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LIMIT LINEAR SERIES AND RANKS

OF MULTIPLICATION MAPS

FU LIU, BRIAN OSSERMAN, MONTSERRAT TEIXIDOR I BIGAS,
AND NAIZHEN ZHANG

Abstract. We develop a new technique to study ranks of multiplication maps
for linear series via limit linear series and degenerations to chains of elliptic
curves. We prove an elementary criterion and apply it to proving cases of the
Maximal Rank Conjecture. We give a new proof of the case of quadrics, and
also treat several families in the case of cubics. Our proofs do not require

restrictions on direction of approach, so we recover new information on the
locus in the moduli space of curves on which the maximal rank condition fails.

1. Introduction

The classical Brill-Noether theorem states that if we are given g, r, d ≥ 0, a
general curve X of genus-g carries a linear series (L , V ) of rank r and degree d if
and only if the quantity

ρ := g − (r + 1)(g − d+ r)

is nonnegative [GH80]. Eisenbud and Harris proved that (at least in characteristic
0) when r ≥ 3, a general such linear series on X will define an imbedding of X as
a nondegenerate curve of degree d in P

r [EH83a]. One of the most basic questions
one might then ask is: what are the degrees of the equations defining X? More
precisely, for each m ≥ 2, what is the dimension of the space of homogeneous
polynomials of degree m vanishing on the image of X? The question is about the
dimension of the kernel of the natural restriction map

(1.1) Γ(Pr,O(m)) → Γ(X,L ⊗m).

The dimension of the source space is
(
r+m
m

)
while the dimension of the target space

is md + 1 − g. The Maximal Rank Conjecture states that the rank of this map is
as large as possible, or equivalently, the kernel of this map is as small as possible.

Conjecture 1.1. If X is a generic curve with a generic immersion in P
r for any

m ≥ 2, the rank of the restriction map (1.1) is

min

{(
r +m

m

)
,md+ 1− g

}
.

At least in part, this conjecture goes back to work of Noether in the late 1800s,
and of Severi in the early 1900s, but it was stated explicitly by Harris in 1982,
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and has received considerable attention since then. Partial results are due to Bal-
lico and Ellia [Bal12b], [Bal12a], [Bal09], [BE87b], [BE87a], Voisin [Voi92], Farkas
[Far09], Teixidor [Tei03], Larson [Lar12], and most recently, Jensen and Payne
[JP16]. These results were in some cases motivated directly by the conjecture, but
in other cases by a variety of applications, including to surjectivity of the Wahl
map, to higher-rank Brill-Noether theory, and to the birational geometry of moduli
spaces of curves. Subsequently, Aprodu and Farkas [AF11] introduced a Strong
Maximal Rank Conjecture motivated by applications to moduli spaces of curves
(see 5.4 in [AF11]). Farkas and Ortega then developed the relationship to higher-
rank Brill-Noether theory [FO11]. Taken together, the above-mentioned papers
have treated Conjecture 1.1 in the following cases: when d ≥ r + g; when r = 3 or
r = 4; when m = 2; when d is sufficiently large relative to r and m; and in several
additional ranges of cases for m = 3, including many cases with r = 5. It is also
important to note that if (1.1) is known to be surjective for a given m and a given
linear series on a given curve, then surjectivity also follows for all larger m (and
the same linear series); see the proof of Theorem 1.2 of [JP16]. Thus, knowing for
instance the m = 2 case mentioned above, we conclude that for any case (g, r, d)
with

(
r+2
2

)
≥ 2d + 1 − g, the Maximal Rank Conjecture holds for all m. After

this paper was submitted, Larson proved the full (weak) Maximal Rank Conjecture
[Lar17], [Lar18]. Our main results are as follows.

Theorem 1.2. Given g, r, d with r ≥ 3, r + g > d, and ρ ≥ 0, the Maximal Rank
Conjecture 1.1 holds under the following conditions:

(i) when m = 2;
(ii) when m = 3, and either r = 3 with g ≥ 7, r = 4 with g ≥ 16, or r = 5 with

g ≥ 26;
(iii) when g ≥ (r + 1)

(
(m+ 1)r−1 − r

)
;

(iv) when m ≥ 3, and either g− d+ r = 1 with 2r− 3 ≥ ρ+1, or r+ g− d = 2
with r ≥ 4, and 2r − 3 ≥ ρ+ 2.

Most results about the (weak) Maximal Rank Conjecture have been obtained
by deforming a special curve inside a projective space. We instead translate the
problem into a question depending on the curve alone (rather than any immersion).
Using the identification Γ(Pr,O(m)) = Symm V, the map (1.1) can be interpreted
in terms of the linear series as:

(1.2) Symm V → Γ(X,L ⊗m).

In order to prove any given case of the Maximal Rank Conjecture, it is enough to
produce a single smooth curve X for which the space of linear series of given rank
and degree has the expected dimension ρ, and a single linear series on X such that
(1.1) has the predicted rank (see Proposition 3.13 for details). We use the theory
of limit linear series studying ranks of multiplication maps by degenerating to a
chain of elliptic curves applying the fundamental smoothing theorem of Eisenbud
and Harris [EH86] together with substantial input from the alternative approach to
limit linear series developed in [Oss06] and [Oss14]. Previous approaches using limit
linear series to study multiplication maps had focused on injectivity, considering a
hypothetical nonzero element of the kernel, and deriving a contradiction (see for
instance [EH83b] and [Tei03]). Here, instead of showing that the kernel of the
map is small, we prove that the image is large, a strategy also used in the tropical
context [JP14], [JP16].
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LIMIT LINEAR SERIES AND RANKS OF MULTIPLICATION MAPS 369

Our approach is relatively self-contained. In section 2 we prove some auxiliary
results related to elliptic curves with two marked points. In section 3, we reduce
the result to the singular curve. In section 4 we use limit linear series to prove
some criteria for independence of sections. In the remaining sections, we apply
these results to prove the various cases of Theorem 1.2: in section 5 we make some
observations on injectivity including a proof of case (iii); in section 6 we prove the
case m = 2; in section 7 we make some observations on surjectivity and prove
case (iv); and finally, in section 8 we prove the m = 3 cases of Theorem 1.2.
Our arguments apply over a base field of any characteristic, although to simplify
the exposition and to make use of other results in our applications, we assume
characteristic 0. We do not need our base field to be algebraically closed either,
but it will simplify the arguments to assume it is.

Our methods are quite flexible. They can be used for studying the Strong Max-
imal Rank Conjecture (see [LOTZ18]) and even multiplication maps for arbitrary
linear series. While we will not need it in this paper, it potentially allows us to take
into account the direction of approach to the special curve X0 (see Remark 3.4).
In particular, it could be used to prove maximal rank near a curve that itself does
not satisfy the maximal rank condition.

2. Nondegeneracy on twice-marked elliptic curves

In this section, we study maps from elliptic curves to projective space determined
by comparing values of certain tuples of sections of a line bundle at points Q and
P , as we let the point Q vary. We describe these maps explicitly, showing in the
process that they are morphisms, and proving that they are nondegenerate in a
family of cases of interest for the Maximal Rank Conjecture.

Given a nonsingular genus-1 curve C and distinct P,Q on C, and integers c, d ≥
0, let L = OC(cP + (d− c)Q). Then for any a, b ≥ 0 with a+ b = d− 1, there is
a section of L unique up to scaling vanishing to order at least a at P and at least
b at Q. Thus, we have a uniquely determined point R such that the divisor of the
aforementioned section is aP + bQ+ R. In particular, R = P if and only if Q− P
is |a+ 1− c|-torsion, and R = Q if and only if Q− P is |a− c|-torsion. Note that
this makes sense even when Q = P (in which case R = Q = P ). To avoid trivial
cases, we will assume that a �= c− 1, and b �= d− c− 1.

Notation 2.1. Fix m ≥ 2, and set positive integers

c, d, a1, . . . , am, b1, . . . , bm, a′1, . . . , a
′
m, b′1, . . . , b

′
m

s.t. ai+ bi = d−1, ai− c �= 0,−1, a′i+ b′i = d−1, a′i− c �= 0,−1 ∀i,
∑
i

ai =
∑
i

a′i.

Let P,Q ∈ C satisfying Q−P not be |ai − c|-, |ai +1− c|-, |a′i − c|-, or |a′i +1− c|-
torsion for any i. Let si be sections with divisors aiP + biQ + Ri, and s′i with
divisors a′iP + b′iQ+R′

i. Then, s = s1 ⊗ · · · ⊗ sm, s′ = s′1 ⊗ · · · ⊗ s′m ∈ Γ(C,L ⊗m)
have divisors

(
∑
i

ai)P + (
∑
i

bi)Q+R1 + · · ·+ Rm, (
∑
i

a′i)P + (
∑
i

b′i)Q+R′
1 + · · ·+R′

m.

As
∑

i ai =
∑

i a
′
i, R1 + · · ·+Rm ∼ R′

1 + · · ·+R′
m. Let g be the rational function

unique up to scaling, such that

div g = R1 + · · ·+Rm −R′
1 − · · · −R′

m.
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Then g(P ) and g(Q) are both in k×. The ratio g(Q)/g(P ) ∈ k× is independent
of scaling g, so is canonically determined by the choice of P,Q and the discrete

data. Fix P , for a given Q ∈ C, denote by RQ
i , R

′Q
i , and gQ the points and rational

function determined as above by P and Q. Let U be the open subset of C consisting
of all Q such that Q−P is not |ai − c|-, |ai +1− c|-, |a′i − c|-, or |a′i +1− c|-torsion
for any i = 1, . . . ,m.

Let k be an integer. Denote by L1, . . . , Lk2 the line bundles in Pic0(C) of order
a divisor of |k|. Then, for X a point in C, OC(X)⊗ Li is a line bundle of degree 1
and therefore can be written as OC(Yi) for a unique Yi ∈ C. We will denote

∑
i Yi

by X + T [k].

With the notation above, for all Q ∈ U , we get a gQ(Q)/gQ(P ) ∈ k×. The main
technical result of this section is then the following characterization of the resulting
function.

Lemma 2.2. With notation as in Notation 2.1, the function f : U → k× given by
Q 	→ gQ(Q)/gQ(P ) determines a rational function on C. We then have

div f =

m∑
i=1

((P+T [|ai−c|])−(P+T [|a′i−c|])−(P+T [|ai+1−c|])+(P+T [|a′i+1−c|])).

Proof. Consider the divisor R̄i (respectively, R̄′
i) on C × C consisting of points

(Q,RQ
i ) (respectively, (Q,R′Q

i )). We can regard R̄i as the graph of the morphism
C → C sending Q to P + (a+ 1− c)(Q− P ) with a = ai (respectively, a = a′i for
R̄′

i). Now, set Z =
∑

i(P + T [|ai + 1− c|]) and Z ′ =
∑

i(P + T [|a′i + 1− c|]).
Our first claim is that R̄1 + · · ·+ R̄m + Z ′ × C ∼ R̄′

1 + · · ·+ R̄′
m + Z × C. The

restriction of R̄1+ · · ·+R̄m to any fiber {Q}×C is RQ
1 + · · ·+RQ

m ∼ R
′Q
1 + · · ·+R

′Q
m

which in turn is the restriction of R̄′
1 + · · · + R̄′

m to the fiber {Q} × C. Hence,
R̄1 + · · · + R̄m − R̄′

1 − · · · − R̄′
m ∼ D × C for some divisor D on C. But we now

consider the restriction to C × {P}, observing that, by construction,

(2.1) (R̄1 + · · ·+ R̄m − R̄′
1 − · · · − R̄′

m)|C×{P} = (Z − Z ′)× {P}.
We conclude that D ∼ Z − Z ′, proving our claim.

Now, let t, t′ be the sections (unique up to scaling) of OC×C(R̄1+· · ·+R̄m+C×Z ′)
with divisors R̄1+ · · ·+ R̄m+C×Z ′ and R̄′

1+ · · ·+ R̄′
m+C×Z, respectively. Our

second claim is that there exist choices of t, t′ such that the function f is obtained
by composing the diagonal map U → C × C with the rational map C × C ��� P

1
k

induced by (t, t′). For Q ∈ U , if we restrict (t, t′) to {Q} ×C, we obtain a rational
function with the same zeros and poles as gQ, and which is hence a valid choice
for gQ. We next observe that if we restrict (t, t′) to C × {P}, then by (2.1) after
removing base points we have a rational function with no zeros or poles, which is
thus necessarily constant, equal to some z ∈ k×. Rescaling t′ by z, we may assume
z = 1, which means that on each {Q} × C for Q ∈ U , the pair (t, t′) induces a
choice of gQ with gQ(P ) = 1. Thus for the given (t, t′), gQ(Q)/gQ(P ) is obtained
simply by evaluation at (Q,Q), which is the same as saying that f is induced as
claimed.

It then follows that f is a rational function on C, and the desired description of its
divisor likewise follows: indeed, the diagonal meets any fiber {Q}×C transversely,
so the last two terms in the formula come directly from the restrictions of Z × C
and Z ′ × C, respectively. In general the diagonal may not meet the graph of the
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LIMIT LINEAR SERIES AND RANKS OF MULTIPLICATION MAPS 371

morphism Q 	→ P +(a+1−c)(Q−P ) transversely, but in any case the intersection
is always identified with P + Pic0(C)[a− c], which thus yields the first two terms
of the asserted formula for div f , as desired. �

As a sample application of Lemma 2.2, we consider when the function f is
nonconstant in the case m = 2.

Corollary 2.3. In the situation of Lemma 2.2, assume further that m = 2. Then
the function f is nonconstant if and only if {a1, a2} �= {a′1, a′2} and a1+a2 �= 2c−1.

Proof. By Lemma 2.2, we have that f is constant if and only if

0 = D := (P+T (|a1−c|]))−(P+T [|a′1−c|])−(P +T [|a1+1−c|])+T [|a′1+1−c|]
+ (P + T (|a2 − c|])− (P + T [|a′2 − c|]− (P + T [|a2 + 1− c|]) + T [|a′2 + 1− c|])).
Without loss of generality, assume that a1 ≤ a2 and a′1 ≤ a′2. Because we have
assumed a1 + a2 = a′1 + a′2, we have {a1, a2} = {a′1, a′2} if and only if a1 = a′1.
Obviously, in this case, we have D = 0. Similarly, if a1 + a2 = 2c − 1 = a′1 + a′2,
then a1 − c = −(a2 + 1 − c), a2 − c = −(a1 + 1 − c), and similarly for the a′i,
giving D = 0 again. On the other hand, if a1 �= a′1, we may assume without loss of
generality that a1 < a′1, so that a2 > a′2. In particular, we have a1 < a2.

If a1 + a2 > 2c − 1, then a2 + 1 − c > c − a1, but also a2 + 1 − c > a1 − c,
so a2 + 1 − c > |a1 − c| ≥ 0. We likewise have a′2 + 1 − c > |a′1 − c| ≥ 0, but
a2+1− c > a′2 +1− c. We conclude that |a2 +1− c| is the (unique) maximal term
appearing in the expression for D. This implies that f has poles at those points,
and hence is nonconstant.

Similarly, if a1 + a2 < 2c− 1, we see that |a1 − c| = c− a1 is the maximal term
appearing in the expression forD, implying that f has zeros and is nonconstant. �

We now consider morphisms to higher-dimensional projective spaces.

Notation 2.4. Fix m ≥ 2, and � ≥ 1, and for j = 0, . . . , �, set numbers aj1, . . . , a
j
m,

bj1, . . . , b
j
m satisfying:

aji + bji = d− 1, aji − c �= 0,−1∀i, j,
∑
i

aji is independent of j.

There are sections sji with divisors ajiP + bjiQ + Rj
i , and forming tensor products

yield sections sj = sj1 ⊗ · · · ⊗ sjm ∈ Γ(C,L ⊗m), with divisors(∑
i

aji

)
P +

(∑
i

bji

)
Q+Rj

1 + · · ·+Rj
m.

Any two Rj
1 + · · ·+Rj

m are linearly equivalent. If Q− P is not |aji + 1− c|-torsion
for any i, j, we can normalize the sj , uniquely up to simultaneous scalar, so that
their values at P are all the same. Then provided that there is some j such that
Q− P is not |aji − c|-torsion for any i, considering (s0(Q), . . . , s�(Q)) gives a well-

defined point of P�. Suppose P is fixed. For a given Q ∈ C, denote by Rj,Q
i the

point determined as above by P and Q, and by fQ the point of P� determined by
(s0(Q), . . . , s�(Q)). Let U be the open subset of C consisting of all Q such that

Q− P is not |aji − c|- or |aji + 1− c|-torsion for any i, j.

Our main result is then the following.

Licensed to Tsinghua Sanya Forum. Prepared on Thu Mar 17 05:00:00 EDT 2022 for download from IP 183.173.175.130.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



372 F. LIU, B. OSSERMAN, M. TEIXIDOR I BIGAS, AND N. ZHANG

Corollary 2.5. The map U → P
� given by Q 	→ fQ extends to a morphism f :

C → P
�. If, further, all the aji are distinct, aj1 + aj2 �= 2c − 1, and for each j, we

have exactly one aji less than c, then f is nondegenerate.

Proof. Indeed, we can view our map as being given by (f0, . . . , f�−1, 1), where fj is
the rational function constructed in Lemma 2.2 from the sections sj , s�. We thus
conclude immediately that our map extends to a morphism. Moreover, nondegen-
eracy is equivalent to linear independence of the rational functions f0, . . . , f�−1, 1,
whose zeros and poles we have completely described.

Now, suppose we have the hypotheses for the nondegeneracy statement. We may
also without loss of generality reorder our data so that

a01 < a11 < · · · < a�1 < c < a�2 < a�−1
2 < · · · < a02.

Then we claim that for each j < �, if we set Nj = max(|aj1 + 1 − c|, |aj2 + 1 − c|),
then fj has poles at the strict Nj-torsion points of C, while none of fj+1, . . . , f�−1

do. The desired linear independence follows.
For the first assertion, we have to see that the zeros at the |aji − c|-torsion

and |a�i + 1− c|-torsion cannot cancel the poles at the Nj-torsion. Note that Nj ≥
aj2+1−c ≥ 3. Certainly, we have |aj2−c| = aj2−c < Nj , |a�2+1−c| = a�2+1−c < Nj ,

and |a�1 + 1− c| = c− 1− a�l < c− 1− aj1 ≤ Nj , so there is no problem with these.

Finally, as |aj1 − c| is relatively prime to |aj1 + 1− c|, if Nj = |aj1 + 1− c|, the poles

at the Nj-torsion cannot be cancelled by the zeros at the |aj1 − c|-torsion. But if

Nj > |aj2 + 1 − c|, we must have |aj1 − c| − 1 = |aj1 + 1 − c| < Nj , and we cannot

have |aj1 − c| = Nj because aj1 + aj2 �= 2c − 1, so we must have |a1j − c| < Nj , and
again the poles cannot be cancelled.

