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Abstract For a random walk on a finitely generated group G we obtain a
generalization of a classical inequality of Ancona. We deduce as a corollary
that the identity map on G extends to a continuous equivariant surjection from
the Martin boundary to the Floyd boundary, with preimages of conical points
being singletons. This provides new results for Martin compactifications of
relatively hyperbolic groups.
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760 I. Gekhtman et al.

1 Introduction

1.1 The main results

It is a common thread in geometric group theory to relate asymptotic properties
of random walks on a group to the dynamics of its action on some geometric
boundary.

Every probabilitymeasureμ onG determines a randomwalk onG.Assume
that μ is such a measure whose support generates G as a semigroup. The
Green (pseudo-)metric dG (not necessarily symmetric) is defined to be minus
the logarithm of the probability that a sample path starting at the first point
ever reaches the second [2]. The Busemann (horospheric) compactification
GM of G with respect to dG is called the Martin compactification of G, and
its remainder ∂MG = GM\G is called the Martin boundary (see Sect. 2 for
more details).

The geometric object that we consider is the Floyd compactification of G
[12]. The Floyd metric δ f

o at a basepoint o ∈ G is obtained by rescaling the
word metric d by a suitable scalar function f : R�0 → R>0 (called a Floyd
function). The Cauchy completionG f of the Cayley graph ofG equipped with

the metric δ f
o is called the Floyd compactification of G and ∂ f G = G f \G is

its Floyd boundary. The restrictions imposed on the Floyd function f imply
thatG f is compact and that left multiplication extends to a convergence action
of G on G f by homeomorphisms (see Sect. 3 for more details).

One of themain results of the paper is the following inequality which relates
the probabilistic metric dG to the geometric metric δ f

o .

Theorem 1.1 Let G be a finitely generated group and f a Floyd function on
G. Let μ be a probability measure on G whose finite support generates G as
a semigroup. Let dG be the Green metric associated to μ.

Then there exists a decreasing function A : R>0 → R>0 such that
∀ x, w, y ∈ G one has:

dG(x, w) + dG(w, y) ≤ dG(x, y) + A(δ f
w(x, y)). (1)

The finite support condition on the measureμ can be relaxed using the tech-
niques developed byGouëzel in [23]. To do it we need a fewmore assumptions.

Let the norm ||g|| denote the length of the minimal word representing g in
a fixed finite system of generators of G. A measure μ has exponential moment
if

∑

g∈G
c||g||μ(g) < ∞
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Martin boundary covers Floyd boundary 761

for some constant c > 1 and superexponential moment if the above series
converges for all c > 1.

We say that the Floyd function f is of order greater than 2 if r2+ι f (r) → 0
as r → ∞ for some fixed ι > 0.

Theorem 1.2 Let μ be a probability measure with an infinite support, gener-
ating G as a semigroup. Assume that μ has a superexponential moment. Then
the inequality (1) holds for a Floyd function f of order greater than 2.

It is shown in [23] that Theorem 1.2 already fails in the case when G is a
free group if μ is only assumed to have exponential moment.

We now provide a short history of the problem. An analog of the inequality
(1) in the context of word hyperbolic groups is due to A. Ancona [1] and it
states that there exists a constant C such that one has

for all points x, w, y lying in this order on a geodesic in the word metric of
the Cayley graph. Ancona also deduced from this inequality that the Martin
compactification of G is equivariantly homeomorphic to the Gromov com-
pactification of G.

The Ancona inequality reflects the hyperbolic nature of the metric dG and
it has sparked a fruitful line of research (see e.g. [3,22–24,28]). Ancona’s
original proof used the theory of elliptic operators. A different proof using ele-
mentary probability and hyperbolic geometrywas given byGouëzel andLalley
[24] for surface groups and Gouëzel [22] for general hyperbolic groups. The
generalization to infinitely supportedmeasures with superexponential moment
(again in the hyperbolic group setting) was obtained by Gouëzel in [23].

There are several essential differences between the inequality (1) and the
Ancona inequality. Unlike the function A(·), the constant C in the Ancona
inequality is a uniform constant (depending on the hyperbolicity constant of
the group). On the other hand, in the inequality (1) the points {x, y, z} are
arbitrary and do not necessarily belong to the same geodesic. Furthermore, in
Theorem 1.1 we do not assume that the group is hyperbolic.

We also note that Ancona’s theorem is valid for any hyperbolic graph and
that the group action is not needed. To illustrate the interest of Theorem 1.1
we provide below a short proof that it implies the inequality (Ancona) for
hyperbolic groups. Before we get to that let us mention some further issues
motivating this work.

It turns out that Theorems 1.1 or 1.2 follow from the following statement
(see the proof of Proposition 2.4) which is of independent interest.

Theorem 1.3 Suppose that G, μ and f satisfy the assumptions of
Theorem 1.1 or 1.2. For every ε ∈ (0, 1) there exists a decreasing function
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762 I. Gekhtman et al.

Rε : R>0 → R>0 such that the probability Px,y that a random path from x to y

passes through a ball in the word metric centered at w of radius Rε(δ
f
w(x, y))

is at least 1 − ε.

The probability Px,y mentioned in the Theorem refers to the measures on
the set of finite trajectories between the vertices x and y (see definition (4) in
the next section).

Another inequality, related to our discussion, is due to Karlsson [29]. Let
G be a finitely generated group and f a Floyd rescaling function. Then there
exists a decreasing function K : R → R such that for every x, y, v ∈ G and
every geodesic segment [x, y] joining x and y in the Cayley graph equipped
with the word distance d one has

d(v, [x, y]) ≤ K (δ f
v (x, y)). (Karlsson)

One can also restate Karlsson’s inequality in the following form affirming
that with the probability equal to one Theorem 1.3 holds if one replaces the
sample paths by geodesics:

Karlsson’s lemma [29, Lemma 2.1]. For every ε > 0 there exists R = R(ε)
such that the condition δ f

v (x, y) > ε implies that d(v, [x, y]) ≤ R for every
geodesic [x, y] joining x and y.

The Karlsson inequality admits many corollaries for relatively hyperbolic
groups (see [17,18,20,21]). It was one of our initial motivations to relate the
Martin and Floyd compactifications.

Finally let us recall the classical Gromov inequality for geodesic δ-hyper-
bolic spaces:

d(z, [x, y]) − δ ≤ (x .z y) ≤ d(z, [x, y]), (Gromov)

where (x .z y) is the Gromov product 1
2 (d(z, x)+d(z, y)−d(x, y)) [26].

Note that the left-hand side of the Gromov inequality does not hold in
general if the Cayley graph is not hyperbolic.

Theorem 1.1 has multiple consequences. One of them is a simple proof of
the Ancona theorem for hyperbolic groups which we provide now.

Corollary 1.4 If G is a hyperbolic group then the inequality (1) implies
Ancona’s inequality.

Proof Assume that the group G is δ-hyperbolic and the inequality (1) holds.
We apply it for the Floyd function f (n) = e−an (n ∈ N)where a is a constant
which is specified below. We need to show that for every three colinear points
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Martin boundary covers Floyd boundary 763

x, w, y belonging to a word geodesic, the Floyd distance δ f
w(x, y) is uniformly

bounded below from zero. Since the Floyd distance is invariant under left
multiplication in G (see Sect. 3) we can assume that w = o is the basepoint
in the Cayley graph.

The visual Gromov distance ν(x, y) defined on a hyperbolic graph is bilip-
schitz equivalent to e−a·(x .o y) [26]. By the (Gromov) inequality above it is also
bilipschitz equivalent to e−a·d(o,[x,y]). Furthermore if 0 < a < a0 for some
uniform constant a0 (depending only on the hyperbolicity constant δ) the latter
property extends to the Gromov boundary of the graph [25].

Using an equivalent definition of ν as a shortpath metric we obtain1 that

δ
f
o (x, y) �C ν(x, y) �C e−a·d(o,[x,y])

where A �C B means the double inequality 1/C · B ≤ A ≤ C · B between
the quantities A and B for a uniform constant C > 0 depending only on δ

and a. Since the points x, o, y are colinear, the above property implies that
the distance δ f

o (x, y) is bounded below by a uniform positive constant. The
Corollary is proved. �	

Remarks. The above proof suggests that the inequality (1) applies when
one can show that the Floyd distance δ f

y (x, z) is bounded below by a strictly
positive constant. This fact will be crucial for all further applications of our
main results.

Since the functions A(·) and R(·) in Theorems 1.1 and 1.3 are both decreas-
ing, then once the relevant statement is proved for a Floyd function f then it
is also true for a Floyd function h if h(r) ≤ f (r) (∀r ∈ R>0). This fact will
be also used further on.

One of the main applications of the inequality (1) is our next result which
relates two actions of a finitely generated groupG: one on theMartin boundary
∂MG associated to (G, μ) and the second one on the Floyd boundary ∂ f G.
These actions are of a different nature, in particular the second one is a con-
vergence action [29, Proposition 3], which is not always the case with the first
one.

Recall that an action of G � T on a compactum T is called convergence if
the induced action of G on the space of distinct triples�3(T ) is discontinuous
[6].2 A point x ∈ T is called conical if there exists a sequence gn ∈ G such
that gn y → b for all y ∈ T \{x} and gnx → a such that a 
= b. The conical
points are quite typical for convergence actions.

The title of the paper is explained by the following.

1 The proof of the first part for hyperbolic groups is folklore and follows from different sources
(e.g. [25,26,40]); a complete proof can be found in [35, Proposition A1, Appendix].
2 if T contains at most two points then�3(T ) = ∅ and the action is convergence by definition.
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764 I. Gekhtman et al.

Theorem 1.5 ((Theorem 7.3 and Corollary 7.14) Let G, μ and f be as in
Theorem 1.1 or 1.2. Then the identity map id : G → G extends to a continuous
G-equivariant surjection

π : GM → G f . (2)

Moreover, the preimage by π of any conical point of ∂ f G is a single point.

The subset ∂min
M G of points of ∂MG corresponding to minimal harmonic

functions (see Sect. 7) is called the minimal Martin boundary.
Theorem7.3 has several applications.Oneof them is the followingCorollary

describing the minimal G-invariant subsets of the Martin boundary.

Corollary 1.6 (Proposition 7.15 and Corollary 7.16). Suppose that the
hypotheses of Theorem 1.5 hold. Assume that the Floyd boundary ∂ f G of
G with respect to a rescaling function f contains at least three points. Then
∂min
M G is contained in the closure of the G-orbit 	 = Gξ in ∂MG for any
ξ ∈ ∂MG.

In particular, the set {π−1(p) : p is a conical point in ∂ f G} is a dense
subset of ∂min

M G.

Most of the other applications of our results deal with the class of relatively
hyperbolic groups. Let us recall several main notions of this theory (see Sect. 3
for more details).

Let G � T be a convergence action of a group G on a compactum T [14].
The action is called minimal if T is a minimal compactum (under inclusion)
invariant under the group action. The action is non-elementary if it is minimal
and T contains infinitely many points. The set�G of the accumulation points
of the G-orbit is called the limit set. If the action is non-elementary then its
limit set is the minimal closed subset invariant under the action and one has
T = �G.

A point p ∈ T is called bounded parabolic if the fixed-point set of the
stabilizer Hp = {g ∈ G : gp = p} is one point p and Hp acts cocompactly
on T \{p}. The subgroup Hp is then called maximal parabolic.

An action G � T is called geometrically finite if either T contains at most
two points or it is a minimal convergence action such that every point of T
is either conical or bounded parabolic. A group G is said to be hyperbolic
relative to a system P of subgroups (or simply relatively hyperbolic) if it
admits a geometrically finite action on a compactum T such that the set of the
maximal parabolic subgroups coincides with P. Once the system P is fixed
the compactum T is unique up to an equivariant homeomorphism [42] and is
called the Bowditch boundary and denoted by ∂BG. In particular if G � T
is geometrically finite and P = ∅ then G is hyperbolic, the compactum T is
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Martin boundary covers Floyd boundary 765

equivariantly homeomorphic to the Gromov boundary ∂G and every point of
T is conical [5].

The Floyd distance and related Floyd compactification of the Cayley graph
of a finitely generated groupwas first introduced by Floyd [12]. He also proved
that for a geometrically finite discrete (Kleinian) subgroup G of the isometry
group of the hyperbolic space H

3 of dimension 3 the identity map id : G →
G extends to a surjective, equivariant and continuous map from the Floyd
boundary to its limit set T = �G ⊂ S

2. Since then this map has been called
the Floyd map. Gerasimov proved [18] that if a finitely generated group G
admits a geometrically finite action by homeomorphisms on a compactum T
then there exists the Floyd map: ϕ : ∂ f G → T . One of the corollaries of
this result is that the Floyd boundary ∂ f G of a relatively hyperbolic group G
which admits a non-elementary geometrically finite action is an infinite set.
The preimage ϕ−1(x) of every point x ∈ T admits a complete description: for
a conical point x it is a single point [18, Proposition 7.5.2]; and if x = p ∈ T
is a parabolic then ϕ−1(p) coincides with the Floyd boundary ∂ f Hp of its
stabilizer Hp [20, Corollary 7.8] for some Floyd function f . Note that T
contains at most countably many non-conical points if the action G � T is
minimal and geometrically finite [17].

Composing the map π from Theorem 1.5 with the Floyd map ϕ above we
obtain:

Corollary 1.7 Assume that μ and f are as in Theorem 1.1 or 1.2. If the
action G � (T = ∂BG) is geometrically finite then there exists a continuous
G-equivariant surjective map

ψ = ϕ ◦ π : ∂MG → ∂BG.

