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Abstract Loewner’s equation provides a way to encode a simply connected
domain or equivalently its uniformizing conformal map via a real-valued driv-
ing function of its boundary. The first main result of the present paper is that the
Dirichlet energy of this driving function (also known as the Loewner energy)
is equal to the Dirichlet energy of the log-derivative of the (appropriately
defined) uniformizing conformal map. This description of the Loewner energy
then enables to tie direct links with regularized determinants and Teichmüller
theory: We show that for smooth simple loops, the Loewner energy can be
expressed in terms of the zeta-regularized determinants of a certain Neumann
jump operator. We also show that the family of finite Loewner energy loops
coincides with the Weil–Petersson class of quasicircles, and that the Loewner
energy equals to a multiple of the universal Liouville action introduced by
Takhtajan and Teo, which is a Kähler potential for the Weil–Petersson metric
on the Weil–Petersson Teichmüller space.
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574 Y. Wang

1 Introduction

Background on Loewner energy

Loewner introduced in 1923 [22] a way to encode/construct uniformizing
conformal maps, via continuous iterations (now known as Loewner chains) of
simple infinitesimal conformal distortions. It allows to describe the uniformiz-
ing maps via a real-valued function that is usually referred to as the driving
function of the Loewner chain. Loewner’s motivation came from the Bieber-
bach conjecture and Loewner chains have in fact been an important tool in the
proof of this conjecture by De Branges [9] in 1985. They are also a funda-
mental building block in the definition of Schramm–Loewner Evolutions by
Schramm [32].

Let us very briefly recall aspects of the Loewner chain formalism in the
chordal setting, which is the first one that we will focus on here: When γ

is a simple curve from 0 to ∞ in the upper half-plane H, one can choose
to parametrize γ in a way such that the half-plane capacity of γ [0, t] seen
from infinity grows linearly. More precisely, this means that the mapping-out
function gt from H\γ [0, t] to H, that is normalized near infinity by gt (z) =
z + o(1) as z → ∞ does in fact satisfy gt (z) = z + 2t/z + o(1/z). By
Carathéodory’s theorem, the function gt can be extended continuously to the
tip γt of the slit γ [0, t]which enables to defineW (t) := gt (γt ). The real-valued
functionW turns out to be continuous, and it is called the driving function of the
chord γ (or of the Loewner flow (gt )t≥0) in (H, 0,∞). Loewner [22] showed
(in the slightly different radial setting, but the story is essentially the same
as in this chordal setting, see [28]) that the functions t �→ gt (z) do satisfy a
very simple differential equation, which in turn shows that the driving function
uniquely determines the curve γ . Note that whenW is only continuous, it may
not arise from a curve γ , however, the Loewner flow gt is always well defined
on a subset of H.

The random curves driven by W (t) := √
κBt , where κ > 0 and B is one-

dimensional Brownian motion are Schramm’s chordal SLEκ [32] (it can be
shown that these random curves are almost surely simple curves when κ ≤ 4
[30] and in that case, we are in the framework described above), which is
conjectured (and for some special values of κ , this is proven—see [18,33,39])
to be the scaling limit of interfaces in some statistical physics models. Given
that the action functional that is naturally related to Brownian motion is the
Dirichlet energy

∫ ∞
0 W ′(t)2/2 dt , this energy looks like a natural quantity to

investigate in the Loewner/SLE context. It has in fact been introduced and
studied recently by Friz and Shekhar [12] and the author [42] independently.
It should be emphasized that this Loewner energy is finite onlywhen the simple
chord γ is quite regular, and that we will therefore be dealing only with fairly
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Equivalent descriptions of the loewner energy 575

regular chords as opposed to SLEs in the present paper. Since a simple chord
determines its driving function, one can view this Loewner energy as a function
of the chord and denote it by IH,0,∞(γ ).

Elementary scaling considerations show that for any given positive λ,

IH,0,∞(λγ ) = IH,0,∞(γ ).

This enables to define the Loewner energy ID,a,b of a simple chord in a simply
connected domain D from a to b (where a and b are distinct prime ends of D),
to be the Loewner energy of the image of this chord in H from 0 to ∞ under
any uniformizing map from D to H which maps a and b to 0 and ∞.

In our paper [42], we have shown that this Loewner energy was reversible,
namely that ID,a,b(γ ) = ID,b,a(γ ). Even though this is a result about deter-
ministic Loewner chains, our proof was based on the reversibility of SLEκ

and on an interpretation of the Loewner energy as a large deviation functional
for SLEκ as κ → 0+. This result raised the question whether there are direct
descriptions of the Loewner energy that do not involve the underlying Loewner
chains. The goal of the present paper is to provide such descriptions. In fact,
we will provide three such expressions of the Loewner energy, which we now
briefly describe in the next three paragraphs.

Relation to the Dirichlet energy of the log-derivative of a uniformizing
map

Let us introduce some notation: It turns out to be more convenient to work
in a slit plane rather than in the upper half-plane (this just corresponds to
conjugation of gt by the square map) when studying the Loewner energy of
chords. In other words, one looks at a chord from 0 to∞ in the slit planeΣ :=
C\R+. Such a chord divides the slit plane into two connected components
H1 and H2, and one can then define hi to be a conformal map from Hi onto
a half-plane fixing ∞. See Fig. 1 for a picturesque description of these two
maps. Let h be the map defined on Σ\γ , which coincides with hi on Hi . Here
and in the sequel dz2 denotes the Euclidean (area) measure on C.

Theorem 1.1 When γ is a chord from 0 to infinity in Σ with finite Loewner
energy, then

IΣ,0,∞(γ ) = 1

π

∫

Σ\γ
∣
∣∇ log

∣
∣h′(z)

∣
∣
∣
∣2 dz2 = 1

π

∫

Σ\γ

∣
∣
∣
∣
h′′(z)
h′(z)

∣
∣
∣
∣

2

dz2.

The Loewner energy also has a natural generalization to oriented simple
loops (Jordan curves) with a marked point (root) embedded in the Riemann
sphere, such that if we identify the simple chord γ inΣ connecting 0 to∞with
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Fig. 1 We often choose the half-planes to beH and the lower half-planeH∗ as the image of h1
and h2 to fit into the Loewner chain setting. However, it is clear that the last two expressions
of the equality in Theorem 1.1 is invariant under transformations z �→ az + b, for a ∈ C

∗ and
b ∈ C

the loop γ ∪R+, then the loop energy of γ ∪R+ rooted at∞ and oriented as γ

is equal to the chordal Loewner energy of γ in (Σ, 0,∞). In a joint work with
Steffen Rohde [31], we have shown that this Loewner loop energy, denoted by
I L , depends only on the image (i.e. of the trace) of the loop. In particular, it
does not depend on the root of the loop. The Loewner loop energy is therefore
a non-negative and Möbius invariant quantity on the set of free loops, which
vanishes only on circles. The proof in [31] relies on the reversibility of chordal
Loewner energy and a certain type of surgeries on the loop to displace the root.
This root-invariance suggests that the framework of loops provides even more
symmetries and invariance properties than the chordal case when one studies
Loewner energy.

In the present paper, wewill derive the counterpart of Theorem1.1 for loops:

Theorem 1.2 (see Theorem 6.1) If γ is a loop passing through ∞ with finite
Loewner energy, then

I L(γ ) = 1

π

∫

C\γ
∣
∣∇ log

∣
∣h′(z)

∣
∣
∣
∣2 dz2,

where h maps C\γ conformally onto two half-planes and fixes ∞.

Actually, one can view Theorem 1.1 as a consequence of Theorem 6.1 (and
this is the order in which we will derive things). Note that the identity also
holds when I L(γ ) = ∞, which follows in fact from the characterization of
Weil–Petersson quasicircles (see below) by its welding homeomorphism [37]
that we will not enter into detail here.

Let us say a few words about the strategy of our proof of these two results,
which will be the main purpose of the first part of the present paper (Sects. 3
to 6). We will first derive the additivity (called J -additivity) of the integral
on log-derivative of the uniformizing map when the curve is C1,α-regular
(Sect. 3). Curves with piecewise linear driving function fall into this class of
curves. Weak J -additivity suffices to obtain a version of Theorem 1.1 for
finite capacity chords driven by a piecewise linear function using explicit
infinitesimal computation in Sect. 4. It then provides the bound to deduce the
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general J -additivity for all finite energy curves (Corollary 5.4) and the proof
of the identity (Proposition 2.1) for finite capacity and finite energy chords is
completed in Sect. 5. We prove Theorem 6.1 in Sect. 6 by passing the capacity
to ∞ and generalize the identity to loops. It is worth emphasizing that already
in the case of a linear driving function where the map h is almost explicit, the
proof is not immediate.

As briefly argued in the concluding section (Sect. 9) of the present paper, it
is possible to heuristically interpret Theorem 6.1 as a κ → 0+ limit of some
relations between SLEκ curves and Liouville Quantum gravity, as pioneered
by Sheffield in [34]. This is actually the line of thought that led us to guessing
the Theorem 6.1.

Theorem 6.1 then opens the door to a number of connections with other
ideas, which we then investigate in Sects. 7 and 8 and that we now describe.

Relation to zeta-regularized determinants

The first approach involves zeta-regularized determinants of Laplacians for
smooth loops. Our main result in this direction is Theorem 7.3, which can be
summarized by:

Theorem 1.3 For C∞ loops, one has the identity

I L(γ ) = 12 log det′ζ N (γ, g) − 12 log lg(γ )

−(12 log det′ζ N (S1, g) − 12 log lg(S
1)),

where g is any metric on the Riemann sphere conformally equivalent to
the spherical metric, lg(γ ) the arclength of γ , and det′ζ N (γ, g) the zeta-
regularized determinant of the Neumann jump operator across γ .

Let us already note that the root-invariance (and also the reversibility) of
the loop energy for smooth loops follows directly from this result, because
there is no more parametrization involved in the right-hand side. This identity
is also reminiscent of the partition function formulation of the SLE/Gaussian
free field coupling by Dubédat [10].

The zeta-regularization of operators was introduced by Ray and Singer [29]
and are then used by physicists (e.g. Hawking [15]) to make sense of quadratic
path integrals. The determinants of Laplacians on Riemann surfaces also play
a crucial role in Polyakov’s quantum theory of bosonic strings [27]. Polyakov
and Alvarez studied the variation of the functional integral under conformal
changes of metric, for surfaces with or without boundary [1], resp. [27] which
is known as the Polyakov-Alvarez conformal anomaly formula (Theorem D).
Osgood, Phillips and Sarnak [26] showed that such variation is realized by the
zeta-regularized determinants ofLaplacians. ThePolyakov-Alvarez conformal
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anomaly formula is the main tool in our proof of Theorem 7.3. Notice that
the regularization is well defined when the boundary of the bounded domain
is regular enough (e.g. C2), and that the variation formula was also derived
under boundary regularity conditions. This is why to stay on the safe side in
the present paper, we restrict ourselves to C∞ loops whenever we consider
these regularized determinants to conform with the setup of [6,7,26].

The zeta-regularized determinant of the Neumann jump operator N (γ, g)
that is referred to in Theorem 1.3 is closely related to such determinants of
Laplacians via a Mayer–Vietoris type surgery formula [6] that we will recall
in Sect. 7.

Relation to the Weil–Petersson Teichmüller space

It was shown in [31] that finite energy loops are quasicircles. Since theLoewner
energy is Möbius invariant, it is very natural to consider them as points in the
universal Teichmüller space T (1) which can be modeled by the homogeneous
space Möb(S1)\QS(S1) that is the group QS(S1) of quasisymmetric home-
omorphisms of the unit circle S1 modulo Möbius transformations of S1, via
the welding function of the quasicircle (for basic material on quasiconfor-
mal maps and Teichmüller spaces, readers may consult e.g. [19,20,24]). On
the other hand, it is easy to see that quasicircles do not always have finite
Loewner energy (for instance, quasicircles with corners have infinite energy).
This raises the natural question to identify the subspace of finite energy loops
in the Teichmüller space. The answer to this question is the main purpose of
Sect. 8.

Recall that the equivalent classes of smooth diffeomorphisms of the circle
Möb(S1)\Diff(S1) is naturally embedded into T (1) since they are clearly qua-
sisymmetric. It carries a remarkable complex structure, and there is a unique
(up to constant factor) homogeneous Kähler metric on it which has also been
studied intensively by both physicists and mathematicians, see e.g. Bowick,
Rajeev, Witten [4,5,44] as it plays an important role in the string theory. Nag
and Verjovsky [24] showed that this metric coincides with the Weil–Petersson
metric on T (1) and Cui [8] showed that the completion T0(1) (called theWeil–
Petersson Teichmüller space) of Möb(S1)\Diff(S1) under the Weil–Petersson
metric is the class of quasisymmetric functions whose quasiconformal exten-
sion has L2-integrable complex dilation with respect to the hyperbolic metric.