For the second assertion, choose j′ > j; then fj′ has potential poles at the

|aj
′

i +1−c|-torsion and the |a�i−c|-torsion. But as above, we see that |aj
′

i +1−c| < Nj

and |a�i − c| < Nj for i = 1, 2, so fj′ cannot have poles at the strict Nj-torsion, as
desired. �

3. Reduction to the nodal curve

We begin by discussing generalities on the behavior of multiplication maps under
degenerations, and the relationship to limit linear series. We remark that in order
to prove any given case of the Maximal Rank Conjecture, it is enough to produce
a single smooth curve X for which the space of linear series of given rank and
degree has the expected dimension ρ, and a single linear series on X such that
Γ(Pr,O(m)) → Γ(X,L ⊗m) has the predicted rank. Indeed, while for small m
and d the dimension of Γ(X,L ⊗m) may vary as X and L vary, if we use the
usual trick of twisting up by a sufficiently ample divisor on X, we can re-express
the maximal rank condition in arbitrary families as a determinantal condition.
We conclude that over any family of smooth curves, satisfying the maximal rank
condition is an open condition in the relative moduli space of linear series. Standard
dimension arguments imply that this moduli space is open over the base at any point
which has fiber dimension ρ, proving that under the stated hypotheses, all nearby
curves contain a nonempty open subset of linear series satisfying the maximal rank
condition. For ρ ≥ 1, it follows that we have an open family of curves for which a
dense open subset of linear series satisfies the maximal rank condition (note that
the initial curve did not need to be Petri general). For ρ = 0, we instead apply
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LIMIT LINEAR SERIES AND RANKS OF MULTIPLICATION MAPS 373

the monodromy theorem of Eisenbud and Harris [EH87] to conclude that we have
an open family of curves for which every linear series satisfies the maximal rank
condition.

The next step will be to reduce the problem to the case of a singular curve.
Specifically, we will degenerate to a chain of elliptic curves as defined below.

Notation 3.1. In this sectionX0 will be a curve of compact-type obtained as follows:
X0 = Z1 ∪ · · · ∪ Zn is a chain of curves, g of which are of genus 1 and the rest are
rational where Qi on Zi is glued to Pi+1 on Zi+1 for i = 1, . . . , n− 1. In addition,
we will assume that Pi −Qi is not �-torsion for any � ≤ d.

We recall the definition of limit linear series in this context.

Definition 3.2. With the above notation, a limit linear series of rank r and
degree d on X0 is an n-uple (L i, V i)(i=1,...,n) of linear series of rank r and degree

d on the components Zi of X0 satisfying the following condition: let ai0 < · · · < air
and bi0 > · · · > bir be the vanishing sequences of (L i, V i) at Pi, Qi, respectively.
Then we require that

ai+1
j + bij ≥ d for j = 0, . . . , r.

We say that a limit linear series is refined if the above inequality is an equality for
all i and j.

We make choices of line bundles and sections with support on certain compo-
nents.

Definition 3.3. With the notation above, for i = 1, . . . , n let Z ′
i be the closure of

X0 � Zi. Define a line bundle on X0 by

Oi =

{
OZi

(−(Z ′
i ∩ Zi)) on Zi,

OZ′
i
(Zi ∩ Z ′

i) on Z ′
i.

Choose sections σi ∈ Γ(X0,Oi) which vanish precisely on Zi and choose an isomor-

phism θ :
⊗

i=1,...,n Oi ∼→ OX0
.

Remark 3.4. As X0 is of compact-type, each Oi is unique up to isomorphism but
in general σi is not unique up to scaling: indeed, for i = 2, . . . , n − 1, X0 � Zi

is disconnected, then σi may be scaled independently on each connected compo-
nent. On the other hand, a family induces a choice of σi (see Proposition 3.12).
This is potentially useful as it is one way in which direction of approach could be
incorporated into our analysis.

As in [Oss14], we consider line bundles of all possible multidegrees (and total
degree d′) on the reducible curve and construct maps between them. Starting with
a limit linear series (L i, V i)i=1,...,n, choose a ‘base component’ Zi0 of X0. Let ω0

be the multidegree assigning degree d to Zi0 and degree 0 to every other component
of X0, Define Lω0

as the line bundle obtained by gluing the line bundles L i0 on
Zi0 and L i(−dQi), i < i0,L

i(−dPi), i > i0 on Zi.
Given an arbitrary multidegree ω, there is a unique collection of nonnegative

integers ai, i = 1, . . . , n such that at least one ai is equal to 0, and such that⊗
i(O

i)⊗ai has multidegree ω − ω0. Then set

Lω = Lω0
⊗
(⊗

i

(Oi)⊗ai

)
.
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Given another multidegree ω′, if
⊗

i(O
i)⊗a′

i has multidegree ω′ − ω0, we get a
morphism Lω′ → Lω as follows: let b = maxv(a

′
i − ai), and for each Zi, set

ci = ai − a′i + b. Then all ci are nonnegative with at least one equal to 0, and

Lω
∼= Lω′ ⊗

(⊗
i

(Oi)⊗ci

)
.

More precisely, note that since the total degree of both ω, ω′, ω0 is the same,
∑

i ai =
0 =

∑
i a

′
i therefore b ≥ 0. Then,

Lω ⊗
(⊗

i

(Oi)b

)
= Lω′ ⊗

(⊗
i

(Oi)⊗ci

)
,

so we obtain an induced morphism Lω′ → Lω from the appropriate tensor product
of the σi, together with θ⊗b. This morphism vanishes precisely on the components
Zi of X0 for which ci > 0.

Finally, we note that we have restriction maps as follows: given a component Zi,
let ωi be the multidegree having degree d on Zi and degree 0 on all other compo-
nents. Then for any multidegree ω, we obtain a morphism Lω → L i, unique up
to scalar, by composing our constructed morphism Lω → Lωi

with the restriction

map Lωi
|Zv

∼→ L i. Depending on the choice of ω, this restriction map may vanish
uniformly, but this will not happen in most cases of interest (see Proposition 3.6).

It is often useful to consider an alternative encoding of multidegrees as follows.

Notation 3.5. Given a tuple c = (c2, . . . , cn) of integers and a total degree d′ (which
will be equal to d or md in our situation), we obtain a unique multidegree wd′(c)
by setting the degree to c2 on Z1, to ci+1 − ci on Zi for 1 < i < n, and to d′ − cn
on Zn. We write w(c) for wd′(c) where the total degree is fixed within the context.

Given a linear series with line bundles L i on Zi of degree d′, we obtain the line
bundle Lw(c) by gluing together the following:

• L 1(−(d′ − c2)Q1) on Z1;
• L i(−ciPi − (d′ − ci+1)Qi) on Zi for 1 < i < n;
• and L n(−cnPn) on Zn.

We describe the maps between different multidegrees as follows.

Proposition 3.6. Given c = (c2, . . . , cn) and c′ = (c′2, . . . , c
′
n) in Z

n−1, for any
choice of line bundle Lω0

the natural map Lw(c′) → Lw(c) vanishes on a given Zi

if and only if εiw′,w = 0 where εiw′,w is defined as

εiw′,w =

{
0 :

∑n
j=i+1(c

′
j − cj) > min1≤i′≤n

∑n
j=i′+1(c

′
j − cj),

1 : otherwise.

In particular, as long as 0 ≤ c′i ≤ d′ for i = 2, . . . , n none of the restriction maps
Lw(c′) → L i vanish uniformly.

Proof. Observe that for any i ≤ n− 1, the multidegree of O1,i :=
⊗i

i′=1 Oi′ is zero
on all components except Zi and Zi+1; it is −1 on Zi and 1 on Zi+1. In the notation
introduced above with d′ = 0, it is w(c′′) where c′′ = (c′′2 , . . . , c

′′
n) with all c′′i′ equal

to 0 except that c′′i+1 = −1. We can go from Lw(c′) to Lw(c), by first tensoring
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LIMIT LINEAR SERIES AND RANKS OF MULTIPLICATION MAPS 375(
O1,n−1

)⊗c′n−cn to get the desired degree on Zn, then by
(
O1,n−2

)⊗c′n−1−cn−1 to
get the desired degree on Zn−1, and so forth. Thus, we conclude that

Lw(c)
∼= Lw(c′)

n−1⊗
i=1

(
O1,i

)⊗c′i+1−ci+1
= Lw(c′)

n−1⊗
i=1

(
Oi

)⊗∑n
j=i+1 c′j−cj

.

If we set M = min1≤i≤n

∑n
j=i+1 c

′
j − cj , then we have M ≤ 0 by considering i = n,

and we can write

Lw(c)
∼= Lw(c′)

n⊗
i=1

(
Oi

)⊗(
∑n

j=i+1 c′j−cj)−M
,

with every tensor exponent nonnegative. Then the morphism Lw(c′) → Lw(c)

vanishes precisely where the tensor exponents are strictly positive, which is the
definition of having εiw′,w = 0.

For the second assertion, the w yielding multidegree concentrated on Zi is given
by (c2, . . . , cn) with ci′ = 0 for i′ ≤ i and ci′ = d′ for i′ > i. Thus, if 0 ≤ c′i′ ≤ d′

for all i′, we have that c′i′ − ci′ ≤ 0 for i′ > i and c′i′ − ci′ ≥ 0 for i′ ≤ i, so∑g
j=i′+1(c

′
j − cj) achieves its minimum at i′ = i, and hence εiw′,w = 1 in this

case. �

Definition 3.7. We say that (w(c′), w(c)) is steady if there exists i such that

for j < i, cj ≤ c′j for j ≥ i, c′j ≤ cj .

Remark 3.8. For a steady pair, the definition of the ε and the above proposition are
much easier to interpret. We observe that if for some i we have c′i < ci, then the
map from the multidegree determined by w′ = w(c′) to the multidegree determined
by w = w(c) should vanish identically on Zi, since we are twisting down more at
Pi in the latter. Indeed, in this case we have

g∑
j=i+1

(c′j − cj) >

g∑
j=i

(c′j − cj) ≥ min
1≤i≤g

g∑
j=i+1

(c′j − cj) = M,

so εiw′,w = 0, as we knew from Proposition 3.6. Similarly, if d − c′i < d − ci,
considering twists by Qi−1 we should have vanishing on Zi−1, and we see that since
ci < c′i, we have

g∑
j=i

(c′j − cj) >

g∑
j=i+1

(c′j − cj) ≥ min
1≤i≤g

g∑
j=i+1

(c′j − cj) = M,

so εi−1
w′,w = 0, again as expected. We conclude that If c′i < ci or d− c′i+1 < d− ci+1,

then necessarily εiw′,w = 0.

The converse doesn’t hold in general, but it does hold when the signs of c′i − ci
are weakly decreasing, so that there is never a 0 before a positive number or a
negative number before a nonnegative number. In this situation, if c′i − ci is never
0, the minimum M occurs at the unique i such that c′i > ci and c′i+1 < ci+1 (or at
i = 1 if c′i+1 < ci+1 for all i, and at i = g if c′i > ci for all i). If c

′
i − ci = 0 for some

i, the minimum M occurs for the i such that that c′i − ci = 0 or c′i+1 − ci+1 = 0.
In both cases, these are precisely the i such that c′i ≥ ci and d − c′i+1 ≥ d − ci+1.

Moreover, in this situation, the i for which εiw′,w = 1 are contiguous.
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When we defined linear series, we looked at the orders of vanishing at the nodes
ai0 < · · · < air and bi0 > · · · > bir of the sections in (L i, V i) at Pi, Qi, respectively. In
general, a set of sections will give the orders of vanishing at Pi and a different set will
give the vanishing at Qi. It will be useful when on each component Z2, . . . , Zn−1,
there is a set of sections that can be used at both points.

Definition 3.9. A limit linear series (L i, V i) on X0 is chain-adaptable if, for
i = 2, . . . , n− 1, there exist sections si0, . . . , s

i
r in V i such that

ordPi
si0 < ordPi

si1 < · · · < ordPi
sir, ordQi

si0 > ordQi
si1 > · · · > ordQi

sir

recovers the vanishing sequence of V i at Pi, Qi, respectively.

From Propositions 5.2.3 and 5.2.6 of [Oss14] (see also [LT17, sec 3]), we see
that for chain-adaptable limit linear series there exist global sections s0, . . . , sr (in
different multidegrees) on X0 restricting to sij on Zi for all i, j.

Proposition 3.10. Let (L i, V i) be a chain-adaptable limit linear series with sij as
in the definition. Choose also

s10, . . . , s
1
r ∈ V 1, sn0 , . . . , s

n
r ∈ V n

satisfying

ordQ1
s1r < ordQ1

s1r−1 < · · · < ordQ1
s10, ordPn

sn0 < ordPn
sn1 < · · · < ordPn

snr .

For j = 0, . . . , r, set cj = (ordP2
s2j , . . . , ordPn

snj ), wj = w(cj).
Then for j = 0, . . . , r, there exists sj ∈ Γ(X0,Lwj

) such that for each i, we

have that sj |Zi
agrees with sij up to scalar. Moreover, for each wj, the subspace of

Γ(X0,Lwj
) consisting of sections restricting to V i on Zi for all i has dimension

precisely r + 1.

We now consider families of curves degenerating to X0.

Notation 3.11. We will denote by π : X → B a flat, proper morphism, with 1-
dimensional fibers, and B the spectrum of a discrete valuation ring. We assume
that X is regular, the generic fiber Xη is smooth, and the special fiber X0 is as
before. For each i = 1, . . . , n, let σ̂i ∈ Γ(X,OX(Zi)) be a section vanishing precisely
on Zi. Choose an isomorphism

θ̂ :
⊗

i=1,...,n

OX(Zi)
∼→ OX .

Then OX(Zi) and σ̂i induce systems of line bundles and sections as we had
previously constructed for σi and we have the following.

Proposition 3.12. For i = 1, . . . , n, OX(Zi)|X0
∼= Oi, and σ̂i|X0

is a valid choice

of σi. Similarly, θ̂|X0
is a valid choice of θ.

Given a flat base change B′ → B withB′ still the spectrum of a discrete valuation
ring, it induces π′ : X ′ → B′ with special fiber X ′

0 which is a base extension of
X0, and generic fiber X ′

η, a base change of Xη. Suppose we have a linear series
(Lη, Vη) of rank r and degree d on X ′

η. By the compact-type hypothesis, we know

that for every multidegree ω of total degree d, there is a unique extension L of Lη

over all X ′ such that the restriction to X ′
0 has multidegree ω; denote this by L ω.

We can construct a system of choices of the L ω together with morphisms between
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LIMIT LINEAR SERIES AND RANKS OF MULTIPLICATION MAPS 377

them, just as we did above, with (the pullbacks to X ′ of) OX(Zi) and σ̂i in place

of Oi and σi, and θ̂ in place of θ. Then given an extension L ω, we also obtain an
extension V ω simply by taking

V ω = Vη ∩ Γ(X ′,L ω) ⊆ Γ(X ′
η,Lη).

From the definition of this extension, we see that both it and the corresponding
quotient are torsion-free, hence free. A key observation for us (initially developed
in [Oss06]) is that for any multidegrees ω, ω′, we have that V ω′ maps into V ω under
the above-constructed morphism L ω′ → L ω.

We now want to consider several linear series as well as their products. Although
we are ultimately interested in the case of powers of a single line bundle on a smooth
curve, when doing degeneration we will want to consider distinct extensions to the
reducible special fiber.

Consider a base change family π′ : X ′ → B′ and (L1, V1), . . . , (Lm, Vm) linear
series (possibly of different ranks and degrees) on X ′

η. Our objective is to study the
multiplication map

μ : V1 ⊗ · · · ⊗ Vm → Γ(X ′
η,L1 ⊗ · · · ⊗ Lm)

by considering how it limits to X ′
0. For each Lk, we fix systems of extensions

L k,ωk
as above for each multidegree ωk of total degree equal to degLk. If we set

L := L1 ⊗ · · · ⊗ Lm, we also fix a system of extensions L ω of L for each ω of
total degree equal to

∑
k degLk. As discussed above, we can extend each Vk in

multidegree ωk by setting

V k,ωk
:= Vk ∩ Γ(X ′,L k,ωk

).

Similarly, if we write Wη for the image of μ, then (L ,Wη) is itself a linear series,
so we can extend it to

Wω := Wη ∩ Γ(X ′,L ω).

If we choose any ωk’s, and set ω =
∑

k ωk, we can also extend our multiplication
map to obtain

μ : V 1,ω1
⊗ · · · ⊗ V m,ωm

→ Γ(X ′,L ω).

We see immediately from the construction that the image of μ is contained in Wω.
Because reduction to the special fiber is surjective, we likewise have that the image
of the restriction of μ to X ′

0 is contained in the restriction of Wω. Finally, given
multidegrees ω, ω′, as we observed above we have that Wω′ maps into Wω under
our constructed maps.

To summarize, if we restrict to the special fiber, we have a system of spaces
Wω|X′

0
, each of dimension equal to dimWη, containing the images of the appropri-

ate multiplication maps μ|X′
0
and linked together by natural maps. So if we have

an m-tuple of sections s1, . . . , sm in V 1,ω1
|X′

0
, . . . , V m,ωm

|X′
0
, and set ω′ =

∑
k ωk,

then s1⊗· · ·⊗sm is in Wω′ |X′
0
. If we fix a multidegree ω, the image of s1⊗· · ·⊗sm

under the constructed map from multidegree ω′ to multidegree ω lies in Wω|X′
0
.

Our strategy is then to construct many such sections in different multidegrees, and
consider all of their images inside a single multidegree Wω|X′

0
. If we can show

that the images span a space of dimension N , then this implies that Wω|X′
0
has

dimension at least N , and hence that Wη had dimension at least N as well.
From now on, we restrict to the case of interest in the Maximal Rank Conjecture,

where L1 = L2 = · · · = Lm.
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From the above discussion, we will be able to conclude the following criterion.

Proposition 3.13. Given integers (g, r, d,m),m ≥ 2, r ≥ 3, g−(r+1)(g−d+r) ≥ 0.
Let X0 be as before (see Notation 3.1). Suppose we have a chain-adaptable limit
linear series (L i, V i) on X0 of rank r and degree d such that, if sj ∈ Γ(X0,Lwj

)
are the global sections arising from the chain-adaptability condition, there exists
c ∈ Z

n−1 such that for all choices of the sections σi as above, the images of the
sj1 ⊗ · · · ⊗ sjm in Γ(X0, (L ⊗m)w(c)) have at least N-dimensional span. Then, for
any smoothing π : X → B of X0 as in Notation 3.11, the generic fiber of the
smoothing family is a smooth genus-g curve X which carries a linear series (L , V )
of rank r and degree d on X such that the m-multiplication map (1.2) for V has
rank at least N .

If further n = g and we have (wj1 + · · ·+wjm , w) steady for all (j1, . . . , jm), then
X0 is not in the closure of the locus in Mg corresponding to curves which do not
carry an (L , V ) having m-multiplication map of rank at least N .

In particular, if N = min
((

r+m
m

)
,md+ 1− g

)
, the Maximal Rank Conjecture

holds for (g, r, d,m), and under the additional steadiness hypothesis, the locus in
Mg consisting of chains of genus-1 curves is not in the closure of the locus of Mg

for which the maximal rank condition fails.