Furthermore the preimage ψ−1(x) consists of one point for every conical
x ∈ ∂BG.

In the context of geometrically finite actions of groups on hyperbolic spaces
our Theorem 1.1 can be formulated in a form very close to Ancona’s original
inequality. An action of a groupG by isometries on a proper geodesic Gromov
hyperbolic metric space (X, dX ) is geometrically finite if it is discontinuous
on X and the action on the limit set�G ⊂ ∂X is geometrically finite. We also
say that the action is non-elementary if the limit set �G is an infinite set.

We fix a basepoint o ∈ X and denote by [x, y] ⊂ X a geodesic between
two points x and y in X.We have the following.

Corollary 1.8 (Proposition 9.3) Let G � X be a geometrically finite, iso-
metric and non-elementary action of a group G on a proper geodesic Gromov
hyperbolic space X. Let μ and f as in Theorem 1.1 or 1.2.
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766 I. Gekhtman et al.

Then for every D > 0 there exists a constant C = C(D) > 0 such that
for every triple g, h, w of elements of G with dX (ho, [go, wo]) ≤ D the
inequality:

dG(g, h) + dG(h, w) ≤ dG(g, w) + C

holds on the Cayley graph of G.

Since the preimage of a conical point by themapψ is a single point, themain
problem in describing theMartin boundary ∂MG is to describe the preimage of
a parabolic fixed point. In general this problem remains largely open. However
in [11] the authors use Theorem 1.1 as a crucial ingredient to give a precise
description of theMartin boundary ∂MG whenG is relatively hyperbolic with
respect to a system of virtually abelian subgroups. In particular, it is shown
in [11] that in this case GM is obtained from G f by replacing the parabolic
fixed points by the spheres S

d−1 where d is the rank of the stabilizer of the
corresponding parabolic fixed point (parabolic blow-up construction).

Denote by ∂MH the set of accumulation points of a subgroup H of G in
GM. In the following result we describe the subset of minimal points of the
preimage of a bounded parabolic point.

Proposition 1.9 (Proposition 9.6) Let G � T be a minimal geometrically
finite action on a compactum T, and π : ∂MG → ∂ f G be the map from
Theorem 1.5. Let H < G be the stabilizer of a bounded parabolic fixed point
p ∈ T . Then

π−1(p) ∩ ∂min
M G ⊆ ∂MH. (3)

Theorems 1.1 and 1.5 have also several applications to the theory of har-
monicmeasures on boundaries of hyperbolic spaces which wewill now briefly
mention. These results were originally included in the previous version of our
preprint [15], however keeping inmind that they are valid in a different context
we decided to put them in a separate paper. There are two natural classes of
measures on the Gromov boundary ∂X associated with the action. One con-
sists of quasiconformal, or Patterson-Sullivan measures and the other consists
of stationary or harmonic measures, which are limits of convolution powers of
measures on G. As a consequence of Theorems 1.1 and 1.5 we obtain that if
G contains at least one parabolic subgroup then the harmonic and Patersson-
Sullivan measures are singular [15, Theorem 11.3]. We note that the result is
already new in the case of rank 1 symmetric spaces.

Another application concerns geometrically finite actions on Riemannian
manifolds of negative curvature bounded away from 0 or more general
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Martin boundary covers Floyd boundary 767

CAT(−1) spaces. If X is such a space and G is a group acting geometri-
cally finitely on X (or equivalently on ∂X ) then our result affirms that every
stationary probability measure on ∂X can be extended to a product measure
on the unit tangent bundle of X and which projects to a finite measure on its
G-quotient [15, Theorem 10.4].

1.2 Organization of the paper

We will now briefly describe the sections of the paper and their dependence.
In Sect. 2 we recall several standard notions concerning random walks on

groups. Using these notions we prove there two technical statements needed
further on. First we prove Proposition 2.3 which estimates the probability that
a sample path between given two points is sufficiently long. Then we show
(Proposition 2.4) that Theorem 1.3 implies the inequality (1), and thus Theo-
rems 1.1 and 1.2 depending on whether the measureμ is of finite support or of
infinite support with superexponential moment. The further strategy consists
of proving Theorem 1.3.

In Sect. 3 we provide some background information about the Floyd com-
pactification and convergence actions.

Sections 4 and 5 are devoted to the proof of Theorem 1.3 in the case of a
non-amenable group. Section 4 contains the proof of geometric Proposition
4.3 which is the main tool to prove Theorem 1.3. In Sect. 5 we show how to
deduce Theorem 1.3 from Proposition 4.3 in the case when the support of a
measure is finite. This will finish the proof of Theorem 1.1 in the case when
the group is non-amenable.

In Sect. 6 we treat the case of infinitely supported measures. In Sect. 6.1 we
obtain the proof of Theorem 1.2 for a non-amenable group using the superex-
ponential moment condition. Section 6.2 deals with the case of an amenable
group.

Starting with Sect. 7 we obtain different applications of the inequality (1).
In Sect. 7.1 we construct the continuous and equivariant map π : GM → G f .
Then in Sect. 7.2 we prove that the π -preimage of every conical point in ∂ f G
contains points from the minimal Martin boundary ∂min

M G (Corollary 7.10);
we then deduce that this preimage consists in fact of a single point (Corollary
7.14). This concludes the proof of Theorem 1.5.We finish this sectionwith few
further applications. The first is given in Sect. 7.3 where we prove Corollary
1.6 describing minimal G-invariant closed subsets of the Martin boundary.
In Sect. 7.4 we apply the obtained results to describe a link with the end
compactification of a finitely generated group.

In Sect. 8 we prove Proposition 8.1 giving a partial description of theMartin
boundary of quasiconvex subgroups of G. This Proposition will be applied in
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768 I. Gekhtman et al.

the next section to prove Proposition 1.9 describing the preimages of parabolic
fixed points when G is relatively hyperbolic.

In Sect. 9 composing the map π from Theorem 1.5 with the Floyd map ϕ
we obtain Corollary 1.8 (Proposition 9.3) which gives an analog of the origi-
nal Ancona inequality for geometrically finite actions on Gromov hyperbolic
spaces.

2 Random walks on groups

Let G be a finitely generated infinite group. We fix a finite symmetric gener-
ating system S of G and let � = Cay(G, S) be its Cayley graph. We equip
the graph � with the word distance d and fix a basepoint o ∈ �. Whenever
we need to consider the norm ||g|| of an element g ∈ G we will identify the
basepoint o of � with the neutral element of G and put ||g|| = d(o, g).

Let μ be a probability measure on G whose support generates G as a semi-
group. This defines a G-invariant Markov chain on G with n step transition
probabilities pn(x, y) = μ∗n(x−1y).

Recall that μ has finite support if

supp(μ) = {g ∈ G : μ(g) > 0}

is a finite set. We say μ has exponential (resp. superexponential) moment if

∑

g∈G
c||g||μ(g) < ∞

for some (resp. for all) c > 1. We define the reflected measure by μ̂(g) =
μ(g−1).

The measure μ is said to be symmetric if μ̂ = μ. A trajectory τ of length
n, denoted by length(τ ), is a sequence g0, ..., gn−1 of elements of G. Such a
trajectory is said to have jump size bounded by K if d(gi , gi+1) ≤ K for all
i , if the jump size is equal to 1 the trajectory is called a path.

A trajectory

τ = g0, g1, ..., gn

inG is called admissible ifμ(g−1
i gi+1) > 0 for each i . Note, ifμ has finite sup-

port, an admissible trajectory has jump size bounded by K = max
g∈supp(μ) ||g||.

Given an admissible trajectory τ , its weight is defined to be

w(τ) = μ(g−1
0 g1)μ(g

−1
1 g2)...μ(g

−1
n−1gn).
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Martin boundary covers Floyd boundary 769

Let Traj(x, y) denote the set of all admissible trajectories in G which begin
at x and end at y. Let Trajr (x, y) ⊂ Traj(x, y) consist of trajectories of length
r . The Green function associated to μ is defined as

G(x, y) =
∑

τ∈Traj(x,y)
w(τ).

The random walk is said to be transient if the probability of ever returning to
the start point is less than 1. In this case, G(x, y) < ∞ for all x, y ∈ G; in the
opposite case the random walk is called recurrent [40].

By work of Varopoulos [39, Theorem 4.6], if there is a measure μ on G
whose support generates G as a semigroup and the random walk is recurrent,
then G is either finite or contains Z or Z

2 as a finite index subgroup. We will
from now on assume that the random walk is transient.

For a subset V ⊂ Traj(x, y) let G(V ) = ∑
τ∈V w(τ) be the total weight of

trajectories in V . For each x, y ∈ G one can define a probability measure Px,y
on the set Traj(x, y) of trajectories from x to y as follows

Px,y(V ) = G(V )
G(x, y) , V ⊂ Traj(x, y). (4)

For U ⊂ G let G(x, y,U ) be the total weight of trajectories from x to y
whose interior is contained in U . For a real number t define

G(x, y|t) =
∞∑

n=0

tn pn(x, y) (5)

It is easy to see that G(., .|t) is G equivariant, i.e.

G(gx, gy|t) = G(x, y|t)

for all x, y, g ∈ G, t > 0.
When the support of μ generates G as a semigroup, the convergence of the

series in (5) does not depend on x, y (see e.g. [40, Lemma 1.7]). Consequently,
the radius r(μ) of convergence of G(x, y|.) is independent of x, y ∈ G. Note,

r(μ) = lim inf
n→∞ pn(x, y)−1/n.

The number ρ(μ) = 1/r(μ) is called the spectral radius of μ. Kesten [31],
[32] and Day [7] proved that ρ(μ) < 1 whenever G is non-amenable and the
support of μ generates G as a semigroup.

The following is a (local) Harnack inequality:
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770 I. Gekhtman et al.

Lemma 2.1 Assume that G is a finitely generated group equipped with a
probability measure μ whose support generates G a semigroup.

Then for each t ∈ (0, r(μ)) there is a λ = λt ∈ (0, 1) such that for all
x, y, z ∈ G one has G(x, y|t) ≥ G(x, z|t)λd(y,z) and similarly
G(x, y|t) ≥ G(z, y|t)λd(x,z).

This easily implies:

Corollary 2.2 For each t ∈ (0, r(μ)) there is an Lt > 1 such that

L−d(x,y)
t ≤ G(x, y|t) ≤ Ld(x,y)

t

for all x, y, z ∈ G.

We will need the following.

Proposition 2.3 If G is non-amenable and the support of μ generates G as a
semigroup, there exists 0 < φ < 1 and D > 0 such that for any x, y ∈ G and
M ∈ N one has

Px,y(γ ∈ Traj(x, y) : length(γ ) ≥ M) ≤ φM−Dd(x,y). (6)

Proof Since � is non-amenable, r(μ) > 1. Let t ∈ (1, r(μ)). Then

G(x, y|t) =
∞∑

n=0

tn pn(x, y)

converges for all x, y ∈ G. Let φ = 1/t and L = max(L1, Lt , t).
We have

∑

n≥M

pn(x, y) ≤ t−M
∑

n≥M

tn pn(x, y) ≤ t−MG(x, y|t) ≤ φMLd(x,y).

On the other hand,

G(x, y) ≥ L−d(x,y).

Thus we obtain

∑

n≥M

pn(x, y) ≤ φML2d(x,y)G(x, y) = φM−Dd(x,y)G(x, y)

where D = 2 logt L > 0. �	
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Martin boundary covers Floyd boundary 771

The following Proposition shows that Theorem 1.3 implies the inequality
(1). This fact determines our further strategy to prove Theorem 1.3 which will
be done in Sects. 4–6.

Proposition 2.4 The conclusion of Theorem 1.3 implies the inequality (1).

Proof By applying the exponential function to the inequality (1) we can restate
it in the following multiplicative form:

G(x, y) ≤ S(δ f
w(x, y))G(x, w)G(w, y), (7)

where S(δ f
w(x, y)) = eA(δ

f
w(x,y))/G(o, o) is a positive non-increasing function.

So it is enough to show that the inequality (7) follows from Theorem 1.3.
Let ε = 1/2 and R = R 1

2
(δ

f
w(x, y)) given by Theorem 1.3. It implies that

Px,y(γ ∈ Traj(x, y) : γ ∩ B(w, R) 
= ∅) ≥ 1/2.

So

G(x, y) ≤ 2
∑

z∈B(w,R)
G(x, z)G(z, y).

Since the support supp(μ) generates G as a semigroup by Lemma 2.1 there
is a finite number L (depending only on (G, μ)) such that for all x, y ∈ G and
z ∈ B(w, R) one has

L−d(z,w) ≤ G(x, z)/G(x, w) ≤ Ld(z,w) and

L−d(z,w) ≤ G(z, y)/G(w, y) ≤ Ld(z,w).

Thus,

G(x, y) ≤ 2L2R|B(w, R)|G(x, w)G(w, y),

where | · | denotes the cardinality of a set. So the inequality (7) follows. �	

3 Background on the Floyd compactifications

By a graphwemean a pair (�0, �1)where �0 is a set and �1 is a set of subsets
of �0 of cardinality 2.

A path in � is a map γ : J → �0 where J is a finite non-empty interval in
Z, such that {γ (i), γ (i+1)} ∈ �1 for all i ∈ J\{maxJ }. The length of such a
path γ is the number maxJ−minJ .
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772 I. Gekhtman et al.

For x, y ∈ �0 let Path(x, y) = {γ : J → �0 : γ (minJ ) = x, γ (maxJ )
= y}.