The memoir by Takhtajan and Teo [40] studies systematically the Weil–
Petersson Teichmüller space. They proved that T0(1) is the connected
component of the identity in T (1) viewed as a complex Hilbert manifold (this
is actuallywhere the notation of T0(1) comes from) and establishedmany other
equivalent characterizations of the Weil–Petersson Teichmüller space. They
also introduced a quantity which is very relevant for the present paper: the
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Equivalent descriptions of the loewner energy 579

universal Liouville action S1 (we will recall its definition in (17)) and showed
that it is a Kähler potential for the Weil–Petersson metric on T0(1). Later,
Shen, et al. [36–38] did characterize T0(1) directly in terms of the welding
homeomorphisms.

The main result of Sect. 8 of the present paper is Theorem 8.1 that loosely
speaking says that:

Theorem 1.4 A Jordan curve γ has finite Loewner energy if and only if [γ ] ∈
T0(1) and

I L(γ ) = S1([γ ])/π,

where we identify γ with its welding function which lies in QS(S1).

This provides therefore another characterization of T0(1) and a new viewpoint
on its Kähler potential (or alternatively a way to look at the Loewner energy).

Again the root-invariance (and also the reversibility) of the loop energy can
be viewed as a corollary of this result, because there is no more parametriza-
tion involved in the definition of S1([γ ]). Note that we require no regularity
assumption on γ in the above identity.

The paper is structured as follows: Sect. 3 to Sect. 6 are devoted to the
proof of Theorem 6.1 as we described above, from which we derive in Sect. 7
the identity with determinants (Theorem 7.3) for smooth loops. In Sect. 8,
by choosing a particular metric in the identity of Theorem 7.3, we deduce
Theorem 8.1 which relates the Loewner energy to the the Weil–Petersson
Teichmüller space, via approximation of finite energy curves by smooth curves.
In Sect. 9 we gather informal discussions on how we are led to Theorem 6.1.

2 Preliminaries and notation

Through out the paper, a domain means a simply connected open subset of
C whose boundary can be parametrized by a non self-intersecting continuous
curve (not necessarily injective). We orient and parametrize this boundary so
that it winds anti-clockwise around the domain.When the boundary is a Jordan
curve then we say that the domain is a Jordan domain.

We first recall that a real-valued function f defined on the compact inter-
val [a, b] is absolutely continuous (AC) if there exists a Lebesgue integrable
function g on [a, b], such that

f (x) = f (a) +
∫ x

a
g(t) dt, for x ∈ [a, b].

It is elementary to check that this is equivalent to any of the following two
conditions (see [2] Sec. 4.4):
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580 Y. Wang

(AC1) For every ε > 0, there is δ > 0 such that whenever a finite sequence of
pairwise disjoint sub-intervals (xk, yk) of [a, b] and ∑

k(yk − xk) < δ,
then

∑

k

| f (yk) − f (xk)| < ε.

(AC2) f has derivative almost everywhere, the derivative is Lebesgue inte-
grable, and

f (x) = f (a) +
∫ x

a
f ′(t) dt, for x ∈ [a, b].

A function f defined on a non-compact interval is said to be AC if f is AC
on all the compact sub-intervals.

We now generalize the definition of the Loewner energy of a chord γ in
(D, a, b) that we gave in the introduction to the case of chords that start at a
but do not make it all the way to b. The steps of the definition are exactly the
same:

– First, consider the case of the upper half-plane, and consider a finite simple
chord γ := γ [0, T ], parametrized by its half-plane capacity. We then let
W be the driving function of the chord, and we set

IH,0,∞(γ [0, T ]) := 1

2

∫ T

0
W ′(t)2 dt when W is absolutely continuous

and IH,0,∞(γ [0, T ]) = ∞ if W is not AC. Sometimes with a slight abuse
of notation, we denote also the above quantity by I (W ).

– We note that this definition of the energy of the chord γ [0, T ] is invariant
under scaling, so that for any conformal map φ from H onto some simply
connected domain D, we can define

ID,a,b(φ ◦ γ [0, T ]) := IH,0,∞(γ [0, T ]),

where a = φ(0) and b = φ(∞).

Let us list some other properties of finite Loewner energy curves: If γ has
finite energy in (D, a, b) and is parametrized by capacity (the parametrization
pulled back by the uniformizing map φ), then

– ID,a,b(γ ) = 0 if and only if γ is contained in the conformal geodesic in D
from a to b, i.e. γ = φ−1(i[0, s]) for some s ∈ [0,∞].

– γ is a rectifiable simple curve, see [12, Thm. 2.iv].
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Equivalent descriptions of the loewner energy 581

– γ is a quasiconformal curve, that is the image of the conformal geodesic in
D between a and b under a quasiconformal map from D onto itself fixing
a and b. In particular, b is the only boundary point hit by γt and it happens
only when t = T = ∞, see [42, Prop. 2.1].

– I -Additivity: Since ∀t ≤ T ,

1

2

∫ T

0
W ′(r)2 dr = 1

2

∫ t

0
W ′(r)2 dr + 1

2

∫ T

t
W ′(r)2 dr,

it follows from the definition of the driving function and theLoewner energy
that

ID,a,b(γ [0, T ]) = ID,a,b(γ [0, t]) + ID\γ [0,t],γt ,b(γ [t, T ]). (1)

In particular, ifW is constant on [t, T ],γ [t, T ] is contained in the conformal
geodesic of D\γ [0, t] from γt to b.

– γ has no corners, see [31, Sect. 2.1].
– γ need not to be C1, see the example of slow spirals in [31, Sect. 4.2].

From now on in this section, we restrict ourselves in the domain (D, a, b) =
(Σ, 0,∞) where Σ = C\R+. We will abbreviate I(Σ,0,∞) as I . We choose√·, the square root map taking values in the upper half-plane H, to be the
uniformizing conformal map of (Σ, 0,∞), so that the capacity of a bounded
hull in Σ , as well as the driving function of Loewner chains in (Σ, 0,∞) are
well-defined (and not up to scaling any more).

The following result is the counterpart of Theorem 1.1 for chords that do
not make it all the way to infinity (i.e. T < ∞):

Proposition 2.1 Let γ be a finite energy simple curve in (Σ, 0,∞),

I (γ [0, T ]) = 1

π

∫

Σ\γ [0,T ]

∣
∣
∣
∣
h′′
T (z)

h′
T (z)

∣
∣
∣
∣

2

dz2, (2)

where hT : Σ\γ → Σ is the conformal mapping-out function of γ [0, T ],
such that hT (γT ) = 0 and hT (z) = z + O(1) as z → ∞.

Note that Proposition 2.1 isweaker thanTheorem1.1. Indeed, if we consider
W as in Proposition 2.1 and then defines W̃ on all of [0,∞) by W̃ (t) :=
W (min(t, T )), then W̃ does generate the chord γ from 0 to infinity in Σ that
coincideswith γ up to time T and then continues along the conformal geodesic
from γT to infinity in Σ\γ [0, T ] (see Fig. 2).

It is easy to see that the restriction of hT to Σ\γ is an admissible choice for
the conformal map in Theorem 1.1, which maps Σ\γ to two half-planes, so
that Proposition 2.1 is a rephrasing of Theorem 1.1 for γ . However, we will
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Fig. 2 The infinite capacity curve γ is the completion of γ by adding the conformal geodesic
γ \γ = h−1

T (R−) connecting γT to ∞ in Σ\γ [0, T ]

explain how it is in fact possible to deduce Theorem 1.1 from Proposition 2.1
by letting T → ∞ in Sect. 6 while proving the more general Theorem 6.1 for
simple loops. We will therefore aim at establishing Proposition 2.1 which is
completed in Sect. 5.

In the sequel wewill denote the right-hand side of Proposition 2.1 by J (hT ).
Note that

J (hT ) = 1

π

∫

Σ\γ

∣
∣
∣
∣
h′′
T (z)

h′
T (z)

∣
∣
∣
∣

2

dz2 = 1

π

∫

Σ\γ
∣
∣∇σhT (z)

∣
∣2 dz2

is the Dirichlet energy of

σhT (z) := log
∣
∣h′

T (z)
∣
∣ .

It is worthwhile noticing that this energy is the same for h = hT as for its
inverse map ϕ = h−1. More precisely, one has σh ◦ ϕ = −σϕ and

1

π

∫

Σ

∣
∣∇σϕ(z)

∣
∣2 dz2 = 1

π

∫

Σ

|∇(σh ◦ ϕ(z))|2 dz2

= 1

π

∫

Σ

|∇σh|2 (ϕ(z))
∣
∣ϕ′(z)

∣
∣2 dz2

= 1

π

∫

Σ\γ
|∇σh|2 (y) dy2.

(3)

We will first consider regular enough curves in the proof of Proposition 2.1,
the following theorem is useful which states that the regularity of the curve
is characterized by the regularity of its driving function: recall that Cα is
understood as the Hölder class Ck,β , where k is the integer part of α and
β = α − k, that are Ck functions with β-Hölder continuous k-th derivative.

Theorem A (see [31,45]) For 1 < α < 2, α �= 3/2, A simple curve γ is Cα

if and only if it is driven by a Cα−1/2 function.

It allows us to deduce the regularity of the completed chord γ from the regu-
larity of γ .

Corollary 2.2 If T < ∞, 0 < α ≤ 1 and γ [0, T ] is C1,α . Then γ is C1,β ,
where β = α if α < 1/2, and β can take any value less than 1/2 if α ≥ 1/2.
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Equivalent descriptions of the loewner energy 583

Proof From Theorem A, the driving function W of γ is in Cα+1/2 if α �=
1/2. The completion γ of γ by conformal geodesic is driven by W̃ : t �→
W (min(t, T )) which is Cmin(α+1/2,1). It in turn implies that γ is in C1,β .

If α = 1/2, it suffices to replace α by 1/2 − ε for small enough ε. ��

3 Weak J-additivity

Recall that I satisfies the additivity property (1). The first step in our proof of
the identity J = I in Proposition 2.1 will be to show that J satisfies the same
additivity property in the case of regular curves γ (this is our Proposition 3.3
which is the purpose of this section). More precisely, in this section, we only
consider the case when γ ∪ R+ is C1,α for some α > 0. From Theorem A,
this is equivalent to that the extended driving function W : (−∞, T ] → R of
W , such thatW (t) = 0 for t ≤ 0 has Hölder exponent strictly larger than 1/2.
In fact, W is the driving function for the embedded arc γ ∪ R+ rooted at ∞
(see Sect. 6 for more details on the extension of driving functions).

Let us first recall some classical analytic tools: Let D be a Jordan domain
with boundary Γ and let ϕ be a conformal mapping from D onto D. From
Carathéodory theorem (see e.g. [13] Thm. I.3.1), ϕ can be extended to a
homeomorphism from D to D. Moreover, the regularity of ϕ is related to
the regularity of Γ from Kellogg’s theorem:

Theorem B (Kellogg’s theorem, see e.g. [13] Thm. II.4.3) Let n ∈ N
∗, and

0 < α < 1. Then the following conditions are equivalent :

(a) Γ is of class Cn,α .
(b) arg(ϕ′) is in Cn−1,α(∂D).
(c) ϕ ∈ Cn,α(D) and ϕ′ �= 0 on D.

If one of the above condition holds, we say that D is a Cn,α domain. When
α = 0, conditions (a) and (b) are still equivalent.

An unbounded domain is said to be Cn,α if there exists a Möbius map
mapping it to a bounded Cn,α domain. Now let H be a C1,α domain with
0 < α < 1 and 0,∞ ∈ ∂H . We parametrize its boundary Γ by arclength
Γ : R → ∂H , such that Γ (0) = 0. Let φ be a conformal map fixing ∞ from
H onto H. Conjugating by a Möbius transformation, Theorem B implies that
φ−1 is C1,α in all compacts of H. Since (φ−1)′ is locally bounded away from
0, the inverse function theorem shows that φ is alsoC1,α in all compacts of H .
In particular, both σφ = log

∣
∣φ′∣∣ and its conjugate νφ = arg(φ′) = Im log(φ′)

are Cα in all compacts of H .
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Lemma 3.1 (Extension of Stokes’ formula) For a C1,α domain H as above
and all smooth and compactly supported functions g ∈ C∞

c (H),

∫

H
∇g(z) · ∇σφ(z) dz2 = −

∫

R

g(Γ (s)) dτ(s), (4)

where τ(s) := arg(Γ ′(s)) is chosen to be continuous, and the right-hand side
is a Riemann–Stieljes integral.

