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Speed of random walks, isoperimetry and
compression of finitely generated groups

By Jérémie Brieussel and Tianyi Zheng

Abstract

We give a solution to the inverse problem (given a prescribed function,
find a corresponding group) for large classes of speed, entropy, isoperimetric
profile, return probability and Lp-compression functions of finitely gener-
ated groups. For smaller classes, we give solutions among solvable groups
of exponential volume growth. As corollaries, we prove a recent conjec-
ture of Amir on joint evaluation of speed and entropy exponents and we
obtain a new proof of the existence of uncountably many pairwise non-
quasi-isometric solvable groups, originally due to Cornulier and Tessera.
We also obtain a formula relating the Lp-compression exponent of a group
and its wreath product with the cyclic group for p in [1, 2].

1. Introduction

An important topic in group theory is the description of asymptotic behav-
iors of geometric and probabilistic quantities, such as volume growth, isoperi-
metric profile, Hilbert and Banach space compression on the geometric side, and
speed, entropy and return probability of random walks on the probabilistic side.
The study of these quantities falls into three types of questions. First given a
group, compute the associated functions. Secondly the inverse problem: given
a function, find a group with this asymptotic behavior. Thirdly understand the
relationship between these quantities and their interactions with other topics
in group theory, such as amenability, Poisson boundaries, classification up to
quasi-isometry, etc. This paper contributes to solve the second question for
finitely generated groups of exponential volume growth.

The first solution to an inverse problem for a large class of functions
concerned compression gaps for non-amenable groups. The notion of uni-
form embeddings of groups into Hilbert spaces, more generally Banach spaces,
was introduced by Gromov in [Gro93]. This notion has numerous geometric
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applications. Yu has proved that a finitely generated group uniformly embed-
dable into a Hilbert space satisfies the Novikov conjecture [Yu00]; later this
result was extended by Kasparov and Yu to uniformly convex Banach spaces
[KY06]. These results motivate further studies of embedding properties of
groups into Banach spaces. The topic of distortions of bi-Lipschitz embeddings
of finite metric spaces is originally studied in Banach space theory; it has found
important applications in computer science algorithms since the work of Linial,
London and Rabinovich [LLR95]. Similar to distortions of bi-Lipschitz embed-
dings, the X-compression gap measures quantitatively, for an infinite finitely
generated group equipped with the word metric, the least possible distortion
when one embeds it into a Banach space X; see definitions recalled before the
statement of Theorem 1.1. Arzhantseva, Drutu and Sapir proved that essen-
tially any sublinear function is the upper bound of a Hilbert compression gap of
width log1+ε(x) of some non-amenable group [ADS09]. Their construction does
not provide a solution to the other inverse problems, because non-amenability
forces volume growth to be exponential, speed and entropy growth to be linear
and return probability to decay exponentially.

In the amenable setting, a partial solution to the inverse problem is known
for volume growth, entropy or speed. Bartholdi and Erschler have proved
[BE14] that for any regular function f(n) between n0.7674··· and n, there is a
group with volume growth ef(n) up to multiplicative constant in front of the
argument. This statement at the level of exponents was first obtained in [Bri14].
For any function between

√
n and nγ for γ < 1, there are a group and a finitely

supported measure with this entropy up to multiplicative constant by Amir-
Virag [AV17]; see also [Bri13] for a statement with precision no(1). Amir and
Virag also showed that for any function between n

3
4 and nγ , γ < 1, there are

a group and a finitely supported measure with this speed up to multiplicative
constant. These examples are all permutational wreath products, which are
extensions of groups acting on rooted trees. They generalize constructions of
Grigorchuk, who provided the first uncountable family of pairwise non-quasi-
isometric groups [Gri85]

In [NP08], [NP11], Naor and Peres have established quantitative connec-
tions between compression of uniform embeddings of groups into Banach spaces
and speed functions of random walks. Their work has renewed interest in the
longstanding question (attributed to Vershik) on what speed functions are pos-
sible for simple random walks on groups; see [AV17]. It also motivates our
search for a flexible construction where the metric structure is tractable.

This paper develops the construction of new families of groups, not related
to groups acting on rooted trees or their extensions, for which speed, entropy,
return probability, isoperimetric profiles, Hilbert and some Banach space com-
pression can all be computed explicitly.
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Before stating our result, let us recall some necessary definitions. Let ∆

be a finitely generated group equipped with a generating set T , and let µ be
a probability measure on ∆. Let X1, X2, . . . be a sequence of independent
and identically distributed random variables with distribution µ. Then Wn =

X1 · · ·Xn is the random walk on ∆ with step distribution µ. Its law is the n-fold
convolution power µ∗n. Its speed function (rate of escape) is the expectation

Lµ(n) = E|Wn|∆ =
∑
g∈∆

|g|∆ µ
∗n(g),

where | · |∆ is the word distance on the Cayley graph (∆, T ). Its Shannon
entropy is the quantity

Hµ(n) = H(Wn) = −
∑
x∈∆

µ∗n(x) logµ∗n(x).

The pair (∆, µ) has Liouville property if the Avez asymptotic entropy
hµ = limn→∞

Hµ(n)
n is 0. By the work of Avez [Ave76], Derrienic [Der76],

Kaimanovich-Vershik [KV83], this is equivalent to the Liouville property that
all bounded µ-harmonic functions are constant.

The return probabilities of the random walk are

P [W2n = e] = µ∗(2n)(e),

where e is the neutral element in ∆. The `p-isoperimetric profile is defined as

Λp,∆,µ(v)=inf

®∑
x,y∈∆ |f(xy)− f(x)|p µ(y)

2
∑

x∈∆ |f(x)|p
: f ∈ `p(G), 1≤|supp(f)|≤v

´
.

The Kesten criterion for amenability [Kes59] states that ∆ is non-amenable
if and only if the return probability of a non-degenerate symmetric random
walk on ∆ decays exponentially. For amenable groups, the return probability
and isoperimetric profiles provide quantitative information on the Følner sets
in the groups. The asymptotic behavior of the return probability and the
`2-isoperimetric profile (spectral profile) essentially determine each other, as
shown by Coulhon and Grigor′yan [CG97].

The compression of an embedding Ψ of ∆ into a Banach space X is the
function

ρΨ(t) = inf
{
‖Ψ(x)−Ψ(y)‖X :

∣∣x−1y
∣∣
∆
≥ t
}
.

The embedding is said to be uniform if ρΨ(t) > 0 for all t ≥ 1 and equivariant
if Ψ is a 1-cocycle; see Section 6. The couple of functions (g1, g2) is an X–
compression gap of ∆ if any 1-Lipschitz embedding ϕ : ∆→ X satisfies ρϕ(t) ≤
g2(t) for all t ≥ 1 and there exists a 1-Lipschitz embedding Ψ : ∆→ X such that
ρΨ(t) ≥ g1(t) for all t ≥ 1. The X–equivariant compression gap is defined in the
same manner, restricting to equivariant embeddings. Let Lp = Lp([0, 1],m) be
the standard Lebesgue space. By [NP11, Th. 9.1], when ∆ is amenable, for all



4 JÉRÉMIE BRIEUSSEL and TIANYI ZHENG

p ≥ 1, (g1, g2) is an Lp-compression gap of ∆ if and only if it is an equivariant
Lp-compression gap of ∆.

Among these quantities, the compression gap is obviously independent of
the choice of the measure µ, and up to multiplicative constants, it is invari-
ant under quasi-isometry. The `p-isoperimetric profiles and return probability
associated with symmetric probability measures of finite generating support
are also known to be stable under quasi-isometry (see Pittet and Saloff-Coste
[PSC00]), but the stability question regarding speed and entropy is open.

The groups we construct are diagonal products of lamplighter groups.
Given a family of groups {Γs} all generated by the union of two finite groups
A and B, a factor of the diagonal product is the lamplighter group Γs o Z =

(⊕ZΓs) o Z endowed with generating set consisting of the shift on Z, a copy
of the lamp subgroup A at position 0 and a copy of the lamp subgroup B at
position ks ∈ Z. The diagonal product is the subgroup of the direct product
generated by the diagonal generating set. Such a group is determined once
we input a family of marked groups {Γs}, usually finite and satisfying some
conditions, and a sequence (ks) of “scaling factors” (see Section 2). When the
groups {Γs} are chosen among quotients of a residually finite group Γ that is
generated by finite subgroups A and B, the choice of parameters heuristically
permits one to interpolate between Γ o Z and the wreath product (A × B) o Z
with finite lamp group.

