorem by the results proved in
Sect. 3.

First, we need the following result which characterizes the distance from a fixed
point to the geodesic [x, y].
Lemma 5.1 Let � be a bounded m-convex domain in C

n(n ≥ 2) with Dini-smooth
boundary. Suppose diam(�) < 1, then for any x ∈ �, y ∈ ∂� and x, y close to each
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other,

K�(ω, [x, y]) � log
1

|x − y| , (25)

Here, we write f � g for two functions if there exists a constant C ≥ 1 such that
(1/C) f ≤ g ≤ C f .

Proof Fix a point ω ∈ �. On one hand, choose a point z ∈ [x, y] such that

ld([x, z]) = ld([z, y]).

Then Lemma 2.6 implies that there exists K1 > 0 such that

K�(ω, z) ≤ 1

2
log

1

δ�(z)
+ K1.

Lemma 3.1 implies

K�(ω, z) ≤ α

2
log

1

ld([x, y]) + 1

2
log

2α

C̃
+ K1

≤ α

2
log

1

|x − y| + 1

2
log

2α

C̃
+ K1.

Since diam(�) < 1, there exists C > 0 such that

K�(ω, [x, y]) = K�(ω, z) ≤ C log
1

|x − y| .

On the other hand, choose a point z ∈ [x, y] such that K�(ω, [x, y]) = K�(ω, z).
By Theorem 1.5,

K�(ω, z) ≥ 1

2
log

δ�(ω)

δ�(z)
≥ 1

2
log

δ�(ω)

ld([x, y]) + δ�(x) ∧ δ�(y)

� log
1

c1|x − y|c2 . (26)

Thus, we have

K�(ω, [x, y]) � log
1

|x − y| .

��
Remark 5.2 By the Triangle inequality,

(x |y)ω ≤ K�(ω, [x, y]) ≤ log
1

|x − y| .
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on the other hand, the Gromov hyperbolicity implies

|(x |y)ω − K�(ω, [x, y])| ≤ δ,

which means that: if (�, K�) is also Gromov hyperbolic, then

(x |y)ω � log
1

|x − y| .

Proof of Theorem 1.2 Fix ω ∈ �1. Since f is a isometry, and the continuity of
Kobayashi metric, we know that f is a homeomorphism. Also, for any x, y ∈ �1, we
have

K�2( f (ω), f ([x, y])) = K�1(ω, [x, y])

and f ([x, y]) is a geodesic between f (x) and f (y). Take two sequences {xk}n
k=1 and{yk}n

k=1 in �1 such that xk → ξ ∈ ∂�1 and yk → η ∈ ∂�. Just repeat the proof of
Lemma 5.1 for xk and yk , only note that δ�1(xk) ∧ δ�1(yk) → 0 and δ�2( f (xk)) ∧
δ�2( f (yk)) → 0 in (26), it is easy to see that if ξ = η, then | f (xk) − f (yk)| → 0
which means f extends continuously to the boundary.

Thus by Lemma 5.1, when ξ, η close enough, we have

K�1(ω, [ξ, η]) � log
1

|ξ − η| ,

and

K�2( f (ω), f ([ξ, η])) � log
1

| f (ξ) − f (η)| .

Thus, by combining these two inequalities, we know that there exists C1 > 1, 1 >

C2 > 0 such that

1

C1
|ξ − η| 1

C2 ≤ | f (ξ) − f (η)| ≤ C1|ξ − η|C2 ,

which means that f not only extends to a homeomorphism on �1 but also bi-Hölder
continuous on ∂�1. ��

6 Boundary Correspondence and Extensions of Maps

The aim of this section is to show Proposition 1.8 and Corollary 1.12. First, we prove
the bi-Hölder equivalence between the Euclidean boundary and the Gromov boundary
on certain complex domains. Second, we use this boundary correspondence to obtain
some extension results not only for biholomorphisms but also for more general rough
quasi-isometries with respect to the Kobayashi metrics between the domains.
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We begin with some necessary definitions and auxiliary results concerning Gromov
hyperbolic geometry and morphisms between their boundaries at infinity.

Let (X , ρ) be a δ-hyperbolic space. Fix a base point o in X . Recall that the Gromov
product of x, y with respect to o is

(x |y)o = 1

2
(ρ(x, o) + ρ(y, o) − ρ(x, y)) .