The existence of the Riemann–Stieljes integral against dτ(s) is due to a
classical result of Young [46]:

Theorem C (Young’s integral) If X ∈ Cα([0, T ],R) and Y ∈ Cβ([0, T ],R),
α + β > 1, α, β ≤ 1, then the limit below exists and we define

∫ T

0
Y (u) dX (u) := lim|P|→0

∑

(u,v)∈P
Y (u)(X (v) − X (u))

where P is a partition of [0, T ], |P| the mesh size of P. The above limit is also
equal to

lim|P|→0

∑

(u,v)∈P
Y (v)(X (v) − X (u))

and the integration by parts holds:

∫ T

0
Y (u) dX (u) = Y (T )X (T ) − Y (0)X (0) −

∫ T

0
X (u) dY (u).

Moreover, one has the bounds: for 0 ≤ s < t ≤ T ,

(a)
∣
∣
∣
∫ t
s Y (u) − Y (s) dX (u)

∣
∣
∣ � ‖Y‖β‖X‖α |t − s|α+β .

(b) ‖∫ ·
0 Y (u) dX (u)‖α � (|Y (0)| + ‖Y‖β)‖X‖α ,

where � means inequality up to a multiplicative constant depending only on
α, β and T .

Notice that when Γ is smooth, the outer normal derivative ∂nσφ is well
defined on the boundary, the above lemma is indeed Stokes’ formula

∫

H
∇g(z) · ∇σφ(z) dz2 = −

∫

H
g(z)Δσφ(z) dz2 +

∫

Γ

g(z)∂nσφ(z) dl(z)

=
∫

Γ

−g(z)k0(z) dl(z) =
∫

Γ

−g(z) dτ,
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where k0(z) the geodesic curvature of ∂H at z and dl is integration with
respect to the arclength on the boundary. In this case, the first equality is due
to the fact that g is compactly supported. The second equality follows from
the harmonicity of σφ(z) and Lemma A.1 which gives

∂nσφ(z) = k(φ(z))eσφ(z) − k0(z),

where k(φ(z)) is the geodesic curvature of ∂H at φ(z) which is zero. Hence,
the lemma’s goal is to deal with the case where the boundary is less regular as
the geodesic curvature is not defined for C1,α domains.

Proof (Lemma 3.1) Let Hε = φ−1(H + iε) be the domain with boundary
Γε = φ−1(R + iε) parametrized by arclength: s → Γε(s). We choose the
parametrization such that Γε(0) → Γ (0) as ε → 0. Since Γε is analytic, the
remark above applies and one gets

∫

Hε

∇g(z) · ∇σφ(z) dz2 =
∫

Γε

g(z)∂nσφ(z) dz =
∫

R

g(Γε(s))∂sνφ(Γε(s)) ds

=
∫

R

−∂sg(Γε(s))νφ(Γε(s)) ds

by integration by parts. Since φ−1 is C1,α in all compacts of H, the bijective
map ψ from H to itself (x, y) �→ (s, y) such that Γy(s) = φ−1(x + iy) is
continuous. The inverse ofψ is continuous therefore uniformly continuous on
compacts. Since Γε(·) = φ−1 ◦ ψ−1(·, ε), we have that νφ(Γε(·)) converges
uniformly on compacts to νφ(Γ (·)). The above integral converges as ε → 0
to
∫

R

−∂sg(Γ (s))νφ(Γ (s)) ds =
∫

R

g(Γ (s)) dνφ(Γ (s)) =
∫

R

−g(Γ (s)) dτ(s),

since g(Γ (·)) is at least C1 and νφ(Γ (·)) is Cα in the support of g(Γ (·)), the
integration by parts in the first equality holds. In the second equality, we use
dνφ(Γ (s)) = − d arg(Γ ′(s)) = − dτ(s). ��
Now we would like to apply Lemma 3.1 to the special case of the slit

domain Σ\γ where γ ∪ R+ is at least C1,α , α > 0. A little bit of caution
is needed because this is not a C1,α domain. However, Corollary 2.2 shows
that the completion γ of γ by conformal geodesic connecting γ (T ) and ∞
in Σ\γ is C1,β for some 0 < β < 1/2. The complement of γ ∪ R+ has
two connected components H1 and H2, both are unbounded C1,β domains. In
fact, the regularity of γ ∪ R+ at ∞ (after being mapped to a finite point via
Möbius transformation) can be easily computed and is at least C1,1/2, see [23,
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Prop. 3.12]. And the mapping-out function h = hT maps both domains to H

and the lower-half plane H∗ respectively.
We parametrize Γ = γ ∪R+ by arclength such that Γ (0) = 0 and consider

it as the boundary of H1 (so that H1 is on the left-hand side of Γ ), we denote
by Γ̃ (s) = Γ (−s) the arclength-parametrized boundary of H2 (see Fig. 1).

For a domain D ⊂ C, we introduce the space of smooth functions with
finite Dirichlet energy:

D∞(D) :=
{

g ∈ C∞(D),

∫

D
|∇g(z)|2 dz2 < ∞

}

.

Proposition 3.2 If a finite capacity curve γ in (Σ, 0,∞) satisfies:

– γ ∪ R+ is C1,α for some α > 0,
– σh is in D∞(Σ\γ ).

Then for all g ∈ D∞(Σ),

∫

Σ\γ
∇g(z) · ∇σh(z) dz

2 = 0.

Proof We have already seen that H1 and H2 areC1,β domains for some β > 0.
Assume first that g ∈ D∞(Σ) is compactly supported (in C) and that

both g|H1 and g|H2 can be extended to C∞(H1) and C∞(H2) (with possibly
different values along R+), then Lemma 3.1 applies:

∫

Σ\γ
∇g(z) · ∇σh(z) dz

2 =
(∫

H1

+
∫

H2

)

∇g(z) · ∇σh(z) dz
2

= −
∫

R

g(Γ (s)) dτ(s) −
∫

R

g(Γ̃ (s)) d τ̃ (s)

where τ(s) = arg(Γ ′(s)), and τ̃ (s) = arg(Γ̃ ′(s)) = τ(−s) + π .
Since Γ (s) ∈ Σ for s < 0, and dτ(s) = 0 for s ≥ 0, it follows that this

quantity is also equal to

−
∫ 0

−∞
g(Γ (s)) dτ(s) −

∫ +∞

0
g(Γ (−s)) dτ(−s)

= −
∫ 0

−∞
g(Γ (s)) dτ(s) −

∫ −∞

0
g(Γ (t)) dτ(t) = 0.

The conclusion then follows from the density of compactly supported functions
in D∞(Σ) and the assumption σh ∈ D∞(Σ \ γ ). ��
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We are now ready to state and prove the J -additivity for sufficiently smooth
curves: Let ht be themapping-out function of γ [0, t] as in the proof of Proposi-
tion 3.2. We write ht,s = ht ◦h−1

s for the mapping-out function of hs(γ [s, t]),
where s < t .

Proposition 3.3 (Weak J-Additivity) If γ is a simple curve in (Σ, 0,∞) such
that γ ∪ R+ is C1,α . For 0 ≤ s < t ≤ T , if both J (hs) and J (ht,s) are finite,
then J (ht ) = J (hs) + J (ht,s).

Proof Let γ := γ [0, t], γ̂ := hs(γ [s, t]). We write σr (z) = log
∣
∣h′

r (z)
∣
∣ and

σt,s(z) = log
∣
∣h′

t,s(z)
∣
∣. From

σt (z) = log
∣
∣h′

t (z)
∣
∣ = log

∣
∣(ht,s ◦ hs)

′(z)
∣
∣ = σt,s(hs(z)) + σs(z),

we deduce

π J (ht ) =π J (hs) +
∫

Σ\γ

∣
∣
∣∇σt,s(hs(z))

∣
∣
∣
2
dz2

+ 2
∫

Σ\γ
∇σs(z) · ∇σt,s(hs(z)) dz

2.

The second term on the right-hand side equals to π J (ht,s) by the conformal
invariance of the Dirichlet energy. Now we show that the third term vanishes.
We write it in a slightly different way: it is equal to

∫

Σ\γ
−∇σh−1

s
(hs(z)) · ∇σt,s(hs(z)) dz

2 =
∫

Σ\γ̂
−∇σh−1

s
(y) · ∇σt,s(y) dy

2.

TheDirichlet energy of σh−1
s

is equal to J (hs). Therefore from the assumption,

σh−1
s

∈ D∞(Σ) and σt,s ∈ D∞(Σ\γ̂ ). Since γ̂ ∪R+ is at least C1,β with the
same β as in Corollary 2.2, the vanishing follows from Proposition 3.2. ��

4 The identity for piecewise linear driving functions

Let usfirst prove the identity between theLoewner energyofγ and theDirichlet
energy of σh in the special case of curve driven by a linear function: Let γ

be the Loewner curve in (Σ, 0,∞) driven by the function W : [0, T ] → R,
whereW (t) = λt for some λ ∈ R. We denote by ( ft := gt −W (t))t∈[0,T ] the
centered Loewner flow in H driven by W and (ht )t∈[0,T ] the Loewner flow in
Σ . They are related by

ht (z) = f 2t (
√
z), z ∈ C\R+.
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In particular the mapping-out function h is equal to hT .
We use the notations ofΓ and Γ̃ as in the description prior to Proposition 3.2

to distinguish the two copies of γ ∪R+ as the boundary ofΣ\γ . We also keep
in mind that γ is capacity parametrized and Γ is arclength-parametrized. We
define τ(Γ (s)) and τ(Γ̃ (s)) to be a continuous branch of arg(Γ ′(s)) and
arg(Γ̃ ′(s)).

Proposition 4.1 Proposition 2.1 holds when γ is driven by a linear function.

First notice that the function W (t) = λt for t ≥ 0 and W (t) = 0 for
t ≤ 0 is C0,1. Therefore, γ ∪ R+ is C1,α for α < 1/2 by Theorem A.
Once we have shown that J (hε) < ∞ for some ε > 0, the weak J -additivity
(Proposition 3.3) applies.We can note that the J -additivity and the I -additivity
imply that J (hT ) and I (γ [0, T ]) are both linear in T , so that it suffices to check
that I (γ [0, T ]) ∼ J (hT ) as T → 0.

Proof Notice that γ is in fact a C∞ curve and it is only in the neighborhood
of 0 the regularity of γ ∪ R+ is C1,α . Hence, σh is C∞ up to the boundary
apart from 0.

We first show that Stokes’ formula applies and J (h) equals to the boundary
integral:

J (h) = − 1

π

∫

Γ �Γ̃

σh(z) dτ(z) := lim
ε→0

− 1

π

∫

Γ �Γ̃ \B(0,ε)
σh(z) dτ(z). (5)

Since both τ and σh are C∞ away from 0, for a fixed ε > 0, the integral above
is well-defined.

We need to be slightly more careful as the boundary of Σ\γ is not regular
enough at γT and 0 to apply Stokes’ formula and σh is not smooth up to the
boundary to apply directly Lemma 3.1. The singularity at γT is actually simple
to deal with: We extend γ to a C∞ curve γ going to∞, since σh is continuous
across γ \γ , and dτ(z) has opposite sign on (the extended) Γ and Γ̃ , the sum
of the integrals on both copies of γ \γ cancels out. It then suffices to check
that the singularity at 0 does not affect the application of Stokes’ formula.

For this, we use the Loewner flow to control the asymptotic behavior of∇σh
at 0. The centered forward Loewner flow ft (·) := gt (·) − W (t) of the simple
curve

√
γ in H driven by W (t) = λt satisfies for all z ∈ Σ ,

∂t ft (z) = 2/ ft (z) − W ′(t) = 2/ ft (z) − λ.

The mapping-out function ht = f 2t (
√
z) for γ [0, t] satisfies

∂t ht (z) = 2 ft (
√
z)(2/ ft (z) − λ) = 4 − 2λ ft (

√
z).
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Taking the derivative in z,

h′
t (z) = ft (

√
z) f ′

t (
√
z)/

√
z and ∂t h

′
t (z) = −λ f ′

t (
√
z)/

√
z.

We use the short-hand notation σt for σht and σT for σh . We have

∂tσt (z) = Re
(
∂t h

′
t (z)/h

′
t (z)

) = −λRe(1/ ft (
√
z)).

Therefore for z ∈ H,

σt (z) = −λRe

(∫ t

0

1

fr (
√
z)

)

dr

= −λ

2
Re

(∫ t

0
∂r fr (

√
z) + ∂rWr dr

)

= −λ

2

(
λt + Re( ft (

√
z)) − Re(

√
z)

)
.