Constructions with expander sequences as input. The construction where
the groups {Γs} are taken to an expander sequence permits to show our main
result. Denote f(x) 'C g(x) if 1

C g (x) ≤ f(x) ≤ Cg(x) for all x ≥ 1. We write
f(x) ' g(x) and call f and g equivalent if there exists C with f(x) 'C g(x).
Write log∗(x) = log(x+ 1).

Theorem 1.1. There exists a universal constant C > 1 such that the
following holds. For any non-decreasing function f : [1,∞)→ [1,∞) such that
f(1) = 1 and x/f(x) is non-decreasing, there exists a group ∆ of exponential
volume growth equipped with a finite generating set T and a finitely-supported
symmetric probability measure µ on ∆ such that

• the speed and entropy functions satisfy Lµ(n) 'C Hµ(n) 'C
√
nf(
√
n);

• the `p-isoperimetric profile satisfies Λp,∆,µ(v) 'C
Ä
f(log(v))

log v

äp
for any p ∈

[1, 2];

• the return probability satisfies − log
Ä
µ∗(2n)(e)

ä
'C w(n), where w(n) is de-

fined implicitly by n =
´ w(n)

1

Ä
s

f(s)

ä2
ds;

•
(

1
Cε

n/f(n)

log1+ε
∗ (n/f(n))

, C · 2p n
f(n)

)
is an equivariant Lp-compression gap for ∆ for

any p > 1, ε > 0.
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When the function f is not asymptotically linear, i.e., limx→∞ f(x)/x = 0, the
group ∆ can be chosen elementary amenable with asymptotic dimension one. In
this case (∆, µ) has the Liouville property, and the equivariant Lp-compression
gap is also valid for p = 1.

Since the constant C is universal, this result is new even when f is asymp-
totically linear.

The first statement asserts that any regular function between diffusive
√
n

and linear n is the speed and entropy function of a random walk on a group.
This statement on possible speed functions should be compared with known
constraints on speed functions. From subadditivity, Lµ(n+m) ≤ Lµ(n)+Lµ(m)

for any convolution walk on a group ∆. By Lee-Peres [LP13], there is a universal
constant c > 0 such that for any amenable group ∆ equipped with a finite
generating set T , for any symmetric probability measure µ on G, Lµ(n) ≥
c
√
p∗n, where p∗ = ming∈T µ(g). On the other hand, we obtain that any

function g(n) such that g(n)√
n

and n
g(n) are non-decreasing is equivalent to a speed

function. It improves on Amir-Virag [AV17] by the range between diffusive
and n

3
4 for speed, and by the range close to linear for speed and entropy. The

constant in Theorem 1.1 is universal, whereas the constants in [AV17] diverge
when approaching linear behavior. Moreover, if only concerning speed and
entropy, we can find such a group ∆ in the class of 4-step solvable groups.
This is the case when the groups Γs are lamplighters over finite d-dimensionnal
lattices with d ≥ 3; see Theorem 3.8 and Example 3.3.

As mentioned earlier, the third statement on return probability can be de-
rived from the `2-isoperimetric profile estimate in the second statement via the
Coulhon-Grigor′yan theory; see Section 4.2. For p ∈ [1, 2], any regular func-
tion between constant and n−p is equivalent to Λp,∆,µ ◦ exp for some group ∆,
and any regular function between n

1
3 and linear n is equivalent to − logµ∗n(e).

Again, this should be compared with known constraints for isoperimetric profile
and return probability for groups with exponential volume growth. By Coul-
hon and Saloff-Coste [CSC93], for any symmetric probability measure µ on ∆,
− logµ∗n(e) ≥ cn

1
3 and Λp,∆,µ ◦ exp(x) ≥ c′x−p, p ∈ [1, 2], where the constants

c, c′ depend on the volume growth rate of (∆, T ) and p∗ = ming∈T µ(g).
From the result on `1-isoperimetric profile, we derive Corollary 4.7 that

any sufficiently regular function above exponential is equivalent to a Følner
functions. The result extends [OO13, Cor. 1.5]. It also answers [Ers10, Ques-
tion 5] positively that there exists elementary amenable groups with arbitrarily
fast growing Følner function, while simple random walk on it has the Liouville
property. Groups of subexponential volume growth and arbitrarily large Følner
function were first constructed by Erschler [Ers06].
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When f is not asymptotically linear, the fourth statement asserts that
any unbounded non-decreasing sublinear function h(n) is equivalent to the up-
per bound of an equivariant Lp-compression gap of width log1+ε h(n) of an
amenable group. Recall that equivariant and non-equivariant compression are
equivalent for amenable groups [NP11]. Regarding non-equivariant compres-
sion, it is an amenable analogue to the main result in [ADS09] and slightly im-
proves on it as the width depends on the upper bound. It also provides other
examples of amenable groups with poor compression, after [Aus11], [OO13]
and [BE17]. It also follows easily that any function below

√
x is the upper

bound of an equivariant Lp-compression gap of a non-amenable group, simply
considering the direct product of an amenable solution with the free group on
two generators. The equivariant compression of a non-amenable group is at
most

√
x, and this bound is attained for free groups by [GK04].

In order to obtain the equivariant Lp-compression gap with upper bound
x/f(x) bounded, we actually need to choose the family {Γs} among quotients
of a Lafforgue lattice with strong Property (T) [Laf08]. In this case, we also
obtain an upper bound on the compression exponent of ∆ into any uniformly
convex normed space; see Corollary 6.2.

Solvable examples with finite dihedral groups as input. The large scale ge-
ometry of solvable groups of exponential growth has attracted much attention
in the past decades. Algebraically, solvable groups, in particular polycyclic
groups, are natural “small” amenable groups to be investigated after the Gro-
mov polynomial growth theorem [Gro81]. Remarkable quasi-isometry rigidity
results have been obtained by Farb and Mosher [FM98], [FM99] for solvable
Baumslag-Solitar groups and by Eskin, Fisher and Whyte [EFW12], [EFW13]
for lattices in the three dimensional solvable Lie group Sol and lamplighters.
In general, solvable groups do not come naturally with actions on geometric
spaces whose rich structure would facilitate an investigation of the geometry of
the group. Many fundamental problems are open; see the survey [FM00].

When the input sequence {Γs} consists of finite dihedral groups, our con-
struction of diagonal products yields 3-step solvable groups. This collection
of groups demonstrates the richness of large scale geometry in the class of
solvable groups. In particular, their geometric properties differ significantly
from polycyclic groups. On the other hand, these groups are closely related
to lamplighters, and they might serve as candidates to be considered in the
quasi-isometry classification program of solvable groups.

For random walks on these solvable groups, we have the following.

Theorem 1.2. Let ε > 0. There exists a constant C > 0. For any function
f such that f(n)

log1+ε(n)
√
n
and n

3
4

f(n) are non-decreasing, there are a 3-step solvable
group ∆ and a finitely-supported symmetric probability measure such that the
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Exponent of E |Wn|∆ H(Wn) − logµ∗2n(e) Λp,∆,µ ◦ exp α#
p (∆)

{Γs} expanders 1+θ
2+θ

1+θ
2+θ

1+θ
3+θ

−p
1+θ

1
1+θ

{Γs} dihedral 1+3θ
2+4θ

1
2

1
3 −p max

¶
1

1+θ ,
2
3

©
Figure 1. Exponents for sequences of parameters ks = 22s and
ls = diam(Γs) ' 22θs, where θ ∈ (0,∞). The isoperimetric
profile and compression exponent are all valid for p ∈ [1, 2].
The compression for expanders is valid for p ∈ [1,∞).

speed function is
E |Wn|∆ 'C f(n)

and the entropy and return probability satisfy
1

C

√
n ≤ H(W∆

n ) ≤ C
√
n log2 n and

1

C
n

1
3 ≤ − logµ∗n(e) ≤ Cn

1
3 log

4
3 n.

