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Abstract

We consider the Ising model at its critical temperature with external magnetic
field ha15=8 on the square lattice with lattice spacing a. We show that the trun-
cated two-point function in this model decays exponentially with a rate inde-
pendent of a as a # 0. As a consequence, we show exponential decay in the
near-critical scaling limit Euclidean magnetization field. For the lattice model
with a D 1, the mass (inverse correlation length) is of order h8=15 as h # 0;
for the Euclidean field, it equals exactly Ch8=15 for some C . Although there
has been much progress in the study of critical scaling limits, results on near-
critical models are far fewer due to the lack of conformal invariance away from
the critical point. Our arguments combine lattice and continuum FK representa-
tions, including coupled conformal loop and measure ensembles, showing that
such ensembles can be useful even in the study of near-critical scaling limits.
Thus we provide the first substantial application of measure ensembles. © 2020
The Authors. Communications on Pure and Applied Mathematics published by
Wiley Periodicals LLC.

1 Introduction
In this paper we obtain the first proof of exponential decay (or equivalently,

a mass gap lower bound) for the important Euclidean field theory that is a near-
critical scaling limit of the planar Ising model at the critical temperature, with an
external magnetic field. A. B. Zamolodchikov proposed [61, 62] a solution, di-
rectly in the scaling limit, in terms of scattering amplitudes for eight relativistic
particles. Since the Ising model with an external magnetic field has never been
solved on a lattice, Zamolodchikov’s solution came as a major surprise (see [18]
for a recent review) and has not yet been put on firm mathematical ground, de-
spite having striking implications for the Ising model and beyond (see [18]). In
relation to Zamolodchikov’s scattering theory, our mass gap result basically shows
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the existence of at least one particle with strictly positive mass. As a corollary of
our main results, we also provide a rigorous proof of the power-law behavior of
the correlation length for the planar Ising model at the critical temperature, as the
external magnetic field tends to zero.

Key to our arguments is the use of conformal measure ensembles, introduced
in [15], where they were called cluster area measures, and then constructed for per-
colation and the FK (Fortuin-Kasteleyn)-Ising model in [7]. The FK representation
(see [29]) has been an invaluable tool in studies of the Ising model—particularly
for the critical two-dimensional scaling limit, where it is closely related to con-
formal loop ensembles [51, 52]. Here we extend that approach to the near-critical
case by means of a coupling between FK and Ising variables in the presence of an
external field and by coupled measure and loop ensembles. An upper bound for
the mass gap is obtained using methods quite different from those of the rest of the
paper, namely transfer matrix techniques and reflection positivity. An upper bound
using similar methods to the lower bound methods of this paper is in [11].

1.1 Overview
The Ising model [32], suggested by Lenz [39] and cast in its current form by

Peierls [47], is one of the most studied models of statistical mechanics. Its two-
dimensional version has played a special role since Peierls’ proof of a phase tran-
sition [47] and Onsager’s calculation of the free energy [45]. This phase transition
has become a prototype for developing new techniques. Its analysis has helped test
a fundamental tenet of critical phenomena, that near-critical physical systems are
characterized by a correlation length, which provides the natural length scale for
the system, and diverges when the critical point is approached.

This divergence implies that the critical system itself has no characteristic length
and is therefore invariant under scale transformations. This in turn suggests that
thermodynamic functions at criticality are homogeneous, and predicts the appear-
ance of power laws. For a lattice-based model, it also means that, at or near critical-
ity, it should be possible to rescale the model appropriately and obtain a continuum
scaling limit by sending the lattice spacing to zero. This idea is at the heart of the
renormalization group philosophy.

Thanks to the work of Polyakov [48] and others [2, 3], it was understood that,
once an appropriate continuum scaling limit is taken, critical models should ac-
quire conformal invariance. Because the conformal group is in general a finite-
dimensional Lie group, the resulting constraints are limited in number; however, in
two dimensions, since every analytic function f defines a conformal transforma-
tion, provided that f 0 is nonvanishing, the conformal group is infinite-dimensional.

Following this observation, in two dimensions, conformal methods were applied
extensively to Ising and Potts models, Brownian motion, the self-avoiding walk,
percolation, and diffusion limited aggregation. The large body of knowledge and
techniques that resulted goes under the name of conformal field theory (CFT). The
aspect of CFT most related to our work in this paper is a particular near-critical
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scaling limit of the two-dimensional Ising model believed to be related to the Lie
algebra E8 [5, 18, 41, 62], which we discuss in more detail below.

In recent years, significant developments in two-dimensional critical phenom-
ena have emerged in the mathematics literature. A major breakthrough was the
introduction by Schramm [50] of the Schramm-Loewner evolution (SLE) and its
subsequent analysis and application to the scaling limit problem for several mod-
els, most notably by Lawler, Schramm, and Werner [36] and by Smirnov [54]
(see also [14]). The subsequent introduction of conformal loop ensembles (CLEs)
[12, 13, 51, 52, 59], which are collections of SLE-type closed curves, provided an
additional tool to analyze the scaling limit geometry of critical models.

Substantial progress in the rigorous analysis of the two-dimensional Ising model
at criticality was made by Smirnov [55] with the introduction and scaling limit
analysis of fermionic observables, also known as discrete holomorphic observables
or holomorphic fermions. These have proved extremely useful in studying the Ising
model in finite geometries with boundary conditions and in establishing conformal
invariance of the scaling limit of various quantities, including the energy density
[30, 31] and spin correlation functions [17]. (An independent derivation of critical
Ising correlation functions in the plane was obtained in [19].)

In [9] (resp., [10]), it was shown that the critical Ising model (resp., near-critical
model with external magnetic field ha15=8) on the rescaled lattice aZ2 has a scal-
ing limit �0 (resp., �h) as a # 0—denoted then by �1 (resp., �1;h). �0 sat-
isfies the expected conformal covariance properties [9]. When h ¤ 0, it was also
expected (as stated in [9]) that the truncated correlations of the near-critical scaling
limit would decay exponentially. In this paper, we give a proof of that statement
and we rigorously verify that the critical exponent for how the correlation length
diverges as h # 0 is 8=15, together with the related scaling properties of �h.
�h is a (generalized) random field on R2—i.e., for suitable test functions f

on R2, there are random variables �h.f /, formally written as
R
R2
�h.x/f .x/dx.

Euclidean random fields such as �h on the Euclidean “space-time” Rd WD fx D
.x0; w1; : : : ; wd�1/g (in our case d D 2) are related to quantum fields on relativis-
tic space time, f.t; w1; : : : ; wd�1/g, essentially by replacing x0 with a complex
variable and analytically continuing from the purely real x0 to a pure imaginary
.�i t/—see [46], chapter 3 of [24], and [44] for background. One major reason for
interest in �h is that the associated quantum field is predicted [61, 62] to have re-
markable properties including relations between the masses of particles described
by the quantum field and the Lie algebra E8—see [5, 18, 41]. A natural first step
in analyzing particle masses is to prove a strictly positive lower bound m.h/ on
all masses (i.e., a mass gap), which exactly corresponds (see [53, 56] and chapters
VII and XI of [23]) to the type of exponential decay we prove in this paper—i.e.,
showing (as a consequence of Theorem 1.4 below) that for test functions f; g � 0
of compact support, and some C D C.f; g/ <1,

0 � Cov
�
�h.f /;�h.T ug/

� � C.f; g/e�m.h/u for u � 0;
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where .T ug/.x0; w1/ D g.x0 � u;w1/.
�h is the limit, as the lattice spacing a # 0, of the lattice field

(1.1) �a;h WD a15=8
X
x2aZ2

�x�x;

where f�xgx2aZ2 are the �1-valued spin variables in the standard planar Ising
model (on aZ2) at the critical (inverse) temperature � D �c with magnetic field
H D a15=8h, and �x is a unit Dirac point measure at x. Hence, obtaining an
exponential decay result for �a;h is directly related to corresponding results for
f�xg on the lattice, which we discuss next. But first we note that the choice of
scaling factor a15=8 in (1.1) relies on Wu’s celebrated result (see [42, 60]) that the
critical Ising two-point function decays precisely as C 0jx � yj�1=4 for some C 0

(where jx � yj WD kx � yk2, the Euclidean distance).
It was first proved in [38] that the lattice truncated two-point function with

H > 0 decays exponentially. See also [22] for a different and simpler proof, where
it was also shown that the decay rate �m.H/ (or inverse correlation length) on Z2

is bounded below linearly in H . In this paper, we show exponential decay for the
near-critical Ising model on aZ2 withH D a15=8h. Roughly speaking, this means
(see Theorem 1.1 below) that there is a lower bound on �m.H/ behaving likeH 8=15

as H # 0.
Good lower bounds as a # 0 for fixed h or as H # 0 for fixed a seem essential

in order to obtain an exponential decay rate for the continuum field �h for any
particular value, say h0, of the renormalized field strength h. It is worth noting that
in the earlier work of [22, 38] on lattices, exponential decay was first obtained for
large H (by expansion techniques) and then shown to apply to all H > 0, albeit
with a suboptimal lower bound on �m.H/ as H # 0. However, in the continuum
setting, exponential decay (i.e., m.h/ > 0) for any single value h0 ¤ 0 of h
immediately implies exponential decay for all h ¤ 0 with the correct dependence
ofm.h/ on h. This follows from simple scaling properties of�h as we now explain.

Both the h D 0 and h > 0 fields �0 and �h can be defined on a bounded
(simply connected) domain in R2 (now thought of as the complex plane C) with
appropriate boundary condition (e.g., free or plus) as well as on the full plane.
Conformal mapping properties for �0 were given in theorem 1.8 of [9]. Similar
properties for �h are only implicit in [10] so we state them explicitly below as
Theorem 4.3 in Section 4.2. In the case of the full plane one can consider (for
h D 0 and h > 0) the conformal mapping, x ! �x, with � > 0, by defining
�h
�
.x/ D �h.�x/, by which we mean �h

�
.f / D ��2�h.f��1/ with f��1.x/ D

f .��1x/. Indeed, the fields �h are not defined pointwise, but it is sometimes
convenient to treat them, with an abuse of notation, as if they were. By doing so,
one can write that �1=8�h0.�x/ is equal in distribution to ��

15=8h0.x/ for any
� > 0 and real h0. Thus a positive exponential decay rate m.h0/ > 0, for a single
h0 > 0, implies the same for all h ¤ 0 with m.h/ D .m.h0/=h8=150 /h8=15.
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Exponential upper bounds of the form Ce�m.h/jx�yj for the truncated two-point
function h�xI �yia;h WD Cova;h.�x; �y/ on aZ2 for small a or for the correspond-
ing continuum Gh.x � y/ WD E.�h.x/�h.y// � E.�h.x//E.�h.y// on R2

(where E.�h.x/�h.y// � E.�h.x//E.�h.y// may be obtained as the scaling
limit of the corresponding quantity on the lattice) cannot be valid for small jx � yj
since when h D 0, G0.x � y/ D C 0jx � yj�1=4. Indeed, one expects exponential
decay only for jx � yj larger than the correlation length and otherwise G0.x � y/
behavior. Since the GHS inequality [27] implies G0.x � y/ � Gh.x � y/ for
all x; y, one can paste together exponential upper bounds for large jx � yj with
the h D 0 upper bounds for small jx � yj to obtain an upper bound of the form
C 0jx�yj�1=4e�m0.h/jx�yj for all jx�yj, as we do in Theorems 1.1 and 1.4 below.