In particular as z → 0,

|∇σT (z)| =
∣
∣
∣
∣
λ

2

(
f ′
T (

√
z)

2
√
z

− 1

2
√
z

)∣
∣
∣
∣

=
∣
∣
∣
∣
λ

2

(
h′
T (

√
z)

2 fT (
√
z)

− 1

2
√
z

)∣
∣
∣
∣ = O

(
1

∣
∣√z

∣
∣

)

since h′ is bounded on the closure of the C1,α domain and fT (
√
z) is bounded

away from 0 as z → 0. It shows that ‖∇σT ‖L2(B(0,ε)) → 0 and the integral of
σT ∂nσT along a smooth arc of length ε inside B(0, ε) go to 0 as ε → 0. Hence
for every δ > 0, there exists ε > 0 and a sub-domain Σε of Σ\γ with smooth
boundary which coincides with Σ\γ outside of Bε(0), such that ε → 0 when
δ → 0,

∣
∣
∣
∣J (hT ) − 1

π

∫

Σε

|∇σT |2 dz2
∣
∣
∣
∣ ≤ δ,

and

1

π

∣
∣
∣
∣

∫

∂Σε

σT (z)∂nσT (z) dl(z) −
∫

Γ �Γ̃ \B(0,ε)
σT (z)∂nσT (z) dl(z)

∣
∣
∣
∣ ≤ δ.

It then suffices to apply Stokes’ formula on Σε. For this, we need to control
the decay of ∇σT as z → ∞: Taking the gradient of the expression of ∂tσt ,
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one gets:

|∂t∇σt (z)| =
∣
∣
∣
∣

λ f ′
t (

√
z)

2 f 2t (
√
z)

√
z

∣
∣
∣
∣ = O

(|z|−3/2)

which implies
|∇σT (z)| = O(|z|−3/2). (6)

It allows us to apply Stokes’ formula (one can look at the integral on the domain
Σε ∩ B(0, R) and see that the contribution of the contour integral on ∂B(0, R)

vanishes as R → ∞), together with the harmonicity of σT , we have:
∫

Σε

|∇σT |2 dz2 =
∫

∂Σε

σT (z)∂nσT (z) dl(z),

which yields
∣
∣
∣
∣J (hT ) −

∫

Γ �Γ̃ \B(0,ε)
σT (z)∂nσT (z) dl(z)

∣
∣
∣
∣ ≤ 2δ.

Using ∂nσT (z) = −∂sτ(z) on the smooth boundary of Σε, then let ε → 0 and
δ → 0, we obtain the identity (5).

Now we prove the identity

I (γ ) = − 1

π

∫

Γ �Γ̃

σh(z) dτ(z).

Similar to the computation of σt (z), νt (z) := Im log(h′
t (z)) satisfies

νt (z) = −λ

2
Im

∫ t

0
∂r fr (

√
z) dr = −λ

2

(
Im( ft (

√
z)) − Im(

√
z)

)
.

Let S be the total length of γ [0, T ]. A point γt on γ can be considered as a
point in both Γ and Γ̃ , and there is s ≥ 0, such that γt = Γ (−s) = Γ̃ (s). We
deduce from the expression of νt , that for 0 ≤ s ≤ S,

τ(Γ (−s)) = −νT (γt ) = −λ

2
Im(

√
γt ),

dτ(Γ (−s)) = λ

2
Im(∂t

√
γt ) dt.

Similarly,

τ(Γ̃ (s)) = −νT (γt ) + π = −λ

2
Im(

√
γt ) + π,
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dτ(Γ̃ (s)) = −λ

2
Im(∂t

√
γt ) dt.

Hence the integral in (5) equals to

J (h) = − 1

π

∫

γt∈Γ

(

−λ

2
Re( fT (

√
γt ))

)
λ

2
Im(∂t

√
γt ) dt

− 1

π

∫

γt∈Γ̃

(

−λ

2
Re( fT (

√
γ t ))

)
λ

2
Im(−∂t

√
γt ) dt

= λ2

4π

∫ T

0

(
fT−t (0

+) − fT−t (0
−)

)
Im

(
∂t

√
γt

)
dt.

The second equality holds because of the linearity of the driving function, and
s �→ fs(0+) > 0 and s �→ fs(0−) < 0 are respectively the two Loewner
flows starting from 0. We also know that

√
γt satisfies the backward Loewner

equation, that is for t ∈ (0, T ],
∂t

√
γt = −2/

√
γt + λ. (7)

In fact, for a fixed t ∈ [0, T ], √γt can be computed as follows. Consider
the reversed driving function β t : [0, t] → R defined as

β t (s) := W (t) − W (t − s).

The reversed Loewner flow starting from z ∈ H is the solution [0, t] → H to
the differential equation:

∂s Z
t
s(z) = −2/Zt

s(z) + β̇ t (s) for s ∈ [0, t], (8)

with the initial condition Zt
0(z) = z and we have limy↓0 Zt

t (iy) = √
γt , see

[30]. Since β̇ t (s) ≡ λ, we have Zt
s(iy) = ZT

s (iy) for all 0 ≤ s ≤ t ≤ T and
y > 0. In particular,

√
γt = lim

y↓0 Z
t
t (iy) = lim

y↓0 Z
T
t (iy).

For t ∈ (0, T ], the limit commutes with the differentiation in (8) which then
gives (7). (See also [35] for the approach considering the singular differential
equation (8) starting directly from 0 when W is sufficiently regular.)

From the explicit computation of the Loewner flow driven by a linear func-
tion in [16], we have the asymptotic expansions as t → 0:

ft (0
+) = 2

√
t + O(t),

√
γt = 2i

√
t + O(t).
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Hence as T → 0,

(
fT−t (0

+) − fT−t (0
−)

)
Im

(
∂t

√
γt

)

=
(
fT−t (0

+) − fT−t (0
−)

)
Im

(−2/
√

γt
)

= 4
√
T − t√
t

(1 + O(
√
T )),

which yields

J (hT ) = (1 + O(
√
T ))

λ2

π

∫ T

0

√
T − t/

√
t dt

= (1 + O(
√
T ))

λ2T

π

∫ 1

0

√
1 − t/

√
t dt

= λ2

2
(T + O(T 3/2)).

By the weak J -additivity one gets J (hT ) = λ2T/2 = I (γ [0, T ]). ��

The weak J -additivity, the I -additivity and Proposition 4.1 do immediately
imply the following fact:

Corollary 4.2 Proposition 2.1 holds when γ is driven by a piecewise linear
function.

5 Conclusion of the proof of Proposition 2.1 by approximation

We now want to deduce Proposition 2.1, the result for general finite energy
chords, from Corollary 4.2 by approximation. We give first the following
lemma on the lower semi-continuity of J (h) which is the key tool here:

Lemma 5.1 If T < ∞, (W (n))n≥1 is a sequence of driving functions defined
on [0, T ], that converges uniformly to W. Then

J (h) ≤ lim inf
n→∞ J (h(n)),

where h(n) := h(n)
T is the Loewner flow generated by W (n) at time T , and h is

generated by W.
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Proof Let ϕ = h−1 and ϕ(n) = (h(n))−1. Since W (n) converges uniformly to
W , ϕ(n) converges uniformly on compacts to ϕ. We have also that

∣
∣∇σϕ(n) (z)

∣
∣2 =

∣
∣
∣
∣
∣
ϕ(n)(z)′′

ϕ(n)(z)′

∣
∣
∣
∣
∣

2

converges uniformly on compacts to
∣
∣∇σϕ(z)

∣
∣2. Hence

lim inf
n→∞ J (ϕ(n)) = lim inf

n→∞ sup
K⊂Σ

1

π

∫

K

∣
∣∇σϕ(n) (z)

∣
∣2 dz2

≥ sup
K⊂Σ

lim inf
n→∞

1

π

∫

K

∣
∣∇σϕ(n) (z)

∣
∣2 dz2

= sup
K⊂Σ

1

π

∫

K

∣
∣∇σϕ(z)

∣
∣2 dz2 = J (ϕ),

where the supremum is taken over all compacts in Σ . Then we conclude with
(3). ��

We have the following corollary which gives the finiteness of J -energy
when the Loewner energy is finite.

Corollary 5.2 If γ driven by W : [0, T ] → R has finite Loewner energy in
(Σ, 0,∞), then J (h) ≤ I (γ ). In particular, σh ∈ D∞(Σ\γ ).

Proof Take a sequence of piecewise linear functions W (n) such that W (n)

converges to W uniformly and

I (W (n) − W ) = 1

2

∫ T

0

∣
∣
∣W ′(n)(t) − W ′(t)

∣
∣
∣
2
dt

n→∞−−−→ 0.

This is possible since the family of step functions is dense in L2([0, T ]). Thus
we can find a sequence of step functions Yn which converges toW ′ in L2, and
define W (n)(t) = ∫ t

0 Yn(t) dt . The convergence is also uniform since

∣
∣
∣W (n)(t) − W (t)

∣
∣
∣ ≤

∫ t

0

∣
∣
∣W ′(n)(s) − W ′(s)

∣
∣
∣ ds ≤ √

T
√
2I (W (n) − W )

by Cauchy–Schwarz inequality. Lemma 5.1 and Corollary 4.2 imply that

I (γ ) = I (W ) = lim
n→∞ I (W (n)) = lim

n→∞ J (h(n)) ≥ J (h)

as desired. ��
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Given the finiteness of the J -energy, one can improve the J -additivity by
dropping the regularity condition on γ . The following lemma is a stronger
version of Proposition 3.2 by assuming only that γ has finite Loewner energy.

Lemma 5.3 If γ is a Loewner chain in (Σ, 0,∞) with finite Loewner energy
and finite total capacity. Then for all g ∈ D∞(Σ),

∫

Σ\γ
∇g(z) · ∇σh(z) dz

2 = 0. (9)

Proof Take the same approximation of the driving functionW of γ by a family
of piecewise linear driving functionsW (n) as in the proof of Corollary 5.2. Let
γ (n) be the curve driven by W (n). Let A = supn≥1 I (γ

(n)) ≥ I (γ ). We
may assume that A < ∞. Corollary 5.2 implies that J (h) ≤ A. Moreover,
from Corollary 2.2 in [42], every subsequence of γ (n) has a subsequence that
converges uniformly to γ as capacity-parametrized curves, thanks to the fact
that they are k-quasiconformal curves with k depending only on A. Hence,
γ (n) converges uniformly to γ .

Since γ (n) are all C1,α for α < 1/2, let h(n) be the mapping-out function of
γ (n), one has

∫

Σ\γ (n)

∇g(z) · ∇σh(n) (z) dz2 = 0,

by Proposition 3.2. Since g and σh are in D∞(Σ\γ ), for every ε > 0, there
exists a compact set K ⊂ Σ\γ , such that

∫

(Σ\γ )\K
|∇g(z)|2 dz2 ≤ ε,

which implies

∫

(Σ\γ )\K
∇g(z) · ∇σh(z) dz

2 ≤ √
π Aε

by Cauchy–Schwarz inequality. It also holds for σh(n) . As γ (n) converges uni-
formly to γ , γ (n) ∩ K = ∅ for n large enough, and h(n) converges uniformly
to h on K (Carathéodory convergence [11] Thm. 3.1), we have

∣
∣∇σh(z) − ∇σh(n) (z)

∣
∣ =

∣
∣
∣
∣
∣
h′′

h′ (z) − (h(n))′′

(h(n))′
(z)

∣
∣
∣
∣
∣

unif. on K−−−−−→
n→∞ 0.
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Hence,

∣
∣
∣
∣

∫

Σ\γ
∇g(z) · ∇σh(z) dz

2
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Σ\γ
∇g(z) · ∇σh(z) dz

2 −
∫

Σ\γ (n)

∇g(z) · ∇σh(n) (z) dz2
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

K
∇g(z) · ∇σh(z) dz

2 −
∫

K
∇g(z) · ∇σh(n) (z) dz2

∣
∣
∣
∣ + 2

√
π Aε

−−−→
n→∞ 2

√
π Aε.

Letting ε → 0, we get (9). ��
We use the same notation as in Proposition 3.3 and deduce the following

strong J -additivity:

Corollary 5.4 (Strong J -additivity) If γ has finite Loewner energy, then
J (ht ) = J (hs) + J (ht,s) for 0 ≤ s ≤ t ≤ T .

Proof Since J (hs) ≤ ∫ s
0 W ′(r)2/2 dr and J (ht,s) ≤ ∫ t

s W
′(r)2/2 dr from

Corollary 5.2, they are automatically finite when I (γ ) is finite. The proof then
follows exactly the same line of thought as the weak J -additivity by applying
Lemma 5.3 with g = σh−1

s
. ��

Now we have all the ingredients for proving Proposition 2.1.

Proof Given Corollary 5.2, we only need to prove J (h) ≥ I (γ ).
Consider the following two functions

a(t) := J (ht ) and b(t) := 1

2

∫ t

0
W ′(s)2 ds = I (γ [0, t]).

Both of them satisfy the respective additivity. From the definition of absolute
continuity, b(·) is ACon [0, T ]. By the additivity, Corollary 5.2 and (AC1), a(·)
is also an AC function. Thus (AC2) implies that on a full Lebesguemeasure set
S, the functions a(·), b(·) and W (·) are differentiable and b′(t) = W ′(t)2/2.
Corollary 5.2 shows in particular a′(t) ≤ b′(t). Now it suffices to show that
b′(t) ≤ a′(t) for t ∈ S.