Proof. First, the condition that Pi −Qi is not �-torsion for � ≤ d implies that the
space of limit linear series on X0 has expected dimension ρ. This implies that if
π : X → B is any regular smoothing family of X0, every limit linear series on
X0 is a limit of linear series on the smooth fibers of π: that is, there exists a flat
base change B′ → B and an (L , V ) on the generic fiber of X ′ := X ×B B′ such
that (L , V ) extends as described above to the chosen limit linear series. Indeed,
since refinedness is part of the definition of chain adaptability, this follows from the
original Eisenbud-Harris smoothing theorem (Corollary 3.5 of [EH86]).

Let W denote the image of V ⊗m under multiplication. We want to prove that
W has dimension at least N . We first observe that each section sj must be in the
multidegree-wj limit of (L , V ): indeed, the limit of V has dimension r + 1 and
maps into the V i under each restriction map, so according to the second part of
Proposition 3.10, the limit of V is the entire subspace of global sections of Lwj

which

restricts into V i on Zi for all i, and in particular it contains sj . We likewise have
that each sj1 ⊗· · ·⊗sjm is in the multidegree- (wj1 + · · ·+wjm) limit of (L ⊗m,W ).
Then it follows from the above discussion that the image of sj1 ⊗· · ·⊗sjm lies in the
multidegree wmd(c) (Notation 3.5) limit of (L ⊗m,W ). If, as the (j1, . . . , jm) vary,
these images span a space of dimension N , then it follows that W has dimension
at least N , as desired. This proves the first assertion of the corollary.

In order to prove the stronger statement under the additional steadiness hypoth-
esis, we carry out a similar analysis when the smoothing family π : X → B is not
assumed regular. Because we have also assumed n = g, such families can be used
to study arbitrary curves in Mg specializing to X0. In this situation we can blow

up X to obtain a regular family π̃ : X̃ → B̃, where the special fiber X̃0 is obtained
from X0 by inserting (possibly empty) chains of projective lines at the nodes of X0.
It suffices to show that in this case the hypotheses of the corollary apply equally to

X̃0, since we can then apply the first part of the corollary to conclude the desired
statement for the family π̃, whose smooth fibers agree with those of π. It is clear
what limit linear series we should choose: if we insert a projective line with marked
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LIMIT LINEAR SERIES AND RANKS OF MULTIPLICATION MAPS 379

points P,Q at a node which has vanishing on one side (at Qi) given by b0, . . . , br
and on the other (at Pi+1) by a0, . . . , ar, so that aj + bj = d for all j, then we have
on the rational curve sections of O(d), unique up to scaling, with vanishing order
aj at P and bj at Q. If we take the span of these r + 1 sections, we obtain a grd
on the projective line, and if we repeat this procedure for every inserted projective
line, and keep the old linear series on the elliptic components, we will obtain a new

chain-adaptable limit linear series on X̃0. If X̃0 has n′ components, this limit linear
series has corresponding global sections s̃0, . . . , s̃r in multidegrees determined by
w̃0, . . . , w̃r, where w̃j is obtained from the wj by assigning multidegree 0 to every
inserted component.

By construction, the sections s̃j agree with sj (at least, up to scalar) after re-
striction to any given component of X0, so the same applies to their tensor products
s̃�j for any 	j = (j1, . . . , jm). Now, in general the insertion of the new components

can change which components are zeroed out in mapping from multidegree w̃�j to

multidegree w̃, even on the components of X̃0 coming from X0.
1 Indeed, the sums∑g

i′=i+1(c
′
i′ − ci′) appearing in the definition of εi(w̃�j ,w̃) will have some extra rep-

etitions inserted corresponding to the new components. If one has i < i′ such
that c′i < ci and c′i′ > ci′ , inserting repetitions can change where the minimum
is achieved. However, this is precisely ruled out by the steadiness hypothesis, so
we see that with this hypothesis, we will have the map from multidegree w̃�j to

multidegree w̃ nonzero precisely on the components Zi on which the original map
was nonzero, together with any inserted components connecting two components

on which the map is nonzero. We conclude that on each component of X̃0 coming
from X0, the image of s̃�j in multidegree w̃ agrees up to scalar with the image of s�j
in multidegree w̃. Now, observe that since w̃ induces multidegree 0 on each inserted
projective line, we have a canonical ‘contraction’ isomorphism

Γ(X̃0, (L
⊗m)w̃)

∼→ Γ(X0, (L
⊗m)w)

and we see that under this isomorphism, the images of the s̃�j in multidegree w̃ agree

up to scalar with the images of the s�j in multidegree w. Indeed, this follows from

the steadiness hypothesis, which ensures that not only do the sections in question
agree up to scalar after restriction to each component of X0, but their support is a
contiguous collection of components Zi ∪ · · · ∪ Zi′ for some i′ ≥ i, and the sections
do not vanish at any of the nodes Qi, . . . , Qi′−1. We conclude that if the images
of the s̃�j in multidegree w̃ span a space of dimension at least N , the same is true

of the images of the s�j in multidegree w. Thus, our hypotheses on the limit linear

series on X0 imply that the same hypotheses are satisfied on X̃0, as desired. The
corollary follows. �

4. Independence of sections and examples

We take X0 as in Notation 3.1. We will assume n = g. One can construct a linear
series on X0 with optimal vanishing at the points Pi, Qi by on each component Zi

picking a value of j, say j0(i) = δ(i) and defining

a0j = j; biδ(i) = d− aiδ(i); bij = d− 1− aij , j �= δ(i); ai+1
j = d− bij .

1Here, w̃�j =
∑m

k=1 w̃jk and w̃ is the multidegree obtained from w in the statement of the

proposition by assigning multidegree 0 to every inserted component.
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It corresponds to taking the line bundle OZi
(aiδ(i)Pi + biδ(i)Qi) and sections with

largest possible vanishing for this line bundle. For this construction to be possible,
one needs aiδ(i) > aiδ(i)−1+1. This in turn requires having picked all values j < δ(i)

at least as many times as δ(i) prior to picking δ(i). One also needs the Brill-Noether
number to be positive, that is, g ≥ (r + 1)(g − d+ r).

Definition 4.1. Given g, r, d > 0 with g ≥ (r+ 1)(g− d+ r), a (g, r, d)-sequence
δ1, . . . , δg is a sequence of g integers between 0 and r, with each integer between 0
and r occurring at least g − d+ r times, and satisfying the condition that for each
i = 1, . . . , g, no integer strictly less than δi occurs among δ1, . . . , δi strictly fewer
times than δi does.

More generally, given also a ≥ 0, an a-shifted (g, r, d)-sequence δ1, . . . , δg is a
(g, r, d)-sequence in which every integer between 0 and r occurs at least a+g−d+r
times. For an a-shifted sequence, we construct the limit linear series starting with
a0j = j + a.

One can keep track of the choice of the index δ(i) by organizing them in a Young
Tableau with r + 1 columns numbered 0, . . . , r and an indeterminate number of
rows. The numbers from 1 to g are placed successively on the tableau starting
on the left top corner. The element i is placed on the highest empty spot of the
column δ(i). By construction, the numbers on each column increase as you go
down. The condition for being a δ sequence is that the numbers also increase as
you move right and that the filled space contains an (r + 1)(g − d + r) rectangle
(see for instance [LT17]). The condition for being an a-shifted δ sequence is that
the numbers increase from left to right and from top to bottom and that the filled
space contains an (r + 1)(a+ g − d+ r) rectangle.

We can construct linear series and their sections with this method and consider
the multisections obtained as their products. Our next goal is to show that a set
of multisections constructed in this way is linearly independent if some conditions
on their orders of vanishing at the nodes are satisfied.

Lemma 4.2. With the above notation, assume we have a linear dependence of
multisections on X0,

∑
�j γ�js�j,w = 0.

(a) If for some i there is a single section s�j among those that appear in the

linear combination and are not identically zero on Zi such that ai�j is strictly

minimal among the orders of vanishing at Pi, then γ�j = 0.

(b) If for some i there is a single section s�j among those that appear in the

linear combination and are not identically zero on Zi such that bi�j is strictly

minimal among the orders of vanishing at Qi, then γ�j = 0.

(c) If for some i there are only one or two sections that appear in the linear
combination and are not identically zero on Zi, then their coefficients are
0.

(d) If for some i there is some k ≥ 0 such that for every section s�j that appears

in the linear combination and is not identically zero on Zi, at least k of
the j� are equal to j �= δi, and there is a unique 	j = (j1, . . . , jm) for which
exactly k of the j� are equal to j, then the coefficient of that one section s�j
is 0.

Proof. The proof of (a) and (b) follows by evaluating the sections at Pi, Qi, re-
spectively. When there is a single section in (c), it automatically follows that the
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coefficient is 0. The case of two sections is a particular case of (d). Let us then
prove (d).

As j �= δi, div s
i
j = aijPi + bijQi + Ri

j for a uniquely determined Ri
j . Under our

nontorsion hypothesis, all the Ri
j�

are distinct as the j� varies. The hypothesis in

(d) imply that ordRi
j
s�j,w|Zi

= k, while ordRi
j
s�j′,w|Zi

> k for all remaining 	j′ �= 	j.

We thus conclude γ�j = 0 (as in (a), (b)). �

Lemma 4.3. With the above notation, assume we have a linear dependence of
multisections on X0,

∑
�j γ�js�j,w = 0. If for some Zi we have sections corresponding

to indices 	j1 = (j11 , . . . , j
1
m), 	j2 = (j21 , . . . , j

2
m) satisfying the conditions below, then

γ�j1 = 0 = γ�j2 .

• ai�j1 = ai�j2 < ai�j′ for every section 	j′ �= 	j1,	j2 that appears in the linear

combination and is not identically zero on Zi.
• bi+1

�j1
= bi+1

�j2
< bi+1

�j′
for every section 	j′ �= 	j1,	j2 that appears in the linear

combination and is not identically zero on Zi+1.
• For at least one of i′ = i or i′ = i + 1, we have all but exactly two of the
j11 , . . . , j

1
m are equal to δi′ , all but exactly two of the j21 , . . . , j

2
m are equal to

δi′ , and ai
′

�j1
�= ai

′

(δi′ ,...,δi′ )
− 1.

Proof. The conditions on the ai�je and bi+1
�je

imply that if a linear dependence has

nonzero coefficients γ�j1 and γ�j2 for s�j1 and s�j2 , then the leading terms of γ�j1s�j1
and γ�j2s�j2 must cancel at both Pi and Qi+1. Note also that our hypotheses on

the 	je imply that bi�j1 = bi�j2 (they must either both be equal to md− ai�je − 2 or to

md−ai�je −m), and thus that ai+1
�j1

= ai+1
�j2

as well. It thus makes sense to normalize

our scaling of s�j1 and s�j2 so that their values agree at Qi (equivalently, at Pi+1).
First suppose that all but exactly two of the jen are equal to δi for both e = 1
and e = 2, and ai�j1 �= ai(δi,...,δi) − 1. In this case, with the stated normalization,

and a given choice of Pi+1, Qi+1, the desired cancellation at Qi+1 will determine a
unique ratio for γ�j1 and γ�j2 . It suffices then to show that if we vary Pi, Qi, the ratio

determined by cancellation at Pi varies nontrivially. But note that the m−2 copies
of siδi in si�j1 and si�j2 do not affect this variation, so this follows from Corollary 2.3.

The other case follows similarly, except that we fix Pi, Qi and consider the effects
of letting Pi+1, Qi+1 vary. �

Lemma 4.4. With the above notation, assume m = 2 and we have a linear depen-
dence of multisections on X0,

∑
�j γ�js�j,w = 0 such that for some i and n ≥ 2 we

have sections corresponding to indices 	je = (je1 , j
e
2) for e = 1, . . . , n satisfying the

conditions below. Then the coefficients of 	j1, . . . ,	jn, (δi, δi) are zero.

• δi′ = δi for i′ = i, . . . , i+ n− 1.
• For e = 1, . . . , n, we have je1 < δi < je2.
• The value of ai�je is independent of e ∈ {1, . . . , n}.
• For i′ = i, . . . , i + n − 1, the sections with indices 	j1, . . . ,	jn are nontriv-
ial on Zi′ , and the only other remaining section appearing in the linear
combination which may be nontrivial in these Zi′ is the (δi, δi) section.
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Proof. If we let ZI =
⋃i+n−1

i′=i Zi′ , we wish to show that with the given hypotheses,
we cannot have a nontrivial linear relation

γ�j1s�j1 |ZI
+ · · ·+ γ�jns�jn |ZI

+ γ(δi,δi)s(δi,δi)|ZI
= 0.

Observe that the conditions δi′ = δi and je1 < δi < je2 (and therefore je1 �= δi �= je2)

imply that ai
′

�je
= ai�je +2(i′ − i) for any i′ = i, . . . , i+ k− 1. In particular ai

′

�je
is also

independent of e for i′ > i. The conditions ci′ ≤ ai
′

�je
, d′ − ci′+1 ≤ d′ − ai

′

�je
− 2 imply

that ci′ = ai
′

�je
.

The linear dependence, if nontrivial, must cancel all leading terms at all Pi′ and
Qi′ ; cancellation at Qi′ is equivalent to cancellation at Pi′+1. This works out to at
most k + 1 conditions. The rough idea of our argument is that when the chosen
marked points are general, we obtain either k + 1 or k conditions in this way. The
latter occurs in a situation where s(δi,δi) never contributes to the leading terms.
More specifically, we proceed from i′ = i to i′ = i + k − 1, showing that if we fix
the previous choices of Pi′ , Qi′ , a general choice of the current Qi′ will impose an
additional linear condition on the choice of the γ�j , with at most one exception.

We need some preliminary observations on when the (δi, δi) section can con-
tribute on a given component Zi′ . For every i′ = i, . . . , i + k − 1, the vanishings
of the (δi, δi) section on Zi′ add up to 2d, whereas the vanishings of the 	je section
add up to 2d− 2. Let i0 be the smallest number between i and i+ k− 1 such that
ai0(δi,δi) ≥ ci0 and bi0(δi,δi) ≥ 2d − ci0+1, so that s(δi,δi) may give rise to a nonzero

section on Zi0 . First observe that if there is any i′ with ai
′

�je
= ai

′

(δi,δi)
− 1, then we

have also bi
′

�je
= bi

′

(δi,δi)
− 1. Furthermore i0 = i′ is the only column between i and

i+ k− 1 in which s(δi,δi) may occur. Similarly, if for some i′ we have bi
′

�je
= bi

′

(δi,δi)
,

then ai
′

�je
= ai

′

(δi,δi)
− 2. So we must have i0 = i′. In this case, if i′ < i + k − 1

we can also have s(δi,δi) occurring in the next column, but not in any others, since

bi
′+1

�je
= bi

′+1
(δi,δi)

− 2.

We now begin our analysis with the case i′ = i: let Wi be the subspace of the
k-dimensional vector space of γ�je such that there exists a γ(δi,δi) giving a valid
linear dependence on Zi. If i0 > i, then cancellation of lowest-order terms at Pi is
a codimension-1 subspace H of the space of γ�je containing Wi (specifically, given

our normalization, it is the hyperplane
∑

l xl = 0). Moreover, when i0 > i we have
observed above that ai�je �= ai(δi,δi) − 1. So under our normalization hypotheses, the

sections (si�j1 |Zi
, . . . , si�jn |Zi

) satisfy the hypotheses of Corollary 2.5, and the map

Qi 	→ (si�j1 |Zi
(Qi), . . . , s

i
�jk
|Zi

(Qi))

is nondegenerate. In particular, it is nonconstant, so a general choice of Qi will
not have image equal to (the projectivization of) the orthogonal complement of H.
Hence, cancellation of lowest-order terms at Qi will impose a different codimension-
1 condition. In this case, we thus have that Wi is at most (k − 2)-dimensional.

On the other hand, if i0 = i, we claim that Wi has dimension at most k − 1.
Indeed, if ai�je > ai(δi,δi), then ai(δi,δi) is a unique minimum. So by Lemma 4.2(a),

we can drop the (δi, δi) row, and we are in the same situation as above, with
dimWi = n−2. On the other hand, if ai�je < ai(δi,δi), then Wi is still contained in the
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hyperplane H described above. Finally, if ai�je = ai(δi,δi), then bi�je = bi(δi,δi) − 2, and

in this case Wi is contained in the hyperplane obtained by looking at cancellation
of the leading coefficients at Qi.

Now, for i′ > i, let Wi′−1 be the subspace of choices of γ�js such that there exists

a choice of γ(δi,δi) giving a valid linear dependence on Zi∪· · ·∪Zi′−1. If Wi′−1 = 0,
we are done. Otherwise, our inductive hypothesis is that Wi′−1 has codimension at
least i′− i+1 if i0 ≥ i′, and Wi′−1 has codimension at least i′− i if i0 < i′. We then
want to show that imposing linear dependence also on Zi′ reduces the dimension of
Wi′−1 by 1 unless i′ = i0. First, if we have either ai

′

�je
= ai

′

(δi,δi)
− 1 or bi

′

�je
= bi

′

(δi,δi)
,

then necessarily i′ = i0; in this case, there is nothing to show. So we can assume
that ai

′

�je
�= ai

′

(δi,δi)
− 1 and bi

′

�je
�= bi

′

(δi,δi)
. The latter means that in order to have

linear dependence on Zi′ , we must have cancellation among the leading coefficients
at Qi′ of the s�je . The former implies that, just as in the case i′ = i, we have that

the map

Qi′ 	→ (si
′

�j1
|Zi′ (Qi′), . . . , s

i′

�jk
|Zi′ (Qi′))

is nondegenerate. In particular, a general choice of Qi′ will have image not lying in
the orthogonal complement of Wi′−1, meaning that requiring that the γ�δ impose a
linear dependence also on Zi′ reduces the dimension of Wi′−1 by 1, as desired.

Because ZI has k components, we thus conclude that when we have imposed
cancellation of leading terms at all Pi′ and Qi′ , we have reduced the space of
possible linear dependences to (0), proving the result. �

In order to visualize and more easily work with the data of sections and their
orders of vanishing, we will organize them in tables.

Definition 4.5. Given a (g, r, d)-sequence 	δ = δ1, . . . , δg, and m ≥ 2, T ′(	δ) is the
(r + 1) × g table whose jth, j = 0, . . . , r row consists of the orders of vanishing at
the nodes of the jth section of the linear series associated to δ.

Then, T (	δ) is the
(
r+m
m

)
× g table with rows indexed by 	j = (j1, . . . , jm) (with

0 ≤ j1 ≤ j2 ≤ · · · ≤ jm ≤ r), and each entry being a pair of integers (ai�j , b
i
�j
), by

setting the (j1, . . . , jm)th row of T (	δ) to be the sum of the jnth rows of T ′(	δ), for
n = 1, . . . ,m.

More generally, given an a-shifted (g, r, d)-sequence, define the tables T ′(	δ) and

T (	δ) just as above, except that we start with a1j = a+ j for j = 0, . . . , r.

Thus, in the a-shifted case, all the aij are a larger than in the usual case, and all

the ai�j are ma larger. This is convenient for certain reduction arguments.