The analysis of Theorem 1.1 is done in Section 3 after reviewing in Section 2
the FK random cluster representation for the Ising model and discussing couplings
of FK and Ising variables relevant when h > 0. The heart of that analysis consists
of the first five lemmas in that section, which concern circuits of vertices in an an-
nulus created by “necklaces” of touching FK-open clusters containing sufficiently
many vertices. For large h, with high probability, a necklace and its circuit will
have all C1 spin values; this will also be true for small h by changing the scale of
the boxes used in the argument. Correlations will then only occur between regions
of aZ2 that are connected within the complement of a strongly supercritical infinite
percolation cluster. The proof relies on continuum results concerning coupled con-
formal loop and measure ensembles, denoted CLE and CME, respectively. Indeed,
a main contribution of this paper is a demonstration of the utility of such coupled
loop and measure ensembles. Relevant CLE� results are in [43, 51, 52]. CME�
and its coupling to CLE� was proposed in [15] and carried out in [7] for � D 6

and 16=3. It may be worth noting, as was mentioned in [15], that, in addition to
their utility for near-critical models, measure ensembles may be more extendable
than loop ensembles to scaling limits in dimensions d > 2, but that issue goes well
beyond the scope of this paper. In Section 4 the continuum field �h is studied,
including conformal mapping properties. In Appendix A, we state some of the key
ingredients used as building blocks for our results.

In Appendix B, we give a proof of Theorem 1.8 using reflection-positivity meth-
ods. This provides an upper bound for the mass gap (the inverse correlation length)
matching the lower bound of Corollary 1.3. At the time the first version of this pa-
per was written and posted (July 2017), there was no proof of an upper bound
based on FK methods; that changed a bit later with the proof presented in [11].
Accordingly, we have now placed the original, and much shorter, proof based on
reflection positivity in Appendix B.

1.2 Main Results
Let a > 0. Denote byP a

h
the infinite volume Ising measure at the inverse critical

temperature �c on aZ2 with external field a15=8h > 0. The precise value of �c ,
log.1Cp2/=2, originates in [35,45]. Let h�ia;h be the expectation with respect to
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P a
h

. Let h�xI �yia;h be the truncated two-point function, i.e.,

h�xI �yia;h WD h�x�yia;h � h�xia;hh�yia;h:
Our main result about the truncated two-point function is:

THEOREM 1.1. There exist B0; C0 2 .0;1/ such that for any a 2 .0; 1� and
h 2 .0; a�15=8�

(1.2)
0 � h�xI �yia;h � C0a1=4jx � yj�1=4e�B0h8=15jx�yj

for any x; y 2 aZ2:
In particular, for a=1 and any H 2 .0; 1�, we have

(1.3)
0 � h�x0 I �y0i1;H � C0jx0 � y0j�1=4e�B0H8=15jx0�y0j

for any x0; y0 2 Z2:
Remark 1.2. By the GHS inequality [27], h�xI �yia;h is decreasing in h for fixed
a; x; y. Thus (1.2) implies that for any a 2 .0; 1� and h > a�15=8

0 � h�xI �yia;h � C0a1=4jx � yj�1=4e�B0a�1jx�yj for any x; y 2 aZ2:
For a D 1, define the (lattice) mass (or inverse correlation length) �M.H/ as the

supremum of all �m > 0 such that for some C�m <1,

(1.4) h�x0 I �y0i1;H � C�me��mjx0�y0j for any x0; y0 2 Z2:
The following immediate corollary of Theorem 1.1 gives a one-sided bound for the
behavior of �M.H/ as H # 0, with the expected critical exponent 8=15.

COROLLARY 1.3. �M.H/ � B0H 8=15 as H # 0:
Let �a;h be the near-critical magnetization field in the plane defined by

(1.5) �a;h WD a15=8
X
x2aZ2

�x�x;

where f�xgx2aZ2 is a configuration for the measure P a
h

. In theorem 1.4 of [10], it
was proved that �a;h converges in law to a continuum (generalized) random field
�h. Let C10 .R

2/ denote the set of infinitely differentiable functions with compact
support. �h.f / denotes the field�h paired against the test function f (which was
denoted h�h; f i in [10]).

THEOREM 1.4. For any f; g 2 C10 .R2/, we have��Cov.�h.f /;�h.g//
�� �

C0

ZZ
R2�R2

jf .x/jjg.y/jjx � yj�1=4e�B0h8=15jx�yjdx dy;
where C0 and B0 are as in Theorem 1.1.
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Remark 1.5. Theorem 1.4 may be expressed as

E.�h.x/�h.y// �E.�h.x//E.�h.y// � C0jx � yj�1=4e�B0h8=15jx�yj:
For �h, define the mass M.�h/ as the supremum of all �m > 0 such that for all

f; g 2 C10 .R2/ and some C�m.f; g/ <1,

(1.6)
��Cov

�
�h.f /;�h.T ug/

��� � C�m.f; g/e��mu for u � 0:
The following corollary is essentially a consequence of Theorem 1.4 and the scal-
ing properties of �h; to show that C < 1, we use (B.7) from Appendix B. The
scaling properties were discussed in Subsection 1.1 and are presented with more
detail in Subsection 4.2; the proof of Corollary 1.6, including that C <1, is given
in Subsection 4.3.

COROLLARY 1.6.

M.�h/ D Ch8=15 for some C 2 .0;1/ and all h:

Remark 1.7. Theorem 1.4 implies (see the remarks after Theorem 2.1 of [56] and
Theorem 6 of [53] as well as chapters VII and XI of [23]) the existence of a mass
gap in the spectrum of the Hamiltonian of the quantum field theory determined by
the Euclidean field �h.

Our final theorem gives a complementary bound to Corollary 1.3, i.e., �M.H/ �
CH 8=15 as H # 0. The proof is given in Appendix B and is based on reflection
positivity. A different proof using FK methods can be found in [11].

THEOREM 1.8.

lim sup
H#0

�M.H/=H 8=15 � C 2 .0;1/

with C the same constant as in Corollary 1.6.

Remark 1.9. Corollary 1.3 and Theorem 1.8 combine to give

B0H
8=15 � �M.H/ � .C C �/H 8=15

for any � > 0 and small H > 0, with B0; C 2 .0;1/. This is a strong version of
showing that the (H # 0 at �c) Ising correlation critical exponent is 8=15:

lim
H#0

log. �M.H//= log.H/ D 8=15:

This result complements that of [11] (which improved the result of [8]) that the
(H # 0 at �c) Ising magnetization exponent is 1=15:

lim
H#0

h�0i1;H
H 1=15

D B 2 .0;1/:
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1.3 Description of the Proof of Exponential Decay
For the reader’s convenience, in this subsection we sketch the main arguments

of the proof of exponential decay of the truncated two-point function, which rep-
resents the core of the paper. We assume that the reader has some familiarity
with FK percolation and the Edwards-Sokal coupling of the Ising model with FK
percolation—including when there is an external magnetic field implemented by
couplings to a ghost vertex, denoted g. This coupling is discussed in more detail
in Section 2 below. With this knowledge, the notation in this subsection should be
self-explanatory (e.g., we use fx  ! y 6 ! gg to denote the event that vertices
x and y are in the same FK-open cluster and that that cluster is not connected to the
ghost). Precise definitions are given later on, when we present the actual proofs.

In our arguments, we use in a crucial way a version of the Edwards-Sokal cou-
pling which makes reference to whole FK clusters rather than individual vertices—
i.e., we consider the clusters formed by the open edges within Z2 and whether
those whole clusters are connected to the ghost. This approach, which is discussed
in greater detail in [11], allows us to express the Radon-Nikodym derivative of the
distribution of the FK-open clusters in FK percolation with a ghost vertex with re-
spect to the distribution of the clusters in the model without a ghost vertex in terms
of the areas of the FK-open clusters (see (2.5)). This coupling also allows us to
write the probability of each FK-open cluster to be plus in terms of the size of the
cluster (see Proposition 2.5), a fact that we’ll exploit in the proof.

The first step of the proof of exponential decay is to write (see Lemma 2.1)

h�xI �yia;h D Pah .x  ! y/ � Pah .x  ! g/Pah .y  ! g/

D Pah .x  ! y 6 ! g/ � Covah.1fx !gg; 1fy !gg/;(1.7)

where Covah is the covariance of the FK measure Pa
h

on aZ2 corresponding to the
Ising model with external field H D ha15=8 and 1f�g is the indicator function.
It may be worth noting that in the first three versions of this paper on arXiv, we
proved exponential decay first for large h and then extended it to general h > 0

by conformal covariance. In this version, we combine the arguments for large h
and small h, as suggested by a referee. There are many ways to prove exponential
decay for large h (or more accurately for largeH and fixed a); a key feature of this
paper is that we obtain the correct dependence of the correlation length on H as
H # 0.

Letting B.x;L/ denote the square centered at x of side length 2L and writing

Acx WD fthere exists an FK-open path from x; within B.x; jx � yj=3/; to some

w with the edge from w to g openg

and Afx WD fx  ! gg n Acx , so that fx  ! gg D Acx [ Afx , the covariance in
(1.7) can be written as a sum of four covariances and h�xI �yia;h as a sum of five
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terms. Bounding four of these five terms reduces to showing that

(1.8) P
a
h .g 6 ! x  ! @B.x; jx � yj=3// � zC.h/a1=8e yC.h/jx�yj:

The remaining term, Covah.1Acx ; 1Acy /, needs a separate argument and will be dis-
cussed later.