By additivity, without loss of generality, we assume that t = 0 and T = 1.
Consider W (n) obtained by concatenating n copies of W [0, 1/n], that is

W (n)(t) = �tn�W (1/n) + W (t − �tn�/n), ∀t ∈ [0, 1].
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It is easy to see that I (W (n)) converges to I (W∞), where W∞ is the linear
function t �→ tW ′(0), since

I (W (n)) = nb(1/n) −−−→
n→∞ b′(0) = W ′(0)2/2 = I (W∞).

We have also that W (n) converges uniformly to W∞. In fact, since W is dif-
ferentiable at 0, for every ε > 0, there exists n0, such that for all n ≥ n0, for
all t ≤ 1/n,

∣
∣W (t) − W ′(0)t

∣
∣ ≤ ε/n.

Hence for t ∈ [0, 1],
∣
∣
∣W (n)(t) − tW ′(0)

∣
∣
∣ ≤

∣
∣
∣W (n)(�tn�/n) − W ′(0)�tn�/n

∣
∣
∣ + ∣

∣W (δ) − δW ′(0)
∣
∣

= �tn�
∣
∣
∣W (n)(1/n) − (1/n)W ′(0)

∣
∣
∣ + ∣

∣W (δ) − δW ′(0)
∣
∣

≤ ε(tn + 1)/n ≤ 2ε,

where δ = t − �tn�/n.
The uniform convergence of driving function and Lemma 5.1 imply that

J (h∞) ≤ lim inf
n→∞ J (h(n)) = lim inf

n→∞ na(1/n) = a′(0),

where h∞ is the mapping-out function generated byW∞, h(n) is generated by
W (n). The first equality follows from the J -additivity. From Proposition 4.1,

J (h∞) = I (W∞) = ∣
∣W ′(0)

∣
∣2 /2 = b′(0)

which yields b′(0) ≤ a′(0) and concludes the proof. ��

6 The loop Loewner energy

The generalization of the chordal Loewner energy to loops is first studied in
[31] and the goal in this section is to derive the loop energy identity Theo-
rem 6.1. Let γ be a Jordan curve on the Riemann sphere Ĉ = C ∪ {∞}, that
is parametrized by a continuous 1-periodic function that is injective on [0, 1).
The Loewner loop energy of γ rooted at γ (0) is given by

I L(γ, γ (0)) := lim
ε→0

I
Ĉ\γ [0,ε],γ (ε),γ (0)(γ [ε, 1]).
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We will use the abbreviation Iγ [0,ε] in the sequel for I
Ĉ\γ [0,ε],γ (ε),γ (0). From

the definition, the loop energy is conformally invariant (i.e. invariant under
Möbius transformations): if μ : Ĉ → Ĉ is a Möbius function, then

I L(γ, γ (0)) = I L(μ(γ ), μ(γ )(0)).

Moreover, the loop energy vanishes only on circles ( [31, Sect.2.2]).
The loop energy can be expressed in terms of the driving function as well:

we first define the driving function of an embedded arc in Ĉ rooted at one tip
of the arc. An embedded arc is the image of an injective continuous function
γ : [0, 1] → Ĉ. We parametrize the arc by the capacity seen from γ (0) as
follows (and the capacity reparametrized arc is denoted as t �→ Γ (t)):

– Choose first a point γ (s0) on γ , for some s0 ∈ (0, 1]. Define Γ (0) to be
γ (s0).

– Choose a uniformizing conformal mapping ψs0 from the complement of
γ [0, s0] onto H, such that ψs0(γ (s0)) = 0 and ψs0(γ (0)) = ∞.

– For s ∈ (0, 1], define the conformal mapping ψs from the complement of
γ [0, s] ontoH to be the unique mapping such that the tip γ (s) is sent to 0,
γ (0) to ∞, and ψs ◦ ψ−1

s0 (z) = z + O(1) as z → ∞.
– Set γ (s) = Γ (t) if the expansion of ψs ◦ ψ−1

s0 at ∞ is actually

ψs ◦ ψ−1
s0 (z) = z − W (t) + 2t/z + o(1/z),

for some W (t) ∈ R and 2t is called the capacity of γ [0, s] seen from
γ (0), relatively to γ (s0) and ψs0 . The capacity parametrization s �→ t is
increasing and has image (−∞, T ] for some T ∈ R+. We set Γ (−∞) =
γ (0) (see Fig. 3).

– We define ht := ψ2
s to be themapping-out function of γ [0, s], which maps

the complement of γ [0, s] to the complement of R+ such that ht (γ (0)) =
∞ and ht (γ (s)) = 0.

– The continuous functionW defined on (−∞, T ] is called the driving func-
tion of the arc γ .

– The Loewner arc energy of γ is the Dirichlet energy of W which is

I A(γ, γ (0)) =
∫ T

−∞
W ′(t)2/2 dt = lim

ε→0
Iγ [0,ε](γ [ε, 1]).

Note that the capacity t , ht and W (t) depend on the choice of s0 and ψs0 .
A different choice of s0 and ψs0 changes the driving function to

W̃ (t) = W (λ2(t + a))/λ − W (λ2a)/λ, (10)
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Fig. 3 Illustration of the definition of loop driving function W : R → R and the capacity
reparameterization t �→ Γ (t) of γ , where 0 < s2 < s0 < s1 correspond to the capacities
−∞ < t2 < 0 < t1

for some λ > 0 and a ∈ R. However, the Dirichlet energy of W is invariant
under such transformations.

From the definition, as T → ∞, the arc targets at its root to form a loop.
This allows us to define the driving function of a simple loop γ embedded
in Ĉ: We parametrize and define the arc driving function of γ [0, 1 − ε] seen
from γ (0) for every 0 < ε < 1/2. With the same choice of s0 and ψs0 , the
capacity parametrization and the driving function of γ [0, 1− ε] are consistent
with respect to restrictions for all ε > 0. Hence as ε → 0, T → ∞ and we
obtain the driving function W : R → R of the loop rooted at γ (0). Given
the root γ (0) and the orientation of the parametrization, the driving function
is defined modulo transformations in (10). The loop energy is therefore the
Dirichlet energy of the driving function W which is invariant under those
transformations.

It is clear that the loop energy depends a priori on the root γ (0) and the
orientation of the parametrization, since the change of root/orientation induces
non-trivial changes on the driving function that is in general hard to track.
However, the main result of [31] shows that the Loewner loop energy of γ only
depends on the image of γ . In this section we prove the identity (Theorem 6.1)
that will give other approaches to the parametrization independence of the
loop energy in Sects. 7 and 8. Although we do not presume the root-invariance
of the loop energy, we sometimes omit the root in the expression of Loewner
loop energy. In this case, the root is taken to be γ (0).
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Equivalent descriptions of the loewner energy 599

From the conformal invariance of the Loewner energy, we may assume that
γ is a simple loop on Ĉ such that γ (0) = ∞ and passes through 0 and 1. The
complement of γ has two unbounded connected components H1 and H2.

Theorem 6.1 If γ has finite Loewner energy, then

I L(γ,∞) = 1

π

(∫

C\γ
|∇σh(z)|2 dz2

)

,

where h|H1 (resp. h|H2) maps H1 (resp. H2) conformally onto a half-plane and
fixes ∞.

Notice that the expression J (h) on the right-hand side does not depend on the
orientation of the loop, but does a priori depend on the special point∞which
is the root of γ .

We have mentioned in the introduction that the loop energy is a general-
ization of the chordal energy. In fact, consider the loop γ = R+ ∪ η, where
η is a simple chord in (Σ, 0,∞) from 0 to ∞, and we choose γ (0) = ∞,
γ (s0) = 0,ψs0(·) to be

√·, the orientation such that γ [0, s0] = R+. Then from
the definition, the driving function of γ coincides with the driving function of
η in R+ and is 0 in R−. Hence

I (η) = I L(η ∪ R+,∞).

Theorem 1.1 follows immediately from Theorem 6.1.
As we described above, loops can be understood as embedded arcs with

T = +∞. For arcs which do not make it all the way back to its root (T < ∞),
the mapping-out function hT is a natural choice for the uniformizing function
h. Let us first prove the analogous identity for an embedded arc.

Lemma 6.2 If γ is a simple arc in Ĉ such that γ (0) = ∞ with finite arc
energy. Then

J (h) = I A(γ,∞),

where h = hT is a mapping-out function of γ .

Proof We will use the “blowing-up at the root” procedure to bring it back to
the case of a finite capacity chord attached to R+. Let Γ [−∞, T ] → Ĉ be
the capacity reparametrization of γ and Γ (−∞) = ∞ as described in the
beginning of the section, and we choose a point on γ different from the tip
γ (1) to be γ (s0) so that T > 0.

For every t ∈ (−∞, 0], there exists a conformal mapping ϕt fixing ∞,
the tip Γ (T ) and Γ (0) that maps the complement of Γ [−∞, t] to a simply
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Fig. 4 Conformal mappings in the proof of Lemma 6.2 where ϕt is defined in the complement
of Γ [−∞, t] and h in the complement of Γ [−∞, T ]. Both of them map the tips to tips

connected domain which is the complement of a half-line Lt (Fig. 4). In fact,
the mapping-out function of Γ [−∞, t]maps the complement of Γ [−∞, t] to
the complement of R+.

Then we use a Möbius transformation of Ĉ which sends the image of Γ (0)
and Γ (T ) back to Γ (0) and Γ (T ) while fixing ∞.

We prove first
J (h) ≤ I A(Γ [−∞, T ],∞). (11)

For n ∈ N, the family (ϕt |Ĉ\Γ [−∞,−n])t≤−n is a normal family, and by diagonal
extraction, there exists a subsequence that converges uniformly on compacts
in C to a conformal map ϕ that can be continuously extended to Ĉ. Since ϕ

fixes three points on Ĉ, it is the identity map.
LetΓ t be the curvewhich consists of the image ofΓ [t, T ] under ϕt attached

to the half-line Lt . The map ψt := h ◦ ϕ−1
t maps the complement of Γ t to the

complement of R+, that fixes ∞. From Proposition 2.1 and the invariance of
J under affine transformations,

J (h ◦ ϕ−1
t ) = ILt (ϕt (Γ [t, T ])) = IΓ [−∞,t](Γ [t, T ]).

Hence, it follows from the lower-semicontinuity of J and the definition of arc
Loewner energy that

J (h) ≤ lim inf
t→−∞ J (h ◦ ϕ−1

t ) = I A(Γ [−∞, T ], Γ (−∞)).

For the other inequality, it suffices to show that

J (h) = J (ϕt ) + J (ψt ) (12)

as it implies that

J (h) ≥ J (ψt ) = IΓ [−∞,t](Γ [t, T ]) −−−−→
t→−∞ I A(Γ [−∞, T ], Γ (−∞)).
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Fig. 5 Conformal mappings in the proof of Theorem 6.1. We define ϕn(z) = (hn)−1(Cz +
hn(0+)) on H and ϕn(z) = (hn)−1(C ′z + hn(0−)), where C and C ′ are chosen such that ϕn
fixes 0, 1 and ∞

In fact, (12) is equivalent to

∫

Ĉ\Γ
∇σψt (ϕt (z)) · ∇σϕt (z) dz

2 =
∫

Ĉ\Γ t
−∇σψt (y) · ∇σ

ϕ−1
t

(y) dy2 = 0.

Notice that ϕ−1
t is conformal in the complement of Lt . From (11), σ

ϕ−1
t

∈
D∞(Ĉ\Lt ) and the curve attached to Lt has finite chordal energy which is
equal to IΓ [−∞,t](Γ [t, T ]). Hence we conclude with Lemma 5.3 by replacing
R+ by Lt . ��

The proof of Theorem 6.1 then consists of making T → ∞. The strategy is
the same as the proof of Lemma 6.2. As we assume (without loss of generality)
that γ passes through 0, 1 and ∞, we can choose the uniformizing mappings
h|H1 and h|H2 that fix 0, 1 and ∞ on the boundary.

Proof (Theorem6.1)Weprovefirst that J (h) ≤ I L(γ, γ (0)). Fix a point γ (s0)
on γ and the conformal map ψs0 , let (ht )t∈R be the mapping-out functions,W
the driving function and Γ the capacity reparametrized loop with Γ (−∞) =
∞. (See Fig. 5 for an illustration of the conformal mappings in the proof.)