We now construct a table Tw(	δ) that keeps track of forced vanishing of sections
when we look at the multidegree associated to a choice of a (g−1)-tuple of integers

c as in Notation 3.5. The rows of Tw(	δ) will correspond to a collection of global
sections which all lie in the multidegree determined by w. According to Proposition
3.6 and with the εiw′,w as defined there, this amounts to the following.

Definition 4.6. In the situation of Definition 4.5, suppose that we are also given a

c = (c2, . . . , cg) ∈ Z
g−1, as defined in Notation 3.5. Then define the table Tw(c)(	δ)

obtained from T (	δ) by erasing certain entries as follows: for the row of T (	δ) indexed

by 	j = (j1, . . . , jm), let c′ = (a2�j , . . . , a
g
�j
). Then for i = 1, . . . , g, the ith entry in the

	jth row of T (	δ) is erased in Tw(	δ) if the εiw′,w is equal to 0.
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In addition, we say that T (	δ) is steady with respect to w if for each 	j, setting
c′ = (a2�j , . . . , a

g
�j
) as above, we have that (w(c′), w(c)) is steady (see Definition 3.7).

We introduce another piece of notation that will make our language less cum-
bersome in the future.

Definition 4.7. We will say that a table is N-expungeable if one can choose N
rows corresponding to N sections that can be proved to be linearly independent by
repeated application of Lemmas 4.2, 4.3, 4.4.

We will use this notation with N = min
((

r+m
m

)
,md+ 1− g

)
. Then Proposition

3.13 will imply the Maximal Rank Conjecture for the given numerical values of
g, r, d,m.

We now give several examples. The first two are very simple cases for r = 3,
m = 2, but as we will see in the proof of Theorem 6.1 below, these examples fully
handle the case r = 3 and m = 2, and also constitute the base for the general case
with m = 2.

Example 4.8. Consider the r = 3, g = 4, d = 6. This is the canonical case and the

only possible (g, r, d)-sequence is 	δ = 0, 1, 2, 3, which gives T ′(	δ) as follows:

0 6 0 5 1 4 2 3
1 4 2 4 2 3 3 2
2 3 3 2 4 2 4 1
3 2 4 1 5 0 6 0

Take now m = 2. Choose c = (2, 6, 8). The highlighted entries in the table below

are the nonerased entries in Tw(	δ). We have placed the ci and m − ci at the top
and bottom of the table in order to make the erasure procedure clearer.

10 2 6 6 4 8
(0, 0) 0 12 0 10 2 8 4 6
(0, 1) 1 10 2 9 3 7 5 5
(0, 2) 2 9 3 7 5 6 6 4
(1, 1) 2 8 4 8 4 6 6 4
(0, 3) 3 8 4 6 6 4 8 3
(1, 2) 3 7 5 6 6 5 7 3
(1, 3) 4 6 6 5 7 3 9 2
(2, 2) 4 6 6 4 8 4 8 2
(2, 3) 5 5 7 3 9 2 10 1
(3, 3) 6 4 8 2 10 0 12 0

10 2 6 6 4 8

Since
(
r+2
2

)
= 10 > 2d+1− g = 9, this is a surjective case. To prove surjectivity

in this case we may drop any one section (as we had 10 to start with). If for instance
we drop the (0, 3) section, we see that there are no remaining repetitions among the

ai�j in any column, so we have that Tw(	δ) corresponds to 9 different sections simply

by repeated application of Lemma 4.2(a), proving the desired surjectivity.
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Example 4.9. Next consider the case r = 3, g = 5, d = 7, and choose the (g, r, d)-

sequence 	δ = 0, 1, 2, 3, 0, which gives T ′(	δ) as follows.

0 7 0 6 1 5 2 4 3 4
1 5 2 5 2 4 3 3 4 2
2 4 3 3 4 3 4 2 5 1
3 3 4 2 5 1 6 1 6 0

Choose m = 2, c = (2, 6, 8, 10). We then get T (	δ) as follows.

12 2 8 6 6 8 4 10
(0, 0) 0 14 0 12 2 10 4 8 6 8
(0, 1) 1 12 2 11 3 9 5 7 7 6
(0, 2) 2 11 3 9 5 8 6 6 8 5
(1, 1) 2 10 4 10 4 8 6 6 8 4
(0, 3) 3 10 4 8 6 6 8 5 9 4
(1, 2) 3 9 5 8 6 7 7 5 9 3
(1, 3) 4 8 6 7 7 5 9 4 10 2
(2, 2) 4 8 6 6 8 6 8 4 10 2
(2, 3) 5 7 7 5 9 4 10 3 11 1
(3, 3) 6 6 8 4 10 2 12 2 12 0

12 2 8 6 6 8 4 10

This case is both surjective and injective, so we need to use all sections (corre-
sponding to all rows on the table). We can drop the last four rows by applying
Lemma 4.2(b) twice and Lemma 4.2(d) once to the last column, and then apply
Lemma 4.2(c) to the third column to cancel the coefficients of the (0, 3) and (1, 2)
rows. After this, no repetitions remain among either the ai�j or bi�j in any column, so

we can drop the rest of the rows using Lemma 4.2 either (a) or (b).

The following example is the first requiring the use of Lemmas 4.3 and 4.4, and
is the first of the sequence of ‘critical’ cases for m = 2, treated more generally in
Proposition 6.3 below.

Example 4.10. Consider the case r = 4, g = 10, d = 12, and take the (g, r, d)-

sequence 	δ = 0, 0, 1, 1, 2, 2, 3, 3, 4, 4. This gives T ′(	δ) as follows:

0 12 0 12 0 11 1 10 2 9 3 8 4 7 5 6 6 5 7 4
1 10 2 9 3 9 3 9 3 8 4 7 5 6 6 5 7 4 8 3
2 9 3 8 4 7 5 6 6 6 6 6 6 5 7 4 8 3 9 2
3 8 4 7 5 6 6 5 7 4 8 3 9 3 9 3 9 2 10 1
4 7 5 6 6 5 7 4 8 3 9 2 10 1 11 0 12 0 12 0

Take m = 2, c = (2, 4, 7, 9, 12, 15, 17, 20, 22). We then get T (	δ) as follows.
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22 2 20 4 17 7 15 9 12 12 9 15 7 17 4 20 2 22
(0, 0) 0 24 0 24 0 22 2 20 4 18 6 16 8 14 10 12 12 10 14 8
(0, 1) 1 22 2 21 3 20 4 19 5 17 7 15 9 13 11 11 13 9 15 7
(0, 2) 2 21 3 20 4 18 6 16 8 15 9 14 10 12 12 10 14 8 16 6
(1, 1) 2 20 4 18 6 18 6 18 6 16 8 14 10 12 12 10 14 8 16 6
(0, 3) 3 20 4 19 5 17 7 15 9 13 11 11 13 10 14 9 15 7 17 5
(1, 2) 3 19 5 17 7 16 8 15 9 14 10 13 11 11 13 9 15 7 17 5
(0, 4) 4 19 5 18 6 16 8 14 10 12 12 10 14 8 16 6 18 5 19 4
(1, 3) 4 18 6 16 8 15 9 14 10 12 12 10 14 9 15 8 16 6 18 4
(2, 2) 4 18 6 16 8 14 10 12 12 12 12 12 12 10 14 8 16 6 18 4
(1, 4) 5 17 7 15 9 14 10 13 11 11 13 9 15 7 17 5 19 4 20 3
(2, 3) 5 17 7 15 9 13 11 11 13 10 14 9 15 8 16 7 17 5 19 3
(2, 4) 6 16 8 14 10 12 12 10 14 9 15 8 16 6 18 4 20 3 21 2
(3, 3) 6 16 8 14 10 12 12 10 14 8 16 6 18 6 18 6 18 4 20 2
(3, 4) 7 15 9 13 11 11 13 9 15 7 17 5 19 4 20 3 21 2 22 1
(4, 4) 8 14 10 12 12 10 14 8 16 6 18 4 20 2 22 0 24 0 24 0

22 2 20 4 17 7 15 9 12 12 9 15 7 17 4 20 2 22

If we go from left to right we can use Lemma 4.2(a) on Z1 (first column) to
prove linear independence of the sections with indices (0, 0) and (0, 1) , (0, 2) on Z2

(second column), (0, 3) and (1, 1) on Z3 (third column), and (1, 2) on Z4 (fourth
column). Then, using Lemma 4.2(b) we can drop rows (4, 4) and (3, 4) from the
last column, row (2, 4) from the ninth column, rows (1, 4) and (3, 3) from the eighth
column, and row (2, 3) from the seventh column. This leaves only rows (0, 4), (1, 3)
and (2, 2) in the fifth and sixth columns, which can be dropped using either Lemma
4.3 (together with Lemma 4.2(c)) or Lemma 4.4.

5. Observations on injectivity

We now consider injective cases, meaning that
(
r+m
m

)
≤ md+ 1 − g. Our main

result will be the observation that N -expungeability for an injective case implies
that we get infinitely many additional cases by increasing g. In fact, we will give
two versions of this statement, with one adding a mild hypothesis but yielding more
cases in return. A preliminary definition is the following.

Definition 5.1. We say that a (g, r, d)-sequence δ = (δ1, . . . , δg) is extendable if
for all g′ ≥ g, and all d′ with g′ ≥ (r + 1)(g′ − d+ r′), we can extend δ to a valid
(g′, r, d′)-sequence.

We have the following characterization.

Proposition 5.2. A (g, r, d)-sequence 	δ is extendable if and only if 0 occurs at

most one time more than r does in 	δ.

Proof. In the language of Young Tableaux introduced at the start of section 4,
the condition that 0 appears at most one more time than r can be written as the
column corresponding to 0 is at most one taller than the column corresponding to
r. Equivalently, the Young Tableau is as close to a rectangle as it can possibly be
for the given g. Then, for any g′ ≥ g, one can add the additional g′ − g indices
while keeping the tableau again as close to a rectangle as possible for that g′, so
the sequence is extendable.

On the other hand, assume that the column corresponding to 0 has height l that
is at least two larger than the height of the column corresponding to r. Let us say
there are t elements in the last bottom row. Define g′ = (l− 1)(r+1)+ t− 1, d′ =
g′ + r − l + 1. By assumption g ≤ (l − 1)(r + 1) + t − 2 ≤ g′. From the definition
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LIMIT LINEAR SERIES AND RANKS OF MULTIPLICATION MAPS 387

of d′, g′ − d′ + r = l − 1. Any Young Tableau associated to g′, d′, r must contain
the (r + 1)(g′ − d′ + r) rectangle, hence it cannot contain the last element of the
bottom row of the initial tableau. Hence, the δ-sequence is not extendable. �

The following notion will be useful for verifying the steadiness condition.

Definition 5.3. For a given m, we say c = (c2, . . . , cg) ∈ Z
g−1 is unimaginative

if ci+1 − ci ≥ m for i = 2, . . . , g − 1.

Proposition 5.4. If c = (c2, . . . , cg) is unimaginative, then for any 	δ we have T (	δ)
steady with respect to w(c).

Proof. Recall that by definition T (	δ) is steady with respect to w if for each multi-

index of a section 	j, setting c′ = (a2�j , . . . , a
g
�j
) we have that (w(c′), w(c)) is steady,

that is, there exists i such that for l < i, cl ≤ al�j for l ≥ i, al�j ≤ cl. By construction

of the table associated to a given δ, for i < g we have

ai�j ≥ md−m− bi�j = ai+1
�j

−m,

so the sequence c′i − ci is nonincreasing, and (w′, w) is steady. �

We have the following basic observation on ‘change of degree’.

Proposition 5.5. Given (g, r, d,m), 	δ a (g, r, d)-sequence, w, d′ > d, and a such

that 0 ≤ a ≤ d′ − d, then 	δ is also an a-shifted (g, r, d′)-sequence. If we obtain

w′ from w by adding ma to every entry, then Tw(	δ) is N-expungeable for 	δ as

a (g, r, d)-sequence if and only if Tw′(	δ) is N-expungeable for 	δ as an a-shifted
(g, r, d′)-sequence.

Proof. As 	δ is a (g, r, d)-sequence, its Young Tableau contains an (r+1)(g− d+ r)
rectangle. The condition a ≤ d′− d ensures that it also contains an (r+1)(g− d′+

a+ r) rectangle. Hence, 	δ is also an a-shifted (g, r, d′)-sequence.

By definition of the a-shifted table, Tw′(	δ) is obtained from Tw(	δ) by adding ma
to each ai�j , and adding m(d′ − d− a) to each bi�j . One checks directly that the rules

for expungeability are invariant under this operation. �

Below is our basic result on extending injective cases to higher genus.

Proposition 5.6. Given (g, r, d,m), satisfying

r ≥ 3,m ≥ 2, g ≥ (r + 1)(g − d+ r),

(
r +m

m

)
≤ md+ 1− g

suppose that there exists a (g, r, d)-sequence 	δ and a c = (c2, . . . , cg) such that

Tw(c)(	δ) is
(
r+m
m

)
-expungeable. Then for all (g′, r, d′,m) with g′ ≥ g and g′ − d′ ≤

g−d, there exists a (g′, r, d′)-sequence 	δ′ and a w′ = (c′2, . . . , c
′
g) such that Tw′(	δ′) is(

r+m
m

)
-expungeable. In particular, the Maximal Rank Conjecture holds in all these

cases.
If further the above holds with 	δ extendable, then the condition g′ − d′ ≤ g − d

above is unnecessary. In either situation, if the chosen w was unimaginative, then
the new w may also be chosen to be unimaginative.
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Proof. Under either hypothesis, we have that δ can be extended to a (g′, r, d′)-
sequence δ′: in the first case, the condition g′ − d′ ≤ g − d allows us to extend
simply by adding g′−g zeros, while in the second case we can extend by hypothesis.
Moreover, we have that δ is a valid (g, r, d′)-sequence, and Proposition 5.5 says

that the
(
r+m
m

)
-expungeability of Tw(	δ) does not depend on whether we view 	δ as

a (g, r, d)-sequence or a (g, r, d′)-sequence (the only difference is that the b
�i
j are all

translated by m(d′ − d)). Then by appending sufficiently large (e.g., larger than

md′) numbers to c, we obtain c′ ∈ Z
g′−1 with the property that Tw(c′)(	δ′) is exactly

the same as Tw(c)(	δ), when 	δ is considered as a (g, r, d′)-sequence: the entries of

Tw(c′)(	δ′) after the first g columns are all erased. Then the
(
r+m
m

)
-expungeability

of Tw′(	δ′) follows.
If w was unimaginative, the above construction can clearly also make w′ unimag-

inative. �

We conclude by proving that for any fixed m, r we have injectivity for all g
sufficiently large. Although the bound is very far from sharp (and is worse than that
obtained in Larson [Lar12]), the proof is brief and we include it as an illustration
of a different sort of approach to applying Proposition 3.13 from the ones which we
will make below.

Proposition 5.7. With m, r fixed, if we have g, d with ρ ≥ 0 and

g ≥ (r + 1)
(
(m+ 1)r−1 − r

)
,

then the Maximal Rank Conjecture holds for (g, r, d,m). Moreover, a general chain
of genus-1 curves is not in the closure of the locus on Mg for which the maximal
rank condition fails.

Proof. We will show that with the stated lower bound, we can always produce

a (g, r, d)-sequence 	δ so that for some column i0, the entries ai0�j of T (	δ) are all

distinct. Observe that this will be the case if the i0th column of T ′(	δ) is equal to
0, 1,m+ 1, (m+ 1)2, . . . , (m+ 1)r−1, or more generally (for some m),

a, a+ 1, a+m+ 1, a+ (m+ 1)2, . . . , a+ (m+ 1)r−1.

Thus, we take 	δ to be the sequence whose first (m+1)r−1−r entries are 0, and then
followed by (m+1)r−1−(m+1)i−1−(r−i) entries equal to i, for i = 1, . . . , r−1. We
then take the next (m+1)−2 entries equal to 2, and then followed by (m+1)i−1−i
entries equal to i for i = 3, . . . , r. This determines the first (r+1)

(
(m+ 1)r−1 − r

)
entries of 	δ, with each entry occurring (m+1)r−1− r times. Any remaining entries

of 	δ can be chosen to cycle from 0 through r.
Then set i0 to be the column immediately after the first sequence of (r − 1)s

occurring in 	δ, so that i0 = r(m+1)r−1−
(
r
2

)
−
∑r−2

i=1 (m+1)i. By construction, the

entries ai0j of T ′(	δ) have the desired form, so the entries ai0�j of T (	δ) are all distinct,

as desired. Finally, let c = (c2, . . . , cg) with ci = 0 for i ≤ i0 and ci = md for i > i0.

Note that this is steady with respect to T (	δ) (indeed, for any 	δ), and the effect is

that every row occurs in the i0th column of Tw(	δ). We may then apply Lemma

4.2(b) repeatedly to Tw(	δ) to prove the desired statement. �
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6. The case of quadrics

In this section, we use Proposition 3.13 to prove the Maximal Rank Conjecture
for the m = 2 case. The proof uses reduction constructions to show that we can
always reduce either to smaller r or to one of a sequence of ‘critical’ cases which are
in particular as close as possible to being simultaneously injective and surjective.
Empirically, these critical cases are the most difficult cases to handle.

Theorem 6.1. The Maximal Rank Conjecture holds in the m = 2 case. More
specifically, for any given (g, r, d) with ρ ≥ 0 and g − d + r > 0, a general chain
of genus-1 curves is not in the closure of the locus on Mg where the maximal rank
condition fails.

Explicitly, for every such (g, r, d) there is a (g, r, d)-sequence 	δ and an unimagi-

native c ∈ Z
g−1 such that Tw(c)(	δ) is min

((
r+2
2

)
, 2d+ 1− g

)
-expungeable.

In order to keep the overall structure of the proof as clear as possible, we will
first state the necessary preliminary results, then give the proof of the theorem, and
finally prove the preliminary results. In fact, we will also prove the statement of the
theorem for many cases where g − d+ r ≤ 0, but to keep the statement as simple
as possible we do not list precisely which cases are handled by our constructions.

The following lemma constitutes the basic reduction used for surjective cases.

Lemma 6.2. Given (g, r, d) with ρ ≥ 0, set t = min(ρ+ (g− d+ r), r− 1). Define
r′ = r − 1, g′ = g − t, and d′ = d − (t + 1). Suppose that there is a (g′, r′, d′)-

sequence 	δ′ having no more than r′ of any given integer, and an unimaginative

c′ = (c′2, . . . , c
′
g′) ∈ Z

g′−1 such that Tw(c′)(	δ
′) is N-expungeable, and c′2 ≥ 2. Then

there is a (g, r, d)-sequence 	δ having no more than r of any given integer, and an

unimaginative c = (c2, . . . , cg) ∈ Z
g−1 such that Tw(c)(	δ) is (N + t+2)-expungeable

and c2 ≥ 2. In particular, if Tw(c′)(	δ
′) is (2d′ + 1 − g′)-expungeable, then Tw(c)(	δ)

is (2d+ 1− g)-expungeable.
Moreover, if either

(
r+2
2

)
> 2d + 1 − g or

(
r+2
2

)
= 2d + 1 − g and ρ > 0, then(

r′+2
2

)
≥ 2d′ + 1− g′.