(1) A sequence {xi } in X is called a Gromov sequence if (xi |x j )o → ∞ as i, j → ∞.

(2) Two such sequences {xi } and {y j } are said to be equivalent if (xi |yi )o → ∞ as
i → ∞.

(3) The Gromov boundary ∂G X of X is defined to be the set of all equivalence classes

of Gromov sequences, and X
G = X ∪ ∂G X is called the Gromov closure of X .

(4) For a ∈ X and b ∈ ∂G X , the Gromov product (a|b)o of a and b is defined by

(a|b)o = inf
{

lim inf
i→∞ (a|bi )o : {bi } ∈ b

}

.

(5) For a, b ∈ ∂G X , the Gromov product (a|b)o of a and b is defined by

(a|b)o = inf
{

lim inf
i→∞ (ai |bi )o : {ai } ∈ a and {bi } ∈ b

}

.

We recall the following basic results about the Gromov product on the Gromov

closure X
G
.

Proposition 6.1 (Lemma 5.11, [25]) Let X be a δ-hyperbolic space, o, z ∈ X, and
ξ, ξ ′ ∈ ∂G X. Then for any sequences {yi } ∈ ξ , {y′

i } ∈ ξ ′, we have

(1) (z|ξ)o ≤ lim inf i→∞(z|yi )o ≤ lim supi→∞(z|yi )o ≤ (z|ξ)o + δ;
(2) (ξ |ξ ′)o ≤ lim inf i→∞(yi |y′

i )o ≤ lim supi→∞(yi |y′
i )o ≤ (ξ |ξ ′)o + 2δ.

The next result is known as the standard estimate on Gromov hyperbolic spaces (see
for instance (3.2) in [6]). If X is a proper geodesic δ-hyperbolic space, then for all
x, y, w ∈ X , we have

∣
∣(x |y)w − ρ(w, [x, y])∣∣ ≤ 8δ, (27)

where [x, y] is a geodesic with end points x and y.
Note that if (X , ρ) is proper and geodesic, then its Gromov boundary is also

equivalent to the geodesic boundary(cf. [8]). Here, the geodesic boundary is defined
as the set of all equivalence classes of geodesic rays, where two geodesic rays are said
to be equivalent if they have finite Hausdorff distance (cf. [8]).

For a Gromov hyperbolic space X , one can define a class of visual metrics on ∂G X
via the extended Gromov products, see [5,8]. For any metric ρG in this class, there
exist a parameter ε > 0 and a base point w ∈ X such that

ρG(a, b) � exp (−ε(a|b)w) , for a, b ∈ ∂G X . (28)
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Recall that f � g for two functions if there exists a constant C ≥ 1 such that
(1/C) f ≤ g ≤ C f . Any two metrics d1 and d2 in the canonical class are called
snowflake equivalent, i.e., the identitymap id : (∂G X , d1) → (∂G X , d2) is a snowflake
map.Note that a homeomorphismφ : (X1, d1) → (X2, d2) between twometric spaces
is said to be snowflake if there exist λ, κ > 0 such that, for any x, y ∈ X1,

(1/λ)d1(x, y)κ ≤ d2(φ(x), φ(y)) ≤ λd1(x, y)κ .

Now we recall the definitions of Hölder and power quasisymmetric mappings as
follows. A homeomorphism φ : (X1, d1) → (X2, d2) between two metric spaces is
said to be Hölder if there exist λ, κ > 0 such that, for any x, y ∈ X1,

d2(φ(x), φ(y)) ≤ λd1(x, y)κ .

Moreover, φ is called bi-Hölder if there exist λ ≥ 1, 0 < α ≤ 1 such that, for any
x, y ∈ X1,

(1/λ)d1(x, y)1/α ≤ d2(φ(x), φ(y)) ≤ λd1(x, y)α.

For a bounded strongly pseudoconvex domain � ⊂ C
n with C2-smooth boundary,

we know that the mapping between the Carnot-Carathéodory metric and the Euclidean
metric on ∂� are bi-Hölder equivalent (See [1] and the references given there for more
information). That is,

C1|p − q| ≤ dH (p, q) ≤ C2|p − q|1/2, for p, q ∈ ∂�.

Thus, the visualmetric of ∂G� and theEuclideanmetric of ∂� are bi-Hölder equivalent
to each other.