Focusing for now on (1.8), the power law part of the upper bound comes from
a 1-arm argument (see Lemma 2.3), while the exponential part requires a more so-
phisticated argument that makes use of the conformal measure ensemble, CME16=3,
coupled to CLE16=3 [7] as well as a stochastic domination theorem by Liggett,
Schonmann, and Stacey [40]. CLE16=3 is the scaling limit of the collection of
lattice boundaries of critical FK percolation clusters, which suggests that in the
scaling limit, the continuum cluster measures of CME16=3 are functions of and
hence coupled to the loops of CLE16=3; this is indeed the case. Roughly speak-
ing, what we use of the coupled CLE16=3 and CME16=3 is the fact that, for K
large, a realization inside any rectangle is likely to contain a chain of not more
than K touching loops that cross the rectangle in the long direction, with the first
loop touching one of the short sides of the rectangle and the last loop touching the
opposite side (see Figure 3.2). Moreover, the “areas” of the continuum clusters
associated to the loops in the chain are likely to be larger than 1=K, with the prob-
ability of the event just described going to one asK !1. Back on the lattice, this
implies that, inside an appropriate rectangle, one can find with high probability a
chain of FK-open clusters one lattice spacing away from each other and crossing
the rectangle. Moreover, such clusters will, with high probability, have sizes of
order a�15=8. Lemma 2.4 ensures that, in the FK model corresponding to the Ising
model with external field ah15=8, FK-open clusters whose size is of order a�15=8

are connected to g with high probability.
Combining all of the above, with the help of the FKG inequality, one can show

that, with high probability, a large annulus contains a circuit of FK-open clusters
one lattice spacing away from each other, each connected to g, such that the circuit
disconnects the inner square of the annulus from the outer one (see Figure 3.1). We
call such an annulus good.

In order to complete the proof of (1.8), we cover the plane with large overlapping
annuli in such a way that their inner squares tile the plane. For each such annulus,
the event that it is good happens with high probability. We would like to conclude
that good annuli percolate, but the annuli are overlapping, so the events are not
independent. To deal with this, one can use a stochastic domination result due to
Liggett, Schonmann, and Stacey [40]. Now, percolation of good annuli implies
that the probability that x is surrounded by a circuit of good annuli contained in
a square B.x;L/ of size 2L centered at x is close to 1, exponentially in L. But
because of planarity, if x is surrounded by a circuit of good annuli contained in
B.x;L/, the event fg 6 ! x  ! @B.x;L/g cannot happen. This provides the
desired exponential bound.
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The remaining term can be written as

Covah.1Acx ; 1Acy / D Pah .Acx \ Acy/ � Pah .Acx/Pah .Acy/
D Pah .Acy/�Pah .AcxjAcy/ � Pah .Acy/�:

A 1-arm argument (see Lemma 2.3) provides a polynomial upper bound of order
a1=8 for Pa

h
.Acy/. The first step in dealing with the remaining factor consists in

showing that Pa
h
.AcxjAcy/ is smaller than the probability of the eventAcx with wired

boundary condition on B.x; 2jx � yj=3/. A key ingredient in proving this fact is
Lemma 3.13, whose proof is based on showing the monotonicity of the Radon-
Nikodym derivative of a suitable conditional FK measure in B.x; 2jx�yj=3/ with
respect to the FK measure in B.x; 2jx�yj=3/ with wired boundary condition. The
remaining step consists in showing that the probability of Acx is not affected much
by the boundary condition inB.x; 2jx�yj=3/, which follows from Proposition 3.3.

2 Preliminary Definitions and Results
2.1 Ising Model and FK Percolation

In this subsection, our definitions and terminology (especially after the ghost
vertex is introduced below) follow those of [1]. With vertex set aZ2, we write aE2

for the set of nearest-neighbor edges of aZ2. For anyD � R2, letDa WD aZ2\D
be the set of points of aZ2 in D, and call it the a-approximation of D. For � �
aZ2, define �C WD aZ2 n�,

@in� WD f´ 2 aZ2 W ´ 2 �; ´ has a nearest neighbor in �C ;

@ex� WD f´ 2 aZ2 W ´ � �; ´ has a nearest neighbor in �;
x� WD � [ @ex�:

Let B.�/ be the set of all edges f´;wg 2 aE2 with ´;w 2 �, and SB.�/ be the
set of all edges f´;wg with ´ or w 2 �. We will consider the extended graph
G D .V;E/ where V D aZ2 [ fgg (g is usually called the ghost vertex [26])
and E is the set of nearest-neighbor edges of aE2 plus ff´; gg W ´ 2 aZ2g. The
edges of aE2 are called internal edges while ff´; gg W ´ 2 aZ2g are called external
edges. Let E .�/ be the set of all external edges with an endpoint in �, i.e.,

E .�/ WD ff´; gg W ´ 2 �g:
Let �L WD ��L;L�2 and �aL be its a-approximation. The classical Ising

model at inverse (critical) temperature �c on �aL with boundary condition � 2
f�1;C1g@ex�

a
L and external field a15=8h � 0 is the probability measure P a

�L;�;h

on f�1;C1g�a
L such that for any � 2 f�1;C1g�a

L ,

(2.1) P a�L;�;h
.�/ D
1

Za
L;�;h

e
�c
P

fu;vg �u�vC�c
P

fu;vgWu2�a
L
;v2@ex�aL

�u�vCa15=8h
P
u2�a

L
�u
;
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where the first sum is over all nearest-neighbor pairs (i.e., ju � vj D a) in �aL,
and Za

L;�;h
is the partition function (which is the normalization constant needed to

make this a probability measure). P a
�L;f;h

denotes the probability measure with
free boundary condition—i.e., where we omit the second of the three terms in the
exponent of (2.1).

It is known that P a
�L;�;h

has a unique infinite volume limit as L ! 1, which
we denote by P a

h
. Note that this limiting measure does not depend on the choice

of boundary condition (see, e.g., theorem 1 of [37] or the theorem in the appendix
of [49]).

The FK (Fortuin and Kasteleyn) percolation model at �c on �aL with bound-
ary condition � 2 f0; 1g SB..�a

L
/C /[E ..�a

L
/C / and with external field a15=8h � 0

is the probability measure Pa
�L;�;h

on f0; 1gB.�a
L
/[E .�a

L
/ such that for any ! 2

f0; 1gB.�a
L
/[E .�a

L
/,

(2.2)

P
a
�L;�;h

.!/ D 2
K
�
�a
L
;.!�/�a

L

�

zZa
L;�;h

Y
e2B.�a

L
/

.1 � e�2�c /!.e/.e�2�c /1�!.e/

�
Y

e2E .�a
L
/

.1 � e�2a15=8h/!.e/.e�2a15=8h/1�!.e/;

where .!�/�a
L

denotes the configuration which coincides with ! on B.�aL/ [
E .�aL/ and with � on SB..�aL/C /[E ..�aL/

C /, K.�aL; .!�/�a
L
/ denotes the num-

ber of clusters in .!�/�a
L

that intersect �aL and do not contain g, and zZa
L;�;h

is
the partition function. An edge e is said to be open if !.e/ D 1, otherwise it is
said to be closed. Pa

�L;�;h
is also called the random-cluster measure (with cluster

weight q D 2) at �c on �aL with boundary condition � and with external field
a15=8h � 0. Pa

�L;f;h
(respectively, Pa

�L;w;h
) denotes the probability measure with

free (respectively, wired) boundary condition, i.e., � � 0 (respectively, � � 1) in
(2.2). Below we will also consider FK measures Pa

D;�;h
for more general domains

D � R2, defined in the obvious way.
It is also known that Pa

�L;�;h
has a unique infinite volume limit as L ! 1,

which we denote by Pa
h

. Again, this limiting measure does not depend on the
choice of boundary condition. The reader may refer to [29] for more details in the
case h D 0; the proof for h > 0 is similar.

2.2 Basic Properties
The Edwards-Sokal coupling [21], based on the Swendsen-Wang algorithm [57],

is a coupling of the Ising model and FK percolation. Let yPa
h

be such a coupling
measure of P a

h
and Pa

h
defined on f�1;C1gV � f0; 1gE . The marginal of yPa

h
on

f�1;C1gaZ2 is P a
h

, and the marginal of yPa
h

on f0; 1gE is Pa
h

. The conditional
distribution of the Ising spin variables given a realization of the FK bonds can be
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realized by tossing independent fair coins—one for each FK-open cluster not con-
taining g—and then setting �x for all vertices x in the cluster to C1 for heads and
�1 for tails. For x in the ghost cluster, �x D C1 (for h > 0). We note that a cou-
pling for h ¤ 0 between internal FK edges and spin variables is given in Lemma
2.4 and Proposition 2.5 below.

For any u; v 2 V , we write u  ! v for the event that there is a path of
FK-open edges that connects u and v, i.e., a path u D ´0; ´1; : : : ; ´n D v with
ei D f´i ; ´iC1g 2 E and !.ei / D 1 for each 0 � i < n. For any A;B � V , we
write A  ! B if there is some u 2 A and v 2 B such that u  ! v. A 6 ! B

denotes the complement of A ! B . The following identity, immediate from the
coupling, is essential.

LEMMA 2.1.

(2.3) h�xI �yia;h D Pah .x  ! y/ � Pah .x  ! g/Pah .y  ! g/:

Let Pa WD P
a
hD0. By standard comparison inequalities for FK percolation

(proposition 4.28 in [29]), one has

LEMMA 2.2. For any h � 0, Pa
h

stochastically dominates Pa.

The following lemma is about the one-arm exponent for FK percolation with
h D 0. The proof is a direct consequence of Wu’s result [42,60] and the RSW-type
result [20] (see also lemma 5.4 of [20] for a different proof).

LEMMA 2.3. There exists a constant C1 independent of a such that for all a � 1
and for any boundary condition � 2 f0; 1g SB..�a

1
/C /[E ..�a

1
/C /,

P
a
�1;�;hD0

.0 ! @in�
a
1/ � C1a1=8:

Let D � R2 be bounded, and Da WD aZ2 \D be the a-approximation of D.
For any ! 2 f0; 1gB.Da/, let C .Da; !/ denote the set of clusters of !; for a
C 2 C .Da; !/, let jCj denote the number of vertices in C. Then we have

LEMMA 2.4. For any ! 2 f0; 1gB.Da/, suppose C .Da; !/ D fC1; C2; : : :g where
Ci ’s are distinct. Then for any Ci 2 C .Da; !/

P
a
D;f;h.Ci  ! gj!/ D tanh.ha15=8jCi j/:(2.4)

Moreover, conditioned on !, the events fCi  ! gg are mutually independent.