The factor log1+ε n is only technical. It follows from Proposition 3.11 that
there is no gap isolating the diffusive behavior

√
n, but the analysis is simplified

by this mild hypothesis. In contrast, it is known that for simple random walk on
a polycyclic group of exponential growth, the speed is diffusive (i.e., equivalent
to
√
n) and the return probability decays like e−n1/3 . The exponents when {Γs}

are expanders or dihedral are given in Figure 1.
Questions on the relationship between the five quantities in Figure 1 are

more easily asked at the level of exponents. The exponent of a function f is
lim log f(n)

logn when the limit exists. For a compression gap of width less than any
power, the lower exponent of the upper bound coincides with the definition of
the X-compression exponent introduced in Guentner-Kaminker [GK04],

α∗X(G) = sup {αX(Ψ) : Ψ is a Lipschitz map G→ X},

where the compression exponent αX(Ψ) of the map Ψ : ∆→ X is defined as

αX(Ψ) = sup {α ≥ 0 : ∃c > 0 s.t. ρΨ(t) ≥ ctα for all t ≥ 1}.

When X is the classical Lebesgue space Lp, we write α∗p(G) for the Lp-com-
pression exponent. The equivariant compression exponent α#

X (G) is defined
similarly, restricting to G-equivariant embeddings Ψ. When G is amenable,
α∗p(G) = α#

p (G); see [NP11, Th. 1.6].
Theorems 1.1 and 1.2 together permit to solve a recent conjecture of Amir

[Ami17].

Corollary 1.3 (Joint behavior of speed and entropy exponents). For
any θ ∈

[
1
2 , 1
]
and γ ∈

[
1
2 , 1
]
satisfying

θ ≤ γ ≤ 1

2
(θ + 1),
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there exist a finitely generated group G and a symmetric probability measure µ
of finite support on G, such that the random walk on G with step distribution
µ has entropy exponent θ and speed exponent γ .

The case where both exponents belong to
[

3
4 , 1
]
was treated by Amir

[Ami17]. Proposition 3.17 gives a more precise statement regarding functions
rather than exponents.

For the diagonal products constructed with finite dihedral groups that
appear in Theorem 1.2, we estimate their Lp-compression exponents for p ∈
[1,∞); see Theorem 8.1. Explicit evaluation of compression exponents yields
the following result. It answers [NP08, Question 7.6] positively within the class
of finitely generated 3-step solvable groups. Moreover, with certain choices of
parameters, such groups provide the first examples of amenable groups whose
Lp-compression exponent, p > 2, is strictly larger than the Hilbert compression
exponent.

Theorem 1.4. For any 2
3 ≤ α ≤ 1, there exists a 3-step solvable group ∆

such that for any p ∈ [1, 2],

α∗p(∆) = α#
p (∆) = α.

Moreover, there exists a 3-step solvable group ∆1 such that for all p ∈ (2,∞),

α∗p(∆1) ≥ 3p− 4

4p− 5
> α∗2(∆1) =

2

3
.

Both speed and compression exponents depend explicitly on the parameter
sequences (ks), (ls); see Figure 1 for some concrete choices of parameters. A
key metric property of the diagonal product ∆ that we rely on, in the estimates
on speed and compression, is that placing the two types of generators ks apart
in Γs o Z essentially has the effect of rescaling the copies of Γs by a factor ks.
Moreover, under suitable assumptions, the metric in the diagonal product can
be understood to behave similarly to a direct product.

In [Aus11, §5], Austin remarked that compression upper bounds from clas-
sical Poincaré inequalities and Markov type inequalities could be viewed as re-
lated to random walks (i.e., obstructions can be detected efficiently by suitable
random walks); it would be interesting to find examples of finitely generated
amenable groups for which obstructions genuinely unrelated to inequalities con-
cerning random walks are needed. Austin conjectured that a group with a
sequence of cubes (Znm, `∞) embedded would be a candidate for such type of
obstructions. In some sense our construction of diagonal product ∆ with finite
dihedral groups as input realizes this idea. Because of the presence of scaled
`∞-cubes of growing sizes in ∆, in the proof of Theorem 1.4 we apply deep
results of Mendel and Naor [MN08] on metric cotype to estimate distortion of
these embedded finite cubes.
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As a corollary, we obtain a new proof of the following result of Cornulier-
Tessera [CT13].

Corollary 1.5 (Cornulier-Tessera [CT13]). There exist uncountably
many pairwise non-quasi-isometric finitely generated 3-step solvable groups.

The original proof used asymptotic cones. Our method is completely dif-
ferent, using compression as quasi-isometry invariant. Theorem 1.4 and Corol-
lary 1.5 do not hold for 2-step solvable groups. By Baumslag [Bau72], any
finitely generated metabelian group embeds into a finitely presented metabelian
group, so there are countably many classes of isomorphism of metabelian groups.

A formula relating the Lp-compression exponent of H oZ to H . The method
we apply to estimate compression exponent of ∆ in the dihedral case funda-
mentally differs from the case with expanders. Along the way, to better un-
derstand the compression of ∆, which is a diagonal product of groups Γs o Z,
it is instructive to first evaluate compression exponent of general wreath prod-
uct H o Z. This has been an object of intensive study; see [AGS06], [NP08],
[ANP09], [Tes11], [CSV12]. We develop a novel approach and derive the fol-
lowing general formula which, in particular, extends the result in [NP11] on
the Lp-compression exponent of Z o Z.

Theorem 1.6. Let p ∈ [1, 2], and let H be a finitely generated infinite
group. Then the equivariant Lp-compression exponent of H o Z is

α#
p (H o Z) = min

 α#
p (H)

α#
p (H) +

Ä
1− 1

p

ä , α#
p (H)

.
Organization of the paper. The detailed description of diagonal products

is given in Section 2. The construction of diagonal products is reminiscent of
the piecewise automata group of Erschler [Ers06] and the groups of Kassabov-
Pak [KP13], which permit us to obtain oscillating or “close to non-amenable”
behaviors, but where more precise estimates are not known.

A technical assumption on the family {Γs} and a list of examples satisfying
it appears in Section 2.1. The key estimate relating the metric of a diagonal
product to that of a direct product is established in Section 2.2 under the
assumption that the sequence (ks) is strictly doubling. In Section 2.3, we
describe some metric spaces naturally embedded in the diagonal product. It
will be used in Sections 6 and 8 on compression gaps.

Section 3 is devoted to the evaluation of speed and entropy functions of
random walks on ∆. We first treat in Section 3.1 the case, including expanders,
where the groups {Γs} have uniform linear speed up to diameter. Theorem 3.8
gives the first point of Theorem 1.1. The case of dihedral groups is studied in
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Section 3.2, proving two thirds of Theorem 1.2. Evaluation of speed and entropy
of diagonal products relies on estimations of traverse time of the simple random
walk on Z, which are recalled in Appendix A. The joint prescription of speed
and entropy of Corollary 1.3 is obtained in Section 3.3. Section 3 is not used
further in the paper, and a reader not interested in speed or entropy can omit it.

Isoperimetric profiles and return probabilities are studied in Section 4.
The second point of Theorem 1.1 is derived as Theorem 4.6. It is proved
together with Corollary 4.7 regarding Følner functions in Section 4.1. The
third point is derived as Theorem 4.8 in Section 4.2 using Coulhon-Grigor′yan
theory. Dihedral groups are treated in 4.3 finishing the proof of Theorem 1.2.
A reader interested mainly in compression can formally omit Section 4, though
the test functions of Proposition 4.4 will be used in Section 6.

Obstructions for embeddings into Banach spaces are reviewed in Section 5.
They are based on Poincaré inequalities on finite metric spaces embedded in
the group. The classical spectral version stated in Section 5.1 will be used
in Sections 6 and 7. Markov type inequalities of Section 5.2 will be used in
Sections 7 and 8, and the Mendel-Naor metric cotype inequalities presented in
Section 5.4 will be used in Section 8.

In Section 6, we consider diagonal products where {Γs} are quotients of a
Lafforgue lattice with strong Property (T ). We first establish in Section 6.1 an
upper bound on compression exponent valid in any uniformly convex Banach
space, and then in Section 6.2 we derive the proof of the fourth part of The-
orem 1.1, in the form of Theorem 6.11. This is done after three preliminary
steps: first provide an upper bound when all quotients {Γs} are finite, and
secondly an upper bound when one of them is the whole group Γ. Thirdly an
explicit 1-cocycle, related to isoperimetry, is constructed to get a lower bound.

