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Infinitely many Lagrangian fillings

By Roger Casals and Honghao Gao

Abstract

We prove that all maximal-tb positive Legendrian torus links (n,m) in

the standard contact 3-sphere, except for (2,m), (3, 3), (3, 4) and (3, 5), ad-

mit infinitely many Lagrangian fillings in the standard symplectic 4-ball.

This is proven by constructing infinite order Lagrangian concordances that

induce faithful actions of the modular group PSL(2,Z) and the mapping

class group M0,4 into the coordinate rings of algebraic varieties associated

to Legendrian links. In particular, our results imply that there exist La-

grangian concordance monoids with subgroups of exponential-growth, and

yield Stein surfaces homotopic to a 2-sphere with infinitely many distinct

exact Lagrangian surfaces of higher-genus. We also show that there exist

infinitely many satellite and hyperbolic knots with Legendrian representa-

tives admitting infinitely many exact Lagrangian fillings.

1. Introduction

We show that essentially all maximal-tb positive Legendrian torus links in

the standard contact 3-sphere remarkably admit infinitely many non-Hamil-

tonian isotopic exact Lagrangian fillings in the standard symplectic 4-ball.

Heretofore, the existence of Legendrian links with infinitely many exact La-

grangian fillings remained open.

In fact, the faithful PSL(2,Z) representation in our Theorem 1.1 allows us

to obtain several consequences. We present new results for Lagrangian concor-

dance monoids, including the first known example of a Lagrangian concordance

of infinite order, the existence of an exponential-growth subgroup in the fun-

damental group of the space of Legendrian links isotopic to Λ(3, 6), and the

existence of Weinstein 4-manifolds homotopic to the 2-sphere with infinitely

many non-Hamiltonian isotopic exact Lagrangian surfaces of higher-genus in

the same smooth isotopy class. In addition, we construct infinitely many in-

stances of both satellite and hyperbolic knots in the 3-sphere with Legendrian
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representatives with infinitely many exact Lagrangian fillings in the standard

symplectic 4-ball.

1.1. Context. Legendrian knots in contact 3-manifolds are instrumental

to study the contact geometry of 3-manifolds [6], [22], [23], [24], [26], [27], [36].

The classification of Legendrian knots and their Lagrangian fillings has been

one of the central areas of research in low-dimensional contact topology [19],

[20], [41], [53], [55], [56], [57]. The only Legendrian knot for which there exists

a complete non-empty classification of Lagrangian fillings is the Legendrian

unknot [21].

The works [20], [53], [64] succeeded in constructing a Catalan number

worth of Lagrangian fillings for the maximal-tb positive Legendrian (2, n)-torus

links. It is also known that all positive braids admit at least one Lagrangian

filling [43]; see also [20], [41]. A crucial question that remained open is the

existence of Legendrian links with infinitely many exact Lagrangian fillings.

This article affirmatively resolves this question.

In fact, we shall geometrically construct Lagrangian concordances that

themselves produce infinitely many Lagrangian fillings, which is a significantly

stronger statement than the existence of infinitely many Lagrangian fillings.

The constructions are explicit and can be readily drawn in the front projection.

The construction implies that these exact Lagrangian surfaces are all smoothly

isotopic. We will distinguish these Lagrangian fillings by studying their action

on part of the coordinate ring of the moduli of framed constructible sheaves

M(Λ) [38], [44], [65] for certain Legendrian links Λ ⊆ (S3, ξst). The techniques

we use for our results illustrate the strength of applying methods from the

microlocal theory of sheaves [44], [65] and the theory of cluster algebras [29],

[31], [34] to 3-dimensional contact and symplectic topology.

1.2. Main results. Let Λ(n,m) ⊆ (S3, ξst) be the maximal-tb positive Leg-

endrian (n,m)-torus link, (n,m) ∈ N × N, as depicted in Figure 1. Positive

Legendrian torus knots are Legendrian simple positive braids [25], and thus

are uniquely determined by their Thurston-Bennequin invariants and their ro-

tation numbers. These Legendrian links can be obtained by considering the

Figure 1. The Legendrian torus links Λ(3, 6) (left) and Λ(4, 4)

(right).
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positive braids β = (σ1σ2 · . . . · σn−1)m+n in (J1S1, ξst) and satelliting the zero

section S1 ⊆ (J1S1, ξst) to the standard Legendrian unknot Λ(1, 1) ⊆ (S3, ξst).

Let L(n,m) be the space of Legendrian links isotopic to the maximal-tb Leg-

endrian torus link Λ(n,m) ⊆ (S3, ξst), with base point an arbitrary but fixed

maximal-tb Legendrian representative.

Let M(Λ(n,m)) be the moduli space of framed sheaves associated to the

Legendrian link Λ(n,m), as we shall introduce in Section 3. ThisM(Λ(n,m))

is an algebraic variety [64], and in our case it will be a quasi-projective sub-

variety of the projective Grassmannian Gr(n, n + m). Since M(Λ(n,m)) is a

Legendrian isotopy invariant [38], [64], [65], it defines a monodromy represen-

tation

Γ : π1(L(n,m)) −→ Aut(M(Λ(n,m)))

into the space of algebraic automorphisms of the algebraic varietyM(Λ(n,m)).

In turn, by pull-back, we obtain a representation

Γ∗ : π1(L(n,m)) −→ Aut(C[M(Λ(n,m))])

into the automorphisms of the coordinate ring C[M(Λ(n,m))] ofM(Λ(n,m)).

In particular, a set of based loops C1, . . . , Cr : S1 −→ L(n,m), r ∈ N, gives

rise to a monodromy representation

Γ∗ : 〈[C1], . . . , [Cr]〉 −→ Aut(C[M(Λ(n,m))])

of the subgroup 〈[C1], . . . , [Cr]〉 ≤ π1(L(n,m)) generated by the homotopy

classes of the based maps C1, . . . , Cr : S1 −→ L(n,m). The first result we

present is

Theorem 1.1. Let L(3, 6) be the space of Legendrian links isotopic to

the maximal-tb Legendrian torus link Λ(3, 6) ⊆ (S3, ξst). Then there exist two

based loops A,B : S1 −→ L(3, 6), and a regular function ∆ ∈ C[M(Λ(3, 6))]

such that the monodromy representation

Γ∗ : 〈[A], [B]〉 −→ Aut(C[M(Λ(3, 6))])

restricts to a faithful modular representation

Γ∗|O(∆) : PSL(2,Z) −→ Aut(O(∆))

along the orbit O(∆) of the function ∆.

In Theorem 1.1, we choose the base point for the space L(3, 6) to be the

Legendrian link in (R3, ξst) whose front projection is depicted in Figure 1,

under an arbitrary but fixed choice of Darboux chart (R3, ξst) ⊆ (S3, ξst). In

the statement of Theorem 1.1, 〈[A], [B]〉 ⊆ π1(L(3, 6)) denotes the subgroup

generated by the homotopy classes [A], [B] ∈ π1(L(3, 6)), with concatenation

of based loops as its group operation. The modular group PSL(2,Z) shall

appear geometrically as the free product Z3 ∗Z2, with the factor Z3 generated
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by the restriction of [A] and the factor Z2 generated by the restriction of

[B], and Aut(C[M(Λ(3, 6))]) denotes the group of (cluster) automorphisms

of C[M(Λ(3, 6))]. Theorem 1.1 is remarkable in that PSL(2,Z) is an infinite

group and thus provides the first result of its kind in the study of 3-dimensional

Legendrian links.

Remark 1.2. The reason for the choice of the Legendrian torus link Λ(3, 6)

is that it is the geometric source of the extended root system E
(1,1)
8 . Indeed, it

can be understood as the maximal-tb Legendrian approximation of the trans-

verse link of the unimodal J10 singularity [2]. The proof of Theorem 1.1 shall

clarify how the E
(1,1)
8 algebraic structure arises from Λ(3, 6).

We show that the Legendrian torus link Λ(4, 4) also exhibits a noteworthy

symmetry:

Theorem 1.3. Let L(4, 4) be the space of Legendrian links isotopic to the

maximal-tb Legendrian torus link Λ(4, 4) ⊆ (S3, ξst). Then there exist three

based loops Ξi : S1 −→ L(4, 4), 1 ≤ i ≤ 3, and a subset F ⊆ C[M(Λ(4, 4))]

such that the monodromy representation

Γ∗ : 〈[Ξ1], [Ξ2], [Ξ3]〉 −→ Aut(C[M(Λ(4, 4))])

restricts to a faithful representation

Γ∗|O(F ) : M0,4 −→ Aut(O(F ))

of the mapping class group M0,4 along the orbit O(F ).

The mapping class group M0,4 of the four-punctured 2-sphere contains a

subgroup isomorphic to PSL(2,Z) with finite index and it is thus infinite. In

Theorem 1.3, the base point for the space L(4, 4) is chosen to be the Legendrian

link in (R3, ξst) with front projection as depicted in Figure 1, also under an

arbitrary but fixed choice of Darboux chart (R3, ξst) ⊆ (S3, ξst). The subgroup

〈[Ξ1], [Ξ2], [Ξ3]〉 ⊆ π1(L(4, 4)) has loop concatenation as its group operation.

Remark 1.4. The two groups PSL(2,Z) and M0,4 featured in Theorems 1.1

and 1.3 are akin to each other in that there are two group isomorphisms

PSL(2,Z) ∼= B3/Z(B3) and M0,4
∼= Bs

4/Z(Bs
4), where B3 denotes the braid

group in 3-strands, Bs
4 denotes the spherical braid group in 4-strands, and

Z(B3) and Z(Bs
4) denote their respective centers.

Let us now state implications of Theorems 1.1 and 1.3, all of which are

new results in low-dimensional contact and symplectic topology.

1.3. Lagrangian fillings. Consider the subset

H := {(n,m) ∈ N× N : n ≤ m, 3 ≤ n, 6 ≤ m} ∪ {(4, 4), (4, 5), (5, 5)} ⊆ N× N.

The first consequence of Theorems 1.1 and 1.3 is
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Corollary 1.5. The Legendrian torus link Λ(n,m) ⊆ (S3, ξst), (n,m)

∈H admits infinitely many exact Lagrangian fillings in the standard symplectic

4-ball (D4, ωst).

For each Λ(n,m), these infinitely many exact Lagrangian fillings are

smoothly isotopic and not Hamiltonian isotopic. Note that both Theorems 1.1

and 1.3 are needed in order to cover all Λ(n,m) for (n,m) ∈ H. That said,

Theorem 1.1 suffices in order to conclude Corollary 1.5 for (n,m) ∈ (H \
{(4, 4), (4, 5), (5, 5)}), and thus Theorem 1.3 is included to achieve Corollary 1.5

for (n,m) = (4, 4), (4, 5) and (5, 5). It should be noted that the article [64]

succeeded in constructing finitely many Lagrangian fillings of the maximal-tb

Legendrian (n,m)-torus link, as many as maximal pairwise weakly separated n-

element subsets [50], [58] of [1, n+m], a finite number that is bounded above by

nm+1. Corollary 1.5 implies that these finitely many exact Lagrangian fillings

do not exhaust all possible, actually infinitely many, exact Lagrangian fillings.

Every knot K ⊆ S3 is either a torus knot, a satellite knot or a hyperbolic

knot, as proven in [66, Th. 2.3] by W.P. Thurston. Let us consider a Legendrian

representative ΛK ⊆ (S3, ξst) of the smooth type K ⊆ S3 and denote by

l(ΛK) ∈ N ∪ {∞} the number of orientable exact Lagrangian fillings L ⊆
(D4, ωst) of the Legendrian knot ΛK ⊆ (S3, ξst), up to a Hamiltonian isotopy.

Consider the smooth invariant

l(K) := sup{l(ΛK) : ΛK ⊆ (S3, ξst)

is a Legendrian representative of K} ∈ N ∪ {∞}

for a smooth knot K ⊆ S3. To our knowledge, there is no hitherto known in-

stance of a non-trivial knot K ⊆ S3 for which l(K) is known and non-vanishing.