PROOF. This follows from the proof of the next proposition. �
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PROPOSITION 2.5. The Radon-Nikodym derivative of zPa
D;f;h

, the marginal of Pa
D;f;h

on B.Da/, with respect to Pa
D;f;hD0 is

(2.5)
d zPa

D;f;h

dPa
D;f;hD0

.!/ DQ
C2C .Da;!/ cosh.ha15=8jCj/

E
a
D;f;hD0

�Q
C2C .Da;�/ cosh.ha15=8jCj/� for each ! 2 f0; 1gB.Da/;

where Ea
D;f;hD0 is the expectation with respect to Pa

D;f;hD0. Let yPa
D;f;h

be the
Edwards-Sokal coupling of Pa

D;f;h
and its corresponding Ising measure. For any

C 2 C .Da; !/, let �.C/ be the spin value of the cluster assigned by the coupling.
Then we have, for ! 2 f0; 1gB.Da/,

yPaD;f;h.�.Ci / D C1j!/ D tanh.ha15=8jCi j/C 1

2

�
1 � tanh.ha15=8jCi j/

�
;(2.6)

yPaD;f;h.�.Ci / D �1j!/ D
1

2

�
1 � tanh.ha15=8jCi j/

�
:(2.7)

Moreover, conditioned on !, the events f�.Ci / D C1g are mutually independent.

PROOF. It is not hard to show that (see, e.g., pp. 447–448 of [1]) for each ! 2
f0; 1gB.Da/

(2.8)

P
a
D;f;h.!/ / .1 � e�2�c /o.!/.e�2�c /c.!/

�
Y

C2C .Da;!/

�
.1 � e�2ha15=8jCj/C 2e�2ha15=8jCj�;

where o.!/ and c.!/ denote the number of open and closed edges of !, respec-
tively. So (2.5) follows from (2.8), (2.2), and the fact zPa

D;f;h
.!/ D P

a
D;f;h

.!/.
(2.8) also gives, for any Ci ; Cj 2 C .Da; !/ with i ¤ j ,

P
a
D;f;h.Ci  ! gj!/ D 1 � e�2ha15=8jCi j

.1 � e�2ha15=8jCi j/C 2e�2ha15=8jCi j
D tanh.ha15=8jCi j/;

P
a
D;f;h.Ci  ! g; Cj  ! gj!/ D tanh.ha15=8jCi j/ tanh.ha15=8jCj j/;

with a similar product expression for the intersection of three or more of the events
fCi  ! gg. Hence, conditioned on !, these events are mutually independent. The
rest of the proof follows from the Edwards-Sokal coupling. �

Remark 2.6. This type of analysis can be extended to the continuum as is done
in [7] for h D 0, with the continuum analogue of the coupling in Proposition 2.5
valid also for h > 0. See theorem 2 of [11] for such an extension.
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2L4L

FIGURE 3.1. An illustration of the event G.a;L/ with a D 1 and L D

8. FK-open edges inside the annulus are represented by solid segments
and the vertices of f´ 2 Aa.L; 2L/ W f´; gg is openg are represented by
black dots.

3 Exponential Decay on the Lattice
3.1 Exponential Decay for Long FK-Open Paths Not Connected to the Ghost

Let A.1;L/ WD ��L;L�2 n ��1; 1�2 be the annulus with inner radius 1 and
outer radius L > 1. Let Aa.1; L/ be the a-approximation of A.1;L/. When a
is small, the interior boundary of Aa.1; L/ (i.e., f´ 2 Aa.1; L/ W ´ has a nearest
neighbor in .Aa.1; L//C g) naturally splits into a portion contained in .�.1CL/=2;
.1 C L/=2/2 (denoted by @1Aa.1; L/) and one contained in the complement of
.�.1C L/=2; .1C L/=2/2 (denoted by @2Aa.1; L/).

DEFINITION 3.1. Let F.a;L/ be the event that in Aa.1; L/ there is an FK-open
path from @1A

a.1; L/ to @2Aa.1; L/ that consists of vertices not connected via
Aa.1; L/ to g.

Similarly, let A.L; 2L/ be the annulus with inner radius L and outer radius 2L
and Aa.L; 2L/ be its a-approximation. We will consider circuits in the annulus—
i.e., nearest-neighbor self-avoiding paths of vertices that end up at their starting
vertex.

DEFINITION 3.2. Let G.a;L/ denote the event that there is a circuit of vertices
surrounding ��L;L�2 in the annulus Aa.L; 2L/ with each vertex in the circuit
connected to g via Aa.L; 2L/; see Figure 3.1.

Denote the complement of G.a;L/ by Gcomp.a; L/. The following proposition
shows that the probabilities of F.a;L/ and Gcomp.a; L/ decay exponentially.
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PROPOSITION 3.3. For any h > 0, there exist �0 D �0.h/ 2 .0;1/ and N1 D
N1.h/ 2 �2;1/ such that for all a � �0, L � N1, for any boundary condition �1
on Aa.1; L/ and any boundary condition �2 on Aa.L; 2L/, we have

P
a
A.1;L/;�1;h

.F.a; L// � e�C1.h/L;(3.1)

P
a
A.L;2L/;�2;h

.Gcomp.a; L// � e�C1.h/L;(3.2)

where C1.h/ 2 .0;1/ only depends on h.

Before proving Proposition 3.3, we state and prove several lemmas. The first
gives a useful property of CLE16=3 and its related conformal measure ensem-
ble; the idea of such coupled loop and measure ensembles originated in [15]. Let
�3;1 WD �0; 3� � �0; 1� and �a3;1 be its a-approximation. By Theorem A.1 in Ap-
pendix A, in the scaling limit a # 0, the loop ensemble of boundaries of (h D 0)
FK-open clusters in�a3;1 with free boundary condition converges in distribution to
CLE16=3 in �3;1. From Theorem A.2, we know that the joint law of the collection
of boundaries of FK-open clusters and the collection of normalized counting mea-
sures (with normalization a15=8) of the FK-open clusters converges in distribution,
in the same limit a # 0, to the joint law of CLE16=3 and a collection of limiting
counting measures (a conformal measure ensemble). Let P�3;1

denote the latter
joint law (i.e., in the scaling limit).

LEMMA 3.4. Let P�3;1
be the joint law of nested CLE16=3 and CME16=3 in �3;1

with free boundary condition. Let E.KI �/ for K 2 N and � > 0 be the event
that there is a sequence of K or fewer loops (say, L1; : : : ; Lk with k � K) such
that the total mass of the limiting counting measure corresponding to Li is � � for
each i and

dist.L1; f0g � �0; 1�/ D 0; dist.Li ; LiC1/ D 0 for each 1 � i � k � 1;
dist.Lk; f3g � �0; 1�/ D 0;(3.3)

where dist. � ; �/ denotes Euclidean distance; see Figure 3.2. Then there is a choice
of �K ! 0 such that

lim
K!1

P�3;1
.E.KI �K// D 1:

PROOF. Let  W�3;1 ! D WD f´ W j´j � 1g be the conformal map with
 ..3=2; 1=2// D 0 and  0..3=2; 1=2// > 0. Let �1 WD  .f0g � �0; 1�/ and
�2 WD  .f3g � �0; 1�/. We first prove that, with probability 1, CLE16=3 in D
contains a finite sequence of loops, L1; : : : ; Lk , such that

(3.4)
dist.L1; �1/ D 0; dist.Li ; LiC1/ D 0

for any 1 � i � k � 1; dist.Lk; �2/ D 0:
Then, the conformal invariance of CLE16=3 implies that a finite sequence satisfying
(3.3) exists in �3;1 with P�3;1

-probability 1.
Our argument is inspired by the proof of lemma 9.3 in [52]. Let L� be the

outermost loop containing 0, and let D� be the connected component of D n L�
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1

3

FIGURE 3.2. An illustration of the event E.K/.

containing 0. Let O1 (respectively, O1) be the union (respectively, collection)
of all loops that touch �1, then clearly O1 ¤ ¿ with probability 1. If L� 2
O1, then we stop; otherwise we let D1 be the connected component of D n O1
containing 0. In this case, the conformal radius �1 of D1 seen from 0 has a strictly
positive probability to be strictly smaller than 1, and the harmonic measure of
@1 WD O1 [ �1 from 0 in D is not smaller than the harmonic measure of �1 in D
from 0. We now consider the CLE16=3 in D1, and we let O2 (respectively, O2)
be the union (respectively, collection) of all loops that touch @1. If L� 2 O2, then
we stop; otherwise we let D2 be the connected component of D1 nO2 containing
0, and we iterate the procedure. After i steps, the conformal radius �i of Di seen
from 0 is stochastically smaller than a product of n i.i.d. copies of �1. Since the
conformal radius of D� from 0 is strictly positive with probability 1, this shows
that, with probability 1, L� is reached in a finite number of steps. Hence, there
exists almost surely a finite sequence of loops L1; : : : ; Ln (with Li 2 Oi for each
i < n) such that

dist.L1; �1/ D 0; dist.Li ; LiC1/ D 0 for any 1 � i � n � 1; Ln D L�:
By the same argument, one can find a finite sequence of loops (say, L01; : : : ; L

0
j )

such that

dist.L01; �2/ D 0; dist.L0i ; L
0
iC1/ D 0 for any 1 � i � j � 1; L0j D L�:

The sequence of loops L1; : : : ; Ln�1; L�; L0j�1; : : : ; L
0
1 satisfies (3.4) with k D

n C j � 1, and the proof is concluded by noting that the mass of each limiting
counting measure associated to a loop in that sequence is almost surely strictly
positive (see Corollary A.4 in Appendix A). �

Remark 3.5. It is clear that in Lemma 3.4 without loss of generality we may
take �K D 1=K, which we henceforth do and then define the event E.K/ WD
E.KI 1=K/.
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For N 2 N, let �3N;N WD �0; 3N � � �0; N � and �a3N;N be its a-approximation.
By the conformal invariance of CLE16=3, the conformal covariance of the limiting
counting measures [7], and Lemma 3.4, we have