Thus, the reduction of the lemma can be applied to give lower bounds on rank
in all cases, but the resulting bound may not be sharp unless we are starting in a
surjective case which is either noninjective, or where ρ > 0. See Example 6.5 for
further discussion.

We will also use Proposition 5.6 to reduce to the following sequence of ‘critical’
injective cases, of which the first was examined in Example 4.10 above.

Proposition 6.3. Theorem 6.1 holds when r is even and g = (r + 1)r/2, d =
(r + 2)r/2, and when r is odd and g = (r + 1)2/2, d = r(r + 3)/2.

Finally, the following computation is very straightforward, but is used in the
proofs of both Theorem 6.1 and Lemma 6.2.

Proposition 6.4. Given (g, r, d), we have(
r + 2

2

)
− (2d+ 1− g) =

(
r

2

)
− ρ− (g − d+ r)(r − 1).

We can now complete the proof of the m = 2 case of the Maximal Rank Conjec-
ture.
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Proof of Theorem 6.1. We work by induction on r, with the induction hypothesis
being that Theorem 6.1 holds with the added stipulation that for any surjective

case, we can arrange for the (g, r, d)-sequence 	δ to have at most r repetitions of
every integer, and for w to be unimaginative, with c2 ≥ 2. We begin by proving the
desired statement in the base case r = 3. The conditions ρ ≥ 0 and g − d+ r > 0
imply that we must have g ≥ r + 1 = 4.

Start with the surjective cases,
(
r+2
2

)
≥ 2d+ 1− g. By Proposition 6.4 and the

assumption r = 3, this is equivalent to having 3−ρ−(g−d+r)·2 ≥ 0, implying that
we must have g − d+ r = 1 and ρ ≤ 1. Thus, the only two cases are the canonical
case g = 4, d = 6, or the case g = 5, d = 7, which are addressed (satisfying our
extra stipulations on the (g, r, d)-sequences and w) in Examples 4.8 and 4.9. Now,
the two previous cases are the only ones with g ≤ 5, but we observe that Example

4.9 was injective, with 	δ extendable, so the r = 3 case follows by Proposition 5.6.
Next, if we assume our hypothesis holds for r − 1, Lemma 6.2 together with

the induction hypothesis then gives us all surjective cases except for those which
are also injective and have ρ = 0. Now, suppose that we are in the injective
case

(
r+2
2

)
≤ 2d + 1 − g, and set s = min(2d + 1 − g −

(
r+2
2

)
, ρ). Then if we set

g′ = g− s, r′ = r, d′ = d− s, we see that g′− d′ + r′ = g− d+ r, and ρ′ = ρ− s ≥ 0,
so we have another valid case with the same r. In addition,

2d′+1−g′−
(
r′ + 2

2

)
=2d+1−g−

(
r + 2

2

)
−s=max

(
0, 2d+ 1− g −

(
r + 2

2

)
− ρ

)
,

so (g′, r′, d′) remains in the injective case, but either has ρ′ = 0, or is simultaneously
in the surjective case. In either case, Proposition 5.6 implies that in order to treat
(g, r, d), it is enough to treat (g′, r′, d′). Combined with our previous reductions
in the surjective case, we see that it is enough to treat injective cases with ρ = 0.
We claim that all such cases have g ≥ (r + 1)� r

2�. Indeed, ρ = 0 means that
g = (r+1)(g−d+r), so it then suffices to see that injectivity (together with ρ = 0)
implies that g − d + r ≥ r/2, which is immediate from Proposition 6.4. Noting
that any (g, r, d)-sequence with ρ = 0 is extendable, the theorem then follows from
Propositions 6.3 and 5.6. �

We now give the proofs of the two intermediate results, starting with the basic
reduction for the surjective case.

Proof of Lemma 6.2. From the definition of g′, d′, r′, it follows that g′ − d′ + r′ =
g − d+ r. Then,

ρ′ = ρ− (t− (g − d+ r)) = max(0, ρ+ g − d+ 1) ≥ 0.

We construct 	δ by adding 1 to each entry of 	δ′, and inserting t zeros at the beginning
of the sequence. In terms of Young Tableaux, it is adding a height t column to the

left of the Tableau′. Since t ≤ r− 1, 	δ will have no number appearing more than r

times. Moreover, 	δ is a (g, r, d)-sequence: since g− d+ r = g′− d′+ r′, it suffices to
check that the added column in the Young Tableau is at least as long as the others,

or equivalently that no number in 	δ′ appears more than t times. If t = r− 1, this is
by hypothesis. If t = ρ+ (g − d+ r), then ρ′ = 0 and the Tableau′ was a rectangle
with all columns of the same height g′ − d′ + r′ ≤ t.

If c′ = (c′2, . . . , c
′
g′), we construct c = (c2, . . . , cg) by setting

c2 = 3, ci = ci−1 + 2, i ≤ t+ 1; ci = c′i−t + 2t+ 2, i ≥ t+ 2.
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Then if w′ is unimaginative with c′2 ≥ 2, the same will be true of w. By construction

we will have that in Tw(	δ), only rows of the form (0, j2) can appear in the first t
columns: indeed, we have 2d−ci+1 = 2d−2i−1 while bi(1,1) = 2d−2i−2 for i ≤ t, so

the (1, 1) row cannot appear, and bi(j1,j2) ≤ bi(1,1) when j1 ≥ 1. Now, suppose there

exists a choice of N rows of Tw′(	δ′) which can be used to verify N -expungeability

of Tw′(	δ′). Our claim is that using these rows (appropriately reindexed by 1 cor-

responding to the shift in 	δ) together with the rows (0, 0), . . . , (0, t + 1), we can

verify (N + t+ 2)-expungeability of Tw(	δ). By construction we will have precisely
the rows (0, 0), (0, 1), (0, 2) appearing in the first column, with entries a1�j equal to

0, 1, 2, respectively, so repeatedly applying Lemma 4.2(a), we can drop these three
rows. Next, in the following t − 1 columns, we can have at most one new row ap-
pearing in each column, so applying Lemma 4.2(c) in each case, we can drop each
of these rows, which are rows (0, 3), . . . , (0, t+1). The remaining rows are those of
the form (j1, j2) with j1 > 0, which appear only in the final g′ columns. These g′

columns of Tw(	δ) agree precisely with the Tw′(	δ′) one obtains from considering 	δ as
a (t+1)-shifted (g′, r′, d)-sequence, and the latter is N -expungeable by Proposition
5.5. We thus conclude the first statement of the lemma, and the particular case of
(2d′ + 1− g′)-expungeability follows immediately.

Finally, we verify by direct calculation that(
r′ + 2

2

)
− (2d′ + 1− g′) =

(
r + 2

2

)
− (2d+ 1− g)− (r − 1− t).

For the last statement in the lemma, it suffices to prove that if t < r− 1 and either(
r+2
2

)
> 2d + 1 − g or

(
r+2
2

)
= 2d + 1 − g and ρ > 0, then

(
r+2
2

)
− (2d + 1 − g) ≥

r − 1 − t. Now, if t < r − 1, then r − 1 − t = r − 1 − ρ − (r + g − d). Writing
� = r+g−d, Proposition 6.4 implies first that our desired inequality can be written(
r
2

)
−ρ−�(r−1) ≥ r−1−ρ−�, and second, that under either of our hypotheses, we

have
(
r
2

)
> �(r− 1). The desired inequality simplifies to (r− 1)(r− 2)/2 ≥ �(r− 2),

or equivalently, � ≤ (r − 1)/2, while the given inequality yields � < r/2 and hence
� ≤ (r − 1)/2, as desired. �

Finally, we treat our sequence of critical cases. Recall that an example of the
r = 4 case is given in Example 4.10.

Proof of Proposition 6.3. We are assuming that if r is even, g = (r + 1)r/2, d =
(r + 2)r/2, and if r is odd, then g = (r + 1)2/2, d = r(r + 3)/2.

Write � = g − d+ r, so that � = r
2 if r is even, and � = r+1

2 if r is odd. Choose
	δ = 0, . . . , 0︸ ︷︷ ︸

� times

, 1, . . . , 1︸ ︷︷ ︸
� times

, . . . , r, . . . , r︸ ︷︷ ︸
� times

, or equivalently, the Young Tableau is a rectangle

filled successively by column. Choose c = (c2, . . . , cg), where c2 = 2, and

for 2 < i ≤ g/2 + 1, ci = ci−1 +

{
2 : i �≡ 2 (mod �),

3 : i ≡ 2 (mod �);

for g/2 + 1 < i ≤ g, ci = ci−1 +

{
2 : i �≡ 1 (mod �),

3 : i ≡ 1 (mod �).

The result is that we have r + 1 blocks consisting of � columns each, which can
be analyzed essentially independently of one another. In addition, the situation is
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symmetric about the middle. Because our w is unimaginative, in order to analyze

the erasures in Tw(	δ), we can simply look at how a given (ai�j , b
i
�j
) compares to

(ci, 2d− ci+1); see Remark 3.8. Specifically, if 	j = (j1, j2), the columns are erased
up until the first time that bi�j ≥ 2d − ci+1 (equivalently, ai+1

�j
≤ ci+1), and will be

erased after the last time that ai�j ≥ ci. In particular, the (j1, j2) row appears for

the first time in the ith column if and only if ai�j > ci and ai+1
�j

≤ ci+1.

Labeling our blocks 0, . . . , r, we have the following formulas: if we write i =

� · α + β with 0 < β ≤ �, so that the ith column of T (	δ) is the βth column of the
αth block, then provided that i ≤ g

2 , we have

ci = 2i− 2 + α− δβ,1, and aij =

⎧⎪⎨⎪⎩
i+ j − 1 : α < j,

i+ j − β : α = j,

i+ j − �− 1 : α > j,

where δβ,1 is the Kronecker δ function. We then analyze which rows appear for the
first time (reading left to right) in each column.

In the first column of the kth block, with 0 ≤ k < �, we will have the first
appearances of the rows of the form (j, �+ k − j) for j = 0, . . . , k − 1. For the i′th
column of the kth block, with 1 < i′ ≤ k, the only new row is the (k, k) row, which
occurs for the first time in the �k/2�th column of the kth block (if k ≤ 2, the (k, k)
row occurs in the first column of the kth block). For k < i′ ≤ �, the row (k, i′) will
appear for the first time in the i′th column of the kth block (note that this includes
the (0, 1) row occurring in the 1st column of the 0th block; for k > 0, we will have
i′ > 1).

Now, if r is even, the procedure we use to show that Tw(	δ) is
(
r+2
2

)
-expungeable

is as follows: for k < r/2, we show that if all rows appearing in previous blocks
have already been dropped, then we can work from left to right in the kth block to
drop all rows appearing in that block. For k > r/2 we apply the same procedure
from right to left, and finally in the central r/2 block, we have dropped all rows
appearing in any other block, and we show that the rows only appearing in the r/2
can be dropped as well.

The desired dropping behavior is clear in the 0th block, since according to the
above description, we see that when we work from left to right, there are never more
than two new rows appearing in a given column, so repeated use of Lemma 4.2(c)
suffices to drop all rows. The same argument works for the 1st block. In the kth
block for 1 < k < r/2, we have at most k+1 new rows appearing in the first column:
(0, k+r/2), (1, k+r/2−1), . . . , (k−1, r/2+1) always appear, as well as (k, k) when
k = 2. However, in the next k−1 columns we have no new rows appearing other than
(k, k) in the �k/2�th column, and in each subsequent column we have only one new
row appearing. We claim that we can use Lemma 4.4 with n = k to drop the k+1
rows appearing in the first k columns; this will then imply that the rest of the rows in
the block can be dropped just using Lemma 4.2(d), as in the 0th block. Now, within
the kth block, the rows (0, k+r/2), (1, k+r/2−1), . . . , (k−1, r/2+1) are all identical,
starting at (2k(r/2)+k, 2d−2i(r/2)−k−2), with the left side increasing by 2 and
the right side decreasing by 2 in each subsequent column. Note that this precisely
matches the behavior of w, so in fact these rows all appear throughout the kth block.
In contrast, the (k, k)th row is a constant (2k(r/2+1), 2d−2k(r/2+1)), and appears
in the �k/2�th column only if k is odd, and in the �k/2�th and (�k/2�+1)st columns
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if k is even. Because no other rows appear in these columns, we can apply Lemma
4.4, as claimed.

By symmetry, we can also work from right to left to drop all rows except
those which occur solely in the r/2 block. But these rows are precisely the rows
(0, r), (1, r − 1), . . . , (r/2, r/2), and we can again apply Lemma 4.4, this time with
n = r/2, to drop all the remaining rows. This handles the case that r is even.

Next, if r is odd, the situation is almost the same, except that the number of
blocks is even. Accordingly, we can drop all rows by first going from left to right
in the first (r+1)/2 blocks, and then going right to left in the remaining (r+ 1)/2
blocks. We again have that the 0th and first blocks each have at most two new rows
in each column, so we can eliminate all the rows simply using Lemma 4.2((c). We
also still have that the kth block for k ≤ (r + 1)/2 will have k + 1 rows occurring
in the first i columns, and then one additional row in each subsequent column, so
just as before, we can apply Lemma 4.4 to treat the first k columns of the block
simultaneously, and then Lemma 4.2(c) to deal with the remaining columns. As
before, the situation is symmetric, so applying the same procedure from right to
left on the remaining (r+1)/2 blocks will allow us to drop all rows, as desired. �

Example 6.5. We consider some examples of the reduction processes from the
proof of Theorem 6.1.

First, if we have the canonical case, with g = r + 1 and d = 2r, then applying
Lemma 6.2 we have ρ = 0 and g + r − d = 1, so t = 1, and we get r′ = r − 1,
g′ = g − 1 = r′ + 1, d′ = d − 2 = 2r′. Thus, we reduce to the canonical case in
genus-1 less.

Next, suppose we have an injective case with r even and g strictly smaller than

the critical case r(r+1)
2 . Then our reduction process will lead to an injective (and

surjective) case with r′ = r−1, and g′ strictly smaller than the critical case (r′+1)2

2 .
However, the next step in the reduction will not necessarily stay below the critical
case. For instance, consider the case r = 6, g = 20, d = 24. This is injective, with
ρ = 6 and g + r − d = 2, and 2d + 1 − g −

(
r+2
2

)
= 1. In this case, the s from

the proof of Theorem 6.1 is equal to 1, so we first use Proposition 5.6 to reduce
to considering the case r′ = r = 6, g′ = g − 1 = 19, d′ = d − 1 = 23. This case is
now injective and surjective, with g′ + r′ − d′ = 2 and ρ′ = 5, so when we apply
Lemma 6.2, we have t = r′ − 1 = 5, and reduce to the case r′′ = r′ − 1 = 5,
g′′ = g′ − 5 = 14, d′′ = d′ − 6 = 17, which is still an injective and surjective case,

and has g′′ = 14 < (r′′+1)2

2 = 18. The next step is another reduction via Lemma
6.2, where now we have t = r′′−1 = 4, so the next reduction ends up at the critical
case r′′′ = 4, g′′′ = 10, d′′′ = 12, which is addressed directly in Proposition 6.3 (and
in Example 4.10).

Finally, consider what happens for the critical case r = 4, g = 10, d = 12 if
instead of handling the case directly as in our proof of Theorem 6.1, we instead
attempt to apply Lemma 6.2. This case has g + r − d = 2 and ρ = 0, so we will
have t = 2, so we will ‘reduce’ to the case r′ = 3, d′ = 9, g′ = 8. However, this

latter case is nonsurjective: 2d′ +1− g′ = 11, while
(
r′+2
2

)
= 10. Thus, the best we

can do in this case is to show that we have rank 10 for (g′, r′, d′) = (8, 9, 3). Then
Lemma 6.2 says that we have rank at least 10+ t+2 = 14 for (g, r, d) = (10, 4, 12),
but the conjecture is that this case should have rank 15. Thus, in this case Lemma
6.2 does provide partial information, but falls short of the sharp result.
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7. Observations on surjectivity

We now consider the surjective range, where
(
r+m
m

)
≥ md + 1 − g. We prove

surjectivity in a range of cases for m = 3 in Corollary 7.6 below, but while these
cases are somewhat different from those considered by Jensen and Payne in [JP],
they are fully covered by Ballico [Bal12a]. For us, the purpose of this section is to
illustrate a rather distinct type of argument from that found in other sections, and
simultaneously to explain how the number md+1− g, which arises naturally from
the Riemann-Roch theorem on smooth curves, can be seen also in the context of
limit linear series and our elementary criterion. We start our discussion with the
limit linear series point of view, but this will not be used elsewhere: the criteria
which we will actually apply are stated in Proposition 7.3 below, and proved directly
from our elementary criterion.

Suppose we have w = (c2, . . . , cg) inducing multidegree (d1, . . . , dg), with
∑

i di =
md. Then we can study Γ(X0,Lw) via the Riemann-Roch theorem for reducible
curves, but for our purposes, it is more instructive to carry out a direct analysis.
Considering restriction to components and nodes gives us an exact sequence

(7.1) 0 → Γ(X0,Lw) →
g⊕

i=1

Γ(Zi,Lw|Zi
) →

g−1⊕
i=1

k,

and assuming all the di are positive, we have dimΓ(Zi,Lw|Zi
) = di for i = 1, . . . , g.

We thus see that dimΓ(X0,Lw) ≥ md+ 1− g with equality if and only if the last
map of (7.1) is surjective. We then have the following.

Proposition 7.1. In the above situation, suppose that md > 2g − 2, and we
have d1 ≥ 1, di ≥ 2 for 1 < i < g, and dg ≥ 1. Then (7.1) is surjective, so
dimΓ(X0,Lw) = md+ 1− g.

Proof. Since md > 2g − 2, there is some i0 for which the above inequality on di0
becomes strict. If 1 < i0 < g, and di0 > 2, then the map Γ(Zi0 ,Lw|Zi0

) → k⊕2 in-
duced by restriction to Pi0 and Qi0 is necessarily surjective. For 1 < i < i0, because
di ≥ 2 we have surjectivity of the map Γ(Zi,Lmd(w)|Zi

) → k induced by restriction
to Pi, and similarly for i < i0 < g we have surjectivity of the map Γ(Zi,Lw|Zi

) → k
induced by restriction to Qi. Putting these together gives surjectivity of (7.1). A
similar analysis of the cases i0 = 1 and i0 = g yields the proposition. �

Remark 7.2. The hypothesis in Proposition 7.1 that md > 2g − 2 is quite mild:
if m = 3, it is always satisfied, while for m = 2, we observe that if we are in
the surjective range, so that

(
r+2
2

)
≥ 2d + 1 − g, then we necessarily have d > g.

Indeed, Proposition 6.4 may be rewritten equivalently as
(
r+2
2

)
− (2d + 1 − g) =

(d− g)(r − 1)−
(
r
2

)
− ρ, from which d > g follows immediately when the lefthand

side is nonnegative.

The above point of view gives a way to choose the sections that one wants to be
linearly independent If reading from left to right, the first column (corresponding
to Z1) has full d1-dimensional span, and each subsequent column has full (di − 1)-
dimensional span among the sections not appearing in previous columns, then we
obtain surjectivity choosing the sections that appear in each of these columns.