In addition, there are non-trivial knots K ⊆ S3 for which the invariant l(K)

vanishes. For instance, l(m(819)) = 0 is known to vanish since the Kauffman

upper bound is not sharp [35], [54]. We shall now use Theorem 1.1 to show

that l(K) is actually infinite for infinitely many knots within each of the three

Thurston classes:

Corollary 1.6. The equality l(K) = ∞ holds for infinitely many torus

knots, infinitely many satellite knots and infinitely many hyperbolic knots K ⊆
S3 in the 3-sphere.

The satellite knots in Corollary 1.6 can be chosen to be cable knots, and

the hyperbolic knots we will exhibit are also well-beloved [7], [37]. For instance,

we will show that l(K) = ∞ already for K = k(43), one of the simplest

hyperbolic non-2-bridge knots [11].

1.4. Lagrangian concordances. Now, let L(n,m) be the monoid of exact

Lagrangian concordances, up to Hamiltonian isotopy, for the Legendrian link

Λ(n,m) ⊆ (S3, ξst). Theorems 1.1 and 1.3 readily imply
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Corollary 1.7. There exist subgroups Γ ⊆ L(3, 6) and Γ′ ⊆ L(4, 4) such

that the group PSL(2,Z) is a factor of Γ and M0,4 is a factor of Γ′.

By definition, the groups Γ and Γ′ in Corollary 1.7 are the subgroups gen-

erated by the exact Lagrangian concordances obtained by graphing the Legen-

drian loops in Theorems 1.1 and 1.3. Corollary 1.7 emphasizes the relevance

of Lagrangian concordances in the study of Legendrian knots. In particular,

the existence of Lagrangian concordances of infinite order is a new result that

itself provides a genuinely useful perspective for the study of Lagrangian fill-

ings. Indeed, there is no a priori reason for the infinite Lagrangian fillings

in Corollary 1.5 to be describable in terms of a finite number of Lagrangian

concordances. The present results show that this is the case. Similarly,

Corollary 1.8. There exists a subgroup Γ ⊆ π1(L(3, 6)) such that the

group PSL(2,Z) is a factor of Γ. Also there exists a subgroup Γ′ ⊆ π1(L(4, 4))

such that the groupM0,4 is a factor of Γ′.

Corollaries 1.7 and 1.8 are the first instances in contact topology of infinite

order elements in the concordance monoid L(Λ), and the fundamental group

π1(L(Λ)), for a Legendrian Λ ⊆ (S3, ξst). Both PSL(2,Z) and M0,4 contain

free groups of any countable rank as subgroups, and thus many infinite order

elements exist in π1(L(3, 6)) and π1(L(4, 4)). In fact, Γ and Γ′ are exponential-

growth subgroups of π1(L(3, 6)) and π1(L(4, 4)).

Remark 1.9. Corollary 1.8 stands in contrast with A. Hatcher’s work [40,

Th. 1] in the smooth category. Indeed, the fundamental group π1(K(n,m)) of

the space K(n,m) of smooth knots in S3 isotopic to the (n,m)-torus knot is the

finite Abelian group Z2.

1.5. Stein surfaces. Finally, let M(n,m) be the Stein surface obtained by

attaching a Weinstein 2-handle [17], [69] to (D4, λst) along each of the com-

ponents of the Legendrian link Λ(n,m) ⊆ (S3, ξst). For gcd(n,m) = 1, the

Weinstein 4-manifold M(n,m) is homotopy equivalent to the 2-sphere. Theo-

rems 1.1 and 1.3 imply the existence of infinitely many Lagrangian surfaces in

the following Stein surfaces:

Corollary 1.10. Let (n,m) ∈ H and gcd(n,m) = 1. Let M(n,m)

be the Weinstein 4-manifold obtained by attaching a Weinstein 2-handle to

(D4, ωst) along Λ(n,m). Then M(n,m) contains infinitely many smoothly iso-

topic closed exact Lagrangian surfaces of genus 1
2(n− 1)(m− 1) that are not

Hamiltonian isotopic.

To our knowledge, Corollary 1.10 presents the first known Stein surfaces

homotopic to the 2-sphere with infinitely many non-Hamiltonian isotopic exact

Lagrangian surfaces of higher genus in the same smooth isotopy class.
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Infinitely many distinct Lagrangian 2-spheres were known to exist in

Ak-Milnor fibres [61, Th. 5.10], k ≥ 3, and infinitely many exact Lagrangian

tori were known to exist in certain Stein surfaces by using either of the articles

[45], [63], [67], [68]. (These infinite families of genus 0 and 1 are presently not

known to come from infinitely many Lagrangian fillings of a Legendrian link,

nor are the ambient Weinstein 4-manifolds homotopic to the 2-sphere.)

In Corollary 1.10, the 1-dimensional intersection form of the Weinstein

4-manifold M(n,m) is positive definite and equals (nm − n − m − 1), since

tb(Λ(n,m)) = nm − n − m. In consequence, M(n,m) does not admit any

Lagrangian surface of genus strictly less than 1
2(n−1)(m−1). Thus, the genus

in Corollary 1.10 is sharp.

Remark 1.11. The Lagrangian 2-spheres in [61] differ by a composition of

symplectic Dehn twists [3], [60]. This is not the case for the exact Lagrangian

higher-genus surfaces in Corollary 1.10 since, by the paragraph above, the

Weinstein 4-manifolds M(n,m), (n,m) ∈ H, do not contain embedded La-

grangian 2-spheres.

Organization. The article is organized as follows. Section 2 geometrically

constructs the loops in Theorems 1.1 and 1.3. Section 3 provides the neces-

sary aspects from the theory of Legendrian invariants constructed through the

study of microlocal sheaves. Sections 4 and 5 prove Theorems 1.1 and 1.3,

respectively, and Section 6 proves the corollaries stated in the introduction.

Acknowledgements. R.C. is grateful to J.B. Etnyre and L. Ng for use-

ful conversations, and to I. Smith for helpful comments on Corollary 1.10.
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for many valuable discussions on microlocal Legendrian invariants, and to

C. Fraser for helpful conversations on cluster modular groups. We also thank

the referee for their thorough comments and suggestions. R. Casals is sup-

ported by the NSF CAREER grant DMS-1942363 and a Sloan Research Fellow-

ship of the Alfred P. Sloan Foundation.

2. The geometric construction

In this section we construct the Legendrian loops in Theorems 1.1 and 1.3

associated to the Legendrian links Λ(3, 6) and Λ(4, 8). This construction is one

of the central geometric contributions of the article. This section also serves

to set up the elements of contact geometry that we shall need [23], [36].

The Legendrian loops Σ1, δ
2,Ξ1,Ξ2 and Ξ3 that we construct can be equiv-

alently considered as exact Lagrangian concordances in the symplectization
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(S3×R(t), d(etαst)) with no critical points with respect to the projection onto

the R-factor [17], [36]. These Lagrangian concordances are obtained by graph-

ing concatenations of the Legendrian isotopies described in Section 2.2.

2.1. The standard contact 3-space. The Legendrian links Λ ⊆ (S3, ξst) in

this article will be considered inside the standard contact 3-space (R3, ξst),

considered as a standard Darboux chart within the contact 3-sphere (S3, ξst)

[2], [4].

In discussing Lagrangian fillings, the inclusion Λ ⊆ (R3, ξst) will be com-

posed with the inclusion (R3, ξst) ⊆ (S3, ξst) given by the one-point compact-

ification. In this identification, the Lagrangian fillings of a Legendrian link

Λ ⊆ (R3, ξst) will be exact Lagrangian surfaces in (D4, λst) considered up to

Hamiltonian isotopy.

The constructions in this article give rise to contact geometric objects in

(R3, ξst), including Legendrian links and contact isotopies. Nevertheless, it

is enlightening to focus on a small neighborhood of the standard Legendrian

unknot Λun ⊆ (R3, ξst) that is contactomorphic to (J1S1, ξst), and work in the

solid torus (J1S1, ξst). Thus, in this article, Legendrian links Λ ⊆ (J1S1, ξst)

and compactly supported contact isotopies in {ϕt}t∈[0,1] ∈ Cont(J1S1, ξst) shall

implicitly be understood as Legendrian links Λ ⊆ (R3, ξst) and contact isotopies

{ϕt}t∈[0,1] ∈ Cont(R3, ξst) by satelliting the zero section S1 ⊆ (J1S1, ξst) to

Λun ⊆ (R3, ξst).

2.2. Legendrian loops. By definition, a Legendrian loop in (J1S1, ξst) is a

Legendrian isotopy {Λt}t∈[0,1] ⊆ (J1S1, ξst) such that Λ0 = Λ1. Let (θ, pθ, z) ∈
S1 ×R2 be global coordinates in J1S1 and ξst = ker (dz − pθdθ). The descrip-

tion of our Legendrian loops shall use the front projection

(J1S1, ξst) −→ S1 × R, (θ, pθ, z) 7−→ (θ, z),

which is indeed a valid front as the fibers are Legendrians. By definition,

the Legendrian Λ(B) ⊆ (R3, ξst) associated to a positive Legendrian braid

B ⊆ (J1S1, ξst) is the image of B under the operation of satelliting the zero

section S1 ⊆ (J1S1, ξst) along the standard Legendrian unknot.

Let k ∈ N. A geometric positive braid B ⊆ (J1S1, ξst), which is a Leg-

endrian link, can be encoded algebraically by a positive expression β, i.e., a

positive braid word, of an element [β] ∈ Bk of the k-stranded braid group

Bk := 〈σ1, . . . , σk−1|σiσi+1σi = σi+1σiσi+1, σiσj = σjσi

for j 6= i± 1, 1 ≤ i, j ≤ k − 1〉,

where σi are the standard Artin generators. The choice of representation β,

i.e., braid word, for the element [β] ∈ Bk is not unique, as one might use the

word relations in Bk to obtain different representations β1, β2 such that [β1] =
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[β2] in Bk. Given a positive braid word β, we denote by B(β) ⊆ (J1S1, ξst)

the Legendrian link associated to β, and we denote by Λ(β) ⊆ (R3, ξst) the

Legendrian link Λ(B(β)).

Notice that the geometric braid B ⊆ (J1S1, ξst) has a front in S1 × R.

Thus, we fix a basepoint θ0 ∈ S1 and require that a braid word β representing

B has the form

β =
l∏

j=1

σij , 1 ≤ ij ≤ k − 1,

where σi1 is the first crossing in the front diagram of B on the right of the

vertical line {θ0} × R ⊆ S1 × R and the crossings are read from left to right.

In this article, we shall construct Legendrian loops by performing Legen-

drian isotopies that primarily consist of Reidemeister moves in the front. In

particular, the three central operations that we use are

(i) Reidemeister III moves. In terms of the given braid word presentation

B = B(β), the Reidemeister III move consists in applying the relation

σiσi+1σi = σi+1σiσi+1. We shall refer to a Legendrian isotopy that imple-

ments the substitution

σiσi+1σi 7−→ σi+1σiσi+1

as an ascending Reidemeister III move, and denote it by R3a. Similarly,

we refer to a Legendrian isotopy that implements the substitution

σi+1σiσi+1 7−→ σiσi+1σi

as a descending Reidemeister III move and denote it by R3d. Thus, either

R3 Reidemeister move is understood as a Legendrian isotopy.

(ii) Cyclic permutation. Consider a braid B(β) represented by

β =
l∏

j=1

σij , 1 ≤ ij ≤ k − 1.

By definition, a cyclic shift δ is a Legendrian isotopy {ψt}t∈[0,1] that brings

the geometric braid B(β) to ψ1(B(β)) such that the braid word ψ1(β)

for the latter is

ψ1(β) =

Ñ
l∏

j=2

σij

é
σi1 , 1 ≤ ij ≤ k − 1.

Note that this braid word for ψ1(β) is read with respect to the fixed

basepoint θ0. Explicitly, this Legendrian isotopy can be geometrically

visualized by rotating B(β) to the left by an appropriate angle while

keeping the zero section fixed.
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Since we study Legendrian braids in (J1S1, ξst), instead of (J1[0, 1], ξst),

two braid words β1 = β2 that differ by a cyclic permutation yield Leg-

endrian isotopic Λ(β1) and Λ(β2). Hence, the operations above produce

Legendrian isotopies.