LEMMA 3.6. For N 2 N, let P�3N;N
be the joint law of nested CLE16=3 and

CME16=3 in �3N;N with free boundary condition. Let E.K;N / be the event that
there is a sequence of K or fewer loops (say, L1; : : : ; Lk with k � K) such that
the total mass of the limiting counting measure corresponding toLi is� N 15=8=K

for each i and

dist.L1; f0g � �0; N �/ D 0; dist.Li ; LiC1/ D 0 for each 1 � i � k � 1;
dist.Lk; f3N g � �0; N �/ D 0:

Then for any � > 0, there exists K.�/ <1 such that

P�3N;N
.E.K;N // > 1 � � for all K � K.�/:

PROOF. Using the conformal Markov property of CLE, CLE16=3 in �3;1 can
be obtained from a (nested) full plane CLE16=3 as follows. Consider the outermost
loop L in the unit disc D surrounding the origin and let D0 denote the connected
component of D n L containing the origin. Conditioned on L, the loops inside
D0 are distributed like a CLE16=3 in D0. Therefore, CLE16=3 inside �3;1 can be
obtained from CLE16=3 insideD0 by a conformal map fromD0 to�3;1. Together
with the measurability of the limiting counting measures with respect to the CLE
loops (Corollary A.3 in Appendix A), this shows that the limiting counting mea-
sures inside �3;1 scale like the full plane versions, so that one can apply theorem
2.4 of [7]. The lemma now follows immediately from Lemma 3.4 by considering
a scale transformation from �3;1 to �3N;N . �

The next lemma says that on aZ2, with high probability, we can find (for h D 0)
a finite sequence of FK clusters in �3N;N whose concatenation almost forms an
open crossing of �3N;N in the horizontal direction.

LEMMA 3.7. For N 2 N, let Ea.K;N / be the event that there exists a sequence
C1; : : : ; Ck of FK-open clusters in�a3N;N such that k � K, jCi j � N 15=8a�15=8=K

for each i , and

dist.C1; f0g � �0; N �/ � a; dist.Ci ; CiC1/ D a for every 1 � i � k � 1;
dist.Ck; f3N g � �0; N �/ � a:

Then for any � > 0, there exists K.�/ <1 such that

lim inf
a#0

P
a
�3N;N ;f;0

.Ea.K;N // > 1 � � for all K � K.�/:

PROOF. Let L2 and L3 be distinct CLE16=3 loops inside �3N;N such that
dist.L2; L3/ D 0. Because of the convergence of the collection of the lattice
boundaries of critical FK clusters to CLE16=3 (Theorem A.1), there is a coupling
between FK percolation in �3N;N and CLE16=3 such that the pair .La2; L

a
3/ of
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lattice boundaries of two FK-open clusters converges a.s. to .L2; L3/. Under this
coupling, we claim that the probability of dist.La2; L

a
3/ � a tends to 1 as a # 0.

Indeed, it is easy to see that if dist.La1; L
a
2/ > a, then there is a 6-arm event of type

.100100/ (see page 4 of [16] for the precise definition of this event). But by Theo-
rem A.5, the critical exponent for a 6-arm event of type .100100/ is strictly larger
than 2. It follows (see, e.g., the proof of lemma 6.1 of [13]) that the probability of
seeing a 6-arm event anywhere goes to 0 as a # 0. This completes the proof of the
claim.

By a similar argument, using the fact that the exponent for a 3-arm event near a
boundary is strictly larger than 1 (corollary 1.5 of [16]) and hence they do not occur
as a # 0, one can prove that, if L1 is a loop such that dist.L1; f0g � �0; N �/ D 0,
then there is a coupling between FK percolation and CLE16=3 in �3N;N such that
the FK lattice boundary La1 converges a.s. to L1 and also that the probability that
dist.La1; f0g � �0; N �/ � a tends to 1. Combining this and the previous claim with
Theorem A.2 and with Lemma 3.6 above completes the proof of the lemma. �

Let�3N;3N WD �0; 3N ���0; 3N � andAN;3N be the annulus�3N;3N n�N; 2N �2,
and let�a3N;3N andAaN;3N be their a-approximations, respectively. Let N a.K;N /

be the event that there is a necklace consisting of open clusters in AaN;3N surround-
ing �N; 2N �2. More precisely, N a.K;N / is the event that there is a sequence of
FK-open clusters in AaN;3N (say C1; : : : ; Ck with k � K) such that

dist.Ci ; CiC1/ D a for each 1 � i � k � 1; dist.Ck; C1/ D a;
jCi j � N 15=8a�15=8=K for each 1 � i � k;

and there is a circuit of vertices in
Sk
iD1 Ci surrounding �N; 2N �2. Then we have

LEMMA 3.8. For any N 2 N and � > 0, there exists K1.�/ <1 such that

lim inf
a#0

P
a
�3N;3N ;f;0

.N a.K;N // > 1 � � for all K � K1.�/:

PROOF. We use a standard argument in the percolation literature—see, e.g., fig-
ure 3 in [6]—as follows. It is easy to show that N a.K;N / contains the intersection
of four events that are rotated and/or translated versions ofEa.K=4;N /. Note that
Ea.K=4;N / is an increasing event. So the lemma follows from the FKG inequal-
ity and Lemma 3.7. �

Next, we consider FK percolation with external field a15=8h. We say AaN;3N
is good if there is a sequence of open clusters in AaN;3N (say C1; : : : ; Ck for some
k 2 N) such that

dist.Ci ; CiC1/ D a for each 1 � i � k � 1;
dist.Ck; C1/ D a Ci  ! g for each i;

and there is a circuit of vertices in
Sk
iD1 Ci surrounding �N; 2N �2.



MASS GAP FOR NEAR-CRITICAL 2D ISING 1389

LEMMA 3.9. Given any h > 0 and � > 0, there existN0 2 �1;1/ and �0 2 .0;1/
such that for N � N0 and a � �0,

P
a
�3N;3N ;f;h

�
AaN;3N is good

� � 1 � �:
PROOF. For any fixed � > 0, by Lemma 3.8 there exist K0; �0 > 0 such that

P
a
�3N;3N ;f;0

.N a.K0; N // > 1 � �=2 for all a � �0; N 2 N:
So, by Lemma 2.2,

(3.5) P
a
�3N;3N ;f;h

.N a.K0; N // > 1 � �=2 for all a � �0; N 2 N:
Lemma 2.4 implies that for each Ci from the definition of N a.K/,

P
a
�3N;3N ;f;h

�
Ci  ! gjN a.K0; N /

� D tanh.ha15=8jCi j/ � tanh.hN 15=8=K0/:

Therefore,

P
a
�3N;3N ;f;h

.AaN;3N is good /

� Pa�3N;3N ;f;h

�
Ci  ! g for each i jN a.K0; N /

�
P
a
�3;3;f;h

.N a.K0; N //

� .tanh.hN 15=8=K0//
K0.1 � �=2/ � 1 � � if a � �0 and N is large;

where the second inequality follows from Lemma 2.4 and (3.5). �

We are ready to prove Proposition 3.3. Our argument is similar to ones appearing
elsewhere in the percolation literature — see, e.g., the proof of lemma 5.3 in [6].

PROOF OF PROPOSITION 3.3. We first consider FK percolation on aZ2. For
each ´ D .´1; ´2/ 2 Z2, let

AN;3N .´/ WD N � .´1 � 3=2; ´2 � 3=2/C AN;3N
and AaN;3N .´/ be its a-approximation. We define whether AaN;3N .´/ is good (or
not) by the translation of the definition for AaN;3N and then define a family of
random variables fY´; ´ 2 Z2g such that Y´ D 1 if AaN;3N .´/ is good and Y´ D 0
otherwise. Note that the worst boundary condition for the event fAaN;3N is goodg
is the free boundary condition on the boundary of �a3N;3N . Then by Theorem
0.0 of [40] and Lemma 3.9, fY´; ´ 2 Z2g stochastically dominates a family of
i.i.d. random variables fZ´; ´ 2 Z2g such that P.Z´ D 1/ D �.�0; N0/ and
P.Z´ D 0/ D 1 � �.�0; N0/ where �.�0; N0/ can be made arbitrarily close to 1
by choosing �0 small and N0 large.

We note that if AaN;3N is good then there is a circuit of vertices surrounding
�N; 2N �2 in AaN;3N with each vertex in this circuit connected to g in AaN;3N .
Such a circuit prevents the existence of an FK-open path from the inner boundary
@1A

a
N;3N to the outer boundary @2AaN;3N whose cluster does not contain g. This

means that, whenever Y´ D 1, there is no such FK-open path from @1A
a
N;3N .´/ to

@2A
a
N;3N .´/ whose cluster does not contain g. But whenever F.a;L/ occurs and

N � 2, there is a nearest-neighbor path (say 
 ) on Z2 starting at 0 and reaching at
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least distance L=N away from 0 such that Y´ D 0 for each ´ 2 
 . Pick �0 > 0 and
N0 � 2 such that �.�0; N0/ is larger than the critical probability of site percolation
on Z2. Note that �0 and N0 only depend on h. We fix N D N1 D N0 in the rest
of the proof of (3.1). Then theorem 6.75 of [28] (actually that theorem is for bond
percolation but the proof also applies to site percolation) implies that there exists a
finite constant zC1.h/ such that

P
a
A.1;L/;�1;h

.F.a; L// � e� zC1.h/L=N0 D e�C1.h/L:
If Gcomp.a; L/ occurs, then there is a �-path (i.e., one that can use both nearest

neighbor and diagonal edges) from @1A
a.L; 2L/ to @2Aa.L; 2L/ such that each

vertex in this path is not connected via Aa.L; 2L/ to g. We note that if AaN;3N is
good, then there is no such �-path (with the cluster of each vertex on the path not
containing g) from the inner box to the outer boundary of AaN;3N . The rest of the
proof of (3.2) is similar to that of (3.1) except that here we take N1.h/ > N0.h/ in
order to avoid a prefactor in (3.2). �

3.2 Exponential Decay of h�xI �yi

Our goal in this subsection is to show the following:

PROPOSITION 3.10. For any h > 0, there exists �0 D �0.h/ 2 .0; 1� such that for
all a � �0

h�xI �yia;h � C4a1=4e�m1.h/jx�yj

whenever jx � yj > K0.h/ and x; y 2 aZ2;
where C4 2 .0;1/ is universal and m1.h/;K0.h/ 2 .0;1/ only depend on h.

Although we do not use it in our current proof, there is a nice BK-type inequality
for Ising variables [58] that can at least give partial results on exponential decay;
perhaps a more careful use would give complete results.