Suppose that � is connected. Then the distance function d on �0 is given
by

d�(x, y) = d(x, y) = min{length(γ ) : γ∈Path(x, y)}.

Let f : R�0 → R>0 be a non-increasing continuous function. We use f
to rescale the distance d as follows. For a fixed vertex v∈�0 and every edge
e∈�1 we declare that the ( f, v)-length of the edge e is equal to length

f
v (e) =

f (d(e, v)).3 The ( f, v)-length of a path J
γ→ �0 is the number

length f
v (γ ) =

∑

j∈J\{maxJ }
length f

v {γ ( j), γ ( j+1)}.

Then the quantity

δ f
v (x, y) = min{length f

v γ : γ∈Path(x, y)}

defines a distance called the Floyd distance. If the rescaling function f is fixed
we will use the notation δv(x, y).

We suppose that the graph � is locally finite, i.e, the set of edges containing
any given vertex v∈�0 is finite.

If the rescaling function f satisfies the condition

∞∑

k=0

f (k) < ∞ (8)

then the Cauchy completion of the metric space (�0, δ
f
v ) is compact.

Now we impose on f one more condition:

∃ κ ≥ 1 ∀n ∈ N : 1 ≤ f (n)

f (n+1)
≤ κ. (9)

Any nonincreasing function satisfying (8) and (9) is called a Floyd rescal-
ing function. For such a function, the Cauchy completion � f (called the Floyd
compactification of � with respect to f ) does not depend on the choice of
the base point v and every isometry of the metric space (�, d) is uniformly

3 In most cases the function f needs to only be defined on N ∪ {0}, to cover all cases we
consider it on R�0 .
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Martin boundary covers Floyd boundary 773

continuous with respect to the Floyd distance δ f
v and hence extends to a home-

omorphism � f → � f .
The complement ∂ f �=� f \�0 is the Floyd boundary of � corresponding

to f .
Suppose that � = Cay(G, S) is a Cayley graph of a group G with respect

to a finite generating set S. For a fixed system S and a vertex v ∈ G rescaling
the word distance d(v, edge) by a function f we obtain in the same way the
Floyd compactification of G and its boundary denoted respectively by G f and
∂ f G.

As mentioned in the introduction, if we have two Floyd functions f and h
such that h(r) ≤ f (r) (r ∈ R�0), then once our main theorems are true for f
they are also true for h. We will further need the following.

Lemma 3.1 For every Floyd function f there exists a Floyd function g such
that f (n) ≤ g(n) and g(n)/g(2n) is uniformly bounded above for all n ∈ N.

The proof of the Lemma follows from a more general proposition below.
Let us introduce the following sets:

A = {the continuous non-increasing functions R�0 → R>0}.
For a fixed σ∈R>1, let

Aσ = { f ∈ A : ∀x, y ∈ R�0 x ≤ y ⇒ f (x)xσ ≤ f (y)yσ }
and finally

B = { f ∈ A :
∫ ∞

0
f (t)dt < ∞}.

Proposition 3.2 For all f ∈ B there exists g ∈ B ∩ Aσ such that ∀r ≥ 0 :
f (r) ≤ g(r) (denoted below by f ≤ g).

The Proposition implies the Lemma. Indeed, if f is a Floyd function, then
f ∈ B ∩ A. Then by the Proposition there exists g ∈ B ∩ Aσ : f ≤ g. Since
g ∈ Aσ we have g(n)nσ ≤ g(2n)(2n)σ and so g(n)/g(2n) ≤ (1/2)σ (n ∈ N)

implying the Lemma.

Proof of the Proposition. The proof is rather elementary but not obvious, so
we provide it here. For f ∈A define the function f (σ ) such that

f (σ )(0) = f (0) and f σ (t) = sup{ f (r)(r/t)σ : r ≤ t}, t > 0.

Denote g = f σ . We have g ≥ f and g : R�0 → R>0 is a continuous
function. Let us show that g is non-increasing. Indeed for y ≤ x and y > 0
there exists x0 ∈ [0, x] : g(x) = f (x0)(x0/x)σ . Then if x0 ∈ [y, x] we
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774 I. Gekhtman et al.

have f (x0) ≤ f (y) so g(x) ≤ f (y) ≤ g(y); and if x0 < y then g(x) <
f (x0)(x0/y)σ ≤ g(y).
It is a direct verification that g ∈ Aσ .

It remains to prove that f ∈ B ⇒ f (σ ) ∈ B.
Denote O = {t : g(t) 
= f (t)}}. We will prove that

∫
O g(t)dt <

1
ρ

∫ ∞
0 f (t)dt where ρ = σ − 1 > 0.
Let C be the set of the connected components of O . For I = (a, b) ∈ C we

have f (a) = g(a), f (b) = g(b) and ∀ t ∈ I : f (t) < g(t). Then

∃ t0 ∈ [0, t) : g(t) = f (t0)(t0/t)
σ . (10)

It follows that g(t0) = f (t0), as otherwise there is xo < t0 such that
f (x0)(x0/t0)σ > f (t0). Then f (t0)(t0/t)σ < f (x0)(x0/t)σ which is impos-
sible by (10).

Furthermore, t0 = a as if c < a and for t ∈ I we have f (c)(c/t)σ <

f (c)(c/a)σ ≤ g(a) = f (a). Hence, g(t) = f (a)(a/t)σ for all t ∈ I . By
continuity of g we also have g(b) = f (a)(a/b)σ = f (b).

Denote ζ = 1 − f (b)/ f (a) ∈ (0, 1) then a/b = ( f (b)/ f (a))1/σ = (1 −
ζ )1/σ . We have

∫ b

a
g(t)dt = f (a)aσ

∫ b

a
(dt/tσ ) = ( f (a)a/ρ)(1 − (1 − ζ )ρ/σ ) <

<
1

ρ
a f (a)ζ = 1

ρ
a( f (a)− f (b)).

Thus

∫

O
g(t)dt <

1

ρ

∑

(a,b)∈C
a( f (a) − f (b)) <

1

ρ

∫ ∞

0
f (t)dt.

The latter inequality takes place as the expression
∑

(a,b)∈C a( f (a) − f (b))
is the area of the union of pairwise disjoint rectangles [0, a]×( f (b), f (a))
situated below the graph of f . The Proposition is proved. �	

In the introduction the dynamical definition of the notion of relative hyper-
bolicity was given. This definition, due to B. Bowditch, states that a finitely
generated group is relatively hyperbolic if it admits a minimal geometrically
finite action on a compactum T . Recall that a convergence action G � T
is geometrically finite and minimal if every point of T is either conical or
bounded parabolic [4]. By minimality of the action, the compactum T coin-
cides with the limit set �G of the action. Furthermore this action extends to
a convergence action on the compactum GB = G 	�G, called the Bowditch
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compactification and �G is called the Bowditch boundary. The equivalence
of this definition to several other definitions of relative hyperbolicity has been
discussed in series of papers e.g. [17,18,20,27,42].

The Floyd compactification has been instrumental in studying relatively
hyperbolic groups. Indeed, the following resultwill be often used in this context
(see Sect. 9):

Theorem 3.3 [18, Proposition 3.4.6] Let G � T be a non-elementary geo-
metrically finite minimal action on a compactum T = �G. Then there exists
a positive λ∈(0, 1) such that for every function f : R�0 → R>0 satisfying the
conditions (8), (9) and f (r) ≤ λr (r ∈ R) there is a continuous equivariant
surjection ϕ : ∂ f G → T .

We note that this theorem was first proved by W. Floyd [12] in the context
of Kleinian groups acting on 3-dimensional hyperbolic space H

3 and for the
rescaling function f (n) = 1

1+n2
. In [18] it is proved for the exponential func-

tion f0(n) = λn (for a fixed λ ∈ (0, 1) and n ∈ N). Theorem 3.3 remains valid
for every Floyd function greater than f0 (in particular for f ).

4 Proof of Theorem 1.1: geometric part

The goal of this and the next sections is to prove Theorem 1.1 for a finitely
generated non-amenable groupG equippedwith a probabilitymeasure of finite
support which generates G as a semigroup. The amenable case will be treated
in Sect. 6.2.

By Proposition 2.4 to prove Theorem 1.1 it is enough to prove Theorem 1.3.
In this section we will prove Proposition 4.3 below and in the next section we
will use it to obtain Theorem 1.3. To state this Proposition we need few more
preliminaries.

Letd denote theword distance onG.Given a symmetric probabilitymeasure
μ on G, Blachere and Brofferio [2] introduced a metric dG on G, called the
Green metric, given by

dG(x, y) = −ln
G(x, y)
G(o, o) ,

where o is a basepoint in G. If μ is symmetric this expression defines a metric
if the Markov chain defined by μ is transient. When μ is not symmetric, dG
defines a pseudo-metric onG (whichwe still callmetric). This metric is proper
(i.e every ball of finite radius is a finite set) unlessG contains a finite index copy
of Z [8, Theorem 25]. If G is non-amenable and μ has exponential moment
dG is quasi-isometric to the word metric on G (see [3, Lemma 3.6] for the
symmetric case and [16, Proposition 7.8] in general).
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Recall that δ f
z denotes the Floyd distance based at a point z with respect to

the Floyd rescaling function f . Since δ f
z is invariant under left multiplication

we can assume that z = o is a fixed basepoint. Let θ > 1 be a fixed constant
(it will suffice throughout to consider θ = 2).

We need the following elementary Lemma.

Lemma 4.1 There exists a strictly decreasing function e : R>0 → R>0 such
that as r → ∞ we have:

e(r) → 0, (11)

and

e(r) − e(θr)

r2 f (r)
→ ∞. (12)

Proof Consider auxiliary functions

η(s) =
∫ ∞

s
f (t)dt

and

g(t) = f (t/θ)

η(t/θ)1/2
.

The condition (8) of the last section implies that η(·) is bounded and
lim
s→∞ η(s) = 0. Set

e(r) =
∫ ∞

r
g(t)dt. (13)

Since dη
ds = − f (s) for every M > 0 we obtain

∫ M

0

f (t/θ)

η(t/θ)1/2
dt = θ

∫ η(0)

η(M/θ)

dη√
η

≤ 2θ
√
η(0).

So the function e(·) is well-defined, strictly decreasing and satisfies (11). By
themeanvalue theorem there is an s ∈ [r, θr ]with e(r)−e(θr) = (θr−r)g(s).
Since f is decreasing we have

e(r) − e(θr)

r f (r)
= (θ − 1)g(s)

f (r)
= (θ − 1)

f (s/θ)

f (r)η(s/θ)1/2
≥ θ − 1

η(s/θ)1/2
→ ∞

as r → ∞. �	
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Remark 4.2 If f satisfies f (r) ≤ r−1−ε for some ε > 0 we can use in the
argument above the simpler expression e(r) = 1/ ln r.

Let e : R>0 → R>0 be a function satisfying Lemma 4.1. For a basepoint
o ∈ � and for every x ∈ �0 denote by B f (x, e(r)) the open ball around x in
the Floyd metric δ f

o of radius e(r); and by B(o, r) the open ball of radius r
around o in the word metric. Set

Er (x) = B(o, r) ∩ B f (x, e(r)).

The sets are indicated on the figure below.

The following geometric estimate is crucial for the proof of Theorem 1.3.

Proposition 4.3 There are functions R0 : R>0 → R>0 and h : R>0 → R>0

with lim
r→∞ h(r)/r = ∞ such that for all x, y ∈ G and all r > R0(δ

f
o (x, y)),

for each u ∈ Eθr (x) and v ∈ Eθr (y), any path from u to v disjoint from one
of Er (x) or Er (y) has length at least h(r).

Proof For fixed x, y ∈ G and the basepoint o denote by δ the Floyd distance
δ
f
o (x, y). Let γ = γ0, ..., γN be a path ofword length N from u = γ0 ∈ Eθr (x)
to v = γN ∈ Eθr (y) disjoint from Er (x).

Suppose first that γ does not pass through B(o, r) then δ
f
o (γi−1, γi ) ≤

f (r) (i ∈ {0, ..., N }), implying:

δ
f
o (u, v) ≤ l fo (γ ) =

N∑

i=1

δ
f
o (γi−1, γi ) ≤ N f (r).

So in this case we have

δ = δ
f
o (x, y) ≤ δ

f
o (u, v) + 2e(θr) ≤ N f (r) + 2e(θr),
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and so

N ≥ δ − 2e(θr)

f (r)
. (14)

Suppose now that γ passes through B(o, r). We have γ0 = u ∈
Eθr (x)\Er (x), so δ

f
o (x, u) < e(θr) < e(r) as the function e(·) in (13) is

strictly decreasing. Since γ ∩ Er (x) = ∅ then u = γ0 /∈ B(o, r). Let γi0
be the first intersection point of γ with B(o, r), 0 < i0 ≤ N . Then for all
i ∈ {1, ..., i0} we still have δ f

o (γi−1, γi ) ≤ f (r).
Since γi0 ∈ B(o, r)\Er (x) it follows δ

f
o (γi0, x) ≥ e(r). Thus, δ f

o (u, γi0) ≥
e(r) − e(θr). Summarizing all this we obtain

N f (r) ≥ i0 f (r) ≥ ∑
1≤i≤i0 δ

f
o (γi−1, γi ) ≥ δ

f
o (u, γi0) ≥ e(r) − e(θr).

By Lemma 4.1 lim
r→0

e(r) = 0 so there exists R0 = R0(δ) such that for all

r ≥ R0 we have

δ ≥ e(r) + e(θr). (15)

Therefore in both cases we obtain

N ≥ e(r) − e(θr)

f (r)

Set

h(r) = e(r) − e(θr)

f (r)
.