(iii) Commutation. The third move γ is just implementing the commutation

relation in the braid group Bk. It is described as follows:Ñ
p−1∏
j=1

σij

é
σipσip+1

Ñ
l∏

j=p+2

σij

é
7−→

Ñ
p−1∏
j=1

σij

é
σip+1σip

Ñ
l∏

j=p+2

σij

é
,

with indices 1 ≤ ij ≤ k−1, 1 ≤ p ≤ l−1 and ip+1 6= ip±1. This move can

be realized by a compactly supported Legendrian isotopy in (J1S1, ξst),

which we also refer to as γ, which is the greek letter for c, standing for

commutation.

Example 2.1. Consider the braid word β = (σ1σ2 · . . . · σn−1)m+n, which

geometrically represents the Legendrian torus link Λ(n,m) = Λ(β) ⊆ (R3, ξst).

Then the composition of the cyclic shift δ exactly (n − 1)-times yields a Leg-

endrian loop δn−1 for Λ(n,m). This is the Legendrian loop studied in [42],

where it is shown to be a non-trivial Legendrian loop. We shall provide our

own alternative proof of this non-triviality.

2.3. The Σ1-loop for Λ(3, 6). In this subsection we define a Legendrian

loop Σ1 for the maximal-tb Legendrian links Λ(3, 3s) ⊆ (R3, ξst), s ∈ N, rep-

resented by the positive braid B(β), with braid word β = (σ1σ2)3(s+1), in the

front domain S1×R. The loop Σ1 is defined as the composition of Legendrian

isotopies induced by the following sequence of moves:

(σ1σ2)3(s+1) = (σ1σ2σ1σ2σ1σ2)s+1 δ
≈ (σ2σ1σ2σ1σ2σ1)s+1

R3d

≈ (σ1σ2σ1σ1σ2σ1)(s+1) R3a

≈ (σ1σ2σ1σ2σ1σ2)(s+1) = (σ1σ2)3(s+1).

In the above sequence, the underlined letters indicate changes in the braid

word. In words, the first isotopy is a cyclic shift moving σ1 to the end of the

braid by shifting left past {θ0} × R ⊆ S1 × R. The second isotopy consists of

(3s + 3) simultaneous and commuting Reidemeister R3d moves, whereas the

third isotopy consists of (3s + 3) simultaneous and commuting Reidemeister

R3a moves. The composition of these isotopies yields the initial braid word

(σ1σ2)3(s+1), and thus it generates a Legendrian loop.

Definition 2.2. Consider Λ(3, 3s) ⊆ (R3, ξst). The Legendrian isotopy

Σ1 is the Legendrian loop of Λ(3, 3s) induced by the sequence of Legendrian
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isotopies

(σ1σ2)3(s+1) δ
≈ σ2(σ1σ2)3s+2σ1

R3d

≈ ((σ1σ2σ1)(σ1σ2σ1))(s+1) R3a

≈ ((σ1σ2σ1)(σ2σ1σ2))(s+1),

once the zero section S1 ⊆ (J1S1, ξst) is satellited to the standard unknot.

Definition 2.2 yields Legendrian loops for Λ(3, 3s) for any s ∈ N. In this

article it shall suffice to focus on the case s = 2. It might be relevant to notice

that in Section 4 we shall prove that the loop Σ1 is non-trivial as a Legendrian

loop and it is different from the cyclic loop in Example 2.1. In fact, the Σ1-loop

and the cyclic shift δ for the braid β = (σ1σ2)9 will suffice in order to construct

the representation in Theorem 1.1.

Remark 2.3. The Legendrian loop Σ1 is geometrically constructed in order

to algebraically act as the first Artin generator for a braid group action of B3

into C[M(Λ(3, 6))].

2.4. The Ξ1-loop for Λ(4, 4). Let us now define a Legendrian loop Ξ1 for

the maximal-tb Legendrian links Λ(4, 4s) ⊆ (R3, ξst), s ∈ N, represented by

the 4-stranded positive braid B(β), with braid word β = (σ1σ2σ3)4(s+1).

The Legendrian loop Ξ1 is described by the cyclic shift

(σ1σ2σ3)4(s+1) δ
≈ σ2σ3(σ1σ2σ3)4s+3σ1 = (σ2σ3σ1)4(s+1)(2.1)

followed by the following sequence of moves:

(σ2σ3σ1σ2σ3σ1σ2σ3σ1σ2σ3σ1)(s+1) γ
≈ (σ2σ1σ3σ2σ3σ1σ2σ3σ1σ2σ3σ1)(s+1)

R3d

≈ (σ2σ1σ2σ3σ2σ1σ2σ3σ1σ2σ3σ1)(s+1)

R3d

≈ (σ1σ2σ1σ3σ2σ1σ2σ3σ1σ2σ3σ1)(s+1) (Ψ
(1)
t until here)

γ
≈ (σ1σ2σ3σ1σ2σ1σ2σ3σ1σ2σ3σ1)(s+1) γ

≈ (σ1σ2σ3σ1σ2σ1σ2σ3σ1σ2σ1σ3)(s+1)

R3a

≈ (σ1σ2σ3σ1σ2σ1σ2σ3σ2σ1σ2σ3)(s+1) R3a

≈ (σ1σ2σ3σ1σ2σ1σ3σ2σ3σ1σ2σ3)(s+1)

γ
≈ (σ1σ2σ3σ1σ2σ3σ1σ2σ3σ1σ2σ3)(s+1) = (σ1σ2σ3)4(s+1) (Ψ

(2)
t until here).

In each of the above rows, the underlined letters represent those braid

generators, equivalently crossings of the front, which have been affected at

each step when performing the indicated Legendrian isotopy, consisting either

of a Reidemeister R3 move or a cyclic shift δ. Note that the sequence above

ends with the braid word (σ1σ2σ3)4(s+1), and thus yields a Legendrian loop

when preconcatenated with the Legendrian isotopy in equation 2.1.
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Definition 2.4. Consider Λ(4, 4s) ⊆ (R3, ξst). The Legendrian isotopy Ξ1

is the Legendrian loop of Λ(4, 4s) given by concatenating the two sequences

above and satelliting the zero section S1 ⊆ (J1S1, ξst) to the standard unknot.

We now proceed with the construction of the second Legendrian loop Ξ2,

also associated to the Legendrian links Λ(4, 4s). In conjunction with Ξ3, to be

described momentarily, and the Legendrian loop Ξ1 above, Ξ1,Ξ2,Ξ3 will be

the geometric ingredient for Theorem 1.3.

Remark 2.5. The Legendrian loops Ξ1,Ξ2,Ξ3 are geometrically constructed

to algebraically produce an action of the braid group B4 into C[M(Λ(4, 4))].

Intuitively, Ξ1,Ξ2,Ξ3 act respectively as the three Artin generators for B4.

2.5. The Ξ2-loop for Λ(4, 4). Let us now construct the Legendrian loop

Ξ2 for the maximal-tb Legendrian links Λ(4, 4s) ⊆ (R3, ξst), s ∈ N. We shall

describe it using the same notation as in Section 2.4 above. The Legendrian

loop Ξ2 starts with the braid word (σ1σ2σ3)4(s+1), and it is described by the

following sequence of Legendrian isotopies:

(σ1σ2σ3σ1σ2σ3σ1σ2σ3σ1σ2σ3)(s+1) γ
≈ (σ1σ2σ1σ3σ2σ3σ1σ2σ3σ1σ2σ3)(s+1)

R3a

≈ (σ2σ1σ2σ3σ2σ3σ1σ2σ3σ1σ2σ3)(s+1) δ
≈ (σ1σ2σ3σ2σ3σ1σ2σ3σ1σ2σ3σ2)(s+1)

γ
≈ (σ1σ2σ3σ2σ1σ3σ2σ3σ1σ2σ3σ2)(s+1)

R3d

≈ (σ1σ2σ3σ2σ1σ2σ3σ2σ1σ2σ3σ2)(s+1) (Ψ
(1)
t until here)

R3d

≈ (σ1σ2σ3σ1σ2σ1σ3σ2σ1σ2σ3σ2)(s+1)

R3a

≈ (σ1σ2σ3σ1σ2σ1σ3σ2σ1σ3σ2σ3)(s+1)

γ2

≈ (σ1σ2σ3σ1σ2σ3σ1σ2σ3σ1σ2σ3)(s+1) (Ψ
(2)
t until here).

In each row, the underlined letters represent those crossings that have

been affected when performing the indicated Legendrian isotopy, consisting

either of a Reidemeister R3 move, a cyclic shift δ or a commutation γ. In the

above description of Ξ2, we denote by Ψ
(1)
t the Legendrian isotopy consisting

of the moves performed in the first six equivalences, and we denote by Ψ
(2)
t

the Legendrian isotopy consisting of the moves performed in the last four

equivalences. The decomposition into the two pieces Ψ
(1)
t and Ψ

(2)
t will be

used in Section 5. Note that these Ψ
(1)
t and Ψ

(2)
t pieces for the Legendrian

loop Ξ2 are different from the Ψ
(1)
t and Ψ

(2)
t pieces for the Legendrian loop Ξ1

in Section 2.4 above; this repeated notation for the pieces is acceptable because

we will only be using these pieces to study Ξ1 or Ξ2 one loop at a time, and thus

the notation will be clear by context. Finally, note that the sequence starts
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and ends with the braid word (σ1σ2σ3)4(s+1), and thus it defines a Legendrian

loop for Λ(4, 4s) according to the fronts represented by each braid word.

Definition 2.6. Consider Λ(4, 4s) ⊆ (R3, ξst). The Legendrian isotopy Ξ2

is the Legendrian loop of Λ(4, 4s) given by the sequence of Legendrian iso-

topies above once the zero section S1 ⊆ (J1S1, ξst) is satellited to the standard

unknot.

2.6. The Ξ3-loop. We now construct the third Legendrian loop Ξ3 for

Λ(4, 4s) ⊆ (R3, ξst), s ∈ N. The Legendrian loop Ξ3 starts with the braid word

(σ1σ2σ3)4(s+1), and it is described by the following sequence of Legendrian

isotopies:

(σ1σ2σ3σ1σ2σ3σ1σ2σ3σ1σ2σ3)(s+1) γ
≈ (σ1σ2σ1σ3σ2σ3σ1σ2σ3σ1σ2σ3)(s+1)

R3a

≈ (σ2σ1σ2σ3σ2σ3σ1σ2σ3σ1σ2σ3)(s+1)

R3a

≈ (σ2σ1σ3σ2σ3σ3σ1σ2σ3σ1σ2σ3)(s+1) (Ψ
(1)
t until here)

γ
≈ (σ2σ3σ1σ2σ3σ3σ1σ2σ3σ1σ2σ3)(s+1) γ

2

≈ (σ2σ3σ1σ2σ1σ3σ3σ2σ3σ1σ2σ3)(s+1)

R3a

≈ (σ2σ3σ2σ1σ2σ3σ3σ2σ3σ1σ2σ3)(s+1)

R3a

≈ (σ3σ2σ3σ1σ2σ3σ3σ2σ3σ1σ2σ3)(s+1) (Ψ
(2)
t until here).

γ
≈ (σ3σ2σ1σ3σ2σ3σ3σ2σ3σ1σ2σ3)(s+1) R3d

≈ (σ3σ2σ1σ2σ3σ2σ3σ2σ3σ1σ2σ3)(s+1)

R3d

≈ (σ3σ1σ2σ1σ3σ2σ3σ2σ3σ1σ2σ3)(s+1) γ
≈ (σ3σ1σ2σ3σ1σ2σ3σ2σ3σ1σ2σ3)(s+1)

γ
≈ (σ3σ1σ2σ3σ1σ2σ3σ2σ1σ3σ2σ3)(s+1) R3d

≈ (σ3σ1σ2σ3σ1σ2σ3σ2σ1σ2σ3σ2)(s+1)

R3d

≈ (σ3σ1σ2σ3σ1σ2σ3σ1σ2σ1σ3σ2)(s+1) γ
≈ (σ3σ1σ2σ3σ1σ2σ3σ1σ2σ3σ1σ2)(s+1)

δ
≈ (σ1σ2σ3σ1σ2σ3σ1σ2σ3σ1σ2σ3)(s+1) = (σ1σ2σ3)4(s+1) (Ψ

(3)
t until here).