Section 7 is devoted to Theorem 1.6. It requires none of previous sections
except for Poincaré and Markov type inequalities of Section 5, but it uses several
facts about stable random walks on lamplighters over a segment, gathered in
Appendix C. It also serves as a warm-up for Section 8.

The compression of diagonal products with dihedral lamp groups is studied
in Section 8. Theorem 1.4 is proved there, as well as some explicit bounds for
Lp-compression p > 2, stated in Theorem 8.1. As before, we first derive some
upper bound using metric cotype of Section 5.4 and Markov type inequalities
of Section 5.2 and then describe an explicit embedding into Lq q ≥ 2. Sec-
tion 8 formally uses only Sections 2 and 5, but is best understood reading also
Sections 6 and 7.

Finally we point out a few open questions in Section 9. Appendix B
explains a natural approximation of regular functions by piecewise constant
and linear functions. It is used repeatedly to prove Theorem 1.1 in Sections 3,
4 and 6.
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2. The construction and metric structure

2.1. The construction with diagonal product. The wreath product of a
group Γ with Z is the group Γ oZ = Γ(Z) oZ, where Γ(Z) is the set of functions
f : Z→ Γ with finite support(f) = {j ∈ Z : f(j) 6= eΓ}. An element is repre-
sented by a pair (f, i). We refer to f as the lamp configuration and i as the
position of the cursor. The product rule is

(f, i)(g, j) = (f(·)g(· − i), i+ j).

The neutral element is denoted as (e, 0), where support(e) is the empty set.
For j ∈ Z and γ ∈ Γ, we denote by γδj the function taking value γ at j and eΓ

elsewhere.
Let A = {a1, . . . , a|A|} and B = {b1, . . . , b|B|} be two finite groups. Let

{Γs} be a sequence of groups such that each Γs is marked with a generating
set of the form A(s) ∪ B(s), where A(s) and B(s) are finite subgroups of Γs
isomorphic respectively to A and B. We fix the isomorphic identification and
write A(s) = {a1(s), . . . , a|A|(s)} and similarly for B(s).

Fix a sequence (ks)s≥0 of strictly increasing integers. Take the wreath
product ∆s = Γs o Z, and mark it with generating tuple Ts

Ts =
(
τ(s), α1(s), . . . , α|A|(s), β1(s), . . . , β|B|(s)

)
,

where τ(s) = (e,+1) and

αi(s) = (ai(s)δ0, 0), 1 ≤ i ≤ |A|, βi(s) = (bi(s)δks , 0), 1 ≤ i ≤ |B|.

With slight abuse of notation, we use the symbol ∆s to denote the marked
group. Alternatively, the marked group ∆s can be viewed as the projection

πs : G = Z ∗A ∗B → Γs o Z,

where G is the free product of

〈τ 〉 = Z, 〈αi, 1 ≤ i ≤ |A|〉 ' A and 〈βi, 1 ≤ i ≤ |B|〉 ' B

and the projection sends τ to τ(s), αi to αi(s) and βi to βi(s).
The diagonal product ∆ of the, possibly finite, sequence of marked groups

{∆s} is the quotient group G/∩sker (πs), with the projection map π : G→ ∆.
It is marked with generating tuple T =

(
τ, α1, . . . , α|A|, β1, . . . , β|B|

)
. A word

in T represents e∆ if and only if the same word in Ts represents e∆s for each s.
We use πs : ∆→ ∆s to denote the projection from ∆ to the component ∆s.
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The group ∆ is completely determined once the family of marked groups
{Γs} and the sequence of distances (ks) are given. An element g of ∆ is
completely determined by the family of projections πs(g) = (fs, is), and one
immediately checks that the projection onto Z is independent of s. Therefore
we write ((fs), i) for a typical element of ∆, where fs ∈ Γ

(Z)
s and i ∈ Z.

Assumption 2.1. Throughout the paper, we assume the following:

• k0 = 0 and Γ0 = A(0)×B(0) ' A×B .
• We assume that

Γs/[A(s), B(s)]Γs ' A(s)×B(s) ' A×B.

Here [A(s), B(s)]Γs is the normal closure of the subgroup generated by the
commutators [ai(s), bj(s)]. We call the quotient group Γs/[A(s), B(s)]Γs the
relative abelianization of Γs .

The first assumption is mainly for convenience of notation. It follows easily
from Lemma 2.7 below that the marked group (A×B)oZ with usual generating
set (k0 = 0) is a quotient of ∆ as soon as (ks) is unbounded.

The second assumption is non-trivial and restrictive. It requires that the
relative abelianization, which is always a quotient of A×B, is in fact isomorphic
to A × B. As we will see below, we can find interesting families of groups
satisfying Assumption 2.1.

Notation 2.2. Take a family {Γs} of quotients of an infinite group Γ, and
parametrize the group Γs by its diameter ls = diam(Γs) with respect to the
generating set A(s)∪B(s). Taking the value ls =∞ corresponds to the choice
Γs = Γ, otherwise ls < ∞, Γs is a finite quotient group of Γ. We say that
the sequences (ks), (ls) parametrize the diagonal product ∆. Formally (ks) can
take the value ∞. We use the convention that if ks =∞, then ∆s is the trivial
group ∆s = {e∆s}.

In this paper we will take a group Γ and a family {Γs} of quotients of Γ

from the following list of specific examples.

Example 2.3. The groups {Γs} can be taken to form a family of expanders.
For example, we obtain the following sequence of finite groups from the Laf-
forgue super expanders. By Lafforgue [Laf08], for any local field F , the group
SL(3, F ) has Property (T ) in any uniformly convex Banach space X. A for-
tiori taking F = Fp[[X−1]], this is also the case for the non-uniform lattice
Λ = SL(3,Fp[X]), generated by the union of the two following finite subgroups:

A =

∞Ñ
1 1 0

0 1 0

0 0 1

é
,

Ñ
1 X 0

0 1 0

0 0 1

é∫
' F2

p,
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B =

∞Ñ
0 1 0

0 0 1

1 0 0

é∫
' Z/3Z.

There also exist positive constants c, c1 such that the “congruence sub-
groups”

Λm = SL(3,Fp[X]/(Xm − 1))

satisfy cm− c1 ≤ log |Λm| ≤ cm+ c1 for all m ≥ 1.
To make sure the second part of Assumption 2.1 holds, we take Γ (resp. Γm)

to be the diagonal product of Λ (resp. Λm) with A×B. Since Λ is a quotient
group of Γ of index at most |A| |B|, it follows from the hereditary properties
(see [BdlHV08, §1.7]) that Γ has Property (T ) in any uniformly convex Banach
space X. Since {Γm} is a sequence of finite quotient groups of Γ, by [Laf08,
Prop. 5.2], there exists a constant δ(Γ,X) > 0 such that for any function
f : Γm → X, m ∈ N,

1

|Γm|2
∑

x,y∈Γm

‖f(x)− f(y)‖2X

≤ 1

δ(Γ,X)

1

|Γm|
∑
x∈Γm

∑
u∈A(m)∪B(m)

‖f(x)− f(xu)‖2X .
(1)

In particular, {(Γm, A(m) ∪B(m))} form a family of expanders in `2 with
spectral gap uniformly bounded from below by δ(Γ, `2).

We will refer to this family {Γm} as the Lafforgue super expanders. Each
Γm is marked with generating set A(m) ∪B(m). Note that by construction,

cm− c1 ≤ log |Λm| ≤ log |Γm| ≤ cm+ c1 + log(3p2).

From the inequality (1), by [HLW06, Th. 13.8] there exists constant c2 > 0

depending only on r and δ(Γ, `2) such that the `2-distortion satisfies

c2 log |Γm| ≤ c`2(Γm) ≤ diam(Γm) ≤ r log |Γm| ,

and by [ADS09, Cor. 3.5 ], there exists c3 > 0 depending only on r and δ(Γ,X)

such that

c3 log |Γm| ≤ cX(Γm).

See Section 5 for the definition of distortion. Lafforgue super expanders are a
crucial tool to study compression in arbitrary uniformly convex Banach spaces.