Let B.´;L/ WD ´ C �L for ´ 2 R2 and L > 0 denote the square centered at
´ (parallel to the coordinate axes) of side length 2L. Recall that P a

h
is the infinite

volume measure for the Ising model on aZ2 at critical inverse temperature �c with
external field a15=8h. Let P a

Eh
be the same infinite volume measure except that the

external field is 0 in B.x; 1/ [ B.y; 1/. Let h�i
a;Eh

be the expectation with respect
to P a

Eh
, and Pa

Eh
be the corresponding FK percolation measure.

For the rest of this section, for simplicity we assume x; y 2 aZ2 are on the
x-axis; otherwise one has to slightly modify choices of lengths of some squares
by factors of 1=

p
2. For ease of notation, we also suppress the superscript a on

various events defined below (A0; A1´; A
c
´; A

f
´ ) even though these are all defined

in the aZ2 setting; we keep the superscript a in the various probability measures,
such as Pa

Eh
.
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To bound h�xI �yia;h, we first use the GHS inequality [27] to see that

h�xI �yia;h � h�xI �yia;Eh:
Let A0 WD fx  ! y 6 ! gg, A1´ WD f´  ! gg for ´ D x or y. Then the

Edwards-Sokal coupling (as in Lemma 2.1) gives

h�xI �yia;Eh D PaEh .A
0/C Pa

Eh

�
A1x \ A1y

� � Pa
Eh

�
A1x
�
P
a
Eh

�
A1y
�
:

Now write A1´ for ´ D x or y as the disjoint partition A1´ D Ac´ [Af´ (c for close,
f for far) where

Ac´ WD fthere exists an FK-open path from ´; within B.´; jx � yj=3/; to some

w with the edge from w to g openg
and Af´ WD A1´ n Ac´. Then we arrive at the following lemma.

LEMMA 3.11.

(3.6) h�xI �yia;h � h�xI �yia;Eh D PaEh .A
0/CDff CDfc CDcf CDcc ;

where for u; v 2 ff; cg, Du;v WD PaEh .A
u
x \ Avy/ � PaEh .A

u
x/P

a
Eh
.Avy/.

Next, we show that each term on the RHS of (3.6) decays exponentially with the
desired power law factor a1=4.

PROPOSITION 3.12. For any h > 0, there exist �0 D �0.h/ 2 .0; 1� and N1 D
N1.h/ 2 �2;1/ such that for all a � �0 and x; y 2 aZ2 with jx � yj > 3N1,

P
a
Eh
.A0/ � C2a1=4e�C3.h/jx�yj; Duv � C2a1=4e�C3.h/jx�yj

for any u; v 2 ff; cg;
where C2 2 .0;1/ is universal, and C3.h/ 2 .0;1/ only depends on h.

PROOF. The proofs for Pa
Eh
.A0/, Dff , Dfc , and Dcf are similar to each other.

The proof for Dcc is harder. Let �0 D �0.h/ and N1 D N1.h/ be the same as in
Proposition 3.3.

(1) Pa
Eh
.A0/. In order for A0 to occur there must be 1-arm events in both

B.x; 1/ and B.y; 1/, and in the complement of B.x; 1/ [ B.y; 1/ there must be a
(long) open path from @exB.x; 1/ to @exB.y; 1/ with the open cluster (within that
complement) of the path not connected to the ghost. We will use Lemma 2.3 twice
to get .C1a1=8/2 and Proposition 3.3 twice to get the exponential factor. More
precisely, define A0;´ and zA0;´ for ´ D x or y as A0;´ WD f´ ! @inB.´; 1/g and
zA0;´ to be the event that there is an open path from @exB.´; 1/ to @inB.´; jx�yj=2/

with the open cluster of that path in B.´; jx � yj=2/ n B.´; 1/ not connected to g.
Then

A0 � A0;x \ zA0;x \ zA0;y \ A0;y ;



1392 F. CAMIA, J. JIANG, AND C. M. NEWMAN

and by taking the worst-case boundary condition and using translation invariance,
we have by using Lemma 2.3 and Proposition 3.3 (twice each):

P
a
Eh
.A0/ � Pa

Eh
.A0;x \ zA0;x \ zA0;y \ A0;y/

� �Pa�1;w;hD0
.0 ! @in�

a
1/�
2

� �sup
�
P
a
A.1;jx�yj=2/;�;h.F.a; jx � yj=2//�2

� .C1a1=8/2.e�C1.h/jx�yj=2/2
D C2a1=4e�C3.h/jx�yj

with C2 D C 21 and C3.h/ D C1.h/.
(2) Dff . This proof is close to that for part (1) because

Af´ � xAf´ WD f´ ! @inB.´; 1/g \ xxAf´ ;
where by xxAf´ we denote0 the event that there exists a (long) open path connecting
@exB.´; 1/ to @inB.´; jx � yj=3/ within the annulus Ann.´/ WD B.´; jx � yj=3/ n
B.´; 1/ with the open cluster of that path (within that annulus) not connected to the
ghost. This leads to

P
a
Eh

� xAf´ � � C1a1=8e�C1.h/jx�yj=3:
More generally, by considering the worst boundary condition twice in the sense of

�´ WD sup
�
P
a

Ann.´/;�;Eh

� xxAf´ �;
where the sup is over all (FK) boundary conditions on both parts of the boundary
of Ann.´/, and doing that both for ´ D x and ´ D y, one gets the last inequality in

Dff D PaEh
�
Afx \ Afy

� � Pa
Eh

�
Afx

�
P
a
Eh

�
Afy

� � Pa
Eh

�
Afx \ Afy

�
� .C1a1=8e�C1.h/jx�yj=3/2:

(3) Dfc and Dcf . Clearly, Dfc D Dcf , so we only need to prove decay for
Dfc . Note that

Dfc D PaEh
�
Afx \ Acy

� � Pa
Eh

�
Afx

�
P
a
Eh
.Acy/ � PaEh

�
Afx \ Acy

�
:

A
f
x is treated as in the proof of part (2), but Acy is handled by noting that Acy �
fy  ! @inB.y; 1/g. This leads to

Dfc � PaB.x;1/;w;hD0.x  ! @inB.x; 1// � �x � PaB.y;1/;w;hD0.y  ! @inB.y; 1//

� C 21 a1=4e�C1.h/jx�yj=3:
(4) Dcc . We have that

Dcc D PaEh .A
c
x \ Acy/ � PaEh .A

c
x/P

a
Eh
.Acy/ D PaEh .A

c
y/
�
P
a
Eh
.AcxjAcy/ � PaEh .A

c
x/
�
:
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Now by Lemma 2.3,

P
a
Eh
.Acy/ � PaB.y;1/;w;hD0.y  ! @inB.y; 1// � C1a1=8:

We consider the worst-case boundary condition on @exB.x; 2jx � yj=3/ to get

P
a
Eh
.AcxjAcy/ � PaEh .A

c
x/ � Pa2=3;w;Eh.A

c
x/ � Pa2=3;f;Eh.A

c
x/;

where
P
a

2=3;w;Eh
and P

a

2=3;f;Eh

refer to wired and free boundary conditions on B.x; 2jx�yj=3/. As in Proposition
3.3, let G D G.a; jx � yj=3/ denote the event that there is a circuit of vertices
surrounding B.x; jx � yj=3/ in the annulus Ann.1=3; 2=3/ WD B.x; 2jx � yj=3/ n
B.x; jx � yj=3/ with each vertex in the circuit connected to g within the annulus.
Then

P
a

2=3;w;Eh
.Acx/ � Pa2=3;f;Eh.A

c
x/

D Pa
2=3;w;Eh

.Acx/

� �Pa
2=3;f;Eh

.G/Pa
2=3;f;Eh

.AcxjG/C Pa2=3;f;Eh.G
comp/Pa

2=3;f;Eh
.AcxjGcomp/

�
� Pa

2=3;f;Eh
.G/

�
P
a

2=3;w;Eh
.Acx/ � Pa2=3;f;Eh.A

c
xjG/

�
C Pa

2=3;f;Eh
.Gcomp/Pa

2=3;w;Eh
.Acx/:

P
a

2=3;f;Eh
.AcxjG/ corresponds roughly to a wired boundary condition on some ran-

dom circuit that is inside the wired boundary condition of Pa
2=3;w;Eh

. Since Acx is an

increasing event, one expects that

P
a

2=3;w;Eh
.Acx/ � Pa2=3;f;Eh.A

c
xjG/ � 0

by some stochastic domination argument. Indeed, this inequality is proved in the
next lemma. Then, by Proposition 3.3,

P
a

2=3;w;Eh
.Acx/ � Pa2=3;f;Eh.A

c
x/

� Pa
2=3;f;Eh

.Gcomp/Pa
2=3;w;Eh

.Acx/

� Pa
2=3;f;Eh

.Gcomp/PaB.x;1/;w;hD0.x  ! @inB.x; 1//

� C1a1=8e�C1.h/jx�yj=3:
This concludes the proof. �

LEMMA 3.13. Let C be any deterministic circuit of vertices within the annulus
Ann.1=3; 2=3/. Let zAC denote the event that each x 2 C is connected to g within
the annulus and let AC denote the event that C is the outermost such circuit. Then
for any increasing event A in the interior of C (including edges to g),

(3.7) P
a

2=3;f;Eh
.AjAC/ � Pa

2=3;w;Eh
.A/:
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With G D S
C
zAC D

S
CAC, it follows that for any increasing event E in

B.x; jx � yj=3/,
P
a

2=3;f;Eh
.EjG/ � Pa

2=3;w;Eh
.E/:

Remark 3.14. We note that the above lemma is not trivial because G is a random,
not a deterministic, set. We also point out that the proof below shows that this
lemma applies to quite general annuli, boundary conditions, and magnetic field
profiles h.x/ � 0 (as opposed to only Ann.1=3; 2=3/, f and w, and Eh).