Note again that the two pieces Ψ
(1)
t ,Ψ

(2)
t for this Legendrian loop Ξ3 differ

from the Ψ
(1)
t and Ψ

(2)
t pieces for the Legendrian loops Ξ1,Ξ2 in Sections 2.4

and 2.5 above.

Definition 2.7. Consider Λ(4, 4s) ⊆ (R3, ξst), the Legendrian isotopy Ξ3

is the Legendrian loop of Λ(4, 4s) given by concatenating the sequence of

Legendrian isotopies above once the zero section S1 ⊆ (J1S1, ξst) is satellited

to the standard unknot.

The loops Σ1, δ
2,Ξ1,Ξ2 and Ξ3 are the needed geometric ingredients in

our proof of Theorems 1.1 and 1.3. The Legendrian loops Σ1, δ
2 will give rise

to the modular action, and Ξ1,Ξ2,Ξ3 to the faithful representation of M0,4.
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From a contact topology viewpoint, it is quite outstanding that the infinitely

many Lagrangian fillings in Corollary 1.5 can arise in this direct and explicit

manner. Let us now move to the algebraic invariants that we shall use in order

to build the representations of the modular group PSL(2,Z) and the mapping

class group M0,4.

Remark 2.8. The reader is invited to discover the analogue of Ξi, 1≤ i≤3,

for the positive braid β = (σ1σ2 · . . . · σn−1)n(s+1). These are Legendrian loops

for the n-component Legendrian links Λ(n, ns). We shall nevertheless not need

these loops in the present article, and thus we do not presently discuss them.

3. Microlocal Legendrian invariants

In this section we introduce the algebraic invariants that we use in order

to construct the representations in Theorems 1.1 and 1.3. These are Legen-

drian invariants arising from microlocal analysis and the study of constructible

sheaves on stratified spaces, as introduced by M. Kashiwara and P. Schapira

in the works [38], [44]. The articles [64], [65] have recently been developing

these Legendrian invariants. The present manuscript highlights a remarkable

application of these invariants to the study of Lagrangian fillings.

Let Λ ⊆ (R3, ξst) be a Legendrian link. Identify the standard contact

3-space with the positive hemisphere bundle (T∞,+(R2), ξst) of the real 2-plane.

Let ShΛ(R2,C) be the derived dg-category of constructible sheaves of C-vector

spaces on R2 with singular support intersecting T∞R2 within the Legendrian Λ.

Suppose that rot(Λ) = 0, and consider the microlocal monodromy functor

µmon : ShΛ(R2,C) −→ Loc(Λ) to the category of local systems of complexes

of C-vector spaces [65, §5.1]. This allows us to consider the following moduli

of objects:

M◦(Λ) := {F • ∈ ShΛ(R2,C) : rk(µmon(F •)) = 1,

µmon(F •) concentrated in degree 0}.

It is shown in [38], [65] that the category ShΛ(R2,C) and, in particular,M◦(Λ),

is a Legendrian invariant of Λ. In the present article, we restrict to Legendrian

links Λ ⊆ (R3, ξst) that arise as Λ(β) for a positive braid β. For this class of

Legendrian links, rot(Λ(β)) = 0, and there exists a binary Maslov potential.

Indeed, the braid piece carries the zero Maslov potential, and satelliting to the

standard Legendrian unknot — with its standard front — increases the Maslov

potential by exactly one.

3.1. The Broué-Deligne-Michel description. In order to directly compute

with the moduli spaces M◦(Λ(β)) and construct the representations in The-

orems 1.1 and 1.3, we require a more explicit description of the moduli space

M◦(Λ(β)). This description is available due to the work [65], which proves
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that M◦(Λ(β)) is isomorphic to a classical moduli BS(β), modulo the gauge

action, associated to a braid β by Broué-Michel [10] and Deligne [18].

Let G = GLk(C), and let B ⊆ G be the Borel subgroup of upper triangular

matrices. The quotient G/B is the flag variety, whose points parametrize

complete flags V • of vector subspaces of Ck. The Bruhat decomposition

G/B =
⊔
w∈W

BwB/B

implies that the relative position of a pair of flags (V •1 , V
•

2 ) is determined by

an element s ∈ Sk = Weyl(G) of the Weyl group, in this case a permutation in

the symmetric group. Consider the Artin generators σi ∈ Bk, 1 ≤ i ≤ k − 1,

and denote by σi the image of σi under the projection Bk −→ Sk from the

braid group to the Ak−1-Coxeter group Sk. Given a flag V • and a permutation

s ∈ Sk, let Ss(V
•) be the set of flags in relative s-position with respect to V •.

Definition 3.1. Let β be a positive braid word

β =

l(β)∏
j=1

σij , 1 ≤ ij ≤ k − 1,

and consider the subset

BS(β) := {(V •1 , . . . , V •l(β)) ∈ (G/B)l(β) : V •m+1 ∈ Sσim (V •m),

1 ≤ m ≤ l(β)} ⊆ (G/B)l(β),

where the index 1 ≤ m ≤ l(β) is understood cyclically modulo l(β); i.e., the

condition for m = l(β) reads V •1 ∈ Sσil(β) (V
•
l(β)). By definition, BS(β) is said

to be the open Bott-Samelson variety associated to β.

For each β, the group G acts on the open Bott-Samelson variety BS(β) di-

agonally on the left, given that the flag variety G/B is given by the B-action on

the right. The article [65, §6] identifiesM◦(Λ(β)) with the quotient G\BS(β).

It is a consequence of this identification that our moduli space M◦(Λ(β)) can

be described as follows.

Choose a set of points {θ0, θ1, . . . , θl(β)} ∈ S1 such that the vertical lines

{θm} × R, 0 ≤ m ≤ l(β) do not intersect the front β ⊆ S1 × R at a crossing

and there exists a unique crossing of β between {θm} × R and {θm+1} × R,

0 ≤ i ≤ l(β). Then M◦(Λ(β)) is the moduli space given by associating a

complete flag V •m along each vertical line {θm} × R such that V •0 = V •l(β)

and two flags V •m and V •m+1 differ only and exactly in their im+1-dimensional

subspaces for all 1 ≤ m ≤ l(β), modulo the gauge group action of GLk(C).

This description in terms of BS(β) will be used in Sections 4 and 5.
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3.2. Moduli of framed sheaves. In the proof of Theorems 1.1 and 1.3 we

shall need a framed enhancement M(Λ(β), τ) of the Bott-Samelson varieties

M◦(Λ(β)). In precise terms, the points of M(Λ(β), τ) are given by the l(β)-

tuples of flags [(V •1 , . . . , V
•
l(β))] ∈ M

◦(Λ(β)) equipped with trivializations τ

for the stalks at a specified set of points. In this case, we choose the set of

points such that the set contains exactly one point for each region where the

constructible sheaf has a 1-dimensional stalk. Given that they are in bijection,

we will interchangeably speak of these points or the open strata in the front

diagram that contain them. These open strata shall also be referred to as

regions. Hence, in the language of Bott-Samelson varieties, the trivialization

τ consists of a series of isomorphisms

V (1)
m
∼= C, 1 ≤ m ≤ l(β).

In our context, the moduli spaces of framed sheaves M(Λ(β), τ) are algebraic

varieties [65]. It should be emphasized that the moduli space M(Λ(β), τ)

depends on the choice of trivialization τ . In our choice above, M(Λ(β), τ)

shall depend on the choice of braid word β. Indeed, the length of the tuple

is precisely l(β). Nevertheless, the article [64] shows that a Legendrian iso-

topy generates an equivalence of moduli space M(Λ(β), τ) of framed sheaves,

with the trivialization, and its region, being pushed forward under the isotopy.

Thus, in studying the action of a Legendrian loop on M(Λ(β), τ) we identify

the moduli spaces of framed sheaves along the Legendrian isotopy and compare

the action at the canonically identified endpoints of the Legendrian loop.

Explicitly, let {Ψt}t∈[0,1] be a Legendrian loop based at the identity, i.e.,

Ψ0 = Id. By [64, §2], there is a canonical isomorphism between the moduli

spaces M(Λ, τ) and M(Ψt(Λ), (Ψt)∗τ) for all t ∈ [0, 1]. By virtue of being

a Legendrian loop, Ψ1 = Id, and thus we obtain an algebraic automorphism

Ψ ∈ Aut(M(Λ, τ)) of the moduli space M(Λ, τ). This automorphism is to

be understood as the monodromy of the Legendrian loop {Ψt}t∈[0,1], in line

with T. Kálmán’s [42, §3] monodromy invariant. The automorphism Ψ ∈
Aut(M(Λ, τ)) in turn induces an automorphism Ψ∗ ∈ Aut(C[M(Λ, τ)]) in the

coordinate ring of regular functions on M(Λ, τ).

In Theorems 1.1 and 1.3 the focus will be on two moduli spacesM(Λ(β), τ)

for the two braid words β = (σ1σ2)9 and β = (σ1σ2σ3)8 and a chosen trivial-

ization τ .

3.3. Ingredients on SL3-webs. The argument for the faithfulness in the

statement of Theorem 1.1, as presented in Section 4, requires the study of

the coordinate ring C[Gr(3, 9)]. We need regular functions beyond the Plücker

coordinates in C[Gr(3, 9)] because the pull-back of some of the Plücker coordi-

nates under the (action on certain moduli spaces induced by our) Legendrian

loops are no longer Plücker coordinates. Thus, in this subsection we provide
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the ingredients that we use to study C[Gr(3, 9)]. They were developed in [47]

originally, and we will use the notation and perspective established in [30].

Consider a closed disk D with m marked points on the boundary. By

definition, a tensor diagram in D for SL3 is a finite bipartite graph drawn in

D with a bipartition of its vertex set into black and white color sets such that

- the boundary marked points of D are black vertices of the graph, and they

are the only vertices of the graph at the boundary;

- the vertices that are not marked points, in the interior, are trivalent.

The case of interest in this manuscript is m = 9 marked points at the boundary.

Figure 2. The diagrams on each of the left-hand sides of the

equalities are called A2-spiders in [47, §4]. The diagrams on the

right-hand sides follow the notational convention of [30], white

vertices are sources and black vertices are sinks. The white

tripod represents det(vivjvk), vi, vj , vk ∈ V ∼= C3, which is the

SL3-invariant tensor given by a fixed volume form V ⊗3 −→ C,

and the black tripod represents its dual.

Let V = C3 be a vector space endowed with a volume form. Suppose

we assign a vector v ∈ V to each black vertex and a covector v∗ ∈ V ∗ to

each white vertex. Two basic SL3-invariant tensors associated to V are the

volume form V ⊗3 −→ C and the dual form (V ∗)⊗3 −→ C. For the purposes

of this manuscript, they are diagrammatically encoded by a white tripod and

a black tripod, respectively, as depicted in Figure 2. This follows the notation

of [30], with white and black vertices, but note that these diagrammatics were

previously studied in [47] for rank 2 algebras; in particular, SL3 is associated

to the A2-Dynkin diagram, and these tensor diagrams were called A2-spiders

by G. Kuperberg. The canonical pairing V ⊗ V ∗ −→ C is diagrammatically

given by an edge between a black and white vertex; i.e., an edge can also be

considered as the identity in V if we identified V ∼= V ∗.