Definition 6.2 Let φ : (X1, d1) → (X2, d2) be a homeomorphism between metric
spaces, and λ ≥ 1, κ > 0 be constants.

If for all distinct points x, y, z ∈ X1,

d2(φ(x), φ(z))

d2(φ(x), φ(y))
≤ ηκ,λ

(
d1(x, z)

d1(x, y)

)

,

then φ is called a (κ, λ)-power quasisymmetry. Here, we have used the notation

ηκ,λ(t) =
{

λt1/κ for 0 < t < 1,
λtκ for t ≥ 1.

It is easy to see that every snowflake mapping is bi-Hölder. By carefully checking
the proof of Theorem 6.15 in [24], we obtain the following result:

Proposition 6.3 A power quasisymmetry between two bounded metric spaces is bi-
Hölder.

Also, we need an auxiliary result for our later use.
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Proposition 6.4 (Section 6, [5]) Suppose that f : X → Y is a rough quasi-isometry
between two geodesic Gromov hyperbolic spaces X and Y . Then f sends every Gromov
sequence in X to a Gromov sequence in Y , and f induces a power quasisymmetric
boundary mapping f̃G : ∂G X → ∂GY , where ∂G X and ∂GY are equipped with certain
visual metrics.

Recently Zimmer proved that

Theorem 6.5 (Corollary 7.2, [29]) If � is a bounded convex domain in C
n(n ≥ 2) and

(�, K�) is Gromov hyperbolic, then � is m-convex for some m ≥ 1.

Now we are ready to show Proposition 1.8. For the convenience of the reader, we
restate the propositions as follows:

Proposition 6.6 Suppose that � is a bounded domain in C
n(n ≥ 2) and satisfies either

(a) � is convex with Dini-smooth boundary and (�, K�) is Gromov hyperbolic; or
(b) � is strongly pseudoconvex with C2-smooth boundary.

Then the identity map id : � → � extends to a bi-Hölder homeomorphism of the
boundaries

id : (∂�, | · |) → (∂G�, ρG)

(for simplicity of notation, here use the same notation), where ρG is a certain visual
metric on the Gromov boundary of the domain (�, K�) (see (28)).

Proof We first record some auxiliary results for later use. On the one hand, it follows
from Theorems 1.5, 6.5, and 4.1 that in both cases (a) and (b), there are constants
c1, c2 > 0 such that, for any x, y ∈ �,

ld([x, y]) ≤ c1|x − y|c2 , (29)

where [x, y] is a Kobayashi geodesic joining x and y in �.
On the other hand, by using Lemmas 1.6 and 4.4 , we see that there exist constants

C̃, α > 0 such that, for every u ∈ [x, y],

δ�(u) ≥ C̃ (ld([x, u]) ∧ ld([u, y]))α . (30)

Next we want to show that the identity map extends to a bijection between the
Euclidean boundary of � and the Gromov boundary of the space (�, K�). That is
to say, a sequence in � is a Gromov sequence if and only if it converges to certain
boundary point in the Euclidean metric.

To this end, fix a point ω ∈ �. For any Gromov sequences {xk}, {yk} ⊂ � with
(xk |yk)ω → ∞ as n → ∞. For each k, connect xk and yk by a Kobayashi geodesic
[xk, yk] in �. Then choose a point zk ∈ [xk, yk] such that

ld([xk, zk]) = ld([zk, yk]).
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Lemma 2.6 implies that there exists K1 > 0 such that

K�(ω, zk) ≤ 1

2
log

1

δ�(zk)
+ K1, (31)

which implies that

(xk |yk)ω ≤ K�(ω, zk) ≤ 1

2
log

1

δ�(zk)
+ K1.

Hence,

δ�(zk) → 0 as k → ∞.

Now, by applying (30) to [xk, yk], we obtain that

|xk − yk | ≤ ld([xk, yk]) ≤ 2

C̃
δ

1
α

�(zk) → 0, (32)

as desired.
On the other hand, for every x ∈ ∂�, choose a sequences {xk}, {yk} ⊂ � with

xk → x and yk → x as k → ∞. For each k, again we may join xk and yk by a
Kobayashi geodesic [xk, yk] in �. Choose a point uk ∈ [xk, yk] such that

K�(ω, zk) = K�(ω, [xk, yk]).