In most statements of this paper, it is sufficient to use the classical Prop-
erty (T) rather than its strengthening in uniformly convex Banach spaces.
Therefore we can also take Λ = EL(3,Fp(X,Y )), which has Property (T) by
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Ershov-Jaikin-Zapirain [EJZ10] generated by the union of its finite subgroups

A =

∞Ñ
1 a 0

0 1 0

0 0 1

é
, a ∈ {1, X, Y }

∫
' F3

p,

B =

∞Ñ
0 1 0

0 0 1

1 0 0

é∫
' Z/3Z,

and with “congruence subgroups” EL (3,Matm×m(Fp)) ' SL(3m,Fp) the sub-
group generated by the matrices ei,j(a) for a ∈ Matm×m(Fp) and i 6= j in
{1, 2, 3}, which are identity plus the matrix with only non-zero entry a in po-
sition i, j.

Examples 2.4. Some choices of families {Γs} permit us to obtain diagonal
products in the class of solvable groups.

(1) An obvious choice is to take Γs = Dls as a finite dihedral group of size
2ls generated by two involutions with A = Z/2Z, B = Z/2Z and Γ = D∞.
Then the diagonal product ∆ is 3-step solvable.

(2) Another possibility is to take Γ = Z/2Z o Dk
∞ as the lamplighter on

an ordinary k-dimensionnal lattice. We can take A = Z/2Z o (Z/2Z)k and
B = Z/2Z o (Z/2Z)k in the obvious manner. The quotients Γs = Z/2Z oDk

ms

are lamplighter over an ordinary discrete k-dimensionnal torus. The diagonal
product ∆ is 4-step solvable.

To check that this example satisfies Assumption 2.1, we denote π : Dm →
Z/2Z× Z/2Z as the abelianization π(x) = aε(x)bη(x). We set

πA : Z/2Z oDk
m → Z/2Z o (Z/2Z)k ' A

(f, x) 7→ (fA, a
ε1(x)
1 · · · aεk(x)

k ),

where
fA(aε11 · · · a

εk
k ) =

∏
x: εi(x)=εi,∀i

f(x).

It is clear that [A,B]Γm ⊂ KerπA and that we can proceed similarly for B.
Finally, one can check that πA × πB projects onto A×B.

Remark 2.5. The requirement that Γ is a quotient of a free product of finite
groups is crucial, but we can generalize our construction to more than two finite
factors, positioned on an arithmetic progression of common difference ks. This
is straightforward for metric estimate, isoperimetry and compression, but it
raises some technical questions regarding random walks, as the walk inherited
on the lamps is not simple anymore. For simplicity, and by lack of relevant
examples, we avoid this generality.
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2.2. Description of the metric. We describe the metric structure of the
Cayley graph (∆, T ).

2.2.1. Local coincidence in relative abelianizations. We will be able to es-
timate the metric in our diagonal products for sequences (ks) growing expo-
nentially because different factors are largely independent. But the diagonal
product differs from the usual direct product. For instance, the lamp configu-
rations of relative abelianizations behave jointly.

Notation 2.6 (Projection maps under Assumption 2.1). Let θs : Γs →
Γs/[As, Bs] ' A(s)×B(s) denote the projection to the relative abelianization.
The projection map extends point-wise to the lamp configuration function fs :

Z→ Γs,

(θs (fs)) (x) = θs (fs(x)).

We call θs(fs) the lamp configuration of the relative abelianization.
Let θAs and θBs denote the compositions of θs with the projection to A(s)

and B(s) respectively. Then we have a decomposition of θs (fs) into a commu-
tative product of functions

θs (fs) = θAs (fs) θ
B
s (fs).

For any element g = ((fs), i) in the diagonal product ∆, all the relative
abelianization lamp configurations are determined by the first one.

Lemma 2.7. Let g = ((fs), i) be an element in the diagonal product ∆.
Then under Assumption 2.1, any one abelianized function θs(fs) is determined
by θ0(f0) = f0 and vice-versa. More precisely, for any, s

θAs (fs(x)) = θA0 (f0(x)) and θBs (fs(x)) = θB0 (f0(x− ks)).

Proof. We proceed by induction on the word length of g = ((fs), i). Mul-
tiplying by a generator αj , θAs (fs(x)) is modified exactly at x = i, which also
accordingly modifies θA0 (f0(i)). Multiplying by a generator βj , θBs (fs(x)) is
modified exactly at x = i+ ks, which also accordingly modifies θB0 (f0(i)). �

2.2.2. Local finiteness of the diagonal product. Denote by πZ : G = Z∗A∗
B → Z the projection on the first factor.

Definition 2.8. The range Range(w) of a representative word w of an el-
ement in G is the collection of all πZ(w′), where w′ is a prefix of w. It is a
finite subinterval of Z, the set of sites visited by the cursor. We will also denote
Range(w) as its diameter.

For an element g in ∆ or in ∆s, we denote by Range(g) the diameter of a
minimal range interval of a word in G representing it and by s0(g) the maximal
integer with ks0(g) ≤ Range(g).
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Denote by ∆≤s = G/ ∩0≤s′≤s Ker(πs′) the diagonal product of the s + 1

first factors and by π≤s : ∆→ ∆≤s the natural projection.

Fact 2.9. Under Assumption 2.1, for any g ∈ G, the evaluation π(g) in
∆ is determined by π≤s0(g)(g).

Proof. If ks > Range(g), then fs takes values in the generating set A(s)∪
B(s). By Assumption 2.1, fs is determined by θs(fs) and so by θ0(f0) = f0

using Lemma 2.7. So all πs(g) for s > s0(g) can be recovered from π0(g). �

In particular, as the range is bounded above by the length, the above argu-
ment shows that the sequence of marked groups (∆s, Ts) converges to (∆0, T0)

and the sequence (∆≤s, T≤s) to (∆, T ) in the Chabauty topology.
We also record the following.

Fact 2.10. Assume (ks) is unbounded.

(i) If all the groups in the family {Γs} are elementary amenable (e.g., finite),
then the diagonal product ∆ is also elementary amenable.

(ii) If all the groups in the family {Γs} are locally embeddable into finite
groups (e.g., finite), then the diagonal product ∆ is also locally embeddable
into finite groups.

(iii) If all the groups in the family {Γs} are finite, then the diagonal product
∆ has asymptotic dimension one.

Proof. We observe that when (ks) is unbounded, kerπZ is locally included
in a finite direct product of copies of the groups {Γs}. If G is the subgroup
generated by elements g1, . . . , gk in KerπZ, then by the previous fact, G is
isomorphic to π≤S(G) where S = max1≤i≤k s0(gi). Moreover, in each copy ∆s

with s ≤ S, each element gi is described by a function fi,s : Z→ Γs with finite
support, and the group law induced is point-wise multiplication. This proves
(i) and also (iii) as the asymptotic dimension of an extension is less than that
of quotient plus that of kernel by [BD06].

By Fact 2.9, the ball of radius R in the Cayley graph of ∆ depends only
on the R-balls in ∆s for s below the maximal s0 with ks0 ≤ R. Each R-ball
in a group Γs coincides with the R-ball of a finite group Hs, so the R-ball in
∆s coincides with the R-ball in Hs o Z/(4R + 1)Z. A fortiori, the R-ball in ∆

coincides with the R-ball of the diagonal product of these s0 + 1 finite groups.
This proves (ii). �

2.2.3. Metric in one copy ∆s . In order to estimate the metric in the di-
agonal product, the sequence (ks) must grow exponentially fast. Therefore we
make the
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Assumption 2.11. Throughout the paper, we assume that the sequence
(ks) is a sequence of strictly increasing even numbers such that ks+1 > 2ks for
all s.

Exponential growth of the sequence (ks) is crucial for the second part of
Lemma 2.13 below. We choose the factor 2 for simplicity. It could be replaced
by any m0 > 1, which would only modify our estimates by some multiplicative
constants.

Definition 2.12. For j ∈ Z, let Isj = [ jks2 ,
(j+1)ks

2 ). We call essential contri-
bution of the function fs : Z→ Γs the quantity

Es(fs) =
∑

{j: Isj ∩Range(fs,i)6=∅}
ks max

x∈Isj
(|fs(x)|Γs − 1)+,

where (x)+ = max{x, 0}. In words, we partition the range into intervals of
width ks

2 . Each of these intervals essentially contributes as ks times the maximal
distance |fs(x)|Γs − 1.

The essential contribution measures the contribution of the terms fs(x) of
Γs-length more than 2 to the length of an element (fs, i) of ∆s. The range will
take care of the contribution of terms of length less than 1.