Now, suppose that vectors v1, . . . , vm ∈ V are assigned to the m marked

points at the boundary of D, one vector per marked point. Then, a tensor

diagram can be used to define a C-scalar by repeated contraction using the

basic SL3-invariant tensors. For instance, Figure 3 gives two examples of tensor

diagrams and their associated functions for m = 9; see [30] and [34, §9] for

more details.
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Figure 3. Two examples of SL3-webs for the Grassmannian

Gr(3, 9). As invariant functions, and as elements of the co-

ordinate ring C[Gr(3, 9)], these tensor diagrams represent the

functions det(v2v3v4) det(v5v6v7) det(v8v9v1), for the diagram

on the left, and det(v9 × v1, v2 × v3, v4 × v5) det(v6v7v8) for the

diagram on the right.

Finally, a point in the (affine cone of the) Grassmannian Gr(3, 9) will be

represented by an ordered tuple of nine vectors in V , modulo the appropriate

action. In this manner, a tensor diagram gives rise to a regular function in the

coordinate ring C[Gr(3, 9)]. For instance, Figure 3 (left) represents the product

P234P567P891 ∈ C[Gr(3, 9)], where Pijk = vi ∧ vj ∧ vk is a Plücker coordinate.

See Section 4.2 for further examples.

Remark 3.2. We conclude with a piece of terminology. A planar tensor

diagram is often called a web in the literature. This is the reason that this

diagrammatic calculus is referred to as web combinatorics; we refer to the webs

associated planar tensor diagrams for SL3 as SL3-webs, as in [34]. Following

[47], a web is non-elliptic if it contains no 2-cycles based at a boundary vertex

and if all of its faces formed by interior vertices are bounded by at least six

sides. G. Kuperberg showed in [47] that (non-elliptic) webs can be used to

construct bases for many rings of SL3-invariants.

In the next two sections we prove Theorems 1.1 and 1.3. These two proofs

are independent of each other. The reader is nevertheless encouraged to read

the proof of Theorem 1.1 first, as it also sets the main techniques and notation

for the proof of Theorem 1.3.

4. The PSL(2,Z) representation for Λ(3, 6)

Let us prove Theorem 1.1. For that, we shall compute the action of

the two Legendrian loops Σ1, δ
2 constructed in Section 2 into the coordinate

ring C[M(Λ(β), τ)] of the framed Bott-Samelson variety M(Λ(β), τ), where

the braid is fixed to be β = (σ1σ2)9 and the trivialization τ is given at
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the 1-dimensional stalks depicted as dots Figure 4, where the braid β for

the Legendrian link Λ(3, 6) is also depicted.1 These monodromy invariants

Σ∗1, (δ
2)∗ ∈ Aut(C[M(Λ(β), τ)]) will be shown to be non-trivial and generate

an action of an infinite group on the coordinate ring C[M(Λ(β), τ)].

Figure 4. The identification of M(Λ(3, 6)) with the positroid

cell in Gr(3, 9).

4.1. The monodromy effect within Gr(3, 9). The first step of the argument

is to identify the moduliM(Λ(β), τ) with the positroid stratum Πr ⊆ Gr(3, 9)

in the projective Grassmannian Gr(3, 9), where r is the cyclic rank matrix asso-

ciated to the positive braid (σ1σ2)9. The canonical embedding of M(Λ(β), τ)

into Gr(3, 9), with image Πr, is obtained as follows [64, §3.2]. Given a point

(V •1 , . . . , V
•

18) ∈M(Λ(β), τ), the 9-tuple of vectors

(v1, v2, . . . , v9) ∈ (V
(1)

1 , V
(1)

3 , V
(1)

5 , . . . , V
(1)

17 ),

modulo the GL9(C)-action, defines a point in Gr(3, 9), where the choice of

vectors is given by the framing. These vectors (v1, v2, . . . , v9) are depicted in

Figure 4. The advantage of this algebraic embeddingM(Λ(β), τ) −→ Gr(3, 9)

is that it allows us to use elements in the homogeneous coordinate ring of

Gr(3, 9) restricted to M(Λ(β), τ) in order to study the effect of the mon-

odromies Σ∗1, (δ
2)∗ ∈ Aut(C[M(Λ(β), τ)]). We shall henceforth denote the

framed moduli space byM(Λ(β)), where the trivialization τ is implicitly cho-

sen to be as above.

Remark 4.1. Consider three vector spaces U,W,V of dimensions dim(U)=1,

dim(W ) = 2 and dim(V ) = 3. A framed constructible sheaf F ∈ M(Λ(β), τ)

has stalks isomorphic to U , W and V as depicted in Figure 4. The 9-tuple

of vectors described above can also be obtained by parallel transport of the

stalk of F ∈M(Λ(β)) in the U -region to the V -region along the dashed paths

depicted in Figure 4. Note that it does not matter whether a dashed arrow

passes a crossing from its left or its right.

1Colored version of figures can be seen in the on-line version of the journal.
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Let us now analyze the action of the Legendrian loops Σ1 and δ2 on the

coordinate ring ofM(Λ(β)) by studying their action on the 9-tuples of vectors

(v1, v2, . . . , v9). For that, we must identify the explicit effect of each of the

Legendrian isotopies constituting Σ1 and δ2. These consist of cyclic shifts and

Reidemeister III moves.

The effect of the Legendrian isotopy δ2 described in Section 2.2(ii) above

is precisely the cyclic shift on the 9-tuple of vectors:

δ2(v1, v2, . . . , v9) = (v9, v2, . . . , v1).

The effect of Reidemeister III moves is more interesting. Indeed, the

Reidemeister R3d introduces a U -region and thus contributes to a vector u1,

whereas the Reidemeister R3a, conversely, reduces the number of U -regions by

exactly one, thus making a vector disappear. Figure 5 depicts the case where

the 3-tuple (v1, v2, v3), in the region given by the braid σ1σ2σ1σ2, becomes the

4-tuple (v1, v2, u1, v3) for the braid σ1σ1σ2σ1.

Figure 5. The effect of a Reidemeister R3d move on M(Λ(β)).

In terms of the 5-tuple of flags (V •1 , . . . , V
•

5 ), associated to the braid

σ1σ2σ1σ2, as described in Section 3, the vectors are v1 = V
(1)

1 , v2 = V
(1)

2 = V
(1)

3

and v3 = V
(1)

4 = V
(1)

5 . Performing the descending Reidemeister III in Figure 5

yields the new vector u1, whose direction is uniquely defined by V
(2)

1 ∩V (2)
5 , and

the normalization is given by the framing. The following proposition describes

the algebraic effect of Σ1:

Proposition 4.2. The Legendrian loop Σ1 induces the morphism

(v1, v2, v3; v4, v5, v6; v7, v8, v9) 7−→ (v2, u1, v3; v5, u2, v6; v8, u3, v9),

where u1, u2 and u3 are given by the intersections

u1 ∈ 〈v1, v2〉 ∩ 〈v3, v4〉, u2 ∈ 〈v4, v5〉 ∩ 〈v6, v7〉, u3 ∈ 〈v7, v8〉 ∩ 〈v9, v1〉,

and the three normalizing conditions v1v2 = v2u1, v4v5 = v5u2 and v7v8 = v8u3

in V ∧ V .
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Figure 6 depicts instances of the conclusion of Proposition 4.2 in terms

of G. Kuperberg’s SL3-web combinatorics [47, §4]; see Section 3.3 above. The

reader is also referred to [30], [46] for the basics of planar tensor diagrams and

SL3-webs, which we shall use in Section 4.2. In particular, Figure 6 displays

the pull-backs (Σ1)∗P147, (Σ1)∗P258 and (Σ1)∗P369 of three Plücker coordinates

Pijk ∈ C[Gr(3, 9)], 1 ≤ i < j < k ≤ 9, where Pijk = vi ∧ vj ∧ vk. In particular,

Proposition 4.2 implies (Σ1)∗P147 = P258 and (Σ1)∗P369 = P369.

Figure 6. The webs associated to (Σ1)∗P147, on the left,

(Σ1)∗P258, in the center, and (Σ1)∗P369, on the right, according

to Proposition 4.2. In the web for (Σ1)∗P258 we have depicted

u1 in green, u2 in red and u3 in blue.

We shall provide the proof of Proposition 4.2 momentarily. However, let

us first conclude the proof of Theorem 1.1 assuming Proposition 4.2.

4.2. The faithful PSL(2,Z)-action. For that, we study the monodromy ac-

tion of the subgroup Γ = 〈[Σ1], [δ2]〉 ⊆ π1(L(3, 6)) generated by the homotopy

classes of the two Legendrian loops Σ1, δ
2 into the set of 9-tuples of vectors

in C3. In order to show that this action is indeed non-trivial, we choose a

function ∆ ∈ C[Gr(3, 9)] and ensure that the pull-backs of this function are

distinct. For our braid β = (σ1σ2)9, let us choose the Plücker coordinate

∆ = P147 in C[Gr(3, 9)], given by P147(v1, . . . , v9) = v1 ∧ v4 ∧ v7. The alge-

braic claim that needs to be proven is that the monodromy of Σ1, δ
2 induces

a faithful PSL(2,Z)-action on the orbit O(P147).

First, let A = δ2 and B = Σ1 ◦ δ2. We have that A∗(P147) = P258,

(A2)∗(P147) = P369 and (A3)∗(P147) = P471 = P147, and thus A generates a

Z3-action on the orbit O(P147). In general, the action of A and B cannot

be exclusively written in terms of Plücker coordinates. In order to study our

monodromy action we shall be using SL3-webs; see Section 3.3 above and ref-

erences therein. In terms of SL3-webs, the diagrams associated to the Plücker

coordinates P147 and A∗(P147) = P258 are depicted in Figure 7.

The monodromy of the Legendrian loop B generates a Z2-action on the

orbit O(P147). Indeed, the square B2 = Σ1 ◦ δ2 ◦ Σ1 ◦ δ2 pulls back P147 as
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Figure 7. The webs associated to the Plücker coordinates P147,

on the left, and P258, on the right. In general, δ2 acts by clock-

wise rotation on webs.

follows:

(B∗)2(P147) = (δ2)∗ ◦ (Σ1)∗ ◦ (δ2)∗ ◦ Σ∗1(P147) = (δ2)∗ ◦ (Σ1)∗ ◦ (δ2)∗(P258)

= (δ2)∗ ◦ (Σ1)∗(P369) = (δ2)∗(P369) = P147,

where we have used (Σ1)∗(P369) = P369, as implied by Proposition 4.2. Thus,

A∗ generates a Z3-action and B∗ generates a Z2-action. Since the modular

group PSL(2,Z) ∼= Z3 ∗ Z2 is a free product, it suffices to show that A and B

generate a faithful action with no relations in the subgroup 〈[A], [B]〉. Following

[34, §10], we will prove this by using the Ping-Pong Lemma [39, §II.B]:

Lemma 4.3 ([39, 51]). Let Γ be a group acting on a set X , let Γ1,Γ2 be

two subgroups of Γ, and let G be the subgroup of Γ generated by Γ1 and Γ2.

Suppose that |Γ1| ≥ 3 and |Γ2| ≥ 2.

Assume that there exist two non-empty subsets X1, X2 in X , with X2 not

included in X1, such that

γ(X2) ⊆ X1 ∀γ ∈ Γ1, γ 6= 1

γ(X1) ⊆ X2 ∀γ ∈ Γ2, γ 6= 1.

Then G is isomorphic to the free product Γ1 ∗ Γ2.

We apply Lemma 4.3 for Γ = π1(L(3, 6)), G = 〈[A], [B]〉, Γ1 = 〈[A]〉 and

Γ2 = 〈[B]〉, which indeed satisfy |Γ1| ≥ 3 and |Γ2| ≥ 2. The action of G in

X is given by the induced monodromy, as described in Section 3. Consider

X = O(P147) to be the orbit of P147. Let us now define the Ping-Pong sets X1

and X2. This shall be done in terms of their web diagrams, as follows:

Definition 4.4. The set X1 ⊆ O(P147) is the set of all (non-elliptic) webs

in C[Gr(3, 9)] that do not contain any of the pieces in Figure 8. That is, a web

is in X \X1 if it contains at least one of the pieces in Figure 8.