For n ≥ 0, we consider W (n)(·) := W (· ∧ n), and Γ (n) the loop generated
by W (n) which coincide with Γ on [−∞, n], that is the simple arc Γ [−∞, n]
followed by the conformal geodesic in C\Γ [−∞, n]. The mapping-out func-
tion hn of Γ [−∞, n] maps both connected components H (n)

1 and H (n)
2 in the

complement of Γ (n) to half-planes. From Lemma 6.2,

I L(Γ (n)) = I A(Γ [−∞, n],∞) = J (hn).
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Notice that hn is not continuous on Γ [−∞, n], we denote by hn(0+) (resp.
hn(0−)) the image of 0 by hn|H1 (resp. hn|H2). Since Γ passes through 0,
1 and ∞ by assumption, we define ϕn such that it maps respectively H and
H

∗ to H (n)
1 and H (n)

2 while fixing 0, 1 and ∞. Let ϕ = h−1. Since (ϕn)n≥1
is a normal family, there exists a subsequence that converges uniformly on
compacts, by Carathéodory kernel theorem, the limit is ϕ. Hence

I L(γ ) = lim
n→∞ J (hn) = lim

n→∞ J (ϕn) ≥ J (ϕ).

Now we prove that J (h) ≥ I L(γ ). Let ψn := h ◦ h−1
n which maps each

connected component H̃i := hn(Hi ) of Σ\hn(Γ [n,∞]) to a half-plane, we
have then

J (h) = J (ψn) + J (hn) + 2

π

∫

H̃1∪H̃2

∇σh−1
n

· ∇σψndz
2. (13)

Lemma 6.2 shows that σh−1
n

has finite Dirichlet energy bounded by the arc

Loewner energy of Γ [−∞, n] hence by I L(Γ,∞). On the other hand, the
inequality J (h) ≤ I L(γ ) that we have proved above gives us the finiteness
of the Dirichlet energy of σψn : For every ε > 0, there exists n0 large enough,
such that ∀n ≥ n0,

J (ψn) ≤ IR+(hn(Γ [n,∞])) =
∫ ∞

n
W ′2(t)/2 dt ≤ ε.

By the Cauchy–Schwarz inequality, the cross term in (13) converges to 0
as n → ∞, and J (hn) converges to I L(Γ,∞). Hence J (h) ≥ I L(γ ). ��

7 Zeta-regularized determinants

In this section we prove the identity of the Loewner loop energy with a func-
tional of zeta-regularized determinants of Laplacians (i.e., Theorem 7.3 which
is the complete version of Theorem 1.3). This functional has also been stud-
ied in [7] and is also reminiscent of the partition function formulation of the
SLE/GFF coupling [10].

We first review the definition of zeta-regularized determinants of Lapla-
cians [29]: Let Δ be the Laplace–Beltrami operator with Dirichlet boundary
condition on a compact surface (D, g) with smooth boundary. In fact, all the
statements below may hold under weaker regularity conditions. But for the
well-definition of the zeta-regularized determinant, one needs (as far as we
are aware) the boundary to be C1,1 to get precise enough asymptotics of the
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trace of the heat kernel, and this condition is anyway much stronger than hav-
ing finite Loewner energy boundary. Therefore, to stay on the safe side, we
restrict ourselves in this section to smooth boundary domains to fit into the
framework of [6,7,26].

The zeta-regularized determinant is defined, as its name indicates, through
its zeta function:

ζ−Δ(s)=
∞∑

j=1

λ−s
j = 1

Γ (s)

∫ ∞

0
t s−1Tr(etΔ) dt= 1

Γ (s)

∫ ∞

0
t s−1

∞∑

j=1

e−tλ j dt,

where 0 < λ1 ≤ λ2 . . . is the discrete spectrum of −Δ. From the Weyl’s law
[43], λi grows linearly, ζ−Δ is therefore analytic in {Re(s) > 1}. One extends
ζ−Δ meromorphically to C.

The trace of the Dirichlet heat kernel has an expansion as t ↓ 0 (see e.g.
[41] for C1,1 domains):

Tr(etΔ) = (4π t)−1
(

vol(D) −
√

π t

2
l(∂D)

)

+ O(1),

where l(∂D) is the arclength of ∂D and vol(D) the area of D with respect to
the metric g. The zeta function is the Mellin transform divided by Γ (s) ([3]
Lemma 9.34) of the heat kernel, so that the above asymptotics imply that ζ−Δ

has the following expansion near zero

ζ−Δ(s) = O(s) + lim
t↘0

[

Tr(etΔ) − (4π t)−1
(

vol(D) −
√

π t

2
l(∂D)

)]

;

it is therefore analytic in a neighborhood of 0. The log of the zeta-regularized
determinant of −Δ is defined as

log detζ (−Δ) := −ζ ′−Δ(0).

The terminology “determinant” comes from the fact that

−ζ ′−Δ(s) =
∞∑

j=1

log(λ j )λ
−s
j ,

so that if we take formally s = 0, we get

“ − ζ ′−Δ(0) = log

⎛

⎝
∞∏

j=1

λ j

⎞

⎠ = log det(−Δ).′′
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When (M, g) is a compact surface without boundary, Δ has a one-
dimensional kernel, and its regularized determinant det′ζ (−Δ) is defined
similarly by considering only the non-zero spectrum.

The zeta-regularized determinant of the Laplacian depends on both the con-
formal structure and the metric of the surface. Within a conformal class of
metrics (twometrics g and g′ are conformally equivalent if g′ is aWeyl-scaling
of g, i.e. g′ = e2σ g for some σ ∈ C∞(M)), the variation of determinants is
given by the so-called Polyakov-Alvarez conformal anomaly formula that we
now recall (a proof of the formula can be found in [26]).

Let (M, g0) be a surface without boundary, and with the same notation for
the metric, (D, g0) a compact surface with boundary. If g = e2σ g0 is a metric
conformally equivalent to g0, with the obvious notation associated to either g0
or g, we denote by

– Δ0 and Δg the Laplace–Beltrami operator (with Dirichlet boundary con-
dition for D),

– vol0 and volg the area measure,
– l0 and lg the arclength measure on the boundary,
– K0 and Kg the Gauss curvature in the bulk,
– k0 and kg the geodesic curvature on the boundary.

Theorem D (Polyakov–Alvarez Conformal Anomaly Formula [26]) For a
compact surface M without boundary,

log det′ζ (−Δg) = − 1

6π

[
1

2

∫

M
|∇0σ |2 dvol0 +

∫

M
K0σ dvol0

]

+ log volg(M) + log det′ζ (−Δ0) − log vol0(M).

The analogue for a compact surface D with smooth boundary is:

log detζ (−Δg) = − 1

6π

[
1

2

∫

D
|∇0σ |2 dvol0+

∫

D
K0σ dvol0+

∫

∂D
k0σ dl0

]

− 1

4π

∫

∂D
∂nσ dl0 + log detζ (−Δ0),

where ∂n is the outer normal derivative.

Let M = S2 be the 2-sphere equipped with a Riemannian metric g, γ ⊂ S2

a smooth Jordan curve dividing S2 into two components D1 and D2. Denote
by ΔDi ,g the Laplacian with Dirichlet boundary condition on (Di , g). We
introduce the functional H (·, g) on the space of smooth Jordan curves:

H (γ, g) := log det′ζ (−ΔS2,g) − log volg(S
2)

− log detζ (−ΔD1,g) − log detζ (−ΔD2,g).
(14)
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As a side remark, Burghelea, Friedlander and Kappeler [6] (see also Lee
[17]) proved aMayer–Vietoris type surgery formula for determinants of elliptic
differential operators. In our case, it allows to express H by determinants of
Neumann jump operators as in Theorem 1.3. However, we will not use it in
our proof.

Theorem E (Mayer–Vietoris Surgery Formula [6]) We have

H (γ, g) = log det′ζ (N (γ, g)) − log lg(γ ),

where N (γ, g) denotes the Neumann jump operator across the Jordan curve
γ : for f ∈ C∞(γ,R),

N (γ, g) f = ∂n1u1 + ∂n2u2,

where ni is the outer unit normal vector on the boundary of the domain Di ,
ui is the harmonic extension of f in Di .

Choosing the outer normal derivatives makes N (γ, g) a non-negative, essen-
tially self-adjoint operator. Its zeta-regularized determinant is defined similarly
as for −Δ: we use its positive spectrum to define the zeta function then take
− log detζ N (γ, g) to be the derivative of zeta function’s analytic continuation
at 0. Notice that the harmonic extensions ui depend on the metric only by its
conformal class and the normal derivatives depend on the data of g only in a
neighborhood of γ . By simply applying the Polyakov–Alvarez formula, we
obtain the following proposition.

Proposition 7.1 The functionalH (·, g) is invariant under Weyl-scalings.
Proof Let σ ∈ C∞(S2,R) and g = e2σ g0,

H (γ, g) − H (γ, g0)

= log det′ζ (−ΔS2,g) − log volg(S
2) − (

log det′ζ (−ΔS2,0) − log vol0(S
2)

)

−
2∑

i=1

(
log detζ (−ΔDi ,g) − log detζ (−ΔDi ,0)

)

= − 1

6π

[
1

2

∫

S2
|∇0σ |2 dvol0 +

∫ 2

S
K0σ dvol0

]

−
2∑

i=1

(
− 1

6π

[
1

2

∫

Di

|∇0σ |2 dvol0 +
∫

Di

K0σ dvol0 +
∫

∂Di

ki,0σ dl0

]

− 1

4π

∫

∂Di

∂niσ dl0
)
,

123



606 Y. Wang

where ki,0 is the geodesic curvature on the boundary of Di under the metric
g0. The domain integrals cancel out. And for z ∈ γ , we have k1,0(z) =
−k2,0(z), thus the terms

∫
∂Di

ki,0σ dl0 sum up to 0. We have also the relation
(Lemma A.1)

∂niσ = ki,ge
σ − ki,0,

which yields

∫

∂Di

∂niσ dl0 =
∫

∂Di

ki,ge
σ − ki,0 dl0

=
∫

∂Di

ki,g dlg −
∫

∂Di

ki,0 dl0

that sum up to zero as well. ��
Corollary 7.2 H (·, g) is conformally invariant: let μ be a conformal map
from S2 onto S2, then

H (γ, g) = H (μ(γ ), g).

Proof We have

H (μ(γ ), g) = H (γ, μ∗g) = H (γ, g)

whereμ∗g is the pull-back of g, that is conformally equivalent to g. The second
equality follows from Proposition 7.1. ��

We are now ready to state the main result of this section:

Theorem 7.3 If g = e2ϕg0 is a metric conformally equivalent to the spherical
metric g0 on S2, then:

(i) Circles minimizeH (·, g) among all smooth Jordan curves.
(ii) Let γ be a smooth Jordan curve on S2. We have the identity

I L(γ, γ (0)) = 12H (γ, g) − 12H (S1, g)

= 12 log
detζ (−ΔD1,g)detζ (−ΔD2,g)

detζ (−ΔD1,g)detζ (−ΔD2,g)
,

where D1 and D2 are the two connected components of the complement
of S1.

Let us make two remarks:
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– The right-hand side in (ii) does not depend on the root, so that the root-
invariance of the loop energy for smooth loops follows.

– We also recognize the functional introduced in [7], where they defined

hg(γ ) := log detζ (−ΔD1,g) + log detζ (−ΔD2,g),

so that our identity above can be expressed as

I L(γ ) = 12hg(S
1) − 12hg(γ ).

Proof The second equality in (ii) follows directly from the definition. Since
I L(γ ) is non-negative, (ii) implies that S1 minimizes H (·, g). Corollary 7.2
implies that H (C, g) = H (S1, g) for any circle C and we get (i).

Therefore it suffices to prove the first equality in (ii) for g = g0 by Propo-
sition 7.1. We also assume that S1 is a geodesic circle and both γ and S1 pass
through a point ∞ ∈ S2. We use the stereographic projection S2\{∞} → C

from ∞ and the image of D1, D2, D1 and D2 are H1, H2, H and H
∗. With a

slight abuse we use the same notation for the induced metric in C:

g0(z) = 4 dz2

(1 + |z|2)2 =: e2ψ(z) dz2,

and 〈·, ·〉0 := g0(·, ·). Let h be a conformal map that maps respectively from
H1 and H2 toH andH∗ fixing∞ as in previous sections and we put f = h−1.
Let g1 be the pull-back of g0 by f :

g1(z) = f ∗g0(z) = e2ψ( f (z))
∣
∣ f ′(z)

∣
∣2 dz2

= e2ψ( f (z))−2ψ(z)+2σ f (z)g0(z) := e2σ(z)g0(z),

where σ f (z) = log
∣
∣ f ′(z)

∣
∣ and we set

θ(z) = ψ( f (z)) − ψ(z)

so that

σ(z) = θ(z) + σ f (z).

From the Polyakov–Alvarez conformal anomaly formula:

log detζ (−ΔH1,g0) − log detζ (−ΔH,g0)

= log detζ (−ΔH,g1) − log detζ (−ΔH,g0)
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= − 1

6π

[
1

2

∫

H

|∇0σ |2 dvol0 +
∫

H

K0σ dvol0 +
∫

R

k0σ dl0

]

− 1

4π

∫

R

∂n0σ dl0.