Lemma 2.13. Let (fs, i) belong to ∆s . Then

max

ß
1

8
Es(fs),Range(fs, i)

™
≤ |(fs, i)|∆s ≤ 9 (Es(fs) + Range(fs, i)).

Let ∆ be the diagonal product of {∆s}. Under Assumptions 2.1 and 2.11
and if, moreover, θs(fs) = e, then there is a word ω(fs, i) ∈ G of length less
than the above upper bound such that

πs′(ω(fs, i)) =

{
(fs, i) if s′ = s,

(0, i) if s′ 6= s.

Proof. The lower bound by the range is obvious.
Let [x] denote the integer part of x. To get the lower bound by essential

contribution, notice that in order to write fs(x), the cursor has to traverse at
least [|fs(x)|Γs/2] times between positions in x − ks and x because a minimal
representative word alternates elements of A(s) and B(s). So x contributes at
least ks [|fs(x)|Γs/2] to the length of a representative word w of (fs, i).

If the intervals [x − ks, x] and [x′ − ks, x′] are disjoint, the contributions
of x and x′ must add up. Let xsj achieve the maximum of |fs(x)|Γs on the
interval Isj . The separation condition is satisfied for a family of xsj with the
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same congruence of j modulo 4. Therefore

|w| ≥ max
0≤a≤3

Ñ ∑
j≡a mod 4

ks [|fs(x)|Γs/2]

é
≥ 1

4

∑
j∈Z

ks max
Isj

[|fs(x)|Γs/2] ≥ 1

8
Es(fs).

To get the upper bound, the generic strategy is the following. We partition
the convex envelope of supp(fs) ∪ {0, i}, of length less than Range(fs, i) + ks,
into its intersections with the intervals Isj for j ∈ Z. The elements of the
partition are still denoted Isj . Let Jmax (resp. Jmin) denote the maximum
(resp. minimum) index of this partition, and let w(fs(x)) be a fixed minimal
representative word for fs(x). We produce a representative word for (fs, i)

−1

by the following strategy.
First apply a power p1 ≤ Range(fs, i)+ks of the shift τ to move the cursor

from i to the rightmost point of the interval IsJmax
. Then for each integer j from

Jmax to Jmin, produce a word ωj that, taking the cursor from the rightmost
point of Isj , erases all the words w(fs(x)) for x ∈ Isj and eventually leaves the
cursor at the rightmost point of Isj−1.

The description of ωj is the following. The first run takes the cursor to
j ks2 − ks and then back, so that all the last letters of fs(x) for x ∈ Isj can be
deleted. More precisely, while the cursor is in [j ks2 , (j+ 1)ks2 ) = Isj , multiplying
by αl(s) at appropriate locations removes the last letter to those words w(fs(x))

ending with al(s) and while the cursor is in [j ks2 − ks, (j + 1)ks2 − ks) = Isj−2

multiplying by βl(s) at appropriate locations removes the last letter to those
words w(fs(x)) ending with bl(s). One run has length 3ks and cancels one letter
in each of the words. The number of runs necessary to erase completely all the
words is maxx∈Isj |fs(x)|Γs . A last run takes the cursor from the rightmost
point of Isj to the rightmost point of Isj−1, except for j = Jmin. Thus |ωj | ≤
3ks maxx∈Isj |fs(x)|Γs + max(Isj )−max(Isj−1) without last term for j = Jmin.

Finally apply a power p2 ≤ Range(fs, i) + ks of the shift τ to move the
cursor from max(IsJmin

) to 0. All in all,

ω(fs, i) = (τp1ωJmax · · ·ωJminτ
p2)−1

is a representative word of (fs, i) with length

|ω(fs, i)| ≤
∑
j∈Z

3ks max
Isj
|fs(x)|Γs +

Jmax∑
j=Jmin

max(Isj )−max(Isj−1)

+ 2 Range(fs, i)+2ks ≤ 3
∑
j∈Z

ks max
Isj
|fs(x)|Γs +3 Range(fs, i)+2ks.
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Now the number of indices j such that Isj intersects the range of (fs, i) is
less than [2 Range(fs, i)/ks] + 1. Therefore∑

j∈Z
ks max

Isj
|fs(x)|Γs ≤ Es(fs) + 2 Range(fs, i) + ks.

Generically, Es(fs) 6= 0 and then ks ≤ Es(fs), and the two previous in-
equalities give the upper bound. In the non-generic case when Es(fs) = 0, then
|fs(x)|Γs ≤ 1 for all x and an obvious bound is |(fs, i)|∆s

≤ 3 Range(fs, i).
To get the second part of the lemma, observe first that if Es(fs) = 0 and

θs(fs) = e, then (fs, i) = (e, i) is just a translation, and the conclusion holds
trivially. In the generic case, we have to check that for each sub-word ωj in the
above procedure, the lamp function fωjs′ of πs′(ωj) is trivial.

First assume s′ > s. By Assumption 2.11, the cursor moves in the in-
terval I = [j ks2 − ks, (j + 1)ks2 ] of length 3

2ks < 2ks < ks′ . In this condition,
multiplying by αl contributes to fωjs′ (x) by al(s′) at positions x ∈ I and mul-
tiplying by βl contributes to fωjs′ (x) by bl(s′) at positions x ∈ I + ks′ . These
intervals are disjoint, so fωjs′ takes values in the generating set of Γs. Thus
f
ωj
s′ (x) = θs′(f

ωj
s′ )(x) = θAs′(f

ωj
s′ )(x)θBs′ (f

ωj
s′ )(x) = eΓs , because θAs′(f

ωj
s′ )(x) =

θA0 (f
ωj
0 )(x) = e and θBs′ (f

ωj
s′ )(x) = θB0 (f

ωj
0 )(x+ ks − ks′) = e using Lemma 2.7

and our hypothesis.
Now assume s′ < s. The generators al(s′) were applied only when the

cursor i was in Isj . On the other hand, the generators βl were applied only at
points i+ks ∈ Isj , that is, when the cursor i was in Isj−2. Then, as ks′ ∈ [0, ks2 ),
by Assumption 2.11, the element bl(s′) is applied only at locations x = i+ks′ ∈
Isj−2 + [0, ks2 ) ⊂ Isj−2 ∪ Isj−1. As the latter set is disjoint from Isj , the function
f
ωj
s′ again takes values in the generating set of Γs. We conclude as above. �

2.2.4. Description of the metric in the diagonal product. Now we are ready
to estimate metric in the diagonal product ∆.

Proposition 2.14. Suppose the sequence {Γs} of marked groups satisfies
Assumption 2.1 and the sequence (ks) of integers satisfies Assumption 2.11.
For any element g = ((fs), i) in the diagonal product ∆, the word distance in
(∆, T ) satisfies

max
s≥0
|(fs, i)|∆s

≤ |g|∆ ≤ 500
∑

0≤s≤s0(g)

|(fs, i)|∆s
.

Proof. The first inequality holds because ∆s is a marked quotient of ∆.
For the second inequality, let ω(f0, i) be a minimal representative word of

(f0, i). This is realized when the cursor moves across the range and at each site
switches appropriately the A and B lamps. In particular, the word ω(f0, i) has
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length |(f0, i)|∆0
≤ 3 Range(f0, i). It represents an element ((hs), i) in ∆ with

h0 = f0 and |hs(x)|Γs ≤ 2 for all x and s.
Then gω(f0, i)

−1 = ((f ′s), 0) with f ′s = fsh
−1
s for all s. In particular,

f ′0 = e, thus θs(f ′s) = e for all s by Lemma 2.7. Lemma 2.13 applies and
furnishes words ω(f ′s, 0) such that

gω(f0, i)
−1ω(f ′1, 0)−1 · · ·ω(f ′s0(g), 0)−1 = e.

This is true in ∆≤s0(g) and hence in ∆ by Fact 2.9. This shows that

|g|∆ ≤ |ω(f0, i)|+
∑

1≤s≤s0(g)

∣∣ω(f ′s, 0)
∣∣ .