Similarly, the set X2 ⊆ O(P147) is the set of all (non-elliptic) webs in

C[Gr(3, 9)] that do not contain any of the pieces in Figure 9.
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Figure 8. The webs in the set X1 do not contain any of these

six pieces.

Figure 9. The webs in the set X2 do not contain any of these

six pieces.

It suffices to prove that X1, X2 in Definition 4.4 are Ping-Pong sets for

the monodromy action. It is useful to remind ourselves that the pull-back

A∗ = (δ2)∗ acts by clockwise rotation by 2π/9-radians on the web diagram.

First, let us prove the inclusion A(X2) ⊆ X1. Suppose that we have a

web W2 ∈ X2. We need to argue that A(W2) contains none of the six patterns
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displayed in Figure 8. Suppose A(W2) contained any of these six. Then the

clockwise rotation by 4π/9-radians of the diagram A(W2) will contain a spike at

one of the boundary vertices 2, 5 or 8, and thus not be in X2. This rotation by

4π/9-radians of the diagram A(W2) represents A2(A(W2)) = W2 since A3 = id

in O(P147), which contradicts W2 ∈ X2. This shows A(X2) ⊆ X1.

Second, let us prove the inclusion B(X1) ⊆ X2. Consider a web W1 ∈ X1.

We need to argue that B(W1) contains none of the six patterns displayed in

Figure 9. Suppose B(W1) contained any of the three patterns displayed in

the first row of Figure 9, i.e., a spike at either one of the boundary vertices

2, 5 or 8. By Proposition 4.2, the web Σ∗1(B(W1)) contains one of the three

patterns in the first row of Figure 8 rotated counter-clockwise by an angle of

2π/9-radians. In consequence, the 2π/9-clockwise rotation

(δ2)∗ ◦ Σ∗1(B(W1)) = B(B(W1)) = W1 6∈ X1

of Σ∗1(B(W1)) does not belong to X1, which contradicts W1 ∈ X1. Thus B(W1)

does not contain any of the three patterns displayed in the first row of Figure 9.

Now, suppose that B(W1) contained any of the three patterns displayed

in the second row of Figure 9. Proposition 4.2 implies that the web Σ∗1(B(W1))

contains a counter-clockwise rotated copy, by an angle of 2π/9-radians, of one

of the three patterns in the second row of Figure 8. Thus, the 2π/9-clockwise

rotation (δ2)∗ ◦Σ∗1(B(W1)) does not belong to X2. This is a contradiction with

(δ2)∗ ◦ Σ∗1(B(W1)) = B(B(W1)) = W1 6∈ X1.

Hence B(W1) cannot contain any of the three patterns displayed in the second

row of Figure 9. This shows B(X1) ⊆ X2, as desired. In conclusion, X1

and X2 are Ping-Pong sets and Lemma 4.3 implies that G = 〈[A], [B]〉 is

isomorphic to PSL(2,Z), and thus the restriction of the monodromy action

to this subgroup is a faithful PSL(2,Z)-representation along the orbit X =

O(P147). This concludes the proof of Theorem 1.1 once Proposition 4.2 has

been proven.

4.3. Proof of Proposition 4.2. Let us consider the braid word β = (σ1σ2)9

and consider the braid word given by the piece β0 = (σ1σ2)3, such that β = β3
0

is a concatenation of β0 three times. We refer to the piece β0 as a window for the

braid β, such that β consists of three windows. The Legendrian loop Σ1 consists

of a cyclic permutation and a sequence of braid equivalences given by the

Reidemeister III moves. The braid equivalence can be performed equivariantly

over each of the three windows, and hence the morphism induced from Σ1 is

periodic with respect to this prescribed window decomposition once the shift

is applied. It thus suffices to work with one window to describe the morphism.

Figure 10 depicts the window before a cyclic shift, bounded by the vertical
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grey boundaries, and after a cyclic shift, which is bounded by the vertical blue

boundaries.

v1 v2 v3 v4 v5

v1v2 v2v3 v3v4 v4v5

V = v1v2v3 = v2v3v4 = v3v4v5

v3v5

u1

v2u1 u1v3v1 v2 v3 v4 v5

v1v2 v3v4 v4v5

V

u1

v2u1 u1v3v1 v2 v3 v5

v1v2 v3v4 v4v5

V

Figure 10. First window β0 of the Legendrian braid β = (σ1σ2)9

associated to the Legendrian link Λ(3, 6). There are total of

three windows.

Consider the union of the first window with its cyclic shift, as depicted

in Figure 10. A framed sheaf restricted to this union is determined by vectors

{v1, v2, v3, v4, v5}, which are placed at the regions bounded by the first and

second strands. In the diagrams in Figure 10 the (stalk of the) sheaf is spec-

ified in each open region given by the stratification of the front diagram, by

associating the vector space spanned by the vectors written in the region. The

volume form in each region is given by the ordered wedge product of vectors

in that region.
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Now we focus on the grey window. Its boundary underlines the two com-

plete flags

0 ⊂ 〈v1〉 ⊂ 〈v1, v2〉 ⊂ V, 0 ⊂ 〈v4〉 ⊂ 〈v4, v5〉 ⊂ V.

Each flag is shared by two nearby windows. To reduce this replication, one

can break the symmetry by choosing one flag for each window. Without loss

of generality, we choose the flag on the left boundary of each window. In

particular, the sheaf restricted to the grey window is reduced to the data of

three vectors {v1, v2, v3} in V .

Note that even though the subspaces 〈v4〉 and 〈v4, v5〉 cannot be computed

from {v1, v2, v3}, they are uniquely determined by the next window, and the

sheaf is still well defined over the grey window. We now perform the descending

Reidemeister move III depicted in the middle of Figure 10. This R3d move

creates a region and a new vector u1, as we described in the discussion preceding

Proposition 4.2. From the front, the microlocal support condition for our

constructible sheaf implies that

〈v1, v2〉 = 〈v2, u1〉, 〈v3, v4〉 = 〈u1, v2〉.

Hence u1 lies in both 〈v1, v2〉 and 〈v3, v4〉. Moreover, the crossing condition at

the crossing depicted in red in Figure 10 yields that the complex

0 −→ 〈u1〉 −→ 〈v1, v2〉 ⊕ 〈v3, v4〉 −→ V → 0

is a short exact sequence of C-vector spaces. Therefore

〈u1〉 = 〈v1, v2〉 ∩ 〈v3, v4〉,

and u1 is the unique vector such that

v1v2 = v2u1.

This establishes the description of u1 in the statement of Proposition 10.

Let us now shift to the blue window. The constructible sheaf restricted to

this window is determined by {v2, u1, v3, v4}. The fourth vector v4 disappears

upon performing the ascending Reidemeister III move, as depicted in the bot-

tom of Figure 10. After this R3a move, the sheaf is uniquely determined by

{v2, u1, v3}. The morphism induced by Σ1 thus starts with

(v1, v2, v3) 7→ (v2, u1, v3),

where u1 ∈ 〈v1, v2〉 ∩ 〈v3, v4〉 and v1v2 = v2u1, and it continues to remove

v4. These two moves are preceded by the cyclic shift, and their composition

yields the expression in the first, and thus any, window in the statement of

Proposition 4.2, as required.
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4.4. Comments on the proof. This concludes the proof of Theorem 1.1.

Before proceeding with Theorem 1.3, the following comments might be clar-

ifying. The geometric loops Σ1, δ
2 are studied in the above proof of Theo-

rem 1.1 by analyzing their action on the ring of functions C[M(Λ(β), τ)] of

the framed moduli space M(Λ(β), τ). It should be equally possible to deduce

Theorem 1.1 by studying their monodromy invariants in the ring of regular

functions C[M(Λ(β))] of the moduli spaces of sheaves, with no frame τ cho-

sen, with the corresponding (C∗)9-equivariant condition added. Indeed, the

positroid embedding ofM(Λ(β), τ) inside the Grassmannian Gr(3, 9) yields an

embedding of the moduli of sheavesM(Λ(β)) into the quotient Gr(3, 9)/(C∗)9

of the Grassmannian Gr(3, 9) by the diagonal subgroup of GL9(C) acting on

the right, i.e., by column C∗-rescaling.

It is our aesthetic opinion that working directly in the unquotiented Grass-

mannian Gr(3, 9) yields a clearer understanding of the geometry, thus our

choice of using the moduli space of framed sheaves. In terms of cluster alge-

bras, the quotient Gr(3, 9)/(C∗)9 has no frozen cluster variables, whereas the

Grassmannian Gr(3, 9) [31], [59] has the cyclically consecutive Plücker coordi-

nates as frozen cluster variables.

Remark 4.5. The articles [34], [62] respectively use the affine cone on the

projective Grassmannian Gr(3, 9) [34, §3] and the decorated Grassmannian

G r(3, 9) [62, §2.1]. These can be equivalently considered [62, Lemma 2.6]

and correspond to matrices Mat3,9 up to the left action of SL3(C), rather

than GL3(C), which would yield the projective Grassmannian Gr(3, 9). In

terms of the moduli space of framed sheaves M(Λ(β), τ) used in our proof

of Theorem 1.1, we should require the additional data of a trivialization of

the microlocal monodromy along Λ(β) itself [65, §5.1]. By context, it seems

appropriate to refer to this space as the moduli space of decorated sheaves.

The line of argument above should also work by using the decorated positroid

embedding of the space of decorated sheaves into the decorated Grassmannian.

Let us now move forward with Theorem 1.3. Note that Theorem 1.1 on

its own allows us to conclude Corollaries 1.5 and 1.10 in the cases (n,m) ∈
H \ {(4, 4), (4, 5), (5, 5)}, and Corollaries 1.7 and 1.8 for Λ(3, 6). In order to

cover the Legendrian links Λ(4, 4), Λ(4, 5) and Λ(5, 5), and for completeness,

we now include the proof of Theorem 1.3, which is in line with that of Theo-

rem 1.1 above.

5. The M0,4 representation for Λ(4, 4)

In this section we prove Theorem 1.3. The argument reproduces the strat-

egy for Theorem 1.1 above. In this case, the braid is β = (σ1σ2σ3)8 and the

moduli space M(Λ(β)) is identified with a positroid cell Πr(β) ⊆ Gr(4, 8) by
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the same procedure. The action of the Legendrian loops Ξ1,Ξ2,Ξ3 is described

by the following three crucial propositions:

Proposition 5.1. The Legendrian loop Ξ1 induces the morphism

(v1, v2, v3, v4; v5, v6, v7, v8) 7−→ (v2, u1, v3, v4; v6, u2, v7, v8),

where u1, u2 are given by the intersections

u1 ∈ 〈v1, v2〉 ∩ 〈v3, v4, v5〉, u2 ∈ 〈v5, v6〉 ∩ 〈v7, v8, v1〉,
and the normalizing conditions v1v2 = v2u1 and v5v6 = v6u2 in V ∧ V .

Proposition 5.2. The Legendrian loop Ξ2 induces the morphism

(v1, v2, v3, v4; v5, v6, v7, v8) 7−→ (v1, v3, u1, v4; v5, v7, u2, v8),

where u1, u2 are given by the intersections

u1 ∈ 〈v2, v3〉 ∩ 〈v4, v5, v6〉, u2 ∈ 〈v6, v7〉 ∩ 〈v8, v1, v2〉,
and the normalizing conditions v2v3 = v3u1 and v6v7 = v7u2 in V ∧ V .

Proposition 5.3. The Legendrian loop Ξ3 induces a morphism

(v1, v2, v3, v4; v5, v6, v7, v8) 7−→ (v1, v2, v4, u1; v5, v6, v8, u2),

where u1, u2 are given by the intersections

u1 ∈ 〈v3, v4〉 ∩ 〈v5, v6, v7〉, u2 ∈ 〈v7, v8〉 ∩ 〈v1, v2, v3〉,
and the normalizing conditions v3v4 = v4u1 and v7v8 = v8u2 in V ∧ V .