We now generalize the above observation and derive some consequences. In the
proposition below, the case i0 = 1 corresponds to the above situation.
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Proposition 7.3. Assume that
(
r+m
m

)
≥ md + 1 − g, w = (d1, . . . , dg), such that

di > 0 for i > 1 and for some i0 ≥ 1,
∑i0

i=1(di− 1) ≥ 0. Assume that there is some

choice of md+1− g rows of Tw(	δ) such that Lemma 4.2 can be used in component

Zi0 to prove the independence of sections correspondng to 1+
∑i0

i=1(di−1) rows, and
then for each i > i0, to prove on Zi the independence of the sections corresponding

to di − 1 additional rows none of which occur in previous columns. Then Tw(	δ) is
(md+ 1− g)-expungeable.

In particular, suppose that w and i0 are as above, and Tw(	δ) has the property
that the nonerased portion of each row is contiguous. Then if every number between

0 and md other than 1, . . . , i0 − 1 and md − 1 occurs among the ai�j of Tw(	δ) for

i ≥ i0, we have that Tw(	δ) is (md+ 1− g)-expungeable.

More generally, if w and i0 are as above, and Tw(	δ) has the property that the
nonerased portion of each row is contiguous, suppose further that:

• in the i0th column, either 0, i0, i0+1, . . . , ci0+1−1 all occur among the ai0�j ,

or 0, i0, i0+1, . . . , ci0+1−2 all occur, with ci0+1−2 occurring at least twice;
• for each i > i0, in the ith column either ci+1, . . . , ci+1−1 all occur among
the ai�j, or ci+1, . . . , ci+1−2 all occur, with ci+1−2 occurring at least twice.

Then Tw(	δ) is (md+ 1− g)-expungeable.

Note that the condition on the nonerased portion of each row being contiguous
is automatically satisfied for unimaginative w, or more generally for w which are

steady with respect to T (	δ).

Proof. The hypothesis of the first statement is just a special form of (md+ 1− g)-
expungeability, since 1 +

∑g
i=1(di − 1) = md+ 1− g.

For the second statement, we observe that a number a can occur as ai�j in Tw(	δ)

only if we have ci ≤ a ≤ ci+1 (here, we take c1 = 0 and cg+1 = md): certainly,
we must have a ≥ ci, but we must likewise have bi�j ≥ md − ci+1, and because

ai�j + bi�j ≤ md, we also obtain a ≤ ci+1. Now, we will denote by S the set of N rows

chosen to verify N -expungeability, which we will construct one column at a time.
By hypothesis, we have ci < ci+1 for all i > 1, so we see that if any of

0, . . . , ci0+1 − 1 occur among the ai�j in the ith column with i ≥ i0, we must have

i = i0. We have supposed that ci0+1 − (i0 − 1) (= 1 +
∑i0

i=1(di − 1)) of these
values do occur, so we can choose S to contain exactly one row with each of these
values in the i0th column. Then, we can apply Lemma 4.2(a) to drop the remaining

1+
∑i0

i=1(di−1) rows in this column. Then for i > i0, the values ci+1, . . . , ci+1−1

can only occur in the ith column. Moreover, if ci+1 ≤ ai�j , then the 	jth row cannot

occur in a previous column, since ai�j > ci implies that the row cannot appear in

the (i − 1)st column, and we have assumed that the nonerased portions of each
row are contiguous. Thus, we may again add rows to S so that the ith column
contains each value from ci + 1 to ci+1 − 1 exactly once, and we can again apply
Lemma 4.2(a) to drop ci+1−ci−1 = di−1 rows from the ith column. Note that by
construction, the number of rows in S is precisely 1 +

∑g
i=1(di − 1) = md+ 1− g,

and applying the first statement of the proposition, we conclude the desired result.
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Finally, the more general case proceeds by exactly the same argument, except
that in columns where ci+1 − 1 is omitted, but ci+1 − 2 occurs at least twice, we
use Lemma 4.2(c) to drop the final two rows in the column. �

Example 7.4. Consider the canonical series, with r = g − 1 and d = 2g − 2. In

this case, the only (g, r, d)-sequence is 	δ = 0, 1, . . . , g − 1. The ith column of T ′(	δ)
is:

i− 2 2g − i− 1
i− 1 2g − i− 2
...

...
2i− 4 2g − 2i+ 1
2i− 2 2g − 2i
2i− 1 2g − 2i− 2
...

...
i+ g − 2 g − i− 1

That is,

aij = j + i− 2, j ≤ i− 2, aij = j + i− 1, j ≥ i− 1,

bij = 2g − i− j − 1, j ≤ i− 1, bij = 2g − i− j − 2, j ≥ i.

For any m ≥ 2, T (	δ) is obtained by adding m-tuples of rows of T ′(	δ). Set
c = (c2, . . . , cg), with ci = ai(i−2,...,i−2,g−1) for all i. Then, ci+1 − ci = 2(m− 1) + 1

for all i.
The rows (0, . . . , 0, j) for 0 ≤ j ≤ g − 1 all appear in the first column of Tw(	δ),

and the corresponding values of a1�j are 0, 1, . . . , g − 1 = c2 − 1. Next, in the ith

column for 1 < i < g = r+1, rows of the form 	j = (i−2, . . . , i−2, i−1, . . . , i−1, j)

with j = g − 2 or g − 1 all appear in Tw(	δ), except for (i− 2, . . . , i− 2, g − 2). The
corresponding values of ai�j yield ci, ci + 1, . . . , ci+1 − 1. Finally, in the gth column,

the rows (j1, g − 2, . . . , g − 2, g − 1, . . . , g − 1, jm) with j1 = g − 3 or g − 2 and
jm = g − 1 all appear with the exception of (g − 3, g − 2, . . . , g − 2, g − 1) (which
has ai�j = cg − 1), and the values of ai�j yield cover cg, cg + 1, . . . ,md− 2. Then the

row (g − 1 . . . , g − 1) has ai�j = md, and (the i0 = 1 case of) Proposition 7.3 gives

us surjectivity.

We now apply Proposition 7.3 to prove surjectivity within certain ranges, gen-
eralizing the canonical linear series, and including many cases which do not fall in
the surjective range for m = 2. Recall from the introduction that although we only
treat directly the case m = 3, surjectivity then follows for all higher m.

Remark 7.5. Suppose that c = (c2, . . . , cg), and that the ci are nondecreasing. Then
in the ith column, each ai�j whose corresponding section s�j does not vanish on the

curve Zi is at least ci. If we want every number to appear as some ai
′

�j
in Tw(	δ), we

need ci − 1 to appear as an ai
′

�j
for some i′ < i and unless ci−1 = ci, i

′ = i − 1. If

ci−1 = ai−1
�j

for some 	j, then bi−1
�j

≥ md− ci. Since a
i−1
�j

+ bi−1
�j

is given by md−m

plus the number of times δi−1 occurs in 	j, we conclude that δi−1 must occur at least

m − 1 times in 	j. Similarly, if ci − n appears as ai−1
�j

for 1 ≤ n < m, we conclude
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LIMIT LINEAR SERIES AND RANKS OF MULTIPLICATION MAPS 397

that δi−1 occurs at least m− n times in 	j. If w is unimaginative, we then derive a
necessary and sufficient condition for numbers of the form ci − n to appear as ai−1

�j

in Tw(	δ) for some 	j: first, we must have ci − n ≥ ci−1, second, ci − n must appear

as some ai−1
�j

in T (	δ), and third, if n < m, it must do so in a row 	j with at least

m− n occurrences of δi−1 in 	j.

Corollary 7.6. Suppose that m = 3, and (g, r, d) satisfy ρ ≥ 0. Then the Maximal
Rank Conjecture holds in the following cases:

(i) if g − d+ r = 1, and 2r − 3 ≥ ρ+ 1;
(ii) if g − d+ r = 2, r ≥ 4, and 2r − 3 ≥ ρ+ 2.

Moreover, the locus of chains of genus-1 curves is not in the closure of the locus in
Mg where the maximal rank condition fails.

Proof. In case (i), we set 	δ to be the sequence whose first ρ entries are 0, followed
by 0, 1, . . . , r. As by assumption, g − d+ r = 1, it follows that ρ+ (r + 1) = g and

this choice gives a 	δ sequence. Set n = min(r − 1, ρ+ 2), c = (c2, . . . , cg), where

ci = −3(ρ+ 3− n− i)− 1, 2 ≤ i ≤ ρ+ 3− n; ci = ai�ji
, i ≥ ρ+ 4− n

with

	jρ+2−t = (0, n− t, n− t) for 0 ≤ t ≤ n− 2, 	jρ+t = (t− 2, t− 2, r) for 3 ≤ t ≤ r+1.

We first check that w is unimaginative:

ci − ci−1 = 3 for 2 < i ≤ ρ+ 3− n,

cρ+4−n − cρ+3−n = aρ+4−n
(0,2,2) − (−1) = 1 + 2(ρ+ 5− n) ≥ 4

cρ+2−t − cρ+1−t = aρ+2−t
(0,n−t,n−t) − aρ+1−t

(0,n−t−1,n−t−1) = 4 for 0 ≤ t < n− 2,

cρ+3−cρ+2 = aρ+3
(1,1,r)−aρ+2

(0,n,n) = (2(ρ+2)+r+ρ+2)−2(ρ+1+n) = ρ+r−2n+4,

and as n ≤ r − 1, n ≤ ρ+ 2, then ρ+ r − 2n+ 4 ≥ 3,

cρ+t − cρ+t−1 = aρ+t
(t−2,t−2,r) − aρ+t−1

(t−3,t−3,r) = 5 for 3 < t ≤ r + 1.

Also, Tw(	δ) satisfies the condition of Proposition 7.3. Specifically, no rows will
appear in the first ρ+2−n columns. Using the inequality 2r−3 ≥ ρ+1, if r−1 ≥ n
we obtain r ≥ ρ + 3 − n while if n = ρ + 2, 2r − 3 ≥ 1 = ρ + 3 − n. Then in the
(ρ+ 3 − n)th column, rows of the form (0, 0, j3) with 0 ≤ j ≤ ρ + 3 − n will yield
ai�j equal to 0, ρ + 3 − n, ρ + 4 − n, . . . , 2(ρ + 3 − n) − 1. Then the rows (0, 1, 1),

(0, 1, 2), (0, 2, 2), (0, 1, 3) give 2(ρ+3−n), 2(ρ+3−n)+ 1, and 2(ρ+4−n) twice.
We thus have the numbers 0 through 2(ρ+ 4− n) occurring with ρ+2− n gaps in
this column, and with 2(ρ+4−n) occurring twice. Then in the ρ+2− tth column
for t = n − 2, . . . , 1, we will have the rows (0, n − t, n − t), (0, n − t, n + 1 − t),
(0, n + 1 − t, n + 1 − t), and (0, n − t, n + 2 − t) contributing 2(ρ + 1 + n − 2t),
2(ρ+1+n− 2t)+1, and 2(ρ+2+n− 2t) twice. In each case, we will have skipped
cρ+2−t − 1 = 2(ρ+ 1 + n− 2t)− 1, but we can still apply Proposition 7.3 because
2(ρ+ 1 + n− 2t)− 2 will have appeared twice in the previous column.

Next, in the (ρ+ 2)nd column, the rows (1, 1, j3) for 1 ≤ j3 ≤ r cover all values
from max(3(ρ+ 2), cρ+2) to cρ+3 − 1. If 3(ρ+ 2) ≤ cρ+2, these rows suffice in this
column, and otherwise, we must have n = r − 1. The hypothesis 2r − 3 ≥ ρ + 1
implies that cρ+2 ≥ 3(ρ+2)−2, so adding in the rows (0, r−1, r−1) and (0, r−1, r)
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allows us to cover all values between cρ+2 and cρ+3 − 1. In the (ρ + t)th column
for t = 3, . . . , r, the rows (t − 2, t − 2, r), (t − 2, t − 1, r − 1), (t − 2, t − 1, r),
(t−1, t−1, r−1), (t−1, t−1, r) give the values from cρ+t to cρ+t+1−1. Finally, in
the (ρ+ r + 1)st column, the rows (r− 1, r − 1, r), (r− 2, r, r), (r− 1, r, r), (r, r, r)
give the values from cρ+r+1 to 3d, skipping only 3d− 1. Applying Proposition 7.3,
we conclude the desired statement for case (i).

For case (ii), the pattern is similar, but a bit more complicated. We set 	δ to
be the sequence whose first ρ entries are 0, followed by 0, 0, 1, 1, . . . , r, r. As by

assumption, g− d+ r = 2, it follows that ρ+2(r+1) = g and this choice gives a 	δ
sequence. Define

n = min(r − 1, ρ+ 1) if ρ > 0, n = 2 if ρ = 0,

c=(c2, . . . , cg), ci=−3(ρ+4−n−i)−1 for 2 ≤ i ≤ ρ+4−n, ci = ai�ji
for ρ+4−n < i

with

	jρ+3−t = (0, n− t, n− t) for 0 ≤ t ≤ n− 2,

	jρ+2t = (t− 1, t− 1, r− 2), 2 ≤ t ≤ r− 2; 	jρ+2t+1 = (t− 1, t− 1, r), 2 ≤ t ≤ r− 1;

	jρ+2r−2 = (r − 3, r − 2, r),	jρ+2r = (r − 2, r − 1, r − 1),	jρ+2r+1

= (r − 3, r − 1, r),	jρ+2r+2 = (r − 2, r, r)

We check that w is unimaginative:

ci − ci−1 = 3 for 2 < i ≤ ρ+ 4− n,

cρ+5−n − cρ+4−n = aρ+5−n
(0,2,2) − (−1) = 1 + 2(ρ+ 6− n),

cρ+3−t − cρ+2−t = aρ+3−t
(0,n−t,n−t) − aρ+2−t

(0,n−t−1,n−t−1) = 4 for 0 ≤ t ≤ n− 3.

cρ+4−cρ+3 = aρ+4
(1,1,r−2)−aρ+3

(0,n,n) = (2(ρ+3)+r+ρ+1)−2(ρ+2+n) = ρ+r−2n+3.

If ρ = 0, as r ≥ 4, ρ+r−2n+3 = r−4+3 ≥ 3. Then If ρ > 0, as n = min(r−1, ρ+1),
ρ+ r − 2n+ 3 ≥ ρ+ r − r + 1− ρ− 1 + 3 ≥ 3. Then

cρ+2t+1 − cρ+2t = aρ+2t+1
(t−1,t−1,r) − aρ+2t

(t−1,t−1,r−2) = 3 for 2 ≤ t ≤ r − 2,

cρ+2t − cρ+2t−1 = aρ+2t
(t−1,t−1,r−2) − aρ+2t−1

(t−2,t−2,r) = 5 for 3 ≤ t ≤ r − 2,

cρ+2r−2 − cρ+2r−3 = 5, cρ+2r−1 − cρ+2r−2 = 3, cρ+2r − cρ+2r−1 = 3,

cρ+2r+1 − cρ+2r = 3, cρ+2r+2 − cρ+2r+1 = 5.

We again verify that Tw(	δ) will satisfy the condition of Proposition 7.3. Specifi-
cally, no rows will appear in the first ρ+3−n columns. We claim that r ≥ ρ+4−n:
if ρ = 0, ρ+4−n = 2 < 4 ≤ r, while if ρ �= 0, from the definition of n, ρ+4−n equals
either ρ+ 5− r or 3 and both these quantities are at most r from the assumptions
2r−3 ≥ ρ+2 and r ≥ 4. Then in the (ρ+4−n)th column, rows of the form (0, 0, j3)
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with 0 ≤ j ≤ ρ+4−n will include ai�j equal to 0, ρ+4−n, ρ+5−n, . . . , 2(ρ+4−n)−1.

Then the rows (0, 1, 1), (0, 1, 2), (0, 2, 2), (0, 1, 3) give 2(ρ+4−n), 2(ρ+4−n)+ 1,
and 2(ρ+5−n) twice. We thus have the numbers 0 through 2(ρ+5−n) occurring
with ρ+3− n gaps in this column, and with 2(ρ+5− n) occurring twice. Then in
the ρ + 3 − ith column for i = n − 2, . . . , 1, we will have the rows (0, n− i, n− i),
(0, n − i, n + 1 − i), (0, n + 1 − i, n + 1 − i), and (0, n − i, n + 2 − i) contributing
2(ρ+2+n−2i), 2(ρ+2+n−2i)+1, and 2(ρ+3+n−2i) twice. In each case, we will
have skipped cρ+3−i − 1 = 2(ρ+2+ n− 2i)− 1, but we can still apply Proposition
7.3 because 2(ρ+ 2+ n− 2i)− 2 will have appeared twice in the previous column.

Next, in the (ρ + 3)rd column, the rows (1, 1, j3) for 1 ≤ j3 ≤ r − 2 cover
all values from max(3(ρ + 3), cρ+3) to cρ+4 − 1. If 3(ρ + 3) ≤ cρ+3, these rows
suffice in this column, and otherwise, the hypothesis 2r − 3 ≥ ρ + 2 implies that
adding the rows (0, n, n) and (0, n, n+1) suffices to cover all values from cρ+3 up to
3(ρ+3)−1. In the (ρ+2i)nd column for i = 2, . . . , r−2, the rows (i−1, i−1, r−2),
(i− 1, i− 1, r− 1), and (i− 1, i− 1, r) give the values from cρ+2i to cρ+2i+1 − 1. In
the (ρ+2i+1)st column for i = 2, . . . , r−2, the rows (i−1, i−1, r), (i−1, i, r−2),
(i− 1, i, r − 1), (i− 1, i, r), (i, i, r − 2) give the values from cρ+2i+1 to cρ+2i+2 − 1.
We have to change the pattern slightly in the final five columns, as follows: in the
(ρ+2r−2)nd column, the final row of the previous column was (r−2, r−2, r−2),
but this does not appear in the (ρ+2r− 2)nd column, because cρ+2r−2 was chosen
to be one larger than the corresponding ai�j . Instead, cρ+2r−2 will be achieved by

the (r − 3, r − 2, r) row, and then the (r − 2, r − 2, r − 1) and (r − 2, r − 2, r) rows
cover through cρ+2r−1 − 1. In the (ρ+ 2r − 1)st column, the rows (r − 2, r − 2, r),
(r − 3, r − 1, r − 1), (r − 2, r − 1, r − 1) cover from cρ+2r−1 to cρ+2r − 1. In the
(ρ+2r)th column, the rows (r−2, r−1, r−1), (r−3, r−1, r), (r−1, r−1, r−1) cover
from cρ+2r to cρ+2r+1 − 1. In the (ρ+ 2r + 1)st column, the rows (r − 3, r − 1, r),
(r − 2, r − 1, r), (r − 1, r − 1, r), (r − 3, r, r), (r − 2, r, r) cover from cρ+2r+1 to
cρ+2r+2 − 1, and in the final column, the rows (r − 2, r, r), (r − 1, r, r), (r, r, r)
will cover from cρ+2r+2 to 3d, omitting only 3d− 1. Applying Proposition 7.3, we
conclude the desired statement for case (ii). �

8. The case of cubics

We conclude with a discussion of the m = 3 case. Rather than attempting to
prove that it holds for every case of given small r, which requires extensive case-
by-case analysis, we will treat what appear to be the “hardest” cases for each of
r = 3, 4, 5, each of which is in the injective range, and then conclude by Proposition
5.6 that the Maximal Rank Conjecture holds for all but finitely many cases for each
r. The aforementioned “hardest case” for each r is somewhat parallel to the critical
cases for m = 2 addressed in Proposition 6.3; specifically, we take the smallest g
such that all noninjective cases occur in genera strictly smaller than g. For r = 5,
this case happens to be also in the surjective range. For r = 3 and r = 4 these cases
are not in the surjective range, although the r = 3 example will imply a case having
genus-1 greater which is simultaneously in the injective and surjective ranges.