It follows from (12) that h(r)/r → ∞ as r → ∞. The same argument works
if the path γ is disjoint from Er (y). The proposition is proved. �	

5 Conclusion of the proof of Theorem 1.1.

In this section we still assume that G equipped with a measure μ of finite
support generatingG as a semigroup.We also assume thatG is a non-amenable
group, the case when G is amenable will be treated in Sect. 6.2.

Using Lemma 3.1 and the remark preceding it, we may assume without lost
of generality that the Floyd function f satisfies the following condition:

f (n)

f (2n)
≤ D, n ∈ N, (16)

for a uniform constant D ∈ (1,+∞).
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Let S be a finite symmetric system of generators ofG. The following lemma
shows that we can also assume that S ⊃ supp(μ).

Lemma 5.1 Let S′ denote a symmetric generating system of G containing
S and supp(μ). If the inequality (1) is satisfied on the Cayley graph �′ =
Cay(G, S′) then it is also true on � = Cay(G, S).

Proof Since both generating systems S and S′ are finite, the identity map
id : �′ → � is quasi-isometric. Thenby [19,Lemma2.5] it induces aLipschitz
map ϕ : (�′, δ′) → (�, δ)where δ′ and δ are the Floyd distances on the graphs
�′ and� respectively, based at the same vertex of both graphs, andwith respect
to the same Floyd rescaling function f . Then there exists a uniform constant
ε > 0 such that for every triple of distinct points x, y, z ∈ G and for every
Floyd function f satisfying (16) one has (see formula (7) in [19]):

δ′
y(x, z) ≥ ε · δy(x, z).

The formula (1) is valid for �′ with the decreasing function A′(·) for the
remainder term. Since A′(δ′

y(x, z)) ≤ A′(ε · δy(x, z)) for all x, y, z ∈ G, the
formula (1) holds on the graph � with the remainder term A(t) = A′(ε · t). �	

Let τ = {g0 = x, , g1, ..., gn = y} ∈ Traj(x, y) such that g−1
i−1gi ∈ suppμ.

By Lemma 5.1 we may assume that supp(μ) ⊂ S so d(gi−1, gi ) = 1, i ∈
{1, ..., n}. Then τ ∈ Path(x, y) and Traj(x, y) ⊂ Path(x, y) for all x, y ∈ G.

Recall that by Proposition 2.4 Theorem 1.3 implies Theorem 1.1. So the
rest of this section is devoted to proving Theorem 1.3 in case when the support
of μ is contained in the finite generating set S. We restate Theorem 1.3 here
in a more precise form:

Theorem 5.2 Letμ be a probabilitymeasure on a non-amenable groupG with
support generating G as a semigroup and contained in a finite generating set S
of G. For every ε ∈ (0, 1) there exists a decreasing function Rε : R>0 → R>0
such that for all x, y, w ∈ G one has

Px,y(τ ∈ Path(x, y) : τ ∩ B(w, R) 
= ∅) > 1 − ε, (17)

where B(w, R) is the ball in the Cayley graph � = Cay(G, S) centered at w
of radius R = Rε(δ

f
w(x, y)) in the word metric.

By equivariance we can assume that w is the basepoint o ∈ G. A sample
path from x to y will be called r -regular if it intersects both Er (x) and Er (y)
(defined in the previous section). Denote by Regr (x, y) the set of r -regular
paths from x to y and by Qr (x, y) the set of paths which are (θr)-regular
but not r -regular (an element of the set Qr is indicated on the figure from the
previous section).

123



780 I. Gekhtman et al.

Recall that θ > 1 is a fixed number. We have the following.

Lemma 5.3 For all x, y ∈ G and r > R0 = R0(δ
f
o (x, y)) we have

Px,y(Qr (x, y)) ≤ φh(r)−2Dθr , (18)

where the functions h and R0 come from Proposition 4.3, and the constants D
and φ from Proposition 2.3.

Proof We first claim that for Vr = Er (x) or Vr = Er (y) we have

sup
{G(u, v, V c

r )

G(u, v) : (u∈Eθr (x) ∧ v∈Eθr (y)) ∨ (u∈Eθr (y) ∧ v∈Eθr (x))
}

≤ φh(r)−2Dθr ,

(19)

where V c
r = Path(x, y)\Vr .

Indeed, by Proposition 4.3, if r > R0(δ
f (x, y)), any path from u ∈ Eθr (x)

to v ∈ Eθr (y) (or from u ∈ Eθr (y) to v ∈ Eθr (x)) disjoint from Er (x) (respec-
tively Er (y)) has length at least h(r) while d(u, v) ≤ 2θr . Thus, Proposition
2.3 implies:

G(u, v, V c)

G(u, v) ≤ φh(r)−2θr D,

proving the claim.
We now proceed to prove (18).
For a θr -regular path γ = (γ0, ..., γ j0, ..., γ j1, ..., γN ) between x = γ0 and

y = γN let u = γ ( j0) be the first intersection point of γ with Eθr (x) or with
Eθr (y); and v = γ ( j1) be the last intersection point of γ respectively with
Eθr (y) or with Eθr (x).
Consider the following product:

Ur = (Er (x) × Er (y)) ∪ (Er (y) × Er (x)).

We have

G(γ ∈ Regθr (x, y))

=
∑

(u,v)∈Uθr

G(x, u, Ec
θr (x) ∩ Ec

θr (y))G(u, v)G(v, y, V c
θr ),

(20)

where in the last term v ∈ Vθr = Eθr (y) if u ∈ Eθr (x); and v ∈ Vθr = Eθr (x)
if u ∈ Eθr (y).

In the special casewhen the initial point x belongs to oneof the sets Eθr (x)or
Eθr (y) by definition of u we have u = γ ( j0) = x . Then G(x, x, Ec

θr (x)) = 1
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and G(u, v) = G(x, v) in (20). Similarly if y ∈ Eθr (x) ∪ Eθr (y) then v = y
and the third factor in (20) is 1.

For the paths which avoid Vr ∈ {Er (x), Er (y)} by the same rules we have

G(γ ∈ Qr (x, y))

=
∑

(u,v)∈Uθr
Vr∈{Er (x),Er (y)}

G(x, u, Ec
θr (x) ∩ Ec

θr (y))G(u, v, V c
r )G(v, y, V c

θr ).

(21)

Note that the only difference between the formulas (20) and (21) is in their
middle factors. Applying (19) estimating the ratio of these factors we obtain:

Px,y(γ ∈ Qr (x, y)) ≤ G(γ ∈ Qr (x, y))

G(γ ∈ Regθr (x, y))
≤ φh(r)−2θr D. (22)

The Lemma is proved. �	
Proof of Theorem 5.2. For a given ε > 0 we need to find R such that the
inequality (17) holds. Let R0 = R0(δ

f
o (x, y)) be the number given by Lemma

5.3. We first choose R such that

R > R0 = R0(δ
f
o (x, y)). (*)

By Proposition 4.3 h(R)/R → ∞ (R → ∞), so choosing R sufficiently
large we can also assume that

h(Rt) ≥ (2D + 2)Rt, (**)

for all t ≥ 1. Putting t = θ i (i ∈ N) we obtain h(θ i R) − 2θ i RD ≥ 2θ i R ≥
(i + 1)R for each i ≥ 0.

Thus we obtain

∞∑

i=0

φh(θ i R)−2θ i RD ≤
∞∑

i=0

φ(i+1)R = φR/(1 − φ) < ε (23)

when R is large enough.
Let us fix R such that the inequalities (∗), (∗∗) and (23) are true. Then any

path in Path(x, y) either passes through B(o, R) or is an element of the set
∞⋃

i=0

Qθ i R(x, y). Indeed, if γ ∩ B(o, R) = ∅ then there exists m ∈ N such
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that x ∈ Eθm R(x) and y ∈ Eθm y , so γ is θmR-regular. Assume now that
m is the minimal number with this property. We have m > 0 as otherwise
γ ∩ B(o, R) 
= ∅. So γ is not (θm−1R)-regular and belongs to Qθm−1R .

By (18) and (23) we have

Px,y

( ∞⋃

i=0

Qθ i R(x, y)

) ∞∑

i=0

Px,y(Qθ i R(x, y))

≤
∞∑

i=0

φh(θ i R)−2θ i RD < ε.

(24)

Therefore:

Px,y(γ ∈ Path(x, y) : γ ∩ B(o, R(δ f
o (x, y)) 
= ∅) ≥ 1 − ε. (25)

This completes the proof of Theorem 5.2 and so that of Theorem 1.1 if G is
non-amenable. �	

6 Proof of Theorem 1.2: extension to infinite support

6.1 The case of infinite support: non-amenable case

The goal of this subsection is to prove Theorem 1.2 for measures with infinite
support but superexponential moment when G is a non-amenable group. The
amenable case is treated in the next subsection.

Recall that μ has superexponential moment if it satisfies

∑

g∈G
c||g||μ(g) < ∞

for all c > 1 and ||g|| = d(o, g) where o is a fixed basepoint in the Cayley
graph which we identify with the neutral element of G.

Recall that a functionW : R�0 → R�0 is said to decay superexponentially
if lim

t→∞ ctW (t) = 0 for each c > 1 or equivalently lim
t→∞ t−1 lnW (t) = −∞. It

is an elementary observation that if μ has superexponential moment then the
remainder

∑

g∈G:||g||>t

μ(g)

decays superexponentially in t .
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The goal is to prove Theorem 1.3 for measures of superexponential moment
which will imply the inequality (1).

We assume in this subsection that the Floyd function f decays at least as
fast as r → r−2−η for a fixed η > 0. It suffices to only consider functions
of the form f (r) = r−2−η (η > 0). Indeed the function R(·) from Theorem
1.3 is decreasing so once we prove Theorem 1.3 for a fixed Floyd function,
the analogue for faster decaying Floyd functions follows automatically. Let
θ > 1. We will use the following modification of Lemma 4.1.

Lemma 6.1 There exists a function e : R>0 → R>0 such that as r → ∞ we
have e(r) → 0 and

e(r) − e(θr)

r2 f (r)
→ ∞

Proof An easy computation shows that e(r) = 1
ln r satisfies the claim. �	

Since the measure is infinitely supported we will consider general trajecto-
ries having different jumps and not paths with every jump of length one as it
was in the previous section. We have the following adaptation of Proposition
4.3 (this is where we use the assumption on the Floyd function).

Proposition 6.2 Let f (r) = 1/r2+η (η > 0) be a Floyd function. Then there
are functions R0 : R>0 → R>0 and h : R>0 → R>0 with h(r)/r → ∞
as r → ∞ such that for all x, y ∈ G and all r > R0(δ

f
o (x, y)), for each

u ∈ Eθr (x) and v ∈ Eθr (y), any path from u to v disjoint from Er (x) with
jump size bounded by r has length at least h(r).

Proof Denote by δ the Floyd distance δ
f
o (x, y). Let γ = γ0, ..., γN be a

trajectory from u = γ (0) ∈ Eθr (x) to v = γ (N ) ∈ Eθr (y) not intersecting
Er (x) and with jump size bounded by r (which may be arbitrarily large).
First consider the case when γ does not pass through B(o, r). Since γ has

jump size bounded by r , by the triangle inequality we have

d(o, γ |[n,n+1]) > r/2 for all n.

Hence,

Nr f (r/2) ≥ δ
f
o (u, v) ≥ δ − δ

f
o (x, u) − δ

f
o (v, y) ≥ δ − 2e(θr). (26)

Suppose now that γ does pass through B(o, r) and let γ (i0) be the first
intersection of γ with B(o, r). Then by the argument used in the proof of
Proposition 4.3 and applied to the interval [0, i0), we have

Nr f (r/2) ≥ ri0 f (r/2) ≥ δ
f
o (γ (i0), u)). (27)
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As γ does not intersect Er (x) we must have δ f
o (x, γ (i0)) ≥ e(r). Since

u ∈ Eθr (x) we have δ
f
o (x, u) ≤ e(θr), and so

δ
f
o (u, γ (i0)) ≥ e(r) − e(θr). (28)

Then (27) and (28) imply

Nr f (r/2) ≥ e(r) − e(θr). (29)

Since the function e(r) decays to zero there exists R0 = R0(δ) such that for
all r ≥ R0 we have

δ ≥ er + eθr. (30)

Therefore from (26) and (29) we obtain

N ≥ e(r) − e(θr)

r f (r/2)
≥ const

e(r) − e(θr)

r f (r)
= h(r).

Indeed f (r) = r−2−η so f (r)/ f (r/2) = (1/2)2+η. By Lemma 6.1
h(r)/r → ∞ and the Proposition follows. �	

For each n we can write μ = μn + σn where μn is the restriction of μ to
the ball B(0, n) = {g ∈ G : ||g|| ≤ n} and σn = μ − μn .

The contribution to G(x, y) of trajectories of length M , with exactly m
jumps of size greater than n is bounded by

(
M

m

)
|σn|m |μn|M−m

where for a measure λ we use the notation |λ| to denote λ(G).
Wewill need the following lemmawhose proof is a straightforward exercise.