Propositions 5.1, 5.2 and 5.3 are proven at the end of this section. The

action of the group Γ2 = 〈Ξ1,Ξ2,Ξ3〉 in the set of 8-tuples of vectors, repre-

senting a point in Gr(4, 8), yields via pull-back an action on a subset of the

homogeneous coordinate ring C[Gr(4, 8)]. For the braid Λ(4, 4), it does not

suffice to study the Γ2-orbit of a Plücker coordinate, as we directly did for

Theorem 1.1, but rather a set of Plücker coordinates. In this proof for Theo-

rem 1.3, we directly refer to known algebraic arguments whose nature is on par

with Section 4.2, as follows. Indeed, [34, Lemma 10.8] proves that the group

〈Ξ1,Ξ2,Ξ3〉 generated by the monodromies of the three Legendrian loops gen-

erates a faithful action of PSL(2,Z) ∼= Z2 ∗ Z3 on the (cluster) automorphism

group of the coordinate ring C[Gr(4, 8)]. This is achieved by studying the orbit

of the Plücker set,

P = {P1378, P2348, P2367, P4678, P3457, P2347, P2378, P3678, P3467},

which is a cluster seed for a triangulation of the annulus with four bound-

ary marked points. By [28, Prop. 2.7], the mapping class group of the four-

punctured sphere M0,4 is isomorphic to the semidirect product PSL(2,Z) n
(Z2 × Z2). The article [34, Th. 9.14] also shows that this faithful action

of PSL(2,Z) extends to the mapping class group M0,4 as required. This is

achieved explicitly by studying the four cosets of PSL(2,Z) into M0,4. In the
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algebraic argument, the set F can be chosen to be the union of four sets, as

follows. The first set S is the union of a finite number of cluster charts [34,

§10.2] containing the set P of Plücker coordinates above, and the remain-

ing three sets are the coset translates Ξ3(S), Ξ3Ξ2(S), and Ξ3Ξ2Ξ1(S). Here

Ξ3,Ξ3Ξ2 and Ξ3Ξ2Ξ1 are each a right coset representative for each of the three

non-trivial cosets of the inclusion of PSL(2,Z) into M0,4 above.

The crucial ingredient for the proof of Theorem 1.3 above is the statement

that the Legendrian loops we constructed in Section 2 indeed induce an action

of the (spherical) braid group B4. This is precisely the content of Proposi-

tions 5.1, 5.2 and 5.3, which describe the algebraic effect of the Legendrian

loops Ξ1,Ξ2 and Ξ3. Let us now prove these three propositions.

5.1. Proof of Proposition 5.1. We consider the braid words β = (σ1σ2σ3)8

and β0 = (σ1σ2σ3)4. Following the notation in the proof of Proposition 4.2

above, each β0 is a window and β = β2
0 is the concatenation of two windows.

Similar to the proof of Proposition 4.2, it suffices to compute the induced

morphism in a window.

Consider the union of the first window and its one-term cyclic shift, de-

picted in the top diagram of Figure 11. The window before the shift has grey

boundaries. We choose to include the sheaf data on the left boundary in this

window and leave the sheaf data on the right boundary to the next window.

With this choice, a framed constructible sheaf in the grey window is determined

by four vectors {v1, v2, v3, v4} in V .

Now we study the morphism induced by the Legendrian loop Ξ1. The

sequence of braid moves can be carried out as the concatenation of two Leg-

endrian isotopies Ψ
(2)
1 ◦ Ψ

(1)
1 . These two Legendrian isotopies Ψ

(1)
t and Ψ

(2)
t ,

t ∈ [0, 1], are defined in Section 2. In Figure 11, Ψ
(1)
t corresponds to the Legen-

drian isotopy from the top diagram to the middle diagram, and Ψ
(2)
t is depicted

from the middle diagram to the bottom diagram. After performing the Legen-

drian isotopy Ψ
(1)
t , t ∈ [0, 1], the diagram introduces a new vector u1. From the

diagram, we see that 〈v1, v2〉 = 〈v2, u1〉 and 〈u1, v3, v4〉 = 〈v3, v4, v5〉. Hence

u1 ∈ 〈v1, v2〉 ∩ 〈v3, v4, v5〉. To argue that the intersection is a 1-dimensional

subspace, we should discard the case that 〈v1, v2〉 ⊂ 〈v3, v4, v5〉. Inside the

middle figure, the condition at the red crossing yields a short exact sequence

of complex vector spaces:

0→ 〈u1, v3〉 → 〈v1, v2, v3〉 ⊕ 〈v3, v4, v5〉 → V → 0.

If 〈v1, v2〉 is contained in 〈v3, v4, v5〉, so is 〈v1, v2, v3〉. Then it is impossible to

map the direct sum onto V , which is a contradiction. Therefore

〈u1〉 = 〈v1, v2〉 ∩ 〈v3, v4, v5〉,
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v1 v2 v3 v4 v5
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Ψ
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v4v5v6

Figure 11. First window β0 of the Legendrian braid β =

(σ1σ2σ3)8 associated to the Legendrian loop Ξ1 for the Leg-

endrian link Λ(4, 4). There are a total of two windows.

and the vector u1 can be uniquely determined by

v1v2 = v2u1.

At this stage, there are five vectors {v2, u1, v3, v4, v5} inside the (blue)

shifted window. There is a redundancy that is removed via the Legendrian

isotopy Ψ
(2)
t . The bottom diagram in Figure 11 specifies how to determine

the constructible sheaf using the four vectors {v2, u1, v3, v4}. In the end, the



INFINITELY MANY LAGRANGIAN FILLINGS 237

only regions including v5 are connected to the right blue boundary, which is

determined by the next window. Iterating this procedure in each window, we

obtain that the morphism determined by Ξ1 is indeed that of the statement of

Proposition 5.1.

5.2. Proof of Proposition 5.2. Let us consider the Legendrian isotopy Ψ
(1)
t ,

as defined in Section 2. This is the first of two pieces that constitute the

Legendrian loop Ξ2. This Legendrian isotopy Ψ
(1)
t is depicted from the top

to the middle in Figure 12; we have labeled two of the regions in the middle

picture, each being assigned a 2-dimensional vector space, denoted W1 and

W2. Note that W1 = 〈v2, v3〉, since this region already exists in the front

at the top row of Figure 12. The second vector space W2 is given by the

intersection 〈v2, v3, v4〉∩ 〈v4, v5, v6〉, following the condition at the red crossing

in the middle picture. This determines the algebraic effect of the Legendrian

isotopy Ψ
(1)
t .

Let us continue with the second Legendrian isotopy Ψ
(2)
t . This Legendrian

isotopy creates a new region with a vector u1, as depicted in Figure 12. The

vector spaces W1 and W2 can then be described by using the vector u1. Indeed,

we have W1 = 〈v3, u1〉 and W2 = 〈u1, v4〉. An argument in line with that of

the proof of Proposition 5.1 concludes that u1 ∈ 〈v2, v3〉 ∩ 〈v4, v5, v6〉, and it is

uniquely determined by v2v3 = v3u1, as required. This concludes the desired

transformation for the first window. The transformations for the remaining

windows are concluded similarly.

5.3. Proof of Proposition 5.3. The argument is identical to that in Propo-

sitions 5.1 and 5.2, and thus we only provide the core steps. In particular, we

have depicted the Legendrian loop Ξ3 in Figure 13 as well as its effect in three

different pieces Ξ3 = Ψ
(3)
1 ◦Ψ

(2)
1 ◦Ψ

(1)
1 , as recorded in Section 2. In short, the

core information in studying the effect of Ξ3 can be described as follows:

- After Ψ
(t)
1 , the subspaces are uniquely determined as indicated in the figure.

The vector space spanned by v2 disappears but the vector v2 can be recovered

from the new data. Namely, it is determined by the intersection of 〈v1, v2〉
and 〈v2, v3, v4〉, both of which are stalks of some regions in the front diagram,

and the volume form in either one of these vector spaces.

- After Ψ
(t)
2 , the subspaces are also uniquely determined as indicated. The

data of v2 remains in the diagram implicitly.

- The Legendrian isotopy Ψ
(t)
3 pulls down two strands in Figure 13 that are

colored in red. The red strand on the left recovers the vector v2. The red

strand on the right introduces a new vector u1, which satisfies v3v4 = v4u1

and u1v5v6 = v5v6v7. By a similar argument with that for Ξ1 and Ξ2, we

see that u1 ∈ 〈v3, v4〉 ∩ 〈v5, v6, v7〉 and that v3v4 = v4u1.
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u1

v3u1 u1v4

u1v4v5

Ψ
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t

v1 v2 v3 v4 v5
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v5v6

v1v2v3 v2v3v4 v3v4v5 v4v5v6 v5v6v7
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v1v2 W1 v3v4 v4v5 v5v6

v1v2v3 v2v3v4 v4v5v6 v5v6v7

V

W2

W1

W2

Ψ
(2)
t

v1 v3 v4 v5

v1v2 v4v5

v1v2v3 v2v3v4 v4v5v6 v5v6v7

V

v1v3

v1v3

Figure 12. Window for the Legendrian loop Ξ2 on Λ(4, 4) with

the needed information for the proof of Proposition 5.2.

In conclusion, the morphism sends the first window from the 4-tuple

(v1, v2, v3, v4) to the 4-tuple (v1, v2, v4, u1) as required. The second window

is concluded in a similar manner.

6. Corollaries and applications

In this section we prove Corollaries 1.5,1.6, 1.7, 1.8 and 1.10.

First, Corollary 1.7 follows by observing that a trivial concordance in the

Lagrangian concordance monoid L(3, 6), and L(4, 4), would induce a trivial

map onM(Λ(3, 6)), andM(Λ(4, 4)) respectively. Theorems 1.1 and 1.3 imply
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Figure 13. Windows for the Legendrian loop Ξ3 on Λ(4, 4) con-

taining the required information for the proof of Proposition 5.3.
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that the loops Σ1, δ
2, for Λ(3, 6) and Ξ1,Ξ2,Ξ3, for Λ(4, 4), induce Legendrian

loops that act non-trivially onM(Λ(3, 6)), andM(Λ(4, 4)) respectively. Hence

the concordances induced by graphing these Legendrian loops are themselves

non-trivial. The same argument concludes Corollary 1.8.

Let us now address Corollaries 1.5 and 1.10, which shall follow from Theo-

rems 1.1 and 1.3, with the addition of the upcoming Proposition 6.1. For that,

let us consider the two-sided closure, i.e. the rainbow closure, of the braid word

β = (σ1 ·σ2 ·. . .·σn−1)m as depicted in the upper leftmost diagram in Figure 14.

Let us denote the Legendrian associated to this front Λ(β). Corollary 1.5 is

proven with the following geometric construction:

Proposition 6.1. Let Λ(n,m) = Λ(β) be the Legendrian torus link given

by the braid

β = (σ1 · . . . · σn−1)m.

There exists a decomposable Lagrangian cobordism from Λ(n,m) to Λ(n,m+1)

whose Lagrangian handles have isotropic spheres away from the region with the

β-braiding. Similarly, there exists a decomposable Lagrangian cobordism from

Λ(n,m) to Λ(n+ 1,m).

Figure 14. Exact Lagrangian Cobordism from β to βσ1σ2.

Proof. For any given σi, 1 ≤ i ≤ n−1, it suffices to construct a decompos-

able Lagrangian cobordism with concave end Λ(β) and convex end Λ(βσi). For

that, we first perform an upwards Reidemeister I move on the right lower strand

for the i-th rightmost cusp. Then, the left cusp created in this Reidemeister I

move can be isotoped, without introducing crossings in the front, to the same

level as the rightmost cusp for the (i + 1)-th strand. This is depicted in the

second and fifth diagrams of Figure 14 in the cases of σ1 and σ2. Once these

two cusps are aligned, we perform a reverse pinched-move [8], [53] allowing

this pair of opposite cusps to become two parallel strands. This corresponds



INFINITELY MANY LAGRANGIAN FILLINGS 241

to a Lagrangian 1-handle attachment h1, and it is depicted in the second to

third, and fifth to sixth diagrams in Figure 14. The decomposable Lagrangian

cobordisms just described can be independently and repeatedly performed for

different σi, 1 ≤ i ≤ n − 1. In particular, by applying this cobordism for the

Artin generators σ1, σ2 through σn−1, we obtain a decomposable Lagrangian

cobordism from Λ(β) to Λ(β(σ1σ2 · . . . ·σn−1)), which implies the statement in

the proposition when applied to the braid β = (σ1 · . . . · σn−1)m.