We claim that support(f ′s) ⊂ support(fs). This implies that Range(f ′s, 0) ≤
2 Range(fs, i). Moreover, Es(f ′s) ≤ 3Es(fs) because |f ′s(x)|Γs ≤ |fs(x)|Γs + 2

for all x and s. Therefore, using Lemma 2.13, we can conclude that∣∣ω(f ′s, 0)
∣∣ ≤ 9(Es(f

′
s) + Range(f ′s, 0)) ≤ 27(Es(fs) + Range(fs, i))

≤ 54 max(Es(fs),Range(fs, i)) ≤ 432 |(fs, i)|∆s
.

The claim follows from Lemma 2.7. Indeed, if fs(x) = eΓs , then, in particular,

eA = θAs (fs(x)) = θA0 (f0(x)) = θA0 (h0(x)) = θAs (hs(x))

and

eB = θBs (fs(x)) = θB0 (f0(x− ks)) = θB0 (h0(x− ks)) = θBs (hs(x))

so θs(hs(x)) = eA×B. As |hs(x)|Γs ≤ 2, this implies that hs(x) = eΓs . Therefore
f ′s(x) = eΓs as well. �

2.3. Metric spaces embedded in ∆. In this section, we gather some elemen-
tary facts about embeddings of some metric spaces into the diagonal product ∆.
It will be used to obtain upper bounds on compression in Sections 6 and 8.

2.3.1. Embedding a lamp group Γs .

Fact 2.15. Each group Γs embeds homothetically in the diagonal product
∆ with ratio ks + 1; i.e., there is group homomorphism ϑs : Γs → ∆ satisfying

|ϑs(γ)|∆ = (ks + 1) |γ|Γs .

Proof. Let w = ai1(s)bi1(s) · · · ain(s)bin(s) belong to A(s) ∗B(s). Set

ϑs(w) = τ
ks
2 αi1τ

−ksβi1τ
ks · · ·αinτ−ksβinτks .

The application ϑs : A(s) ∗ B(s) → G = Z ∗ A ∗ B induces an embedding
ϑs : Γs → ∆. Indeed by Lemma 2.7, we easily check that if w represents an
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element γ in Γs, then ϑs(w) = ((fs), 0) with

fs(x) =

{
γ for x = ks

2 ,

eΓs for x 6= ks
2

and fs′(x) =


θAs (γ) for x = ks

2 ,

θBs (γ) for x = ks
2 − ks′

eΓs for other x

for s′ 6= s.

By construction, |ϑs(γ)|∆ ≤ (ks + 1) |γ|Γs . Moreover, it is clear that if w is a
minimal representative of γ, then ϑs(w) is a minimal representative of πs(ϑs(γ))

in the quotient ∆s. This proves the other inequality. �

2.3.2. Embedding products with `∞-norm. We denote Γ′s = [A(s), B(s)]Γs .
By Assumption 2.1, Γ′s is the same as ker(Γs → A(s)×B(s)); it is a subgroup
of Γs of finite index |A| |B|.

Given an integer t ≥ 0, we consider

(2) Πt
s =

((fs), 0) :

fs(x) ∈ Γ′s for x ∈ [0, t)

fs(x) = eΓs for x /∈ [0, t)

fs′ = e for s′ 6= s

 .

This is a subset of ∆. Indeed, θs(fs) = e by choice of Γ′s, so θ0(f0) = e

by Lemma 2.7. Thus all such elements ((fs), 0) actually belong to ∆ by
Lemma 2.13. Clearly, Πt

s is a subgroup of ∆ isomorphic to a direct product of
t copies of Γ′s:

Πt
s '

∏
t∈[0,t)

Γ′s.

By abuse of notation, we denote the elements of Πt
s simply by functions fs :

[0, t)→ Γ′s. The metric induced by ∆ on Πt
s can be estimated via Lemma 2.13.

Lemma 2.16. For any fs in Πt
s ,

1

2
ks max

[0,t)
|fs(x)|Γs ≤ |fs|∆ ≤ 36tmax

[0,t)
|fs(x)|Γs .

In particular, diam∆ Πt
s ≤ 36t diamΓs(Γ

′
s) ≤ 36tls , where ls = diam(Γs). More-

over, ∣∣∣∣ßfs ∈ Πt
s : |fs|∆ ≥

1

72
diam∆

(
Πt
s

)™∣∣∣∣ ≥ 1

2

∣∣Πt
s

∣∣ .
The last statements imply that Πt

s satisfies the (p; diam∆(Πts)
72 , 1

2)-mass dis-
tribution condition (21); see Section 5.

Proof. This follows from Lemma 2.13. To get the lower bound, notice that
as fs(x) belongs to Γ′s, we necessarily have |fs(x)|Γs ≥ 2 when fs(x) 6= eΓs . To
get the upper bound, observe that there are [2t/ks]+ 1 intervals Isj intersecting
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[0, t), so the essential contribution is at most

Es(fs) ≤ ks
Åï

2t

ks

ò
+ 1

ã
max
[0,t)
|fs(x)|Γs ≤ (2t+ 1) max

[0,t)
|fs(x)|Γs

and the range is bounded by t.
To get the second part, observe that for more than half of functions Isj →

Γ′s, there exists x ∈ Isj with |fs(x)|Γs ≥ diamΓs(Γ
′
s)/2. This holds for each j.

Therefore there exists a subset A of Πt
s of size |A| ≥ |Πt

s|/2 such that for each
fs ∈ A, more than half of the [2t/ks] + 1 intervals Isj intersecting [0, t) satisfy
maxIsj |fs(x)|Γs ≥ diamΓs(Γ

′
s)/2. This implies that for any fs ∈ A,

|fs|∆ ≥ Es(fs) ≥
1

4

Åï
2t

ks

ò
+ 1

ã
ks diamΓs(Γ

′
s)

≥ t

2
diamΓs(Γ

′
s) ≥

1

72
diam∆(Πt

s). �

Example 2.17. When Γs = D2ls is a dihedral group of size 2ls, then Γ′s '
Zls/2 is a cyclic group. Edges of Zls/2 have length 4 in the D2ls metric. For
t = ks

2 , Lemma 2.16 gives

|fs|∆ '72 ks max
[0, ks

2
)
|fs(x)|Zls/2 .

In particular, Πt
s is then a copy of the discrete torus Zks/2ls/2

with l∞-metric
rescaled by ks, embedded with bounded distortion in ∆.

We fix a generating set for Γ′s using the following classical lemma.

Lemma 2.18 (Reidemeister-Schreier algorithm). We let (Γ, S) be a group
marked with a finite generating set and π : Γ→ F be a surjective mapping to a
finite group F . Then
(1) there exists a set C = {a1, . . . , a|F |} of coset representatives

Γ =

|F |⋃
i=1

(Kerπ) ai

of length |ai|S ≤ diamπ(S)(F );
(2) the set R = CSC−1 ∩Kerπ is a finite symmetric generating set of Kerπ ;
(3) for any γ ∈ Kerπ ,

|γ|R ≤ |γ|S ≤
(
2 diamπ(S)(F ) + 1

)
|γ|R.

For Γs that satisfies Assumption 2.1 and F = A(s)×B(s), we fix a gener-
ating set R(s) for Γ′s = ker (Γs → A(s)×B(s)) provided by the Reidemeister-
Schreier algorithm. In this case diam(A(s) × B(s)) = 2. It follows from
Lemma 2.18 that the inclusion map from (Γ′s, R(s)) into (Γs, A(s) ∪B(s)) is
bi-Lipschitz |γ|R(s) ≤ |γ|Γs ≤ 5|γ|R(s) for all γ ∈ Γ′s and that |R(s)| ≤ (|A||B|)5.
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Consider the direct product

H =
∏
s∈N

(
Γ′s
)ks/2 =

∏
s≥1

Πks/2
s ,

and denote elements of H as h = (hs), where hs is a vector

hs =

Å
hs(0), . . . hs

Å
ks
2
− 1

ãã
∈
(
Γ′s
)ks/2 .

Equip H with a left invariant metric l,

ls(h) =
ks
2

max
0≤j≤ks/2−1

|hs(j)|Rs , l(h) =
∑
s∈N

ls(h).

Proposition 2.19. Suppose {Γs} is a sequence of finite groups satisfy-
ing Assumption 2.1 and (ks) satisfies the growth assumption 2.11. Let ∆ be
the diagonal product constructed with {Γs} and parameters (ks). Then ∆ is
elementary amenable, and there exists an embedding θ : H → ∆ such that for
every h ∈ H ,

max
s∈N

ls(h) ≤ |θ(h)|∆ ≤ 45000 l(h).