The three examples are as follows:

Example 8.1. Consider the case r = 3, g = 7, d = 9. Then
(
r+3
3

)
= 20, and

3d+ 1− g = 21; we see that this is in the injective range. We take the extendable

(g, r, d)-sequence 	δ = 0, 0, 1, 1, 2, 2, 3, which gives T ′(	δ) as follows.
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0 9 0 9 0 8 1 7 2 6 3 5 4 4
1 7 2 6 3 6 3 6 3 5 4 4 5 3
2 6 3 5 4 4 5 3 6 3 6 3 6 2
3 5 4 4 5 3 6 2 7 1 8 0 9 0

We then get T (	δ) as follows.

23 4 20 7 17 10 14 13 10 17 6 21
(0, 0, 0) 0 27 0 27 0 24 3 21 6 18 9 15 12 12
(0, 0, 1) 1 25 2 24 3 22 5 20 7 17 10 14 13 11
(0, 0, 2) 2 24 3 23 4 20 7 17 10 15 12 13 14 10
(0, 1, 1) 2 23 4 21 6 20 7 19 8 16 11 13 14 10
(0, 0, 3) 3 23 4 22 5 19 8 16 11 13 14 10 17 8
(0, 1, 2) 3 22 5 20 7 18 9 16 11 14 13 12 15 9
(1, 1, 1) 3 21 6 18 9 18 9 18 9 15 12 12 15 9
(0, 1, 3) 4 21 6 19 8 17 10 15 12 12 15 9 18 7
(0, 2, 2) 4 21 6 19 8 16 11 13 14 12 15 11 16 8
(1, 1, 2) 4 20 7 17 10 16 11 15 12 13 14 11 16 8
(0, 2, 3) 5 20 7 18 9 15 12 12 15 10 17 8 19 6
(1, 1, 3) 5 19 8 16 11 15 12 14 13 11 16 8 19 6
(1, 2, 2) 5 19 8 16 11 14 13 12 15 11 16 10 17 7
(0, 3, 3) 6 19 8 17 10 14 13 11 16 8 19 5 22 4
(1, 2, 3) 6 18 9 15 12 13 14 11 16 9 18 7 20 5
(2, 2, 2) 6 18 9 15 12 12 15 9 18 9 18 9 18 6
(1, 3, 3) 7 17 10 14 13 12 15 10 17 7 20 4 23 3
(2, 2, 3) 7 17 10 14 13 11 16 8 19 7 20 6 21 4
(2, 3, 3) 8 16 11 13 14 10 17 7 20 5 22 3 24 2
(3, 3, 3) 9 15 12 12 15 9 18 6 21 3 24 0 27 0

23 4 20 7 17 10 14 13 10 17 6 21

The highlighted entries show Tw(	δ) for c = (4, 7, 10, 13, 17, 21), which is unimagi-
native. As in earlier examples, we have placed the ci and md − ci at the top and
bottom of the table to make the erasure procedures clearer.

Now, by applying Lemma 4.2(a) to the first, third, fourth, and seventh columns,
we can drop rows (0, 0, 0), (0, 0, 1), (0, 1, 2), (0, 1, 3), (1, 1, 1), (1, 1, 2), (1, 1, 3),
(2, 2, 3), (0, 3, 3), (1, 3, 3), (2, 3, 3), and (3, 3, 3). Applying Lemma 4.2(b) to the
sixth column, we can also drop rows (1, 2, 3), (0, 2, 3), and (2, 2, 2). This leaves only
five rows, which can all be dropped using Lemma 4.2(c) in the second, first, and
fifth columns.

Example 8.2. Consider the case r = 4, g = 16, d = 17. Then
(
r+3
3

)
= 35, and

3d+ 1− g = 36, so this is in the injective range, but not the surjective range. We

take the extendable (g, r, d)-sequence 	δ = 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, which gives

T ′(	δ) as follows:

0 17 0 17 0 17 0 17 0 16 1 15 2 14 3 13 4 12 5 11 6 10 7 9 8 8 9 7 10 6 11 5
1 15 2 14 3 13 4 12 5 12 5 12 5 12 5 11 6 10 7 9 8 8 9 7 10 6 11 5 12 4 13 3
2 14 3 13 4 12 5 11 6 10 7 9 8 8 9 8 9 8 9 8 9 7 10 6 11 5 12 4 13 3 14 2
3 13 4 12 5 11 6 10 7 9 8 8 9 7 10 6 11 5 12 4 13 4 13 4 13 4 13 3 14 2 15 1
4 12 5 11 6 10 7 9 8 8 9 7 10 6 11 5 12 4 13 3 14 2 15 1 16 0 17 0 17 0 17 0
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We then get T (	δ) as follows.

48 3 46 5 44 7 39 12 35 16 32 19 29 22 27 24 23 28 20 31 16 35 14 37 10 41 7 44 4 47
(0, 0, 0) 0 51 0 51 0 51 0 51 0 48 3 45 6 42 9 39 12 36 15 33 18 30 21 27 24 24 27 21 30 18 33 15
(0, 0, 1) 1 49 2 48 3 47 4 46 5 44 7 42 9 40 11 37 14 34 17 31 20 28 23 25 26 22 29 19 32 16 35 13
(0, 0, 2) 2 48 3 47 4 46 5 45 6 42 9 39 12 36 15 34 17 32 19 30 21 27 24 24 27 21 30 18 33 15 36 12
(0, 1, 1) 2 47 4 45 6 43 8 41 10 40 11 39 12 38 13 35 16 32 19 29 22 26 25 23 28 20 31 17 34 14 37 11
(0, 0, 3) 3 47 4 46 5 45 6 44 7 41 10 38 13 35 16 32 19 29 22 26 25 24 27 22 29 20 31 17 34 14 37 11
(0, 1, 2) 3 46 5 44 7 42 9 40 11 38 13 36 15 34 17 32 19 30 21 28 23 25 26 22 29 19 32 16 35 13 38 10
(1, 1, 1) 3 45 6 42 9 39 12 36 15 36 15 36 15 36 15 33 18 30 21 27 24 24 27 21 30 18 33 15 36 12 39 9
(0, 0, 4) 4 46 5 45 6 44 7 43 8 40 11 37 14 34 17 31 20 28 23 25 26 22 29 19 32 16 35 14 37 12 39 10
(0, 1, 3) 4 45 6 43 8 41 10 39 12 37 14 35 16 33 18 30 21 27 24 24 27 22 29 20 31 18 33 15 36 12 39 9
(0, 2, 2) 4 45 6 43 8 41 10 39 12 36 15 33 18 30 21 29 22 28 23 27 24 24 27 21 30 18 33 15 36 12 39 9
(1, 1, 2) 4 44 7 41 10 38 13 35 16 34 17 33 18 32 19 30 21 28 23 26 25 23 28 20 31 17 34 14 37 11 40 8
(0, 1, 4) 5 44 7 42 9 40 11 38 13 36 15 34 17 32 19 29 22 26 25 23 28 20 31 17 34 14 37 12 39 10 41 8
(0, 2, 3) 5 44 7 42 9 40 11 38 13 35 16 32 19 29 22 27 24 25 26 23 28 21 30 19 32 17 34 14 37 11 40 8
(1, 1, 3) 5 43 8 40 11 37 14 34 17 33 18 32 19 31 20 28 23 25 26 22 29 20 31 18 33 16 35 13 38 10 41 7
(1, 2, 2) 5 43 8 40 11 37 14 34 17 32 19 30 21 28 23 27 24 26 25 25 26 22 29 19 32 16 35 13 38 10 41 7
(0, 2, 4) 6 43 8 41 10 39 12 37 14 34 17 31 20 28 23 26 25 24 27 22 29 19 32 16 35 13 38 11 40 9 42 7
(0, 3, 3) 6 43 8 41 10 39 12 37 14 34 17 31 20 28 23 25 26 22 29 19 32 18 33 17 34 16 35 13 38 10 41 7
(1, 1, 4) 6 42 9 39 12 36 15 33 18 32 19 31 20 30 21 27 24 24 27 21 30 18 33 15 36 12 39 10 41 8 43 6
(1, 2, 3) 6 42 9 39 12 36 15 33 18 31 20 29 22 27 24 25 26 23 28 21 30 19 32 17 34 15 36 12 39 9 42 6
(2, 2, 2) 6 42 9 39 12 36 15 33 18 30 21 27 24 24 27 24 27 24 27 24 27 21 30 18 33 15 36 12 39 9 42 6
(0, 3, 4) 7 42 9 40 11 38 13 36 15 33 18 30 21 27 24 24 27 21 30 18 33 16 35 14 37 12 39 10 41 8 43 6
(1, 2, 4) 7 41 10 38 13 35 16 32 19 30 21 28 23 26 25 24 27 22 29 20 31 17 34 14 37 11 40 9 42 7 44 5
(1, 3, 3) 7 41 10 38 13 35 16 32 19 30 21 28 23 26 25 23 28 20 31 17 34 16 35 15 36 14 37 11 40 8 43 5
(2, 2, 3) 7 41 10 38 13 35 16 32 19 29 22 26 25 23 28 22 29 21 30 20 31 18 33 16 35 14 37 11 40 8 43 5
(0, 4, 4) 8 41 10 39 12 37 14 35 16 32 19 29 22 26 25 23 28 20 31 17 34 14 37 11 40 8 43 7 44 6 45 5
(1, 3, 4) 8 40 11 37 14 34 17 31 20 29 22 27 24 25 26 22 29 19 32 16 35 14 37 12 39 10 41 8 43 6 45 4
(2, 2, 4) 8 40 11 37 14 34 17 31 20 28 23 25 26 22 29 21 30 20 31 19 32 16 35 13 38 10 41 8 43 6 45 4
(2, 3, 3) 8 40 11 37 14 34 17 31 20 28 23 25 26 22 29 20 31 18 33 16 35 15 36 14 37 13 38 10 41 7 44 4
(1, 4, 4) 9 39 12 36 15 33 18 30 21 28 23 26 25 24 27 21 30 18 33 15 36 12 39 9 42 6 45 5 46 4 47 3
(2, 3, 4) 9 39 12 36 15 33 18 30 21 27 24 24 27 21 30 19 32 17 34 15 36 13 38 11 40 9 42 7 44 5 46 3
(3, 3, 3) 9 39 12 36 15 33 18 30 21 27 24 24 27 21 30 18 33 15 36 12 39 12 39 12 39 12 39 9 42 6 45 3
(2, 4, 4) 10 38 13 35 16 32 19 29 22 26 25 23 28 20 31 18 33 16 35 14 37 11 40 8 43 5 46 4 47 3 48 2
(3, 3, 4) 10 38 13 35 16 32 19 29 22 26 25 23 28 20 31 17 34 14 37 11 40 10 41 9 42 8 43 6 45 4 47 2
(3, 4, 4) 11 37 14 34 17 31 20 28 23 25 26 22 29 19 32 16 35 13 38 10 41 8 43 6 45 4 47 3 48 2 49 1
(4, 4, 4) 12 36 15 33 18 30 21 27 24 24 27 21 30 18 33 15 36 12 39 9 42 6 45 3 48 0 51 0 51 0 51 0

48 3 46 5 44 7 39 12 35 16 32 19 29 22 27 24 23 28 20 31 16 35 14 37 10 41 7 44 4 47

The highlighted entries show Tw(	δ) for

c = (3, 5, 7, 12, 16, 19, 22, 24, 28, 31, 35, 37, 41, 44, 47).

Note that the w(c) is not unimaginative, although one can check that it is still

steady with respect to T (	δ).
We may use Lemma 4.2(a) and (b) to drop all rows in the first, second, third,

sixth, seventh, eighth, 10th, and 16th columns. We can also drop the rows in
the fourth column with Lemma 4.2(a) and (c). This leaves two rows in each of
the fifth and ninth columns, which can thus be dropped with Lemma 4.2(c). The
remaining rows in the 11th column can then be dropped with Lemma 4.2(a), and
the remaining rows in the 15th column can then be dropped with Lemma 4.2(b).
This leaves only one row in the 12th column and two rows in the 14th column, so
these can be dropped with Lemma 4.2(c). Finally, this leaves only one row in the
13th column, so we are done.

Example 8.3. Consider the case r = 5, g = 26, d = 27. Then
(
r+3
3

)
= 56, and 3d+

1−g = 56, so this is in both the injective and surjective ranges. We take the extend-

able (g, r, d)-sequence 	δ = 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5,

which gives T ′(	δ) as follows:

0 27 0 27 0 27 0 27 0 27 0 26 1 25 2 24 3 23 4 22 5 21 6 20 7 19 8 18 9 17 10 16 11 15 12 14 13 13 14 12 15 11 16 10 17 9 18 8 19 7 20 6
1 25 2 24 3 23 4 22 5 21 6 21 6 21 6 21 6 21 6 21 6 20 7 19 8 18 9 17 10 16 11 15 12 14 13 13 14 12 15 11 16 10 17 9 18 8 19 7 20 6 21 5
2 24 3 23 4 22 5 21 6 20 7 19 8 18 9 17 10 16 11 15 12 15 12 15 12 15 12 15 12 14 13 13 14 12 15 11 16 10 17 9 18 8 19 7 20 6 21 5 22 4 23 3
3 23 4 22 5 21 6 20 7 19 8 18 9 17 10 16 11 15 12 14 13 13 14 12 15 11 16 10 17 10 17 10 17 10 17 10 17 9 18 8 19 7 20 6 21 5 22 4 23 3 24 2
4 22 5 21 6 20 7 19 8 18 9 17 10 16 11 15 12 14 13 13 14 12 15 11 16 10 17 9 18 8 19 7 20 6 21 5 22 5 22 5 22 5 22 5 22 4 23 3 24 2 25 1
5 21 6 20 7 19 8 18 9 17 10 16 11 15 12 14 13 13 14 12 15 11 16 10 17 9 18 8 19 7 20 6 21 5 22 4 23 3 24 2 25 1 26 0 27 0 27 0 27 0 27 0