As in the proof of Proposition 7.1, the last term above cancels out when we
sum up both variations in H and H

∗. We have K0 ≡ 1, k0 ≡ 0, but as we
will reuse the proof in Sect. 8, we keep first K0 and k0 in the expressions. The
right-hand side in (ii) is equal to

1

π

∫

H∪H∗

∣
∣∇0(σ f + θ)

∣
∣2 + 2K0σ f + 2K0θ dvol0 + 2

π

∫

R

k0σ dl0

= 1

π

∫ ∣
∣∇0σ f

∣
∣2 dvol0 + 2

π

∫
(〈∇0σ f ,∇0θ〉0 + K0σ f

)
dvol0

+ 1

π

∫
(|∇0θ |2 + 2K0θ

)
dvol0 + 2

π

∫

R

k0σ dl0.

(15)

Since the Dirichlet energy is invariant under Weyl-scalings of the metric, the
first term on the right-hand side of the equality is equal to J ( f ), which is also
I L(γ,∞) by Theorem 6.1. As k0 ≡ 0, we only need to prove that the sum of
the second and the third terms vanishes.

We denote the quantities/operators/measures with respect to the Euclidean
metric in C without subscript, then we have

Δ0 = e−2ψΔ; ∂n0 = e−ψ∂n;
dvol0 = e2ψ dz2; dl0 = eψ dl;

∂nσ f (z) = k( f (z))eσ f (z) − k(z);
Δ0ψ = e−2ψΔψ = e−2ψ(K − e2ψK0) = −K0;
∂n0ψ = e−ψ∂nψ = e−ψ(eψk0 − k) = k0 − e−ψk.

For the second term in (15), from Stokes’ formula:

∫

H

〈∇0σ f ,∇0(ψ ◦ f )〉0 dvol0 =
∫

R

ψ( f )∂n0σ f dl0 −
∫

H

ψ( f )Δ0σ f dvol0

=
∫

R

ψ( f )∂nσ f dl

=
∫

R

k( f )eσ f ψ( f ) dl −
∫

R

kψ( f ) dl

=
∫

γ

kψ dl(z) −
∫

R

kψ( f ) dl,
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the contributions from the first term in the above expression cancels out when
we sum up both sides. Similarly we have

∫

H

〈∇0σ f ,∇0ψ〉0 dvol0 =
∫

R

σ f ∂n0ψ dl0 −
∫

H

σ f Δ0ψ dvol0

=
∫

R

σ f ∂n0ψ dl0 +
∫

H

K0σ f dvol0.

Hence the second term in (15) equals to

− 2

π

∫

R�R
(
kψ( f ) + σ f ∂nψ

)
dl.

For the third term in (15), notice that

∫

H

〈∇0(ψ ◦ f ),∇0ψ〉0 dvol0 =
∫

R

ψ( f )∂n0ψ dl0 −
∫

H

ψ( f )Δ0ψ dvol0

=
∫

R

ψ( f )∂nψ dl +
∫

H

ψ( f )K0 dvol0.

Similarly,

∫

H

〈∇0(ψ ◦ f ),∇0(ψ ◦ f )〉0 dvol0 =
∫

H

〈∇0ψ,∇0ψ〉0 dvol0

=
∫

R

ψ∂nψ dl +
∫

H

ψK0 dvol0.

Hence the third term equals to

1

π

∫

H∪H∗
〈∇0θ,∇0θ〉0 + 2K0θ dvol0 = 2

π

(∫

R�R
ψ∂nψ dl − ψ( f )∂nψ dl

)

= − 2

π

∫

R�R
θ∂nψ dl.

Therefore the sum of the second and the third terms of (15) is equal to

2

π

∫

R�R
−kψ( f ) − σ∂nψ dl, (16)

which vanishes since k, k0 ≡ 0 on R and ∂nψ = eψk0 − k ≡ 0 as well. ��

123



610 Y. Wang

8 Weil–Petersson class of loops

In this section we establish the equivalence between finite energy curves and
Weil–Petersson quasicircles (we will prove Theorem 8.1, which is the precise
version of Theorem 1.4).

Let us start with some background material on the universal Teichmüller
space T (1) and the the Weil–Petersson Teichmüller space T0(1). We follow
here the notations of [40]. We define

D = {z ∈ C, |z| < 1}, D
∗ = {z ∈ C, |z| > 1},

and let S1 = ∂D be the unit circle. LetQS(S1) be the group of sense-preserving
quasisymmetric homeomorphisms of the unit circle (see e.g. [20]),Möb(S1) "
PSL(2,R) the group ofMöbius transformations of S1 and Rot(S1) the rotation
group of S1. The universal Teichmüller space is defined as the right cosets

T (1) := Möb(S1)\QS(S1) " {ϕ ∈ QS(S1), ϕ fixes − 1,−i and 1}.
Wewrite [ϕ] for the class of ϕ. From the Beurling–Ahlfors extension theorem,
for every ϕ ∈ QS(S1) fixing−1,−i and 1, there exists a unique α ∈ Möb(S1)
such that α(1) = 1, and conformal maps f and g on D and D∗ satisfying:
CW1. f and g admit quasiconformal extensions to C.
CW2. α ◦ ϕ = g−1 ◦ f |S1 .
CW3. f (0) = 0, f ′(0) = 1, f ′′(0) = 0.
CW4. g(∞) = ∞.

The conformal map f admits a quasiconformal extension toC, means that the
complex dilatation μ in D∗ of the extension, defined by

μ f (z) := ∂z f/∂z f (z),

is essentially uniformly bounded by some constant k < 1. Let U denote the
set of conformal maps (univalent functions) on D, we have then

T (1) " { f ∈ U , f (0)=0, f ′(0)=1, f ′′(0)=0, f admits q.c. extension to C}.
Wesay that ( f, g) are canonical conformalmappings associated to [ϕ] ∈ T (1).

Takhtajan and Teo have proved that T (1) carries a natural structure of com-
plex Hilbert manifold and that the connected component of the identity T0(1)
is characterized by:

Theorem F ([40] Theorem 2.1.12) A point [ϕ] is in T0(1) if the associated
canonical conformal maps f and g satisfy one of the following equivalent
conditions:
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Fig. 6 Welding function ϕ

of a simple loop γ

(i)
∫
D

∣
∣ f ′′(z)/ f ′(z)

∣
∣2 dz2 < ∞;

(ii)
∫
D∗

∣
∣g′′(z)/g′(z)

∣
∣2 dz2 < ∞;

(iii)
∫
D

|S( f )|2 ρ−1(z) dz2 < ∞;
(iv)

∫
D∗ |S(g)|2 ρ−1(z) dz2 < ∞,

where ρ(z) dz2 = 1/(1− |z|2)2 dz2 is the hyperbolic metric on D or D∗ and

S( f ) = f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

is the Schwarzian derivative of f .

Theorem G ([40] Theorem 2.4.1) The universal Liouville action S1 :
T0(1) → R defined by

S1([ϕ]) :=
∫

D

∣
∣
∣
∣
f ′′

f ′ (z)
∣
∣
∣
∣

2

dz2 +
∫

D∗

∣
∣
∣
∣
g′′

g′ (z)
∣
∣
∣
∣

2

dz2 − 4π log
∣
∣g′(∞)

∣
∣ , (17)

where g′(∞) = limz→∞ g′(z) = g̃′(0)−1 and g̃(z) = 1/g(1/z), is a Kähler
potential for the Weil–Petersson metric on T0(1).

Notice that from Theorem F, the right-hand side in (17) is finite if and only
if [ϕ] ∈ T0(1).

We define similarly the universal Liouville action for quasicircles. If γ is
a bounded quasicircle, we denote (and in the sequel) the bounded connected
component of C\γ by D, and the unbounded connected component by D∗.
Let f be any conformal map from D onto D, and g from D

∗ onto D∗ fixing
∞. Conformal maps from D onto a quasidisk always admit a quasiconformal
extension to C. We denote again by f and g their quasiconformal extension.
We say that ϕ := g−1 ◦ f |S1 is a welding function of γ (see Fig. 6), which lies
in QS(S1) as it is the boundary value of the quasiconformal map g−1 ◦ f on
D and does not depend on the extensions.
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We say ϕ ∈ QS(S1) is in theWeil–Petersson class if [ϕ] ∈ T0(1), and γ is a
Weil–Petersson quasicircle if its welding function ϕ is in the Weil–Petersson
class. We define S1(γ ) to be

S( f, g) :=
∫

D

∣
∣
∣
∣
f ′′

f ′ (z)
∣
∣
∣
∣

2

dz2 +
∫

D∗

∣
∣
∣
∣
g′′

g′ (z)
∣
∣
∣
∣

2

dz2

+4π log
∣
∣ f ′(0)

∣
∣ − 4π log

∣
∣g′(∞)

∣
∣ ,

which is finite if and only if γ is a Weil–Petersson quasicircle and the value
does not depend on the choice of f and g. In fact, for any other choice of
conformal maps f̃ and g̃ for γ , there exists μ ∈ Möb(S1) and ν ∈ Rot(S1)
such that f̃ = f ◦μ and g̃ = g ◦ν. It follows from explicit computations ([40,
Lem. 2.3.4]) that

S( f, g) = S( f̃ , g̃)

which is also equal to S1([ϕ]), see [40, Lem. 2.3.4, Thm. 2.3.8].
Now we can state the main theorem of this section:

Theorem 8.1 Let γ be a (bounded) Jordan curve, then γ has finite Loewner
energy if and only if γ is a Weil–Petersson quasicircle. Moreover,

I L(γ ) = S1(γ )/π. (18)

It is worth mentioning other characterizations of T0(1) due to Cui, Shen,
Takhtajan and Teo, from which one obtains immediately other analytic char-
acterizations of finite energy loops given Theorem 8.1:

Theorem H ([8,36,40]) With the same notation as in Theorem F, ϕ is in the
Weil–Petersson class if and only if one of the following equivalent condition
holds:

(i) ϕ has quasiconformal extension to D, whose complex dilation μ =
∂zϕ/∂zϕ satisfies

∫

D

|μ(z)|2 ρ(z) dz2 < ∞;

(ii) ϕ is absolutely continuous with respect to arclength measure, such that
logϕ′ belongs to the Sobolev space H1/2(S1);

(iii) the Grunsky operator associated to f or g is Hilbert–Schmidt.

Now we proceed to the proof of Theorem 8.1. We first prove it for smooth
loops using results from Sect. 7.
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Proof (for smooth loops) Let γ be a smooth (bounded) Jordan curve. It is clear
from the definition that S1(γ ) is invariant under affine transformation of C.
By Möbius invariance of the Loewner loop energy, we may also assume that
γ is inside the Euclidean ball of radius 2 and of center 0.

Let g0 = e2ψdz2 be ametric conformally equivalent to the Euclideanmetric
(or the sphericalmetric), such thatψ ≡ 0 on B(0, 2) and e2ψ(z) = 4/(1+|z|2)2
in a neighborhood of ∞ which makes g0 coincide with the spherical metric
near ∞. We compute the quotient on the right hand side of the expression in
Theorem 7.3 (ii) by taking g = g0.

The same computation (and the same notations) as in the proof of Theo-
rem 7.3 shows that

12 log
detζ (−ΔD,g0)detζ (−ΔD∗,g0)

detζ (−ΔD,g0)detζ (−ΔD∗,g0)

= 1

π

(∫

D∪D∗
|∇0σ |2 + 2K0σ dvol0 +

∫

S1�S1
2k0σ dl0 + 3∂n0σ dl0

)

= 1

π

(∫

D

∣
∣∇σ f

∣
∣2 dz2 +

∫

D∗

∣
∣∇σg

∣
∣2 dz2

)

+ 2

π

∫

S1�S1
k0σ dl0,

where σ = σ f + ψ( f ) − ψ for z ∈ D, and σ = σg + ψ(g) − ψ for z ∈ D
∗
,

S1� S1 denotes the two copies of S1 as the boundary ofD and ofD∗, the value
of σ on the boundary depends on the copy accordingly. In fact, the analogous
sum (16) of the second and the third term in (15)

2

π

∫

S1�S1
−kψ( f ) − σ∂nψ dl

also vanishes here since ψ is identically 0 in a neighborhood of S1 and of γ .
The only difference with the proof of Theorem 7.3 is that we have an extra
term (analogous to the last term in (15)): that is

∫
S1�S1 k0σ dl0 since k0 is not

vanishing: k0(z) = 1 for z ∈ ∂D and k0(z) = −1 for z ∈ ∂D∗. Using again
the fact that ψ( f (z)) = ψ(z) = 0 for z ∈ S1, the smoothness up to boundary
and the harmonicity of σ f and σg, we get:

2

π

∫

S1�S1
k0σ dl0 = 4σ f (0) − 4σg(∞) = 4 log

∣
∣ f ′(0)

∣
∣ − 4 log

∣
∣g′(∞)

∣
∣ .