Lemma 6.3 The function W : R>0 → R>0 given by

W (t) =
√
t ln |σt |−1.

has the following properties:

(1) W (t)/t → ∞ as t → ∞;
(2) for each c > 1 the quantity cW (t)|σt | decays superexponentially.
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Proof of Theorem 1.3 for measures of superexponential moment. We assume
that z = o is the basepoint. The only step where we need to deviate from the
finite support case is in estimating (using our superexponential moment con-
dition) the quantities G(u, v, Ec

r (x)) and G(u, v, Ec
r (x)) for each u ∈ Eθr (x)

and v ∈ Eθr (x).
We need to prove that G(u, v, Ec

r (x)) ≤ �(r)G(u, v) and G(u, v, Ec
r (y)) ≤

�(r)G(u, v)where�(r) decays superexponentially in r . Indeed, if this is true
then proceeding as in the proof of Theorem 1.3 in the finite support case, we
obtain the inequality Px,y(Qr (x, y)) ≤ 2�(r) (see Lemma 5.3). Since �(r)
decays super-exponentially, we have

∞∑

i=0

�(θ i R) < ε

for large enough R = Rε(δ
f
o (x, y)). Thus exhausting the complementary

Bc(o, R) of the ball B(o, R) by the sets Qθr as in (24) we will obtain the
requested result:

G(x, y, Bc(o, R)) <
∞∑

i=0

G(x, y)�(θ i r) ≤ εG(x, y).

So let us estimateG(u, v, Ec
r (x)) (the estimate forG(u, v, Ec

r (y)) is similar).
We have d(u, v) ≤ 2θr . By Proposition 6.2 any trajectory with no jumps

of length greater than r has length at least h(r). Hence, by Proposition 2.3 the
contribution to G(u, v, Ec

r (x)) of trajectories with no jumps greater than r is
at most φh(r)−2DθrG(u, v).

Also by Proposition 2.3, the contribution of trajectories of length at least
W (r) is at most φW (r)−2DθrG(u, v).

It remains to control the contribution to G(u, v, Ec
r (x)) of trajectories of

length at mostW (r)with at least one jump of size at least r . Then it is bounded
above by

W (r)∑

m=1

m−1∑

k=0

(
m

k

)
|σr |m−k |μr |k (31)
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Since m − k ≥ 1, in the above expression we have |σr |m−k ≤ |σr | so (31)
is bounded above by

|σr |
W (r)∑

m=1

m−1∑

k=0

(
m

k

)
|μr |k ≤

≤ |σr |
W (r)∑

m=1

(1 + |μr |)m ≤ |σr |
W (r)∑

m=0

2m ≤ 2W (r)+1|σr |.

By the Harnack inequality there is a universal 1 > λ > 0 such that

G(u, v) ≥ G(o, o)λd(u,v) ≥ G(o, o)λ2θr .

Thus the contribution to G(u, v, Ec
r (x)) of trajectories of length at most W (r)

with at least one jump of size at least r is bounded above by

2W (r)+1|σr |λ−2θrG(o, o)−1G(u, v).

Since W (r)/r → ∞ (r → ∞) the above quantity is bounded above by
CW (r)|σr | for a constant C.

By Lemma 6.3 the latter quantity tends to 0 superexponentially fast as
r → ∞.

Putting everything together, we obtain

G(u, v, Ec
r (x)) ≤ �(r)G(u, v)

where

�(r) = max
(
CW (r)|σr | , φW (r)−2Dθr , φh(r)−2Dθr

)

tends to zero superexponentially fast as r → ∞. �	

6.2 Amenable case

Assume now that G is amenable. If G is not virtually cyclic, Theorem 1.3
holds with no assumption on the moment of μ. Indeed, A. Karlsson showed
that |∂ f G| ≤ 2 [29, Corollary 2] for any amenable group G. If ∂ f G is empty
then G is finite so every random walk on a finite group is recurrent and the
result holds.

If |∂ f G| = 1, for a fixed δ > 0, consider a triple x, y, z ∈ G such that
δz(x, y) = δ. Since the boundary is a single point, the points x and y cannot
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both tend to the boundary. Hence, there exists R = R(δ) such that {x, y} ∩
B(z, R) 
= ∅ and the theorem trivially holds in this case too.
If |∂ f G| = 2 then G is virtually cyclic. Indeed, the action G � G f is

convergence [29, Proposition 3], and up to passing to a subgroup of index
2 we may assume that both points of ∂ f G are fixed by the group. Then G
contains a loxodromic element which generates a cyclic subgroup of finite
index of G [38, Theorem 2I].

Suppose G contains a cyclic subgroup H such that |G : H | < ∞. Identi-
fying H with Z we denote by [w] the projection of w ∈ G to H and |[w]| its
length. Then ||w|| �C |[w]| for a uniform constant C > 0 (where the symbol
�C means C-bilipschitz equivalent).

Let E+
r = {g ∈ G : 0 ≤ [g] ≤ r} and E−

r = {g ∈ G : −r ≤ [g] ≤ 0}.
Let Er = E−

r ∪ E+
r , r ∈ R>0.

To prove Theorem 1.3 in this casewe fix a basepoint o ∈ G and consider two
points x, y ∈ G such that δ f

o (x, y) ≥ δ for some constant δ > 0.As in the case
above x and y cannot approach the same boundary point of ∂ f G so without
loss of generality we may assume that [x] < −r and [y] > r (r ∈ R>0).

Similarly to Sect. 5, a trajectory from x to y is called r -regular if it intersects
both E+

r and E−
r and denote by Qr the set of trajectories which are 2r -regular

but not r -regular. Then a simplified version of the proof in the non-amenable
case (see Propositions 4.3 and 6.2) will give an estimate on the measure of Qr .

If the support of μ is finite then every trajectory between x and y has
uniformly bounded jumps so for sufficiently big r we have Qr = ∅, and
Theorem 1.3 follows in this case.

In the case when μ is infinitely supported but has a superexponential
moment it is enough to find a superexponentially decaying function � such
that Px,y(Qr ) < �(r). As in the proof of Lemma 5.3, it suffices to show that
for V = E±

r we have:

sup
u∈E−

2r ,v∈E+
2r

{
max

(G(u, v, V c)

G(u, v) ,
G(v, u, V c)

G(v, u)
)}

≤ �(r), (32)

For u ∈ E−
2r , v ∈ E+

2r we consider a trajectory γ ∈ Traj(u, v) disjoint from
E+
r . Every such trajectory contains a jump from some w1 with k = [w1] < 0

to some w2 with l = [w2] > r .

G(u, v, (E+
r )

c) ≤
∑

k�0,l>r

G(u, w1)p(w1, w2)G(w2, v).

Since the random walk is transient the function G is bounded. The super-
exponential moment condition implies that for any d ∈ (0, 1) we have
p(w1, w2) ≤ const · d |k−l| where the constant depends on the constant C

123



788 I. Gekhtman et al.

above. Therefore,

G(u, v, (E+
r )

c) ≤ const ·
∑

k≤0,l>r

d |k−l| ≤ const · dr .

By the Harnack inequality (Corollary 2.2) there is some constant λ ∈ (0, 1)
such that G(u, v) ≥ λd(u,v) ≥ λC |[u]−[v]| ≥ λ4Cr for all u ∈ E−

2r , v ∈ E+
2r . So

we obtain

sup
u∈E−

2r ,v∈E+
2r

G(u, v, (E+
r )

c)

G(u, v) ≤ const · dr/2

for all d < λ8C . By an identical argument the same is true with (E−
r )

c in place
of (E+

r )
c, and also when the order of u and v is reversed. Letting �(r) be the

supremum of these four superexponentially decaying quantities we obtain the
estimate (32). The proof of Theorem 1.3 is finished.

7 A map from the Martin boundary to the Floyd boundary

7.1 Construction of the map

As before, we consider a finitely generated group G with a probability mea-
sure μ on G whose support generates G as a semigroup. Denote by G the
associated Green function. Recall that the Green metric on G is given by

dG(x, y) = − ln
G(x, y)
G(o, o) ,where o ia a basepoint in G. The horofunction com-

pactification of (G, dG) is called the Martin compactification and denoted by
GM. The boundary

∂MG = GM\G

is called the Martin boundary of (G, μ) [36]. This means that ∂MG consists
of all functions α : G → R such that there exists an unbounded sequence
xn ∈ G with

α(x) = lim
n→∞ dG(x, xn) − dG(o, xn)

for all x ∈ G. The Martin boundary is intimately related to the set of
μ−harmonic functions on (G, μ).
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Recall that a function h : G → R is calledμ-harmonic (or simply harmonic
when there is no ambiguity) if for all x ∈ G,

∑

g∈G
h(xg)μ(g) = h(x).

For p, q, x ∈ G we set�(p, q, x) = dG(p, x)− dG(q, x) and extend it by
continuity: for α ∈ ∂GM we let �(p, q, α) = lim

xn→α
xn∈G

�(p, q, xn).

The Martin kernel is Ky(·) = K (·, y) = e�(·,o,y) = G(·, y)
G(o, y) and its limit

gives a harmonic function on the Martin boundary described as follows.

Lemma 7.1 If μ has superexponential moment, then the function defined by

Kα(·) = Kα(·) = e−�(·, o, α) = lim
xn→α

G(·, xn)
G(o, xn)

is harmonic for all α ∈ ∂GM.

Proof Whenμ has finite support this is noted byWoess in [40, Lemma 24.16].
As in Sect. 6, for each R we can write μ = μR + σR where μR is the

restriction of μ to the ball B(o, R) centered at o of radius R. Define the linear
operator P = Pμ defined on the space C(G,R) of functions ω : G → R by

Pω(x) =
∑

y∈G
p(x, y)ω(y).

Consider a sequence yn ∈ G converging to α ∈ ∂MG. We want to prove
that Kα is μ-harmonic, i.e. PKα = Kα . For this, it suffices to show that for
every x ∈ G one has:

PKyn (x) → PKα(x) and PKyn (x) → Kα(x) (33)

The second property is obvious as PKyn (x) = Kyn for yn 
= x .
To prove the first one in (33), denote ϒn(x) = |Kyn (x) − Kα(x)|. Let us

show that Pϒn(x) → 0 for all x ∈ G. For a fixed x ∈ G and R > ||x || we
have Pμ = PμR + PσR and Pμϒn = PμRϒn + PσRϒn .

By the Harnack inequality there is a uniformC > 1 with Kz(x) ≤ C ||x || for
all z ∈ G (see Lemma 2.1 in the case when the second variable of the Green
function is fixed). We have ϒn(x) ≤ 2C ||x ||, and hence

PσRϒn(x) ≤
∑

y /∈B(x,R)
μ(x−1y)2C ||y|| ≤

∑

z /∈B(o,R)
2μ(z)CR·||z|| → 0
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uniformly in n as R → ∞. Indeed, since μ has superexponential moment we
have μ(z) ≤ (1/C2)||z|| · ε(z) and ε(z) → 0 when ||z|| → ∞.

On the other hand, for each fixed R the set B(x, R) is finite so

PμRϒn(x) =
∑

y∈B(x,R)
p(x, y)|Kyn (y) − Kα(y)| → 0 as n → ∞.

It follows that lim supn→∞ Pμϒn(x) → 0 proving the lemma. �	
The following assumptions on the measure μ will be used further on.

Assumption 1 The inequality (1) is satisfied.

Assumption 2 The support of μ generates G as a semigroup, and for every
α ∈ ∂MG, Kα is harmonic.

By Theorems 1.1, 1.2 and Lemma 7.1 these axioms are satisfied when μ

has finite support, or μ has superexponential moment and f (r) ≤ r−2−ι for
some ι > 0.

The following Lemma is well-known, we indicate its short proof for com-
pleteness.

Lemma 7.2 If G is not a virtually abelian group of rank less or equal 2 then
G(o, z) → 0 once d(o, z) → ∞.

Proof If the claim is not true then there exist a constant c > 0 and infinitely
many g ∈ G with G(o, g) > c, or in other words dG(o, g) < D =
− log(c/G(o, o)). However if rk(G) > 2 by [3, Proposition 3.1] we obtain
that the Green metric dG is proper: i.e. every dG-ball of finite radius contains
finitely many elements. The obtained contradiction proves the Lemma. �	

We are now ready to prove:

Theorem 7.3 The identity map on G extends to a continuous equivariant
surjection π : GM → G f .

Proof Step 1.The identitymap id : G → G extends to amapπ : GM → GM.

Without loss of generality we may assume that the group G is not virtually
abelian. Indeed if G is virtually abelian of rank k > 1 then by [12, Lemma
7] the Floyd boundary is a point, and so the map is constant. If rk(G) = 1
then the Floyd boundary contains 2 points, so G is virtually cyclic; by [33]
and [9] the Martin boundary is then the zero-dimensional sphere S

0 which is
homeomorphic to the Floyd boundary.

Wefirst prove that every sequence (xn) ⊂ G converging to a pointα ∈ ∂MG
converges to a point p ∈ ∂ f G, and furthermore this limit does not depend on
the choice of the sequence converging to the point α.
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Suppose by contradiction that it is not true. Since the Floyd completion
G f is compact up to passing to subsequences we obtain two sequences (xn)
and (x ′

n) in G converging to α ∈ ∂MG which converge to distinct points

p, p′ ∈ ∂ f G. Let δ0 = δ
f
o (p, p

′) > 0. Fix an arbitrary g ∈ G. By the triangle

inequality we have either δ f
o (g, p) > δ0/2 or δ

f
o (g, p′) > δ0/2. Up to passing

to a new subsequence we may assume that for one of them, for example (xn)
we have ∀n ∈ N : δ

f
o (g, xn) > δ0/2.

By the inequality (7) we have G(g, xn) ≤ A · G(g, o) · G(o, xn) where A =
A(δ0) < +∞. Since xn → α inGM, taking limits we get Kα(g) ≤ A ·G(g, o)
for all g ∈ G. Then by Lemma 7.2 Kα(g) → 0 once d(o, g) → ∞, and by
Lemma 7.1 the function Kα is harmonic. Since Kα(o) = 1 we obtain that Kα

attains its maximum inside G which is impossible [40, 1.15]. We have proved
that if xn → α ∈ ∂GM and xn ∈ G then there exists p ∈ G f such that
xn → p. Furthermore this limit does not depend on the choice of the sequence
xn ∈ G. Denote p = π(α).