We then get T (	δ) as follows:
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78 3 75 6 73 8 70 11 66 15 63 18 60 21 57 24 53 28 50 31 47 34 44 37 40 41 37 44 34 47 31 50 28 53 25 56 21 60 18 63 15 66 11 70 8 73 5 76 3 78
(0, 0, 0) 0 81 0 81 0 81 0 81 0 81 0 78 3 75 6 72 9 69 12 66 15 63 18 60 21 57 24 54 27 51 30 48 33 45 36 42 39 39 42 36 45 33 48 30 51 27 54 24 57 21 60 18
(0, 0, 1) 1 79 2 78 3 77 4 76 5 75 6 73 8 71 10 69 12 67 14 65 16 62 19 59 22 56 25 53 28 50 31 47 34 44 37 41 40 38 43 35 46 32 49 29 52 26 55 23 58 20 61 17
(0, 0, 2) 2 78 3 77 4 76 5 75 6 74 7 71 10 68 13 65 16 62 19 59 22 57 24 55 26 53 28 51 30 48 33 45 36 42 39 39 42 36 45 33 48 30 51 27 54 24 57 21 60 18 63 15
(0, 1, 1) 2 77 4 75 6 73 8 71 10 69 12 68 13 67 14 66 15 65 16 64 17 61 20 58 23 55 26 52 29 49 32 46 35 43 38 40 41 37 44 34 47 31 50 28 53 25 56 22 59 19 62 16
(0, 0, 3) 3 77 4 76 5 75 6 74 7 73 8 70 11 67 14 64 17 61 20 58 23 55 26 52 29 49 32 46 35 44 37 42 39 40 41 38 43 35 46 32 49 29 52 26 55 23 58 20 61 17 64 14
(0, 1, 2) 3 76 5 74 7 72 9 70 11 68 13 66 15 64 17 62 19 60 21 58 23 56 25 54 27 52 29 50 31 47 34 44 37 41 40 38 43 35 46 32 49 29 52 26 55 23 58 20 61 17 64 14
(1, 1, 1) 3 75 6 72 9 69 12 66 15 63 18 63 18 63 18 63 18 63 18 63 18 60 21 57 24 54 27 51 30 48 33 45 36 42 39 39 42 36 45 33 48 30 51 27 54 24 57 21 60 18 63 15
(0, 0, 4) 4 76 5 75 6 74 7 73 8 72 9 69 12 66 15 63 18 60 21 57 24 54 27 51 30 48 33 45 36 42 39 39 42 36 45 33 48 31 50 29 52 27 54 25 56 22 59 19 62 16 65 13
(0, 1, 3) 4 75 6 73 8 71 10 69 12 67 14 65 16 63 18 61 20 59 22 57 24 54 27 51 30 48 33 45 36 43 38 41 40 39 42 37 44 34 47 31 50 28 53 25 56 22 59 19 62 16 65 13
(0, 2, 2) 4 75 6 73 8 71 10 69 12 67 14 64 17 61 20 58 23 55 26 52 29 51 30 50 31 49 32 48 33 45 36 42 39 39 42 36 45 33 48 30 51 27 54 24 57 21 60 18 63 15 66 12
(1, 1, 2) 4 74 7 71 10 68 13 65 16 62 19 61 20 60 21 59 22 58 23 57 24 55 26 53 28 51 30 49 32 46 35 43 38 40 41 37 44 34 47 31 50 28 53 25 56 22 59 19 62 16 65 13
(0, 0, 5) 5 75 6 74 7 73 8 72 9 71 10 68 13 65 16 62 19 59 22 56 25 53 28 50 31 47 34 44 37 41 40 38 43 35 46 32 49 29 52 26 55 23 58 20 61 18 63 16 65 14 67 12
(0, 1, 4) 5 74 7 72 9 70 11 68 13 66 15 64 17 62 19 60 21 58 23 56 25 53 28 50 31 47 34 44 37 41 40 38 43 35 46 32 49 30 51 28 53 26 55 24 57 21 60 18 63 15 66 12
(0, 2, 3) 5 74 7 72 9 70 11 68 13 66 15 63 18 60 21 57 24 54 27 51 30 49 32 47 34 45 36 43 38 41 40 39 42 37 44 35 46 32 49 29 52 26 55 23 58 20 61 17 64 14 67 11
(1, 1, 3) 5 73 8 70 11 67 14 64 17 61 20 60 21 59 22 58 23 57 24 56 25 53 28 50 31 47 34 44 37 42 39 40 41 38 43 36 45 33 48 30 51 27 54 24 57 21 60 18 63 15 66 12
(1, 2, 2) 5 73 8 70 11 67 14 64 17 61 20 59 22 57 24 55 26 53 28 51 30 50 31 49 32 48 33 47 34 44 37 41 40 38 43 35 46 32 49 29 52 26 55 23 58 20 61 17 64 14 67 11
(0, 1, 5) 6 73 8 71 10 69 12 67 14 65 16 63 18 61 20 59 22 57 24 55 26 52 29 49 32 46 35 43 38 40 41 37 44 34 47 31 50 28 53 25 56 22 59 19 62 17 64 15 66 13 68 11
(0, 2, 4) 6 73 8 71 10 69 12 67 14 65 16 62 19 59 22 56 25 53 28 50 31 48 33 46 35 44 37 42 39 39 42 36 45 33 48 30 51 28 53 26 55 24 57 22 59 19 62 16 65 13 68 10
(0, 3, 3) 6 73 8 71 10 69 12 67 14 65 16 62 19 59 22 56 25 53 28 50 31 47 34 44 37 41 40 38 43 37 44 36 45 35 46 34 47 31 50 28 53 25 56 22 59 19 62 16 65 13 68 10
(1, 1, 4) 6 72 9 69 12 66 15 63 18 60 21 59 22 58 23 57 24 56 25 55 26 52 29 49 32 46 35 43 38 40 41 37 44 34 47 31 50 29 52 27 54 25 56 23 58 20 61 17 64 14 67 11
(1, 2, 3) 6 72 9 69 12 66 15 63 18 60 21 58 23 56 25 54 27 52 29 50 31 48 33 46 35 44 37 42 39 40 41 38 43 36 45 34 47 31 50 28 53 25 56 22 59 19 62 16 65 13 68 10
(2, 2, 2) 6 72 9 69 12 66 15 63 18 60 21 57 24 54 27 51 30 48 33 45 36 45 36 45 36 45 36 45 36 42 39 39 42 36 45 33 48 30 51 27 54 24 57 21 60 18 63 15 66 12 69 9
(0, 2, 5) 7 72 9 70 11 68 13 66 15 64 17 61 20 58 23 55 26 52 29 49 32 47 34 45 36 43 38 41 40 38 43 35 46 32 49 29 52 26 55 23 58 20 61 17 64 15 66 13 68 11 70 9
(0, 3, 4) 7 72 9 70 11 68 13 66 15 64 17 61 20 58 23 55 26 52 29 49 32 46 35 43 38 40 41 37 44 35 46 33 48 31 50 29 52 27 54 25 56 23 58 21 60 18 63 15 66 12 69 9
(1, 1, 5) 7 71 10 68 13 65 16 62 19 59 22 58 23 57 24 56 25 55 26 54 27 51 30 48 33 45 36 42 39 39 42 36 45 33 48 30 51 27 54 24 57 21 60 18 63 16 65 14 67 12 69 10
(1, 2, 4) 7 71 10 68 13 65 16 62 19 59 22 57 24 55 26 53 28 51 30 49 32 47 34 45 36 43 38 41 40 38 43 35 46 32 49 29 52 27 54 25 56 23 58 21 60 18 63 15 66 12 69 9
(1, 3, 3) 7 71 10 68 13 65 16 62 19 59 22 57 24 55 26 53 28 51 30 49 32 46 35 43 38 40 41 37 44 36 45 35 46 34 47 33 48 30 51 27 54 24 57 21 60 18 63 15 66 12 69 9
(2, 2, 3) 7 71 10 68 13 65 16 62 19 59 22 56 25 53 28 50 31 47 34 44 37 43 38 42 39 41 40 40 41 38 43 36 45 34 47 32 49 29 52 26 55 23 58 20 61 17 64 14 67 11 70 8
(0, 3, 5) 8 71 10 69 12 67 14 65 16 63 18 60 21 57 24 54 27 51 30 48 33 45 36 42 39 39 42 36 45 34 47 32 49 30 51 28 53 25 56 22 59 19 62 16 65 14 67 12 69 10 71 8
(0, 4, 4) 8 71 10 69 12 67 14 65 16 63 18 60 21 57 24 54 27 51 30 48 33 45 36 42 39 39 42 36 45 33 48 30 51 27 54 24 57 23 58 22 59 21 60 20 61 17 64 14 67 11 70 8
(1, 2, 5) 8 70 11 67 14 64 17 61 20 58 23 56 25 54 27 52 29 50 31 48 33 46 35 44 37 42 39 40 41 37 44 34 47 31 50 28 53 25 56 22 59 19 62 16 65 14 67 12 69 10 71 8
(1, 3, 4) 8 70 11 67 14 64 17 61 20 58 23 56 25 54 27 52 29 50 31 48 33 45 36 42 39 39 42 36 45 34 47 32 49 30 51 28 53 26 55 24 57 22 59 20 61 17 64 14 67 11 70 8
(2, 2, 4) 8 70 11 67 14 64 17 61 20 58 23 55 26 52 29 49 32 46 35 43 38 42 39 41 40 40 41 39 42 36 45 33 48 30 51 27 54 25 56 23 58 21 60 19 62 16 65 13 68 10 71 7
(2, 3, 3) 8 70 11 67 14 64 17 61 20 58 23 55 26 52 29 49 32 46 35 43 38 41 40 39 42 37 44 35 46 34 47 33 48 32 49 31 50 28 53 25 56 22 59 19 62 16 65 13 68 10 71 7
(0, 4, 5) 9 70 11 68 13 66 15 64 17 62 19 59 22 56 25 53 28 50 31 47 34 44 37 41 40 38 43 35 46 32 49 29 52 26 55 23 58 21 60 19 62 17 64 15 66 13 68 11 70 9 72 7
(1, 3, 5) 9 69 12 66 15 63 18 60 21 57 24 55 26 53 28 51 30 49 32 47 34 44 37 41 40 38 43 35 46 33 48 31 50 29 52 27 54 24 57 21 60 18 63 15 66 13 68 11 70 9 72 7
(1, 4, 4) 9 69 12 66 15 63 18 60 21 57 24 55 26 53 28 51 30 49 32 47 34 44 37 41 40 38 43 35 46 32 49 29 52 26 55 23 58 22 59 21 60 20 61 19 62 16 65 13 68 10 71 7
(2, 2, 5) 9 69 12 66 15 63 18 60 21 57 24 54 27 51 30 48 33 45 36 42 39 41 40 40 41 39 42 38 43 35 46 32 49 29 52 26 55 23 58 20 61 17 64 14 67 12 69 10 71 8 73 6
(2, 3, 4) 9 69 12 66 15 63 18 60 21 57 24 54 27 51 30 48 33 45 36 42 39 40 41 38 43 36 45 34 47 32 49 30 51 28 53 26 55 24 57 22 59 20 61 18 63 15 66 12 69 9 72 6
(3, 3, 3) 9 69 12 66 15 63 18 60 21 57 24 54 27 51 30 48 33 45 36 42 39 39 42 36 45 33 48 30 51 30 51 30 51 30 51 30 51 27 54 24 57 21 60 18 63 15 66 12 69 9 72 6
(0, 5, 5) 10 69 12 67 14 65 16 63 18 61 20 58 23 55 26 52 29 49 32 46 35 43 38 40 41 37 44 34 47 31 50 28 53 25 56 22 59 19 62 16 65 13 68 10 71 9 72 8 73 7 74 6
(1, 4, 5) 10 68 13 65 16 62 19 59 22 56 25 54 27 52 29 50 31 48 33 46 35 43 38 40 41 37 44 34 47 31 50 28 53 25 56 22 59 20 61 18 63 16 65 14 67 12 69 10 71 8 73 6
(2, 3, 5) 10 68 13 65 16 62 19 59 22 56 25 53 28 50 31 47 34 44 37 41 40 39 42 37 44 35 46 33 48 31 50 29 52 27 54 25 56 22 59 19 62 16 65 13 68 11 70 9 72 7 74 5
(2, 4, 4) 10 68 13 65 16 62 19 59 22 56 25 53 28 50 31 47 34 44 37 41 40 39 42 37 44 35 46 33 48 30 51 27 54 24 57 21 60 20 61 19 62 18 63 17 64 14 67 11 70 8 73 5
(3, 3, 4) 10 68 13 65 16 62 19 59 22 56 25 53 28 50 31 47 34 44 37 41 40 38 43 35 46 32 49 29 52 28 53 27 54 26 55 25 56 23 58 21 60 19 62 17 64 14 67 11 70 8 73 5
(1, 5, 5) 11 67 14 64 17 61 20 58 23 55 26 53 28 51 30 49 32 47 34 45 36 42 39 39 42 36 45 33 48 30 51 27 54 24 57 21 60 18 63 15 66 12 69 9 72 8 73 7 74 6 75 5
(2, 4, 5) 11 67 14 64 17 61 20 58 23 55 26 52 29 49 32 46 35 43 38 40 41 38 43 36 45 34 47 32 49 29 52 26 55 23 58 20 61 18 63 16 65 14 67 12 69 10 71 8 73 6 75 4
(3, 3, 5) 11 67 14 64 17 61 20 58 23 55 26 52 29 49 32 46 35 43 38 40 41 37 44 34 47 31 50 28 53 27 54 26 55 25 56 24 57 21 60 18 63 15 66 12 69 10 71 8 73 6 75 4
(3, 4, 4) 11 67 14 64 17 61 20 58 23 55 26 52 29 49 32 46 35 43 38 40 41 37 44 34 47 31 50 28 53 26 55 24 57 22 59 20 61 19 62 18 63 17 64 16 65 13 68 10 71 7 74 4
(2, 5, 5) 12 66 15 63 18 60 21 57 24 54 27 51 30 48 33 45 36 42 39 39 42 37 44 35 46 33 48 31 50 28 53 25 56 22 59 19 62 16 65 13 68 10 71 7 74 6 75 5 76 4 77 3
(3, 4, 5) 12 66 15 63 18 60 21 57 24 54 27 51 30 48 33 45 36 42 39 39 42 36 45 33 48 30 51 27 54 25 56 23 58 21 60 19 62 17 64 15 66 13 68 11 70 9 72 7 74 5 76 3
(4, 4, 4) 12 66 15 63 18 60 21 57 24 54 27 51 30 48 33 45 36 42 39 39 42 36 45 33 48 30 51 27 54 24 57 21 60 18 63 15 66 15 66 15 66 15 66 15 66 12 69 9 72 6 75 3
(3, 5, 5) 13 65 16 62 19 59 22 56 25 53 28 50 31 47 34 44 37 41 40 38 43 35 46 32 49 29 52 26 55 24 57 22 59 20 61 18 63 15 66 12 69 9 72 6 75 5 76 4 77 3 78 2
(4, 4, 5) 13 65 16 62 19 59 22 56 25 53 28 50 31 47 34 44 37 41 40 38 43 35 46 32 49 29 52 26 55 23 58 20 61 17 64 14 67 13 68 12 69 11 70 10 71 8 73 6 75 4 77 2
(4, 5, 5) 14 64 17 61 20 58 23 55 26 52 29 49 32 46 35 43 38 40 41 37 44 34 47 31 50 28 53 25 56 22 59 19 62 16 65 13 68 11 70 9 72 7 74 5 76 4 77 3 78 2 79 1
(5, 5, 5) 15 63 18 60 21 57 24 54 27 51 30 48 33 45 36 42 39 39 42 36 45 33 48 30 51 27 54 24 57 21 60 18 63 15 66 12 69 9 72 6 75 3 78 0 81 0 81 0 81 0 81 0

78 3 75 6 73 8 70 11 66 15 63 18 60 21 57 24 53 28 50 31 47 34 44 37 40 41 37 44 34 47 31 50 28 53 25 56 21 60 18 63 15 66 11 70 8 73 5 76 3 78

The highlighted entries show Tw(	δ) for

c=(3, 6, 8, 11, 15, 18, 21, 24, 28, 31, 34, 37, 41, 44, 47, 50, 53, 56, 60, 63, 66, 70, 73, 76, 78).

As in the r = 4 case, this is not unimaginative, but it is steady with respect to

Tw(	δ).
Now, first observe that the first, fourth, 17th, 24th, 25th, and 26th columns can

have all their rows dropped using Lemma 4.2(b), and the 18th column can have its
rows dropped with Lemma 4.2(a). We can then drop the remaining row in the third
column, and then the remaining row in the second column. Likewise, we can drop
the two remaining rows in the 23rd column. Next, in the 22nd column we have
the rows (2, 4, 5), (3, 3, 5), and (4, 4, 4) remaining, with δ22 = 4. Then by Lemma
4.2(d) with j = 5 we can drop the (4, 4, 4) row, and then by Lemma 4.2(c) the two
remaining rows. We again use Lemma 4.2(c) to drop the two remaining rows in
the 21st column, and then again in the 20th column, and then the 19th column
(recalling that we have already dropped the rows in the 18th column). Thus, it
remains to consider the rows which only appear in the fifth through 16th columns.

Next, note that in the sixth column, the rows appearing are (0, 1, 4), (0, 1, 5),
(0, 2, 3), and (1, 1, 1). Since δ6 = 1, we can apply Lemma 4.2(d) with j = 0 to
drop row (1, 1, 1). But then the remaining rows in the seventh column are (0, 1, 5),
(0, 2, 3), and (1, 1, 2), and δ7 = 1, so using Lemma 4.2(d) with j = 2 we can drop
the (0, 1, 5) row, and this allows us to drop the two remaining rows in the seventh
column, and subsequently in the sixth, fifth, and eighth columns, by using Lemma
4.2(c) repeatedly. Similarly, the rows appearing in the 10th column are (0, 2, 4),
(0, 3, 3), (1, 2, 2), and (1, 2, 3), and δ10 = 1, so we can use Lemma 4.2(d) with j = 2
to drop row (0, 3, 3). The remaining rows in the ninth column are then (0, 2, 4),
(1, 1, 5), and (1, 2, 2), and δ9 = 1, so we can again apply Lemma 4.2(d) with j = 2 to
drop (1, 1, 5), and then Lemma 4.2(c) to drop the remaining rows in the ninth, and
subsequently the 10th, 11th, and 12th columns. We can apply the same procedure
a third time to the 13th and 14th columns, first using Lemma 4.2(d) in the 13th
column with j = 3 to drop row (2, 2, 4), and then again using Lemma 4.2(d) with
j = 3, but this time in the 14th column, to drop row (2, 2, 5). We can then use
Lemma 4.2(c) to drop the remaining rows in the 13th and 14th columns.

Licensed to Tsinghua Sanya Forum. Prepared on Thu Mar 17 05:00:00 EDT 2022 for download from IP 183.173.175.130.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LIMIT LINEAR SERIES AND RANKS OF MULTIPLICATION MAPS 403

We are left with the rows supported only in the 15th and 16th columns, which
are (0, 3, 5), (1, 3, 4), and (2, 3, 3). We can finally drop these using Lemmas 4.3 and
4.2(c).

Combining Examples 8.1, 8.2, and 8.3 with Proposition 5.6, we conclude the
following.

Corollary 8.4. The Maximal Rank Conjecture holds for m = 3, and

(i) r = 3 with g ≥ 7;
(ii) r = 4 with g ≥ 16;
(iii) r = 5 with g ≥ 26.

Moreover, in these cases the locus of Mg consisting of chains of genus-1 curves is
not in the closure of the locus in Mg where the appropriate maximal rank condition
fails.

Note that (subject to the hypothesis r+g−d > 0) Corollary 7.6 covers all m = 3
cases with r = 3 and g ≤ 6, with r = 4 and g ≤ 9, and with r = 5 and g ≤ 12 (as
well a number of additional cases). Thus, there are no missing cases for r = 3, and
a relatively small number for r = 4, but a rather significant number for r = 5. We
expect that any given one of these cases can be handled as above, but do not see
any simple way of handling them all simultaneously.

Remark 8.5. Comparing to previously known injectivity results for m = 3, Larson
[Lar12] obtains injectivity for r = 3 when g ≥ 9, for r = 4 when g ≥ 19, and for
r = 5 when g ≥ 35. Jensen and Payne [JP] obtain all cases for r = 3 and r = 4,
but in r = 5 only treat the case ρ = 0, which translates to g ≥ 30.

Remark 8.6. It is interesting to note that for r = 4 and g = 14, all cases are
injective; in fact, the smallest allowable d, which is d = 16, gives a case which is
both injective and surjective. However, the case g = 15, d = 16 is not injective,
which is why we are forced to start with g = 16 above. Indeed, the noninjective
genus-15 case, together with Proposition 5.6, imply that we cannot treat the g = 14,
d = 16 case with any extendable (g, r, d)-sequence (however, it is not difficult to
treat with a nonextendable sequence).
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linear series, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 65–87. MR892142
[Far09] Gavril Farkas, Koszul divisors on moduli spaces of curves, Amer. J. Math. 131 (2009),

no. 3, 819–867, DOI 10.1353/ajm.0.0053. MR2530855
[FL81] W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divi-

sors, Acta Math. 146 (1981), no. 3-4, 271–283, DOI 10.1007/BF02392466. MR611386
[FO11] Gavril Farkas and Angela Ortega, The maximal rank conjecture and rank two Brill-

Noether theory, Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of
Eckart Viehweg, 1265–1295, DOI 10.4310/PAMQ.2011.v7.n4.a9. MR2918161

[GH80] Phillip Griffiths and Joseph Harris,On the variety of special linear systems on a general
algebraic curve, Duke Math. J. 47 (1980), no. 1, 233–272. MR563378

[Gie82] D. Gieseker, Stable curves and special divisors: Petri’s conjecture, Invent. Math. 66
(1982), no. 2, 251–275, DOI 10.1007/BF01389394. MR656623

[JP] David Jensen and Sam Payne, Combinatorial and inductive methods for the tropi-
cal maximal rank conjecture, J. Combin. Theory Ser. A 152 (2017), 138–158, DOI
10.1016/j.jcta.2017.06.003. MR3682730

[JP14] David Jensen and Sam Payne, Tropical independence I: Shapes of divisors and a proof
of the Gieseker-Petri theorem, Algebra Number Theory 8 (2014), no. 9, 2043–2066,
DOI 10.2140/ant.2014.8.2043. MR3294386

[JP16] David Jensen and Sam Payne, Tropical independence II: The maximal rank con-
jecture for quadrics, Algebra Number Theory 10 (2016), no. 8, 1601–1640, DOI
10.2140/ant.2016.10.1601. MR3556794

[Lar12] Eric Larson, The maximal rank conjecture for sections of curves, J. Algebra 555 (2020),
223–245, DOI 10.1016/j.jalgebra.2020.03.006. MR4081497

[Lar17] Eric Larson, The Maximal Rank Conjecture arXiv:1711.04906

[Lar18] Eric Larson, Degenerations of Curves in Projective Space and the Maximal Rank Con-
jecture, arXiv:1809.05980

[LOTZ18] Fu Liu, Brian Osserman, Montserrat Teixidor i Bigas, and Naizhen Zhang, The strong

maximal rank conjecture and moduli spaces of curves, arXiv:1808.01290
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