Hence,

I L(γ ) = S1(γ )/π,

for the smooth loop γ by Theorem 7.3. ��
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In particular, for a bounded smooth loop γ ⊂ C, we have the identity

J (h) = 1

π

∫

C\μ(γ )

∣
∣
∣
∣
h′′

h′ (z)
∣
∣
∣
∣

2

dz2 = 1

π
S1(γ ) (19)

where μ is a Möbius function Ĉ → Ĉ such that μ(γ (0)) = ∞, and h is
a conformal map from the complement of μ(γ ) onto H ∪ H

∗ that fixes ∞,
as defined in Theorem 6.1. The identity (19) of two domain integrals has a
priori no reason to depend on the boundary regularity, which then implies
Theorem 8.1 for general loops by an approximation argument.

To make the approximation precise, we will use the following lemmawhich
characterizes the convergence in the universal Teichmüller curveT (1) which
is a complex fibration over T (1), given by

Rot(S1)\QS(S1) " {ϕ ∈ QS(S1), ϕ(1) = 1}
" { f ∈ U , f (0) = 0, f ′(0) = 1, f admits q.c. extension to C}.

The second identification is obtained from solving the conformal welding
problem as for T (1): for each ϕ ∈ QS(S1) that fixes 1, there exist unique
conformal maps f and g on D and D∗ (canonically associated to ϕ ∈ T (1)),
which satisfy CW1. and CW4. and
CW’2. ϕ = g−1 ◦ f |S1 .
CW’3. f (0) = 0, f ′(0) = 1.
Let π : T (1) → T (1) be the projection and T0(1) := π−1(T0(1)) is also a
Hilbertmanifold such thatπ is fibrationofHilbertmanifolds, see [40,Appx.A].

Lemma I ([40, Cor. A.4, Cor. A.6]) Let {ϕn}∞n=1 be a sequence of points in
T0(1), let fn and gn be the conformal maps canonically associated to ϕn such
that ϕn = g−1

n ◦ fn, and similarly let ϕ = g−1◦ f ∈ T0(1). Then the following
conditions are equivalent:
1. In T0(1) topology,

lim
n→∞ ϕn = ϕ.

2.

lim
n→∞

∫

D

∣
∣
∣
∣
f ′′
n

f ′
n
(z) − f ′′

f ′ (z)
∣
∣
∣
∣

2

dz2 = 0.

3. Let g̃(z) := 1/g(1/z) and g̃n(z) := 1/gn(1/z) for all n ≥ 1,

lim
n→∞

∫

D

∣
∣
∣
∣
g̃′′
n

g̃′
n
(z) − g̃′′

g̃′ (z)
∣
∣
∣
∣

2

dz2 = 0.
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If above conditions are satisfied, then we have also

lim
n→∞

∫

D∗

∣
∣
∣
∣
g′′
n

g′
n
(z) − g′′

g′ (z)
∣
∣
∣
∣

2

dz2 = 0,

and

lim
n→∞ S1([ϕn]) = lim

n→∞ S( fn, gn) = S( f, g) = S1([ϕ]).

We will also use the following lemma on the lower-semicontinuity of S1:

Lemma 8.2 If a sequence (γn : [0, 1] → Ĉ)n≥0 of simple loops converges
uniformly to a bounded loop γ , then

lim inf
n→∞ S1(γn) ≥ S1(γ ).

Proof There is an n0 large enough, such that (γn)n≥n0 are bounded and
∩n≥n0Dn �= ∅ where Dn denotes the bounded connected component of C\γn .
Let z0 ∈ ∩n≥n0Dn, and for n ≥ n0, fn : D → Dn a conformal map such that
fn(0) = z0 and f ′

n(0) > 0.
From the Carathéodory kernel theorem, fn converges uniformly on com-

pacts to f : D → D, where D is the bounded connected component of Ĉ\γ .
It yields that for K ⊂ D compact set,

lim inf
n→∞

∫

D

∣
∣
∣
∣
f ′′
n

f ′
n
(z)

∣
∣
∣
∣

2

dz2 ≥ lim inf
n→∞

∫

K

∣
∣
∣
∣
f ′′
n

f ′
n
(z)

∣
∣
∣
∣

2

dz2 =
∫

K

∣
∣
∣
∣
f ′′

f ′ (z)
∣
∣
∣
∣

2

dz2.

Since K is arbitrary,

lim inf
n→∞

∫

D

∣
∣
∣
∣
f ′′
n

f ′
n
(z)

∣
∣
∣
∣

2

dz2 ≥
∫

D

∣
∣
∣
∣
f ′′

f ′ (z)
∣
∣
∣
∣

2

dz2.

Similarly, let gn be the conformal map fromD
∗ onto the unbounded connected

component D∗
n of C\γn and g : D∗ → D∗ that fix ∞. We have also that gn

converges locally uniformly on compacts to g, and

lim inf
n→∞

∫

D∗

∣
∣
∣
∣
g′′
n

g′
n
(z)

∣
∣
∣
∣

2

dz2 ≥
∫

D∗

∣
∣
∣
∣
g′′

g′ (z)
∣
∣
∣
∣

2

dz2.

And we have also g′
n(∞) → g′(∞), f ′

n(0) → f ′(0).
Hence

lim inf
n→∞ S1(γn) = lim inf

n→∞ S( fn, gn) ≥ S( f, g) = S1(γ )
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as we claimed. ��
We also cite the similar lower-semicontinuity of the Loewner loop energy

from [31]: with the same condition,

lim inf
n→∞ I L(γn, γn(0)) ≥ I L(γ, γ (0)).

We can now finally prove Theorem 8.1 in the general case using approxi-
mations by smooth loops.

Proof (for general loops) Assume that S1(γ ) < ∞. Let f : D → D and
g : D∗ → D∗ be conformal maps associated to γ , without loss of generality
we may assume that f (0) = 0, f ′(0) = 1 and g(∞) = ∞, so that ( f, g)
is canonically associated to g−1 ◦ f ∈ T0(1). Consider the sequence γ n :=
f (cnS1) of smooth loops that converges uniformly as parametrized loop (by
S1) to γ , where cn ↑ 1. Let fn(z) := c−1

n f (cnz) such that fn(0) = 0 and
f ′
n(0) = 1. It is not hard to see that

lim
n→∞

∫

D

∣
∣
∣
∣
f ′′
n

f ′
n
(z) − f ′′

f ′ (z)
∣
∣
∣
∣

2

dz2 = 0.

In fact, fn converges uniformly to f on (1 − ε)D for ε > 0. And the above
integral on the annulus D\(1 − ε)D is arbitrarily small as ε → 0 since S1(γ )

is finite.
Hence by Lemma I, S1(γ n) converges to S1(γ ). Since γ n converges

uniformly to γ , from the lower-semicontinuity of Loewner energy and Theo-
rem 8.1 for smooth loops,

S1(γ )/π = lim inf
n→∞ S1(γ n)/π = lim inf

n→∞ I L(γ n) ≥ I L(γ ). (20)

Similarly, assume now that I L(γ ) < ∞with driving functionW : R → R.
Without loss of generality,we assumealso thatγ is bounded andpasses through
−1,−i, 1. Let Wn ∈ C∞

0 (R) be a sequence of compactly supported smooth
function, such that

∫ ∞

−∞
∣
∣W ′(t) − W ′

n(t)
∣
∣2 dt

n→∞−−−→ 0.

Let γn be a loop inΣ with driving functionWn . By [21], γn is smooth.Wemay
assume that supn≥1 I

L(γn) < ∞ and γn passes through −1,−i, 1 as well. By
[31, Prop. 2.9], there exists K > 1 such that γ and γn are K -quasicircles. The
compactness of K -quasiconformal maps allows us to subtract a subsequence
γnk that converges uniformly to γ .
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Fig. 7 Welding of a simple loop γ passing through ∞

From Theorem 8.1 for smooth loops γn and Lemma 8.2, we have

I L(γ ) = lim inf
k→∞ I L(γnk ) = lim inf

k→∞ S1(γnk )/π ≥ S1(γ )/π.

We conclude that I L(γ ) < ∞ if and only if S1(γ ) < ∞ and I (γ ) = S1(γ )/π

as claimed in Theorem 8.1. ��

9 An informal discussion

Let us conclude with some very loose comments on the relation between our
Theorem 6.1 and the theory of SLE and Liouville quantum gravity (LQG).
Recall first that the Loewner energy was shown in [42] to be a large deviation
rate function of SLEκ as κ goes to 0. Heuristically,

I (γ ) = lim
ε→0

lim
κ→0

−κ log P(SLEκ stays ε-close to γ ).

Given a sufficiently smooth simple curve γ , the mapping-out function h from
the complement of γ to a standard domain (H ∪ H

∗), induces a metric on
the standard domain that is the push-forward of the Euclidean metric of the
initial domain. The exponential exponent of the conformal factor is given by
σh−1(·) := log

∣
∣h−1(·)′∣∣. It prescribes in turn the welding homeomorphism of

the curve γ on R by identifying boundary points according to the boundary
length of this metric (see Fig. 7).

On the other hand, the LQG approach to SLE pioneered by Sheffield in [34]
provides an interpretation of SLE curves via welding of structures defined
using the exponential of the Gaussian Free Field (GFF). More specifically,
let Φ be a free boundary Gaussian free field on the standard domain. That
is the random field that can be described in loose term as having a “density”
proportional to

exp

(

− 1

4π

∫
|∇Φ(z)|2 dz2

)

.
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One takes formally exp(
√

κΦ) times the Lebesgue measure (modulo some
appropriate renormalization procedure) to define a random measure (LQG)
on the standard domain (which corresponds in fact to

√
κ-quantum wedges

with an opening angle θ which converges to π when κ → 0). It also induces
a random boundary length which can be viewed as exp((

√
κ/2)Φ) times the

Euclidean arclength (again modulo some appropriate renormalization proce-
dure). Intuitively, the quantum zipper then states that welding two independent
free boundary GFFs up according to their random boundary length gives an
SLEκ curve.

We can note that the Dirichlet energy of σh−1 is the action functional that is
naturally associated to the Gaussian free field, so that in a certain sense, one
has a large deviation principle of the type

lim
ε→0

lim
κ→0

−κ log P((
√

κ/2)Φ stays ε-close to σh−1)

≈ lim
κ→0

−κ log exp

(

− 1

4π

∫ ∣
∣
∣
∣
2∇σh−1√

κ

∣
∣
∣
∣

2

dz2
)

= 1

π

∫ ∣
∣
∣∇σh−1(z)

∣
∣
∣
2
dz2.

Hence, our identity between the Loewner energy and the Dirichlet energy of
σh (which is the same as the Dirichlet energy of σh−1) is loosely speaking
equivalent to the fact that (in some sense) as κ → 0 (and then ε → 0), the
decay rates of

P((
√

κ/2)Φ stays ε-close to σh−1) and P(SLEκ stays ε-close to γ )

are comparable. However, the above argument is not even close to be rigorous
(it would be interesting to explore it though) and the proof in this paper follows
a completely different route and does not use any knowledge about SLE, LQG
or the quantum zipper.
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A Geodesic curvature formula

As many of our proofs rely on the following formula on the variation of the
geodesic curvature under a Weyl-scaling, we sketch a short proof for readers’
convenience.
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Lemma A.1 Let (D, g0) be a surface with smooth boundary γ = ∂D. If
σ ∈ C∞(D,R) and g = e2σ g0, the geodesic curvature of ∂D under the
metric g satisfies

kg = e−σ
(
k0 + ∂n0σ

)
,

where k0 is the geodesic curvature under the metric g0, and ∂n0 the outer-
normal derivative with respect to to g0.

Proof We parameterize γ by arclength in g and let N be the outer normal
vector field on γ , namely g(γ̇ , γ̇ ) = g(N , N ) ≡ 1. We have that γ̇0 := eσ γ̇

and N0 := eσ N are unit vectors under g0. The geodesic curvature of ∂D is
given by

kg = g
(∇g,γ̇ γ̇ ,−N

)
.

The covariant derivative ∇g is related to the covariant derivative ∇0 under g0
by

∇g,XY = ∇0,XY + X (σ )Y + Y (σ )X − g0(X, Y )∇0σ.

Therefore,

∇g,γ̇ γ̇ = ∇0,γ̇ γ̇ + 2g0(γ̇ ,∇0σ)γ̇ − g0(γ̇ , γ̇ )∇0σ

= e−2σ∇0,γ̇0 γ̇0 + 2g0(γ̇ ,∇0σ)γ̇ − e−2σ∇0σ.

Since g(γ̇ , N ) = 0, we have

g
(∇g,γ̇ γ̇ ,−N

) = e2σ g0
(
e−2σ (∇0,γ̇0 γ̇0 − ∇0σ),−e−σ N0

)

= e−σ (k0 + ∂n0σ)

as claimed. ��
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