Step 2. π is a well-defined, surjective, continuous and equivariant map from
GM to G f .

After Step 1 we need only to show that if (xn) ⊂ ∂MG is a sequence which
converges to α ∈ ∂MG then π(xn) → π(α) (n → ∞).

It follows from the classical diagonal procedure. Indeed the space GM is
a metrisable Cauchy completion with respect to a metric θ generating the
topology of GM [40, Section 24.5]. For every n ∈ N choose a sequence xn,m
in G tending to xn in GM when m → ∞. By Step 1 for every n ∈ N there
is a point π(xn) = lim

m→∞ xn,m ∈ ∂ f G. Using the diagonal procedure we can

choose a subsequence zn = xn,mn of xn,m such that

θ(zn, xn) < 1/n and δ f
o (zn, π(xn)) < 1/n, for all n > 0.

The first inequality implies that zn → α in GM, hence zn → π(α) (n → ∞)

in G f by Step 1. Together with the second inequality it yields:

∀ε > 0 ∃ n0 ∀n > n0 : δ f
o (π(xn), p) ≤ δ

f
o (π(xn), zn) + δ

f
o (zn, π(α)) < ε.

Soπ(xn) → π(α) and themapπ : GM → G f iswell defined and continuous.
Since π is obtained by the continuous extension of the identity map of G it

is necessarily equivariant and surjective. The Theorem is proved. �	

7.2 Minimal points: preimages of conical points

Let π : GM → G f be the map obtained in Theorem 7.3. Our next goal is to
study the fibers of π over the points of the Floyd boundary ∂ f G. The rest of
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this section is devoted to proving that the π -preimage of every conical point
in ∂ f G is a single point. In the next section we study the fibers of π over the
parabolic points of ∂ f G.

The following is a simple consequence of Theorem 1.1:

Lemma 7.4 There is a non-increasing positive function S1 : R>0 → R>0
such that for all y ∈ G and α ∈ ∂MG we have

Kα(y) ≤ S1(δ
f
o (y, π(α))G(y, o).

Proof Let a sequence (xn) ⊂ G converge to α in GM. Then by Theorem 7.3
xn → π(α) in G f , so for all y ∈ G and large enough n we have

δ
f
o (y, xn) ≥ δ

f
o (y, π(α)) − δ

f
o (xn, π(α)) ≥ δ

f
o (y, π(α))/2.

By the inequality (7) it follows that

G(y, xn)/G(o, xn) ≤ S(δ f
o (y, xn))G(y, o) ≤ S(δ f

o (y, π(α))/2)G(y, o),

for a non-increasing positive function S(·).
Passing to the limit we obtain

Kα(y) ≤ S1(δ
f
o (y, π(α))G(y, o)

for S1(t) = S(t/2). �	
For a function h : G → R�0 define its Martin support to be

suppM(h) = {ζ ∈ ∂MG : lim sup
x→ζ

h(x) > 0}

and its Floyd support

supp f (h) = {q ∈ ∂ f G : lim sup
x→q

h(x) > 0}.

By Theorem 7.3 supp f (h) = π(suppM(h)). Clearly if 0 ≤ u ≤ h then
supp f (u) ⊂ supp f (h) and suppM(u) ⊂ suppM(h). Lemma 7.4 implies the
following.

Corollary 7.5 For every α ∈ ∂MG one has supp f (Kα) = π(α).

Proof Indeed if y → q ∈ ∂ f G \π(α) then δ f
0 (q, π(α)) > 0. By Lemma 7.2

G(o, y) → 0 (||y|| → ∞). It follows from Lemma 7.4 that Kα(q) = 0.
If now y → π(α) then Ky(y) = G(y, y)/G(o, y) is not bounded so π(α) ∈

supp f (Kα). �	
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Lemma 7.6 Let A1, A2 ⊂ ∂MG be closed subsets of the Martin boundary
such that π(Ai ) are disjoint subsets of the Floyd boundary. Then for any
sequence xn → α with α ∈ A1 the functions β → Kβ(xn) converge to 0
uniformly over β ∈ A2.

Proof Let Ui be closed neighborhoods of Ai in GM such that π(Ui ) are
disjoint. Then there is δ > 0 such that δ f

o (u1, u2) > δ for all ui ∈ Ui .
By the inequality (7) there is a constantC = C(δ) > 0 such that Ku2(u1) <

C · G(u1, o) for all ui ∈ Ui ∩ G.
Then using a sequence u2,n ∈ U2 ∩G such that u2,n → β ∈ A2, we obtain

Kβ(u1) < C ·G(u1, o) for any u1 ∈ U1.
Assuming now that u1,n → α ∈ A1 we have u1,n ∈ U1 for large enough n.

Thus, for each β ∈ A2 we obtain Kβ(u1,n) < C ·G(u1,n, o) → 0 by Lemma
7.2. �	
Recall that a positive μ-harmonic function h : G → R�0 is called minimal
harmonic if for every μ-harmonic function q : G → R�0 with q ≤ h we
have q = c·h for some constant c ∈ R. A point α ∈ ∂MG is called minimal
if the corresponding function Kα(·) is minimal. The minimal Martin bound-
ary ∂min

M G ⊂ ∂MG consist of minimal points. The following is the Martin
representation theorem, see e.g. [36], [40, (24.7),(24.8)].

Theorem 7.7 (Martin Representation Theorem) Any minimal harmonic func-
tion h : G → R�0 with h(o) = 1 is of the form h(x) = Kα(x) for some
α ∈ ∂MG. For any positive μ-harmonic function h : G → R�0 there is a
finite measure νh on ∂min

M G such that

h(x) =
∫

α∈∂min
M G

Kα(x)dν
h(α) (�)

for every x ∈ G.

Proposition 7.8 Let h be any positive harmonic function. Then the represent-
ing measure νh is supported on π−1

(
supp f h

)
where supp f h is the closure of

supp f h in ∂ f G.

Proof Suppose not. Then there is a closed subset A ⊂ ∂MG\π−1
(
supp f h

)

with νh(A) > 0. Consider the positive harmonic function

h′(x) =
∫

β∈A
Kβ(x)dν

h(β).

By theMartin representation theorem the set ∂min
M G is a subset of ∂MG of full

νh-measure. The function h satisfies (�), so we have h′ ≤ h everywhere.
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Since the non-constant harmonic function h′ cannot attain a maximal value
on G there is a sequence xn ∈G converging to some η∈∂MG with h′(xn) →
c > 0. This implies lim inf

n→∞ h(xn) ≥ c > 0 so η ∈ π−1
(
supp f h

)
. Since

A is a closed set disjoint from the closure of π−1(supp f h) we get by
Lemma 7.6 that Kβ(xn) → 0 uniformly for β ∈ A. This implies h′(xn) =∫
β∈A Kβ(xn)dνh(β) → 0 (xn → β) contradicting h′(xn) → c > 0. �	
Corollary 7.9 For every α ∈ ∂MG, if h = Kα then νh is supported on
π−1(π(α)).

Proof By Corollary 7.5 π(α) = supp f (h), so the Corollary follows from
Proposition 7.8. �	
Corollary 7.10 For every p ∈ ∂ f G, π−1(p) contains a point of ∂min

M G.

Proof Since themapπ is surjective there exists someα ∈ π−1(p). For h = Kα

it follows from Corollary 7.9 that νh gives full (hence nonzero) measure to
π−1(p) ∩ ∂min

M G, so this set must be nonempty. �	
Corollary 7.11 If p ∈ ∂ f G is a point such that there is a constant C > 0 with
Kβ(x)/Kα(x) ≤ C for all x ∈ G and α, β ∈ π−1(p) then π−1(p) consists of
a single point.

Proof By Corollary 7.10 there exists α ∈ π−1(p) such that the function
h = Kα(·) is minimal. Let β ∈ π−1(p) be any other point. By assump-
tion Kβ(x)/Kα(x) ≤ C for all x ∈ G and thus by minimality of Kα(·) there
exists a constant C ′ > 0 such that Kβ(x) = C ′ · Kα(x) for all x ∈ G. By the
normalization assumption Kβ(o) = Kα(o) = 1 so C ′ = 1 and α = β. �	

We will use Corollary 7.11 to prove that if p ∈ ∂ f G is conical, then π−1(p)
consists of a single point.

Proposition 7.12 Assume p ∈ ∂ f G is conical. Then there is a constant D =
Dp such that for each x ∈ G there exists a closed neighborhood W of p in G f
for which one has

D−1 ≤ Ky(x)/Kz(x) ≤ D

for all y, z ∈ W ∩ G.

Proof Since p ∈ ∂ f G is conical there exists a sequence gn ∈ G and distinct
points q, q′ ∈ ∂ f G such that gnp → q′ and gnr → q for all r ∈ G f \{p}.

Let U, V ⊂ G f be disjoint closed neighborhoods of q′ and q respectively

and 0 < ε < δ
f
o (U, V ).
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Fix x ∈ G. For n large enough we choose an element g = gn such that
gx, go ∈ V and gp ∈ U. Then W = g−1U is a closed neighborhood of p in
G f . For every y ∈ W δ

f
o (gy, gx) > ε and δ f

o (gy, go) > ε. Thus,

δ
f
g−1o

(y, x) > ε and δ f
g−1o

(y, o) > ε.

Hence by (7) the constant C = S(ε) satisfies

G(y, g−1o)G(g−1o, o) ≤ G(y, o) ≤ CG(y, g−1o)G(g−1o, o)

and

G(y, g−1o)G(g−1o, x) ≤ G(y, x) ≤ CG(y, g−1o)G(g−1o, x)

for all y ∈ W .
Hence,

C−1 · G(g
−1o, x)

G(g−1o, o)
≤ Ky(x) ≤ C · G(g

−1o, x)

G(g−1o, o)
.

This is true for every y ∈ W hence for distinct y, z ∈ W we have

D−1 ≤ Ky(x)/Kz(x) ≤ D

for all y, z ∈ W where D = C2 is a constant. �	
Corollary 7.13 For each conical p ∈ ∂ f G there is a constant D = D(p) such
that for all α, β ∈ π−1p and x ∈ G we have Kα(x)/Kβ(x) ≤ D.

Proof Let yn, zn ∈ G be two sequences with yn, zn → p in the Floyd com-
pactification and yn → α, zn → β in the Martin compactification. Then by
Proposition 7.12 there exists a uniform constant D such that for each x ∈ G
there is a neighborhood W ⊂ G f such that for large enough n we have
yn, zn ∈ W and D−1 ≤ Kyn (x)/Kzn (x) ≤ D. Passing to the limits we obtain
the result. �	

Corollaries 7.11 and 7.13 imply:

Corollary 7.14 If q ∈ ∂ f G is conical, π−1(q) consists of a single point.

7.3 Minimal invariant subsets of the Martin boundary

The equivariant map π : GM → G f constructed in Theorem 7.3 relates
the actions of G on these spaces even though these actions have different
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properties. The action G � G f is convergence [29, Proposition 3] for which
∂ f G is the limit set. Thus if |∂ f G| 
= 2 then ∂ f G is the minimal closed G-
invariant set which coincides with the closure of the G-orbit of any x ∈ G f .

The actionG � ∂MG is in general not convergence, in particular ∂MG can
be non-trivial for the Cartesian products of groups [40, Section 28]. However
the following Proposition shows that the minimal Martin boundary enjoys a
weaker but similar property to that of the limit set of a convergence action.

Proposition 7.15 Let G, μ and f be as in Theorem 1.1 or 1.2. Assume also
that the Floyd boundary ∂ f G contains at least three points. Then the minimal
Martin boundary ∂min

M G is contained in the closure of the G-orbit	 = Gξ in
∂MG for any ξ ∈ ∂MG.

Proof Let us fix α∈∂min
M G and the orbit 	 = Gξ, ξ ∈ ∂MG. Our goal is to

show that α∈	. Let Vn be the ball B(o, n) ⊂ G of radius n ∈ N in the word
distance centered at the basepoint o. Denote by δ the diameter diamδx (∂ f G)
of ∂ f G with respect to the Floyd distance δx based at the point x ∈ G. Since
the left multiplication by xo−1 is an isometry (G, δo) → (G, δx ), the quantity
δ does not depend on x ∈ G.

For a given finite set F ⊂ G, one has diamδx (F) → 0 as x → ∞. So there
exists a sequence {xn : n ∈ N} in G converging to α, such that

diamδxn
(Vn) < δ/4, n ∈ N. (34)

Since diamδxn
(∂ f G) = δ, it follows from (34) that for each n ∈ N, there exists

an open On ⊂ G f such that ∂ f G ∩ On 
= ∅ and

δxn (Vn, On) � δ/4. (35)

The map π : GM → G f given by Theorem 7.3 is G-equivariant so the set
π(	) ⊂ ∂ f G is G-invariant. As |∂ f G| > 2 the convergence action G � ∂ f G
is non-elementary. So π(	) is dense in ∂ f G. Thus, there exists ξn ∈ 	 ∩
π−1On .

The space GM is metrizable so there exists a metric  defining its topology
[36], [40]. Choose yn ∈ G ∩ On such that

 (yn, ξn) � 2−n, n ∈ N. (36)

By (34) and Theorem 1.1, for every z ∈ Vn we have

dG(z, xn) + dG(xn, yn) ≤ dG(z, yn) + A(δ/4).
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Hence

dG(z, yn) − dG(o, yn) + A(δ/4) ≥ dG(z, xn) − dG(o, xn).