PROOF. For simplicity, we letB denote the a-approximation ofB.0; 2jx�yj=3/
in this proof. Let D be the interior of C. The stochastic domination (3.7) will
follow from the stronger stochastic domination that

(3.8) P
a

2=3;f;Eh
.AjAC/ � Pa

D;w;Eh
.A/ for any increasing event A in D;

since Pa
D;w;Eh

stochastically dominates Pa
2=3;w;Eh

on D. To prove (3.8), it is suffi-

cient to prove that the Radon-Nikodym derivative dPa
2=3;f;Eh

.�jAC/=dP
a

D;w;Eh
.�/ is

an increasing function (in the FKG sense). In the following proof, !out is always in
f0; 1g.B.B/nB.D//[.E .B/nE .D//. By the Eh replacing a constant h version of (2.2),
for any !in 2 f0; 1gB.D/[E .D/,

(3.9)

P
a

2=3;f;Eh
.!injAC/

/
X

!WD!in�!out2AC

2K.B;.!�
0/B/

Y
e2B.B/

.1 � e�2�c /!.e/.e�2�c /1�!.e/

�
Y

e2E .B/

.1 � e�2a15=8 Ehe /!.e/.e�2a15=8 Ehe /1�!.e/;

where �0 is the configuration with every edge closed and !in � !out denotes the
configuration in f0; 1gB.B/[E .B/ whose open edges are all those from !in or (dis-
jointly) from !out. Also,

(3.10)

P
a

D;w;Eh
.!injAC/

/ 2K.D;.!in�
1/D/

Y
e2B.B/

.1 � e�2�c /!in.e/.e�2�c /1�!in.e/

�
Y

e2E .B/

.1 � e�2a15=8 Ehe /!in.e/.e�2a
15=8 Ehe /1�!in.e/;

where �1 denotes the configuration with every edge open. Suppose z!in.e/ D
!in.e/ for each e 2 B.D/ [ E .D/ except for one edge e0 where z!in.e0/ D 1

while !in.e0/ D 0. For any fixed !out, let ! D !in � !out and z! D z!in � !out. If
! 2 AC, then it is not hard to see that

(3.11) K
�
B; .z!�0/B

� �K
�
B; .!�0/B

� D K
�
D; .z!in�

1/D
� �K

�
D; .!in�

1/D
�
:
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A key observation is

(3.12) f!out W !in � !out 2 ACg � f!out W z!in � !out 2 ACg:
Combining (3.11) and (3.12) with (3.9) and (3.10), we have that

P
a

2=3;f;Eh
.!injAC/

P
a

D;w;Eh
.!in/

�
P
a

2=3;f;Eh
.z!injAC/

P
a

D;w;Eh
.z!in/

;

which completes the proof of (3.8) and thus (3.7). �

We are ready to prove Proposition 3.10

PROOF OF PROPOSITION 3.10. Proposition 3.10 follows from Lemma 3.11 and
Proposition 3.12. �

3.3 Proof of Theorem 1.1
Proposition 3.10 implies: for any h > 0 and a 2 .0; 1� we have

(3.13)
h�xI �yia;h � C4a1=4e�m2.h/jx�yj

whenever jx � yj > K2.h/ and x; y 2 aZ2

where C4 2 .0;1/ is universal, and m2.h/;K2.h/ 2 .0;1/ only depend on h.
For any x; y 2 aZ2 with jx � yj � K2.h/, by the GHS inequality [27] and

proposition 5.5 of [20],

(3.14) h�xI �yia;h � h�xI �yia;hD0 � zC2a1=4jx � yj�1=4;
where zC2 2 .0;1/. Now, (3.13) and (3.14) imply

PROPOSITION 3.15. For any h > 0 and a 2 .0; 1� we have

h�xI �yia;h � C5.h/a1=4jx � yj�1=4e�m3.h/jx�yj for any x; y 2 aZ2;
where C5.h/;m3.h/ 2 .0;1/ only depend on h.

Now we are ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1. The leftmost inequalities of (1.2) and (1.3) follow
from the Griffiths’ inequality (see corollary 1 of [26]). So to prove Theorem 1.1, it
remains to show that, for any a 2 .0; 1� and h 2 .0; a�15=8�,
(3.15) h�xI �yia;h � C0a1=4jx � yj�1=4e�B0h8=15jx�yj for any x; y 2 aZ2:
In Proposition 3.15, letting a D H 8=15 where H � 1 and h D 1, we get

h�xI �yiH8=15;1 � C5.1/H 2=15jx � yj�1=4e�m3.1/jx�yj

for any x; y 2 H 8=15
Z
2:
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Rephrasing the last result on the Z2 lattice, we get (letting x0 D xH�8=15 and
y0 D yH�8=15)

(3.16)
h�x0 I �y0i1;H � C5.1/jx0 � y0j�1=4e�m3.1/H

8=15jx0�y0j

for any x0; y0 2 Z2;
which proves (1.3). Now (3.15) follows by rephrasing (3.16) on the aZ2 lattice
with external field ha15=8. �

4 Exponential Decay and Scaling in the Continuum
4.1 Exponential Decay

PROOF OF THEOREM 1.4. For any f; g 2 C10 .R2/, theorem 1.4 of [10] plus
an extension of proposition 3.5 of [9] imply

(4.1)
lim
a#0

�h�a;h.f /�a;h.g/ia;h � h�a;h.f /ia;hh�a;h.g/ia;h�
D Cov.�h.f /;�h.g//:

The extension needed is the replacement in proposition 3.5 of the magnetization
variable ma� D �a;hD0.1�/ (defined for the measure h�iC� with plus boundary
condition on a square�) by�a;h.f /. To verify the extension, choose� to contain
the support of f and note that the GKS inequalities [25, 33] imply that


exp .t�a;h.f //
�
a;h
� 
exp .�a;0.tkf k1 C h/1�/

�C
�
D 

e
ztma

�

�C
�
;

where zt D tkf k1 C h.
The LHS of (4.1) before the limit is equal to (Ea

h
.�/ WD h�ia;h)

(4.2)

���Eah�a15=4 X
x;y2aZ2

�xf .x/�yg.y/
�

�Eah
�
a15=8

X
x2aZ2

�xf .x/
�
Eah

�
a15=8

X
y2aZ2

�yg.y/
����

D
���a15=4 X

x;y2aZ2

�
Eah

�
�xf .x/�yg.y/

�
�Eah .�xf .x//Eah .�yg.y//

����
D
���a15=4 X

x;y2aZ2

�
f .x/g.y/h�xI �yia;h

����
� a15=4

X
x;y2aZ2

jf .x/g.y/jC0a1=4jx � yj�1=4e�B0h8=15jx�yj;
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where the last inequality follows from Theorem 1.1 when 0 < a � minf1; h�8=15g.
Letting a # 0 in (4.2) and using (4.1) completes the proof. �

4.2 Scaling of the Magnetization Fields
In [9, 10], the critical and near-critical magnetization fields were denoted by

�1 and �1;h (where h is the renormalized magnetic field strength). These are
generalized random fields on R2, so for a suitable test function f on R2 (includ-
ing 1��L;L�2.x/), one has random variables h�1; f i (or

R
R2
�1.x/f .x/dx) and

similarly for �1;h. Here we use �0 and �h in place of �1 and �1;h.

THEOREM 4.1. For any � > 0, the field �0
�
.x/ D �0.�x/ given by


�0�; f
� D Z

R2

�0.�x/f .x/dx

D
Z
R2

�0.y/f .��1y/��2 dy D ��2
�0; f��1 �;
with f��1.x/ D f .��1x/ is equal in distribution to ��1=8�0.x/.

PROOF. This is a special case of the conformal invariance result (theorem 1.8
of [9]) with the conformal map �.´/ D �´. �

THEOREM 4.2. For any � > 0 and h0 > 0, the field �1=8�h0.�x/ is equal in
distribution to ��

15=8h0.x/.

PROOF. It follows from [9, 10] that the distribution Ph of �h is obtained from
P of � by multiplying P by the Radon-Nikodym factor .1=ZL/e

hh�;I
��L;L�2

i and
letting L!1; see, in particular, section 4 of [10]. Then one applies Theorem 4.1
to complete the proof. �

The following observation, which expands on the discussion about scaling rela-
tions in the introduction, may be useful to interpret Theorem 4.2. In the zero-field
case, �0.�x/ is equal in distribution to ��1=8�0.x/ in the sense that, with the
change of variables ´ D �x,Z

�0.´/f .´/d´ D
Z
��1=8�0.x/f .�x/�2dx D �15=8

Z
�0.x/f .�x/dx

for any f 2 C10 .R2/, where the equalities are in distribution. In the nonzero-field
case, provided that zh D ��15=8h, using Theorem 4.2 one obtains an analogous
relation as follows:Z

�
zh.´/f .´/d´ D

Z
��

�15=8h.�x/f .�x/�2 dx

D �15=8
Z
�1=8��

�15=8h.�x/f .�x/dx

D �15=8
Z
�h.x/f .�x/dx:
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Note also that zh D ��15=8h implies M.�zh/ D C zh15=8 D ��1M.�h/, where M
is introduced in Corollary 1.6. This is consistent with the interpretation of M as
the inverse of the correlation length.

As noted in Section 1.1, a version �h� of �h can be defined in a (simply con-
nected) domain � (with some boundary condition). In that case, one can consider
a conformal map �W� ! z� (with inverse  D ��1 W z� ! �) and give a
generalization of Theorem 4.2, as we do next. The pushforward by � of �0� to a
generalized field on �� was described explicitly in theorem 1.8 of [9]. The gener-
alization to �h, implicit in [10], is stated explicitly in the next theorem, where we
now replace a constant magnetic field h or zh on� or z� by a suitable magnetic field
function h.´/ or zh.x/.
THEOREM 4.3. The field �h�; .x/ WD �h�. .x// on z� is equal in distribution to

the field j 0.x/j�1=8�zhz�.x/ on z�, where zh.x/ D j 0

.x/j15=8h. .x//.
PROOF. The proof is similar to that of Theorem 4.2 except that one doesn’t need

to take an infinite volume limit. It is enough to note that, since the pushforward
� � �0� is equal in distribution to j 0

.x/j15=8�0z� (see theorem 1.8 of [9]), with

the choice zh.x/ D j 0

.x/j15=8h. .x//, zh.x/�0z�.x/ is equal in distribution to the
pushforward � � .h�0�/. �

4.3 Proof of Corollary 1.6
PROOF OF COROLLARY 1.6. Theorem 1.4 and the scaling properties of�h (The-

orem 4.2) imply that M.�h/ D Ch8=15 where C > 0. It remains to show that
C < 1, or equivalently to rule out the possibility that M.�h/ is infinity. But by
(B.7) in Appendix B and the discussion right after (B.7), we see that M.�h/ D1
would imply that

(4.3) K h.0; y � x/ D K h.x; y/ WD Cov.�h.x/;�h.y// D 0 for y � x ¤ 0:
Now K h � 0 and by the GHS inequality [27] together with the fact that K h.x; y/

is the limit of h�x0 I �y0ia;h as a ! 0 (with x0 ! x, y0 ! y), we see that K h is
nonincreasing in h � 0. Since, by [60], K 0.x; y/ D C 0jx � yj�1=4, we would
have that for h � 0,

0 � K h.x; y/ � G�.y � x/ WD
(
C 0jx � yj�1=4; jy � xj � �;
0; jy � xj > �:

But for f the indicator function 1�, of the unit square, we would then have that

(4.4) Var.�h.1�// �
ZZ
���

G�.y � x/dx dy;
where the integral is over the product of two unit squares. Since the RHS of (4.4)
tends to zero as � # 0, we see that M.�h/ D 1 would imply that �h.1�/ is a
constant random variable. But this would contradict proposition 2.2 of [10]. �
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Appendix A Some Key Ingredients
In this appendix, we give exact statements of some key existing results that are

major building blocks for the main results of this paper. These include continuum
results from [7, 34] and lattice results from [16]; precise definitions may be found
in these references.