The decomposable Lagrangian cobordism from Λ(n,m) to Λ(n+ 1,m) is

built similarly. First, the Legendrian link whose front is the rainbow closure of a

k-stranded positive braid word β ∈ Bk is Legendrian isotopic to the Legendrian

link whose front is the rainbow closure of a (k+1)-stranded positive braid word

βσk ∈ Bk+1. This is proven by performing a Legendrian Reidemeister I move,

which introduces the σk-crossing, and it is depicted in Figure 15. Thus the

front given by the rainbow closure of (σ1 · . . . ·σn−1)m is front homotopic to the

rainbow closure of (σ1 · . . . · σn−1)m−1 · (σ1 · . . . · σn−1σn); these both give the

Legendrian Λ(n,m), the latter front using a (n+ 1)-stranded braid. Second, it

now suffices to add (m−1) new positive crossings σn to (σ1·. . .·σn−1σn)m, which

again can each be inserted via an index-1 decomposable (exact) Lagrangian

cobordism. Note that it is possible to insert any positive crossing in the middle

of a braid word β (not just at its rightmost end) with such a Lagrangian

cobordism. Indeed, one may apply a cyclic shift δk, for some k ∈ N, so that

the location where the new crossing is to be inserted is to the right of δk(β),

then apply the exact Lagrangian cobordism from Figure 14, and compose with

the inverse of the Legendrian isotopy δk. Inserting these (m − 1) positive

crossings σn allows us to arrive at (σ1 · . . . ·σn−1σn)m from (σ1 · . . . ·σn−1)m−1 ·
(σ1 ·. . .·σn−1σn). This yields the required decomposable Lagrangian cobordism

from Λ(n,m) to Λ(n+ 1,m). �

Figure 15. Legendrian isotopy from β ∈ Bn to βσn ∈ Bn+1.

Note that Proposition 6.1 holds for any pair (n,m) ∈ N × N, with no

constraint n ≤ m nor (n,m) ∈ H.

6.1. Proof of Corollary 1.5. Let us first prove that Λ(3, 6) has infinitely

many Lagrangian fillings. Fix an exact Lagrangian filling L ⊆ (R4, ω) for

Λ(3, 6) obtained via a pinching sequence from the front diagram on the left
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of Figure 1. Smoothly, this must be a thrice punctured genus-3 surface.

By [64, Prop. 2.15], this exact Lagrangian filling yields an open inclusion

Loc(L) ⊆ M(Λ(3, 6)), where Loc(L) denotes the space of framed local sys-

tems in L. Now, given a Legendrian loop ϑ ∈ Γ = 〈[A], [B]〉 in the group

generated by the Legendrian loops A,B (or equivalently Σ1, δ
2), we consider

the Lagrangian filling Lϑ obtained by applying the Legendrian loop ϑ to the

Legendrian Λ(3, 6) and then performing the fixed pinching sequence for the La-

grangian filling fixed above. Choose an infinite sequence of distinct elements

(ϑi)i∈N ∈ PSL(2,Z). Since ϑi are distinguished by their action on the infinite

cluster charts of Gr(3, 9), the inclusions Loc(Lϑi) ⊆M(Λ(3, 6)) yield infinitely

many distinct cluster charts. In consequence, the Lagrangian fillings Lϑi are

not Hamiltonian isotopic [64, Prop. 6.1]. The same argument holds for the

Legendrian link Λ(4, 4) once we use the representation in Theorem 1.3 and the

mapping class group M0,4.

Let Λ(n,m) be given with (n,m) ∈ H different from (4, 4), (4, 5), (5, 5).

The construction in the proof of Proposition 6.1 yields a decomposable La-

grangian cobordism from Λ(3, 6) to Λ(n,m). This exact Lagrangian cobor-

dism yields an injective map between the equivalence classes of objects of the

associated Aug+ categories, i.e., distinct augmentations up to isomorphism (in-

cluding DGA homotopy) for Λ(3, 6) yield, upon composing with the DGA map

induced by this Lagrangian cobordism, distinct augmentations for Λ(n,m). In-

jectivity in the case of knots is proven in [52, Th. 1.5] . The case of links is

analogous, and it is detailed in [12]; see also Remark 6.2 below. Since there are

infinitely many Lagrangian fillings for Λ(3, 6) distinguished by their sheaves,

the correspondence between augmentations and sheaves [49, Th. 1.3] implies

that these Lagrangian fillings are distinguished by their augmentations on their

Chekanov-Eliashberg algebra [16]. Thus, the infinitely many Lagrangian fill-

ings of Λ(3, 6) concatenated with the Lagrangian cobordism in Proposition 6.1

induce non-isomorphic augmentations for Λ(n,m). In consequence, the in-

finitely many Lagrangian fillings of Λ(3, 6) yield infinitely many Lagrangian

fillings of Λ(n,m). For the remaining case of (n,m) = (4, 5), (5, 5), we apply

Proposition 6.1 to obtain a cobordism from Λ(4, 4) to Λ(4, 5) or Λ(5, 5) and

proceed identically.

Remark 6.2. Let Λ−,Λ+ be two Legendrian links such that there exists

a decomposable exact Lagrangian cobordism from Λ− to Λ+. In these hy-

potheses, the argument for Corollary 1.5 above uses the following fact: if Λ−
is a Legendrian link that admits infinitely many Lagrangian fillings that are

distinguished by augmentations (resp. by sheaves)2 — e.g., they yield different

2For example, they induce different sheaves in the analogous category C1(Λ−), in the

notation of [49].
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objects in the Aug+ category — then Λ+ is a Legendrian link that also admits

infinitely many Lagrangian fillings that are distinguished by augmentations

(resp. by sheaves).

As mentioned, in the case of augmentations and both Λ−,Λ+ knots, this

fact is known to hold for an arbitrary exact Lagrangian cobordism, not neces-

sarily decomposable, by [52, Th. 1.5]. Nevertheless, a much simpler argument

exists if one assumes that the exact Lagrangian cobordism is decomposable,

as it is in our case. Then [14, Prop. 7.5] shows that this fact is true, now also

including the general case where both Λ−,Λ+ are allowed to be links, which

suffices for our purposes.

The cluster modular groups of the remaining Grassmannians Gr(n,m+n),

with the pair (n,m) ∈ (N× N) \ H, are known to be finite [5], [34]. Thus, for

these remaining Legendrian links Λ(n,m), (n,m) ∈ (N×N)\H, our arguments

will only yield a representation of a finite group. In particular, we are almost

certain that our results are sharp, i.e., we conjecture that the Legendrian

torus links Λ(n,m) have finitely many Lagrangian fillings if (n,m) 6∈ H. In

fact, we believe that the Legendrian torus links Λ(2, n) must have exactly
1

n+1

(2n
n

)
Lagrangian fillings, Λ(3, 3) should have exactly 50 Lagrangian fillings,

and Λ(3, 4) and Λ(3, 5) will have exactly 883 and 25080 Lagrangian fillings

respectively.

Remark 6.3. The numbers 50, 883 and 25080 are the number of cluster

seeds for the finite type cluster algebras of types D4, E6 and E8, respectively.

See [33, Prop. 3.8], [32, Th. 1.13], and [13, §5]. Note that these numbers are

strictly greater than the number of corresponding maximal pairwise weakly

separated collections, and thus each correspondingly greater than the num-

ber of embedded exact Lagrangian fillings constructed in [64, Prop. 6.2]. For

instance, [64] builds 34 exact Lagrangian fillings for D4 (resp. 259 for E6),

namely, those corresponding to maximal pairwise weakly separated collections

with k = 3 and n+ k = 6 (resp. k = 3 and n+ k = 7). Yet, the remaining 16

(resp. 574) clusters of Gr(3, 6) (resp. Gr(3, 7)) are also inhabited by embedded

exact Lagrangian fillings; see [13] and references therein.

6.2. Proof of Corollary 1.6. Let Λ ⊆ (S3, ξst) be any Legendrian link with

an exact Lagrangian cobordism Λ(3, 6) � Λ, or Λ(4, 4) � Λ. The argument for

Corollary 1.5 implies that Λ itself will have infinitely many exact Lagrangian

fillings. This readily implies Corollary 1.6. Indeed, by [9, Th. 1.1] the twisted

torus knots Kp,q,r,s = T (p, q, r, s) with 1 < r < p < q and 18p < s are

hyperbolic knots. Let ΛK3,7,2,s be the maximal-tb Legendrian representative

obtained from the positive braid associated to the T -knot T (3, 7, 2, s), with

54 < s and s even, as described in [7, §1]. Then there exists an exact La-

grangian cobordism Λ(3, 6) � ΛK3,7,2,s , and hence ΛK3,7,2,s is a hyperbolic knot
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that admits infinitely many exact Lagrangian fillings. The same argument ap-

plies to the twisted torus links T (p, q, kq, s), p, q, k, s ∈ N, which are proven to

be (q, p+ k2qs)-cables of the torus knot T (k, ks+ 1) in [48].

The argument above can be applied in a more ad hoc manner to show that

certain knots have Legendrian representatives with infinitely many fillings. For

instance, the hyperbolic knot K = k(43), which is one of the simplest hyper-

bolic knots (with four ideal tetrahedra in its complement [11]), is the twisted

torus knot T (3, 8, 2, 1). Given that there exists an exact Lagrangian cobor-

dism Λ(3, 8) � ΛK3,8,2,1 , and Λ(3, 8) admits infinitely many exact Lagrangian

fillings, we have that the Legendrian knot ΛK3,8,2,1 , which is smoothly k(43),

also admits infinitely many exact Lagrangian fillings.

6.3. Proof of Corollary 1.10. Consider an infinite collection of the ex-

act Lagrangian fillings {Li}i∈N constructed in Corollary 1.5, and denote by

Li ⊆M(n,m) the exact Lagrangian surfaces obtained by capping Li with the

unique defining 2-handle of M(n,m), i ∈ N. By the equivalences between

sheaves and augmentations [49, Th. 1.3], these Lagrangian fillings {Li}i∈N are

distinguished by the augmentations they induce in the Chekanov-Eliashberg

differential graded algebra An,m of Λ(n,m). The wrapped Fukaya categories

of the Weinstein manifolds M(n,m) are generated by their respective unique

cocore C of their defining 2-handle [1], [15], i.e., the wrapped Fukaya category

is identified with the category of dg-modules over End(C,C) ∼= An,m. Hence,

the Lagrangian surfaces Li, whose wrapped Floer complex WF (C,Li) has a

unique generator, yield distinct 1-dimensional An,m-modules. Thus {Li}i∈N
represent distinct objects in the wrapped Fukaya category and {Li}i∈N are an

infinite collection of pairwise non-Hamiltonian isotopic exact Lagrangians.
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Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 247–277. MR 2334193. Zbl 1125.37032.

https://doi.org/10.4171/022-1/11.

[38] S. Guillermou, M. Kashiwara, and P. Schapira, Sheaf quantization of

Hamiltonian isotopies and applications to nondisplaceability problems, Duke

Math. J. 161 no. 2 (2012), 201–245. MR 2876930. Zbl 1242.53108. https:

//doi.org/10.1215/00127094-1507367.

[39] P. de la Harpe, Topics in Geometric Group Theory, Chicago Lectures in Math.,

Univ. of Chicago Press, Chicago, IL, 2000. MR 1786869. Zbl 0965.20025.

[40] A. Hatcher, Spaces of knots, 1999. arXiv math/9909095.

[41] K. Hayden and J. M. Sabloff, Positive knots and Lagrangian fillability, Proc.

Amer. Math. Soc. 143 no. 4 (2015), 1813–1821. MR 3314092. Zbl 1311.57033.

https://doi.org/10.1090/S0002-9939-2014-12365-3.
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