Since o ∈ Vn the same inequality is also true if we permute the points o and
z. Thus we obtain

|�(z, o, xn) − �(z, o, yn)| ≤ A(δ/4). (37)

By compactness ofGM there exists a subsequence {ynk : k ∈ N} converging
to a point β ∈ ∂MG. So (37) implies that Kβ(z)/Kα(z) is bounded above
uniformly on z. By minimality of α it follows that Kβ/Kα ≡ const and since
Kβ(o) = Kα(o) = 1 we have Kα ≡ Kβ and so β = α.
By (36) ξnk → β = α (k → ∞) implying the Proposition. �	

Corollary 7.16 The orbit {gπ−1(q) : g ∈ G} of the π -preimage of any
conical point q ∈ ∂ f G is a dense subset of ∂min

M G.

Proof By Corollary 7.14 the preimage ξ = π−1(q) is a single point and by
Corollary 7.10 we have ξ ∈ ∂min

M G. Since every point g(q) is also conical by
the same reason we have for any g ∈ G, π−1(g(q)) = g(ξ) ∈ ∂min

M G as π
is equivariant. So Gξ ⊂ ∂min

M G. By Proposition 7.15 Gξ is a dense subset of
∂min
M G. �	

We finish the subsection with the following substantial example4:

Remark 7.17 There exist groups having a non-trivial Floyd boundary which
admit symmetric finitely supportedmeasures whoseminimalMartin boundary
is a proper subset of theMartin boundary. Indeed, supposeG1 is non-amenable,
G2 any finitely generated infinite group, and μi finitely supported generating
measures on Gi . Let G = G1×G2 be the Cartesian product andμ = μ1×μ2
be the product measure. Picardello and Woess show [34, Corollary 4.4] that
the Martin boundary of (G, tμ) contains non-minimal points for any t up to
and including the inverse of the spectral radius ofμ. Then Theorems 26.18 and
26.21 of [40] imply that whenever (�,m) is any finitely generated group and
m a finitely supported measure on �, the Martin boundary of the free product
(G ∗�,μ+m) contains non-minimal points. Furthermore, if now one chooses
� to be hyperbolic then G ∗ � is relatively hyperbolic with respect to G and
so its Floyd boundary is non-trivial by Theorem 3.3.

4 We thank Wolfgang Woess for indicating to us this example.
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7.4 Connection with the Freudenthal compactification

LetG be a finitely generated group and� its Cayley graph.We denote by ∂FG
the Freudenthal boundary (end space) of G (or �) [13]. We refer to [37] for
all standard definitions of the theory of ends.

Let ξ ∈ ∂FG be an end. For a finite subset of edges U ⊂ �1 denote by
CU (ξ) the unique component of �\U containing ξ. Let CUi (ξ) be a sequence
of strictly sthrinking components: CUi+1(ξ) ⊂ CUi (ξ). Then their closures
C̄Ui (ξ) give a neighborhood basis of ξ . Following Woess [41], we say that an
end ξ is thin if there exists a sequence of finite subsets Ui ⊂ �1 of bounded
cardinality such that Ui+1 ⊂ CUi (ξ) for each i . We start with the following.

Proposition 7.18 The identity map id : G → G extends to a continuous G-
equivariant surjection ! : ∂ f G → ∂FG for any Floyd function f. Moreover,
the set of thin ends of ∂FG coincides with the set of its conical points.

Proof It is enough to show that any two sequences xn, yn ∈ G converging to
the same point in ∂ f G (i.e. δ f

o (xn, yn) → 0 as n → ∞ for a basepoint o ∈ G),
also converge to the same point in ∂FG. Suppose not. By the description of
the neighborhood basis of an end, there exists a finite set E of edges of � such
that any path connecting xn and yn has to pass through E (n ≥ n0). Since
the quantity d(o, E) is bounded, by definition of the Floyd metric we have
δ
f
o (xn, yn) ≥ c for some constant c = c(E) > 0. This is a contradiction, so
we obtain an equivariant continuous surjection! from G f to the Freudenthal
completion GF = G ∪ ∂FG.

As the action G � ∂ f G is convergence, the surjective equivariant con-
tinuous map ! : ∂ f G → ∂FG implies that the action of G on ∂FG is also
convergence (this result is originally due to Stallings [37]).

If a point ξ in ∂FG is conical then there exist gn ∈ G and distinct ends
{a, b} ⊂ ∂FG such that gn(ζ, ξ) → (a, b) for any ζ ∈ ∂FG\{ξ}. Thus, a
and b are separated by a finite set U and hence ζ and ξ are separated by the
set Un = g−1

n U for all n ≥ n0. Since the action on ∂FG is convergence, the
sets Un converge to ξ , so we can extract a subsequence, still denoted by Un ,
such that Un+1 ⊂ C(Un, ξ). It follows that ξ is thin. If ξ is thin the previous
argument is reversible, so it implies that ξ is conical. �	

Putting � = π ◦ ! where π is the map from Theorem 1.5, we obtain as a
corollary the following result which is originally due to W. Woess.

Corollary 7.19 ([41]) For a finitely generated group G there exists a contin-
uous G-equivariant surjection � : ∂MG → ∂FG. The preimage �−1(ξ) of
every thin end ξ ∈ ∂FG is a single point in the minimal Martin boundary
∂min
M G. Furthermore, if G has infinitely many ends then the G-orbit of the
�-preimage of any thin end is dense in ∂min

M G.
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Proof Let ξ ∈ ∂FG be a thin end. Then, by the above Proposition, it is a
conical point for the convergence actionG � ∂FG. Then, by [18, Proposition
7.5.2], the set !−1(ξ) consists of one point q ∈ ∂ f G which is conical too.

If G is an infinitely ended group then the set ∂ f G = !−1(∂FG) is infinite
too. By Corollary 7.16 the orbit	 = G(�−1(ξ)) is a dense subset of ∂min

M G.�	
Remark. The dense subset indicated in the Corollary is much “thinner”

than the preimage of all thin ends which is also a dense subset of ∂min
M G.

8 Preimages of parabolic points in the Martin boundaries

IfG is a finitely generated group then by Theorem 7.3 there exists a surjective,
equivariant, and continuous map π : GM → G f from theMartin to the Floyd
completion of G. Furthermore by Corollary 7.14 the map π is injective on
the subset π−1(conical points) of GM. To have a complete description of the
Martin boundary we need to study the π -preimages of non-conical points.

Themain result of this section is Proposition 8.1 belowwhich gives a partial
description of π -preimages of non-conical points. We note that this partial
description was already essentially used in the paper [11] where a complete
description of the Martin boundary of the class of groups hyperbolic relative
to virtually abelian subgroups was deduced.

We denote by X the Floyd completion G f of G with respect to a Floyd

function f and the Floyd metric δ f
v based at a point v ∈ G (see Sect. 3).

By [29] the action G � X is a convergence action. For a subgroup H ≤ G
we denote by �H its limit set for the action on X. If |�H | > 2 it coincides
with the subset of accumulation points of the H -orbit in X .

We will now introduce a few notions which are used in this and the next
sections.

Consider a geodesic (infinite or not) in the Cayley graph equipped with the
word metric d. A bi-infinite geodesic γ : Z → G is called a horocycle at
p ∈ ∂X if lim

n→±∞ γ (n)=p. By [19, Lemma 3.6] the unique limit point p of

γ is not conical,5 and is called the base of the horocycle. A horosphere P
at the parabolic point p is the set of all horocycles based at p. So as in the
classical case of discrete groups acting on hyperbolic spaces, a horosphere is
the geodesic convex hull of a parabolic point.

We define the geodesic convex hullH in X of the limit set�H of an arbitrary
subgroup H < G in a similar way:

H = {γ : Z → G is a geodesic : lim
n→±∞ γ (n) ∈ �H}.

5 In [19] this statement is formally stated for theBowditch boundary but the proof equallyworks
on the Floyd boundary as the only tool which is used is the Karlsson lemma (see Introduction).
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Let ∂MG be theMartin boundary ofG with respect to a probability measure
μ on G satisfying Assumptions 1 and 2 (see Sect. 7), and GM = G 	 ∂MG
its Martin compactification. Let ∂MH be the topological boundary of H in
GM, i.e. the set of accumulation points of H in GM.

A subgroup H of G is called quasiconvex if any geodesic between two
elements of H belongs to a uniform neighborhood of H. It is called fully
quasiconvex if it is quasiconvex and for every parabolic subgroup P of G
either H ∩ P is a subgroup of finite index of P or is finite. Note that if the
groupG is relatively hyperbolic the cocompactness of the action H on X\�H
is equivalent to the full quasiconvexity of H [21, Theorem B].

By Corollary 7.10 for every point q ∈ ∂ f G its preimage π−1(q) contains
points from theminimalMartin boundary ∂min

M G.Anatural question iswhether
the π -preimage of the limit set�H ⊂ ∂ f G of a subgroup H is a subset of the
Martin boundary of H. The following proposition provides a partial answer to
this question.

Proposition 8.1 Let π : ∂MG → ∂ f G be a continuous equivariant map from
the Martin boundary to the Floyd boundary of G. Let H < G be a subgroup
acting cocompactly on X\�H. Then

π−1(�H) ∩ ∂min
M G ⊆ ∂MH. (38)

Proof of Proposition 8.1 In all arguments below the subgroup H acting
cocompactly on X\�H is fixed. For a vertex x ∈ G we denote by PrH(x) the
projection set {y ∈ H : d(y, x) = d(x,H)} of x to the convex hull H of H.
Denote by o a basepoint in G. �	
Lemma 8.2 There exist two constants D = D(H) < +∞ and δ = δ(H) > 0
such that for every sequence xn converging to a point q ∈ �H and for the
sequence of projections vn ∈ PrH(xn) and n ≥ n0 we have δ f

vn (o, xn) ≥ δ

and d(vn, γn) ≤ D where γn = [o, xn] is a geodesic between o and xn.

Proof The set H ∪ �H is a closed subset of X. Since the action of H on
X\�H is cocompact, the quotient H/H is finite (we call the set H weakly
homogeneous in this case) [21, Proposition 4.5]. Let F denote a compact
fundamental set for the action of H on X\�H . Since F ∩ �H = ∅ there
exists a constant ν = ν(H) > 0 such that δ f

o (F,�H) ≥ ν.
Let F = PrH(F ∩ G). Since H is H -invariant and weakly homogeneous

by [21, Proposition 3.5] the diameter d = diam(F) with respect to the word
metric is finite and depends only on the constant ν above.

Let γn : N → G be a geodesic between o and xn such that lim
n→∞ xn = q ∈

�H. Then there exists a sequence hn ∈ H such that yn = hn(xn) ∈ F ∩ G.
Since the action of H on the Cayley graph of G is isometric, the images
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un = hn(vn) of the projections vn of xn to H, are projections of yn to H. So
the set {un}n ⊂ F is a finite subset of the graph of diameter at most 2d.

Set zn = hn(o) and fix a sufficiently small ε ∈ (0, ν/2).Denote byN
f
ε (�H)

the ε-neighbourhood of �H in X with respect to the Floyd distance δ f
o . We

have zn ∈ N
f
ε (�H) for n > n0.

Using the inequality (9) for the finite set {un}n ⊂ F of diameter at most 2d,
we obtain

δ
f
un (F,Nε(�H)) ≥ δ, where δ = ν − ε

κd(o,F)+2d
≥ ν/2

κd(o,F)+2d
> 0. (39)

Note that the lower bound (39) depends only on H andfixed ε ∈ (0, ν/2). From
(39) it follows that δ f

un (yn, zn) ≥ δ, and applying h−1
n we obtain δ f

vn (xn, o) ≥
δ > 0.

By Karlsson’s lemma [29, Lemma 1] there exists a constant D = D(H, ε)
such that d(vn, γn) ≤ D. �	

End of the proof of Proposition 8.1. By Corollary 7.10 for a point q ∈ �H
there exists a point α ∈ π−1(q) ∩ ∂min

M G such that the harmonic function
Kα is minimal. Consider a sequence of points xn → α (n → ∞) and their
projections vn ∈ PrH(xn) toH.

For a geodesic γn = [o, xn] by Lemma 8.2 we obtain points wn ∈ γn
such that d(vn, wn) = d(vn, γn) ≤ D. Then applying the Harnack inequality
(Lemma 2.1) we obtain a constant λ ∈ (0, 1) such that for any x ∈ G we have

Kvn (x)

Kwn (x)
= G(x, vn) · G(o, wn)

G(o, vn) · G(x, wn)
≤ λ−2d(wn,vn) ≤ λ−2D. (40)

We also have

Kwn (x)

Kxn (x)
= G(x, wn) · G(o, xn)

G(o, wn) · G(x, xn) ≤ S(δ f
wn
(o, xn)). (41)

Indeed, in the numerator of (41) by the inequality (7) we have:

G(o, xn) ≤ S(δwn (o, xn)) · G(o, wn) · G(wn, xn);

and in the denominator we used the (triangle) inequalityG(x, xn) ≥ G(x, wn)·
G(wn, xn).