For any bounded D � R
2, let Da WD aZ2 \ D be its a-approximation. Let

L1; L2W �0; 1�! xD, the closure of D, be two loops. The distance between L1 and
L2 is defined by

dloop.L1; L2/ D inf sup
t2�0;1�

jL1.t/ � L2.t/j

where the infimum is over all choices of parametrizations of L1; L2 from the in-
terval �0; 1�. The distance between two closed sets of loops, F1 and F2, is defined
by the Hausdorff metric as follows:

(A.1) dLE.F1; F2/ D
inff� > 0 W 8L1 2 F1; 9L2 2 F2 s.t. dloop.L1; L2/ � � and vice versag:

The following theorem from [34] establishes the convergence of the collection
of the boundaries of critical FK clusters on the medial lattice (the critical FK loop
ensemble; see section 1.2.2 of [34]) to nested CLE16=3.

THEOREM A.1 (Theorem 1.1 in [34]). Consider critical FK percolation in a dis-
crete domainDa with free boundary condition. The collection of the lattice bound-
aries of critical FK clusters converges in distribution to nested CLE16=3 in D in
the topology of convergence defined by dLE.

For any configuration ! in critical FK percolation on Da with free boundary
condition, let C .Da; f; !/ denote the set of clusters of ! in Da, where f stands
for free boundary condition. For C 2 C .Da; f; �/, let �aC WD a15=8

P
x2C �x be the

normalized (by a15=8) counting measure of C. For two collections, S1 and S2, of
measures on D, the distance between S1 and S2 is defined by

(A.2) dmeas.S1;S2/ WD
inff� > 0 W 8� 2 S1 9� 2 S2 s.t. dP .�; �/ � � and vice versag;

where dP is the Prokhorov distance. The following theorem from [7] establishes
convergence of normalized counting measures.

THEOREM A.2 (Theorem 8.2 in [7]).�
�aC W C 2 C .Da; f; �/	 H) �

�0C W C 2 C .D; f; �/	;
where H) denotes convergence in distribution and the right-hand side is a collec-
tion of measures obtained from the scaling limit; here the topology of convergence
is defined by dmeas. Moreover, the joint law of the collection of boundaries of crit-
ical FK clusters and f�aC W C 2 C .Da; f; �/g converges in distribution to the joint
law of CLE16=3 and f�0C W C 2 C .D; f; �/g.
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We also need the following results about the measurability of CME with respect
to CLE and the mass of limiting counting measures.

COROLLARY A.3 (Theorem 8.2 and Lemma 4.16 in [7]). f�0C W C 2 C .D; f; �/g is
measurable with respect to CLE16=3 in D.

COROLLARY A.4 (Remark 8.3 in [7]). The mass for each �0C where C has positive
diameter is strictly positive.

The next theorem concerns 6-arm events of type .100100/—see page 4 of [16]
for the precise definition.

THEOREM A.5. The critical exponent for a 6-arm event of type .100100/ is strictly
larger than 2.

PROOF. We take a D 1 in the proof. Let A100100.0;N / be the event that there
are 6 disjoint arms 
k from .0; 0/ or .�1=2;�1=2/ to the boundary of ��N;N �2
which are of type 100100. Let I D fIk W 1 � k � 6g be a family of disjoint arcs
on the boundary of ��1; 1�2 and AI100100.0;N / be the event that A100100.0;N /
occurs and the arms 
k , 1 � k � 6, can be chosen in such a way that each 
k ends
on NIk . To prove the theorem, by quasi-multiplicativity (theorem 1.3 in [16]) and
corollary 1.4 of [16], it is enough to show that for some � > 0,

P
1
�
AI100100.0;N /

� � C6N�.2C�/:
Choose a point �j between Ij and IjC1 for j D 1 and 4. Conditioned on

AI100100.0;N /, the paths 
1 and 
2 (resp., 
4 and 
5) can be chosen to be adja-
cent and jointly form an interface between FK-open and -closed regions. With this
choice, 
1; 
2 (resp., 
4; 
5) can be determined by an exploration process starting
from �1 (resp., �4). By conditioning on these two exploration paths and notic-
ing that what happens in the remaining part of ��N;N �2 is FK percolation with
inherited boundary conditions, one sees that

P
1
�
AI100100.0;N /

� � P1.A0.0;N //P1�AInI610010.0;N /
�
:

Lemma 2.3 now implies that P1.A0.0;N // � C1N�1=8, and corollary 1.5 of [16]
implies

P
1
�
A
InI6
10010.0;N /

� � C7N�2:
Thus the 6-arm critical exponent of type .100100/ is at least 17=8. �

Appendix B Upper Bound for the Mass
In this appendix we give a proof of Theorem 1.8. The techniques here are quite

different than the FK-based technology used for the proof of Theorem 1.1. As
mentioned in the introduction, an FK-based approach is given in [11].

Points x in Z2 will be denoted x D .k; w/ with k;w 2 Z.
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PROOF OF THEOREM 1.8. Suppose �m > 0 is as in (1.4); then by the results
of [38], for any random variables F and G that are finite linear combinations of
finite products of �.0;w/’s, one has

(B.1) hF IT kGi1;H D Cov.F; T kG/ � CF;G � .e��m/k;
where T k translates G k units to the right to be a function of the �.k;w/’s. Let
�j (resp., ��j or ��j ) denote the � -field generated by f�.j;w/ W w 2 Zg (resp.,
f�.k;w/ W w 2 Z; k � j .or k � j /g). It follows from the spatial Markov property
of our nearest-neighbor Ising model onZ2 that the random processXk D .�.k;w/ W
w 2 Z/ for k 2 Z is a stationary Markow chain. Let T denote the transition opera-
tor (the transfer matrix in statistical physics terminology); then (B.1) may be rewrit-
ten (using . � ; �/ to denote the standard inner product in H0 WD L2.�;P 1H ; �0/

where � D f�1;C1gZ2) as

(B.2) .F; .T k � P1/G/ D .F; .T � P1/kG/ � CF;G � .e��m/k;
where P1 is the orthogonal projection on the eigenspace of constant random vari-
ables. Note that P1 is the same as the expectation with respect to P 1H .

Now, by reflection positivity for the Ising model (see, e.g., [24] or [4]), it follows
that T and T � P1 are positive semidefinite. By (B.2), the spectrum of T � P1 is
contained in some interval �0; �� with � � e��m. It follows that (B.2) is valid for
F;G any random variables in H0 and that one may replace CF;G in (B.2) by

k.I � P1/F k � k.I � P1/Gk;
where k � k denotes the norm in H0, so that

(B.3) k.I � P1/F k2 D .F; F / � .P1F;P1F / D E.F 2/ � �E.F /�2 D Var.F /;

where E denotes expectation with respect to P 1H .
If G 2 L2.�;P 1H ; ��k/ and F 2 L2.�;P 1H ; ��0/, then by the Markov prop-

erty

E.Gj��k/ D E.Gj�k/ WD zG D T k zzG
for some zzG 2 H0, while

E.F j��0/ D E.F j�0/ WD zF 2 H0:

Thus

Cov.F;G/ D Cov. zF ; zG/ D . zF ; .T k � P1/ zzG/

�
q

Var. zF /
q

Var. zzG/e��mk :
(B.4)

Since E. zF / D E.F / while E. zF 2/ � E.F 2/ and similarly for zzG,

(B.5) Cov.F;G/ �
p

Var.F /
p

Var.G/e��mk :
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Using (B.5) with F and G finite linear combinations of Ising spin variables and
recalling (1.5), we have

(B.6) Cov.�1;H . yf /;�1;H .yg// � S1H . yf /S1H .yg/e��myk

where we write S1H .
yf / D

q
Var.�1;H . yf //, provided

supp. yf / � .�1; 0� �R; supp.yg/ � �yk;1/ �R:
Since �M.H/ was defined as the supremum of �m such that (1.4) is valid, (B.6) is
valid with �m replaced by �M.H/.

Suppose that for some B 2 .0;1/ there is a sequence Hi # 0 such that�M.Hi / � BH 8=15
i for all (large) i . Then we pick some fixed h > 0 (say, h D 1

for convenience), and let ai WD .Hi=h/
8=15 so that ai # 0 and Hi D ha

15=8
i .

Re-expressing (B.6) in terms of �ai ;h (with H D Hi and �m replaced by �M.Hi /)
gives for any f; g whose supports are separated in the 1-direction by Euclidean
distance sep.f; g/, the bound

Cov.�ai ;h.f /;�ai ;h.g// � Sai
h
.f /S

ai
h
.g/e�

�M.Hi /sep.f;g/=ai :

Since �M.Hi / � B.ha15=8i /8=15 D Bh8=15ai , this yields

(B.7) Cov.�ai ;h.f /;�ai ;h.g// � Sai
h
.f /S

ai
h
.g/e�Bh

8=15sep.f;g/:

In the limit ai # 0, the mean and second moment (and hence variance and Sai
h

)
have a finite limit (for decent test functions f and g—see [9]) and so the mass gap
M.�h/ in the continuum limit would satisfy M.�h/ � Bh8=15.

If lim supH#0 �M.H/=H 8=15 D 1, then one could take B arbitrarily large in
(B.7), which would make M.�h/ D 1. But this would contradict Corollary 1.6.
So it follows that lim supH#0 �M.H/=H 8=15 � C <1. �
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