Now, applying (29) to [xk, yk], we conclude that

δ�(zk) ≤ 1

2
ld([xk, yk]) + δ�(xk) ∨ δ�(yk)

≤ c1
2

|xk − yk |c2 + δ�(xk) ∨ δ�(yk). (33)

By using the estimates (13) and (16) in both cases (a) and (b), it follows that there
exists K2 > 0 such that

K�(ω, zk) ≥ 1

2
log

1

δ�(zk)
− K2. (34)

Since |xk − yk | → 0 and δ�(xk), δ�(yk) → 0, we have K�(ω, [xk, yk]) → ∞ as
k → ∞. Then we deduce from the standard estimate (27) that

(xk |yk)ω → ∞ as k → ∞.

Therefore, we have proved that the identity map extends to a bijection between the
Euclidean boundary of � and the Gromov boundary of the space (�, K�).
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Now we are ready to show this boundary mapping id : (∂�, | · |) → (∂G�, ρG)

is bi-Hölder continuous, where ρG is a visual metric on the Gromov boundary of
(�, K�) with parameter ε > 0 and base point ω (refer to (28)).

Only note that the Gromov hyperbolicity of (�, K�) implies that

e−(x |y)ω � e−K�(ω,[x,y]).

Thus, we complete the proof by repeating the arguments in the proof of Lemma 5.1.
��

Note the bilipschitz equivalence of the canonical metrics on�. Denoting by �� one
of the Kobayashi metric, Bergman metric, Carathéodory metric, and Kähler-Einstein
metric on �, we obtain

Corollary 6.7 Suppose that � is a bounded domain in C
n(n ≥ 2) and satisfies either

(a) � is convex with Dini-smooth boundary and (�, ��) is Gromov hyperbolic; or
(b) � is strongly pseudoconvex with C2-smooth boundary.

Then the identity map id : � → � extends to a bi-Hölder homeomorphism

id : (∂�, | · |) → (∂G�, ρ),

where ρ is certain visual metric on the Gromov boundary of (�, ��).

Proof Note that, by using the fact recorded in Sect. 2.5, the Kobayashi metric K� is
bilipschitzly equivalent to �� under the identity map. Then by Theorem 2.12, if � is
Gromov hyperbolic with respect to the metric ��, then it is also Gromov hyperbolic
with respect to the Kobayashi metric K�.

From Propositions 6.4 and 6.3 , it follows that the identity map

id : (�, K�) → (�, ��)

extends to a bi-Hölder homeomorphism between the Gromov boundary of (�, K�)

and the Gromov boundary of (�, ��) with respect to the visual metrics.
Moreover, it follows from Proposition 1.8 that the identity map extends to a bi-

Hölder homeomorphism between the Euclidean boundary of � and the Gromov
boundary of (�, K�).

Therefore, the conclusion follows easily from these results and the fact that the
composition of bi-Hölder mappings is bi-Hölder as well. ��

Finally, we conclude this section by showing Theorem 1.12.

Proof of Corollary 1.12. At first, one observes from Propositions 6.4 and 6.3 that

f : (

�1, K�1

) → (

�2, K�2

)

extends to a homeomorphism such that every sequence {xn} in (�1, K�1) is Gromov
if and only if the image sequence { f (xn)} in (�2, K�2) is Gromov. Moreover, the
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induced mapping

f̃ : ∂G�1 → ∂G�2

is bi-Hölder when the Gromov boundaries ∂G�i of (�i , K�i ) are endowed with their
visual metrics for i = 1, 2.

For each i = 1, 2, then by Proposition 1.8, the identity map idi : �i → �i extends
as a homeomorphism such that a sequence in �i is a Gromov sequence if and only if
it converges to a point in ∂�i . And the induced mapping

idi : (∂�i , | · |) → (∂G�i , ρi )

is bi-Hölder, where ρi is a visual metric on the Gromov boundary of (�i , K�i ).
Thus, we get a well-defined boundary mapping

f = id−1
2 ◦ f̃ ◦ id1 : ∂�1 → ∂�2

such that {xn} in�1 converges to a point in ∂�1 if and only if { f (xn)} in�2 converges
to a point in ∂�2. This shows that f is the corresponding continuous extensionmapping
by f , which is a homeomorphism. Clearly, f is bi-Hölder because the composition
of bi-Hölder mappings is also bi-Hölder, which completes the proof. ��
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