By Lemma 8.2 δ
f
vn (o, xn) ≥ δ and d(vn, wn) ≤ D so by (9) we have

δ
f
wn (o, xn) ≥ κ−D · δ which is a uniform constant too. The function S(·) is
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decreasing so (40) and (41) imply

Kvn (x)

Kxn (x)
≤ C, where C = S(κ−Dδ) · λ−2D. (42)

Replacing the geodesic [o, xn] in the previous argument by a geodesic
[x, xn] we similarly obtain the points w̃n ∈ [x, xn] such that for the pro-
jections vn ∈ PrH(xn) we have d(w̃n, vn) ≤ D and δ

f
vn (x, xn) ≥ δ for the

same constants D and δ from Lemma 8.2. Then the previous argument implies
the double inequality:

1

C
≤ Kvn (x)

Kxn (x)
≤ C, (43)

where C is as in (42).
Up to passing to a subsequence we can assume that the sequence vn ∈ H

converges to some point β ∈ ∂MG. From (43) we obtain

1

C
≤ Kβ(x)

Kα(x)
≤ C. (44)

Then Kβ ≤ C · Kα and so Kβ = C ′ · Kα for some C ′ > 0 by minimality of α.
We have that α = lim

n→∞ vn = β and vn ∈ H. Since H is quasiconvex there

exists a constant C1 such that for every vn ∈ H there exists ṽn ∈ H such that
d(vn, ṽn) ≤ C1 [21, Proposition 4.5]. Applying again the Harnack inequality

we obtain
K ṽn (x)

Kvn (x)
≤ C ′

1 for some C ′
1 > 0 depending on C1. Since α ∈ ∂min

M G

is minimal the above argument yields lim
n→∞ ṽn = α. We have proved that

every minimal point in π−1(�H) is an accumulation point of the H -orbit.
The Proposition is proved. �	
Remarks 8.3 1. Note that the choice of the approximation sequence (vn) ⊂

H as the projection of the approximating sequence (xn) ⊂ G is con-
structive. One can prove that lim

n→∞π(vn) = lim
n→∞π(xn) = q ∈ �H

without assuming that the limit point α on theMartin boundary is minimal.
Indeed, if the sequence π(xn) converges to q and π(vn) does not, then the
word distance d(vn, xn) is unbounded. By Lemma 8.2 there exists a point
bn ∈ [xn, q[ such that d(vn, bn) ≤ D. Since π(xn) → q we obtain that the
infinite geodesic rays [xn, q[ converge to a geodesic horocycle l based at
q ∈ �H (in particular q is not a conical point [19, Lemma 3.6]). But l ⊂ H
so d(xn, vn) > d(xn,H) (n > n0) which is impossible by definition of
vn . However the same argument does not work for the sequences xn and
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vn in GM (instead of G f ), as there is a question whether the boundness
of the distance dG(xn, vn) implies that the convergence of the first yields
the convergence of the second to the same limit. We call this property the
perspectivity property, it is satisfied on G f [29] and remains unknown on
GM.

2. Several corollaries of Proposition 8.1 for relatively hyperbolic groups as
well as several open questions are stated in the next section.

9 Applications to relatively hyperbolic groups

The aim of this section is to provide several useful geometric consequences of
our previous results for relatively hyperbolic groups.

9.1 Geometrically finite actions

SupposeG is relatively hyperbolic with respect to a collectionP of subgroups.
A point v on a (quasi-)geodesic γ is called an (ε, R)-transition point if for any
horosphere P based at a parabolic fixed point (see Sect. 8 for the definition)
one has γ ∩ B(v, R) 
⊂ Nε(P) where B(v, R) denotes the ball centered at v
of radius R and Nε(P) is an ε-neighborhood of P in the word distance.

The following Proposition provides a characterization of transition points
in terms of the Floyd function f.

Proposition 9.1 ([21], Corollary 5.10) For each ε > 0 and R > 0 there is a
number δ > 0 such that if y is an (ε, R)-transition point of a word geodesic
from x to z then δ f

y (x, z) > δ.

As a result, the inequality (1) admits the following immediate corollary:

Corollary 9.2 Let G be hyperbolic relative to a collection of subgroups. If
x, y, z ∈ G is an ordered triple of distinct points belonging to a word geodesic
γ , and y is an (ε, R)-transition point then

dG(x, y) + dG(y, z) ≤ dG(x, z) + A

where A depends only on (ε, R), and μ. �	
Wewill now prove another corollary of Theorem 1.1 valid for geometrically

finite actions on the hyperbolic spaces.
Let (X, dX ) denote Gromov hyperbolic space. For every two distinct points

x, y ∈ X we denote by [x, y] a geodesic segment between them with respect
to the hyperbolic metric dX . Let us fix a basepoint o ∈ X .
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Proposition 9.3 (Corollary 1.8) Let G � X be a geometrically finite, iso-
metric, properly discontinuous and non-elementary action of a group G on a
proper geodesic Gromov hyperbolic space X. Let μ and f satisfy the assump-
tions of Theorem 1.1 or 1.2.

Then, for every D > 0 there exists a constant C = C(D) > 0 such that for
every triple g, h, w of elements of G with dX (ho, [go, wo]) ≤ D the inequality

dG(g, h) + dG(h, w) ≤ dG(g, w) + C (45)

holds on the Cayley graph of G.

Proof We first prove Proposition 9.3 under the additional assumption that
go 
= wo, in which case it is an immediate consequence of the inequality (1)
and the following lemma.

Lemma 9.4 Suppose that the assumptions of Proposition 9.3 are satisfied.
Then for each D > 0 there exists δ > 0 such that for any g, h, w ∈ G

satisfying go 
= wo and dX (ho, [go, wo]) ≤ D one has δ f
h (g, w) > δ.

Proof of the Lemma Up to multiplying by h−1 we may assume that h = 1.
Suppose by contradiction that the statement is not true. Then we have
sequences of elements gn, wn ∈ G and distinct triples gno, wno, o such that
dX (o, [gno, wno]) < D and δ f

o (gn, wn) → 0 (n → 0). After passing to sub-
sequences and keeping the same notations we have that gn andwn converge to
the same point q ∈ ∂ f G. At the same time gno and wno converge to two dis-
tinct points η, ζ ∈ �G. Indeed it follows from the fact that the visual Gromov
metric ν(gno, wno) is equivalent to the quantity exp(−a · d(o, [gno, wno]))
on X ∪ �G for some constant a > 0 (see the proof of Corollary 1.4 in the
Introduction). So ν(gno, wno) is bounded below by a positive constant.

The action G � X is properly discontinuous, and induces a convergence
action on X∪∂X . So up to passing to new subsequences (and keeping the same
notations) we have that gn y → η and wn y → ζ for all points y ∈ X ∪ ∂X
besides at most two exceptional points yi ∈ ∂X (i = 1, 2).

By [29, Proposition 3] the action of G on G f = G ∪ ∂ f G is convergence
too. Then again up to passing to further subsequences we may assume that for
all z ∈ G f \{z1, z2} one has lim

n→∞ gn(z) = lim
n→∞wn(z) = q where z1, z2 ∈

∂ f G are two possible exceptional points for the sequences (gn) and (wn)

respectively.
The group G admits a geometrically finite non-elementary action on X , so

the limit set �G ⊂ ∂X is an infinite set. Then by Theorem 3.3 there exists an
equivariant continuous and surjective map ϕ : ∂ f G → �G. Hence, we have
ϕ(gn(z)) = gn(ϕ(z)) → ϕ(q) (n → ∞) and also wn(ϕ(z)) → ϕ(q) (z ∈
∂ f G\{z1, z2}, n → ∞). This contradicts to the fact that for ϕ(z) /∈ {y1, y2}
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these two sequences must converge to two distinct points η and ζ. The Lemma
is proved.

Lemma 9.4 implies Proposition 9.3 if go 
= wo. If now go = wo then
[go, wo] = go = wo. The condition dX (ho, [go, wo]) < D implies that
h−1g and h−1w both belong to the set G(o, D) consisting of elements of G
translating o in a distance dX at most D. Since the action G � X is prop-
erly discontinuous, G(o, D) is finite. The stabilizer Go of the point o is finite
too. By assumption we have dX (ho, wo) = dX (ho, go) = dX (o, h−1wo) =
dX (o, h−1go) ≤ D. We add to the constant C obtained previously the supre-
mum of the following expression:

dG(g, h) + dG(h, w) − dG(g, w) =
dG(h−1g, o) + dG(o, h−1w) − dG(o, g−1w)

(46)

taken over all such elements {h−1w, h−1g} ⊂ G(o, D) and g−1w ∈ Go.

The quantity (46) is bounded above since G(o, D) is finite. Keeping the same
notation C for the new constant, we obtain Proposition 9.3. �	

Note that if a convergence group is not relatively hyperbolic, the above
argument does not in general give a uniform constant C independent of the
choice of basepoint o. In particular it was recently shown byM. Kapovich that
the orders of the point stabilizers can be unbounded even in case when X is
an Hadamard space of pinched negative curvature [30]. The aim of the next
Corollary is to describe a subset X0 ⊂ X for which any choice of the basepoint
o ∈ X0 does not change the constant C given by Proposition 9.3.

Recall that by Gromov’s original (equivalent) definition of a geometrically
finite action, there exists a G-invariant collection of disjoint horoballs B based
at parabolic fixed points such that the G-action on the truncated space X0 =
X\B is cocompact [26], [4], [27, Definition 3.3].

Corollary 9.5 Suppose that all the assumptions of Proposition 9.3 are satis-
fied. Then for every D > 0 there exists a constant C = C(D) > 0 such that
for every basepoint o ∈ X0 the condition dX (ho, [go, wo]) ≤ D implies the
inequality (45).

Proof We only need to show that if the basepoint belongs to X0 then Lemma
9.4 provides a uniform lower bound for the Floyd distance. Suppose this is not
true. Then there is a sequence of points on ∈ X0 and elements hn, gn, wn such
that on the space X we have dX (hnon, [gnon, wnon]) ≤ D and on the Cayley
graph lim

n→∞ δ
f
hn
(gn, wn) = 0.

Since on ∈ X0 there exists bn ∈ G such that bnon ∈ R ⊂ X0 where R
is a compact fundamental domain for the action G � X0. Precomposing the
elements hn, gn, wn with bn and keeping the same notations, we may assume
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that on ∈ R. So up to passing to a subsequence we may also assume that
the endpoints hnon and gnon of the geodesics ln = [gnon, wnon] tend to two
distinct limit points on ∂X as ln ∩ R 
= ∅. Thus by the argument of Lemma
9.4 we obtain that the sequence δ f

hn
(gn, wn) is bounded below by a positive

constant. A contradiction. �	
We note that Corollary 9.2 has been used in [11] to precisely determine

the Martin boundary of relatively hyperbolic groups with virtually abelian
parabolic subgroups. Furthermore, Proposition 9.3 has been used in [10] and
[16] to study the connection between entropy, drift, and growth rate in relatively
hyperbolic groups and geometrically finite manifolds.

9.2 Partial description of the preimages of parabolic points and open
questions

In this subsection we assume that G admits a minimal geometrically finite
action on a compactum T .

By Theorem 7.3 there exists an equivariant continuousmapπ : GM → G f
from the Martin to the Floyd compactification. By Theorem 3.3 there also
exists an equivariant continuous map ϕ from the Floyd compactification G f

to the Bowditch compactification GB = G 	 T . So we have an equivariant
continuous map ψ = ϕ ◦ π : GM → GB . The following Proposition partly
completes the situation described in Sect. 8 for the preimages of non-conical
points.

Proposition 9.6 Let p ∈ T be a bounded parabolic point and H the stabilizer
of p for the action G � T . Then the following inclusion is satisfied for the
map ϕ (compare with (38)) :

ψ−1(T ) ∩ ∂min
M G ⊆ ∂MH. (47)

Furthermore, there exists a uniform constant C > 0 such that for every
boundedparabolic point p ∈ T andeveryα ∈ ϕ−1(p) there is someβ ∈ ∂MH
such that for every x ∈ G,

C−1 ≤ Kα(x)/Kβ(x) ≤ C. (48)

Proof We need to show that the constant C can be chosen uniformly inde-
pendently of the parabolic point. Indeed for every parabolic point p ∈ T
the action of its stabilizer H on T is cocompact on T \{p}. Then ϕ−1(p) is
the limit set �H for the action H � G f [19, Theorem A]. Consequently
(ϕ−1(p))c = ∂ f G\∂ f H. Since ϕ is equivariant and continuous and ∂ f G is
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compact, H acts cocompactly on (ϕ−1(p))c. So by Proposition 8.1 we obtain
the inequality (48) where α = lim

n→∞ vn ∈ ∂MH.

The constant C found in Proposition 8.1 depends only on the subgroup H .
Furthermore the system of all horospheres {HH : H is maximal parabolic
subgroup for the action G � T } is G-invariant and contains at most finitely
manyG-non-equivalent horospheres [17, Main Theorem.a]. Since δ f

v (x, y) =
δ
f
gv(gx, gy) and d(gx, gy) = d(x, y) (g ∈ G), the constant C is the same for
the conjugacy class of each maximal parabolic subgroup H . So the constant
can be chosen uniformly for all maximal parabolic subgroups of G of the
geometrically finite action G � T . �	

We finish the discussion with some intriguing open questions motivated by
the above discussion:
Questions. Let H < G be a fully quasiconvex subgroup of a relatively hyper-
bolic group G.

(a) Is ∂MH = ψ−1(�H)?
(b) Does the inequality (48) imply that the points α and β give rise to the same

point at the Martin boundary of G (without assuming the minimality of
one them)?

Note that b) ⇒ a) by the proof of Proposition 8.1.
We also note that by the existence of the continuous extension π :

GM → G f of the identity map id : G → G (Theorem 7.3), we also have
∂MH ⊆ π−1(�H). The opposite inclusion remains unknown.
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