Proof. The group ∆ is elementary amenable by Fact 2.10. By Proposi-
tion 2.14 and Lemma 2.16, we have for each s ≥ 0,

|θ(h)|∆ ≥ |πsθ(h)|∆s ≥
ks
2

max
[0,ks/2)

|hs(j)|Γs ≥
ks
2

max
[0,ks/2)

|hs(j)|Rs = ls(h)

and similarly

|θ(h)|∆ ≤500
∑
s≥0

|πs (θ(h)) |∆s ≤ 500
∑
s≥0

10ks max
[0,ks/2)

|hs(j)|Γs

≤500 · 10 · 5
∑
s≥0

ks max
[0,ks/2)

|hs(j)|Rs = 25000 l(h). �

Since (ks) satisfies the growth assumption 2.11, it is clear that H has
at most exponential volume growth with respect to the length function l.
By the general theorem of Olshanskii-Osin [OO13], there exists an elemen-
tary amenable group G equipped with a finite generating set S such that
H embeds as a subgroup of G, and there exists a constant c > 0 such that
c |h|S ≤ l(h) ≤ |h|S for all h. In general the groupG provided by the Olshanskii-
Osin embedding is rather large compared toH. In the current setting, although
the embedding θ : H → ∆ is not necessarily bi-Lipschitz, the geometry of group
∆ is in some sense controlled by H. In particular, we will show in Sections 6
and 8 that if {Γs} is taken to be an expander family or finite dihedral groups
and if the sequences (ks), (diamR(s) (Γ′s)) satisfy certain growth conditions,
then the Hilbert compression exponent of (∆, d∆) is the same as (H, l),

α∗2 ((∆, d∆)) = α∗2((H, l)).
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3. Speed and entropy of random walk on ∆

Recall that ∆ denotes the diagonal product of the sequence of marked
groups {∆s}. It is marked with generating tuple

T =
(
τ, α1, . . . , α|A|, β1, . . . , β|B|

)
.

Let Uα and Uβ denote the uniform measure on the subgroups A=
{
α1, . . . , α|A|

}
and B =

{
β1, . . . , β|B|

}
respectively. Let µ denote the uniform measure on{

τ±1
}
. For the convenience of speed calculation, we take the following specific

“switch-walk-switch” step distribution on ∆:

q = (Uα ∗ Uβ) ∗ µ ∗ (Uα ∗ Uβ).

Note that in the construction of ∆, since Γ0 = A(0) × B(0) and ks > 0 for
all s > 0, it follows that αi commutes with βj , and therefore Uα ∗ Uβ is a
symmetric probability measure on ∆. Let A1,s, A2,s, . . . (resp. B1,s, B2,s, . . .)
be a sequence of independent random variables with uniform distribution on
A(s) ( resp. B(s)). We will refer to A1,sB1,s · · ·At,sBt,s as a random alternating
word of length t in A(s) and B(s) starting with A.

We first describe what the random walk trajectory with step distribution
q looks like. Let X1, X2, . . . be a sequence of independent and identically dis-
tributed random variables uniform on {±1}, Sn = X1 + · · · + Xn; A1,A2, . . .

(resp. B1,B2, . . .) a sequence of independent and identically distributed random
variables with distribution Uα ( resp. Uβ). Let Wn denote the random variable
on ∆ given by

Wn = A1B1τ
X1A2B2 · · · A2n−1B2n−1τ

XnA2nB2n.

Then Wn has distribution qn. Each letter A can be written as A =
((
fAs
)
, 0
)
,

where fAs (0) = As, with As = aj(s) if A = αj , and fAs (x) = eΓs for all x 6= 0;
similarly, B =

((
fBs
)
, 0
)
where fBs (ks) = Bs, with Bs = bj(s) if B = βj , and

fBs (x) = eΓs for all x 6= ks.
Now we rewrite Wn into the standard form ((fs), z). Consider the projec-

tion to the copy ∆s, from the definition of generators αi(s) and βi(s),

fWn
s (y) = A1{S0=y}

1,s B1{S0=y−ks}
1,s

·

Ñ
n−1∏
j=1

(A2j,sA2j+1,s)
1{Sj=y} (B2j,sB2j+1,s)

1{Sj=y−ks}

é
· A1{Sn=y}

2n,s B1{Sn=y−ks}
2n .

For x ∈ Z, let T (k, x,m) be the number of excursions of the simple random
walk {Sn} away from x that cross x−k and are completed before timem. Then
conditioned on {Sk}0≤k≤n, the distribution of fWn

s (y) is the same as a random
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alternating word in A(s) and B(s) of length T (ks, y, n) with an appropriate
random letter added as prefix/suffix.

3.1. The case with linear speed in {Γs}. In this subsection we consider the
case where speed of a simple random walk on Γs grows linearly up to some
time comparable to the diameter ls.

Definition 3.1. Let {Γs} be a sequence of finite groups where each Γs is
marked with a generating set A(s)∪B(s). Let ηs = UA(s) ∗UB(s) ∗UA(s), where
UA(s), UB(s) are uniform distributions on A(s), B(s). We say {Γs} satisfies the
(σ, Ts)-linear speed assumption if in each Γs,

Lηs(t) = E
∣∣∣X(s)

t

∣∣∣
Γs
≥ σt for all t ≤ Ts,

where X(s)
t has distribution η∗ts .

Recall that since X(s)
t is a random walk on a transitive graph, by [AV17,

Prop. 8],

max
¶
H(X

(s)
t ), 1

©
≥ 1

t

Å
1

4
E
∣∣∣X(s)

t

∣∣∣
Γs

ã2

.

Note that if {Γs} satisfies Assumption 2.1, ηs projects onto the uniform distri-
bution on A(s) × B(s), and thus H(X

(s)
t ) ≥ H(X

(s)
1 ) ≥ log (|A| ||B||) ≥ log 4.

Therefore, in this case, the (σ, Ts)-linear speed assumption implies that

H(X
(s)
t ) ≥ σ′t for all t ≤ Ts, where σ′ =

(σ
4

)2
.(3)

One important class of examples that satisfies the linear speed assumption
consists of expander families.

Example 3.2. On Γs = 〈A(s), B(s)〉, A(s) ' A,B(s) ' B, let d = |A(s)|+
|B(s)| − 2, υs be the uniform probability measure on A(s) ∪ B(s). Suppose
there exists δ > 0 such that the spectral gap λ(Γs, υs) satisfies

λ(Γs, υs) = inf
f :Γs→R,f 6=c

{∑
u,v∈Γs |f(u)− f(uv)|2 νs(v)
1
|Γs|
∑

u,v∈Γs |f(u)− f(v)|2

}
≥ δ

for all s; that is, {Γs} forms a family of d-regular δ-expanders in `2. Then {Γs}
satisfies the (σ, c0 log |Γs|)-linear speed assumption with constants σ, c0 > 0

only depending on δ and |A|, |B|. We reproduce the proof of this fact for
completeness; see [HLW06, Th. 3.6].

By standard comparison of Dirichlet forms,

λ(Γs, ηs) = δ̂ ≥ δ

|A||B|
.
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From the spectral gap we have∣∣∣∣P(X
(s)
t = x)− 1

|Γs|

∣∣∣∣ ≤ e−δ̂t.
Then for t < 1

δ̂
log |Γs|, γ = δ̂

2 log d ,

P
Ä
X

(s)
t ∈ B(e, γt)

ä
≤ dγt

Å
e−δ̂t +

1

|Γs|

ã
≤ 2 exp

ÄÄ
γ log d− δ̂

ä
t
ä

= 2e−δ̂t/2.

Therefore E
∣∣∣X(s)

t

∣∣∣
Γs
≥ γt

Ä
1− 2e−δ̂t/2

ä
. We conclude that {Γs} satisfies the

(σ, c0 log |Γs|)-linear speed assumption with σ = min
¶

δ̂
4 log d ,

δ̂
2 log 4

©
, c0 = 1/δ̂.

The lamplighter groups over Zd, d ≥ 3, are the first examples of solvable
groups where simple random walk has linear speed; see Kaimanovich-Vershik
[KV83]. The following examples satisfying the linear speed assumption are
analogues of finite quotients of Z2 o Zd.

Example 3.3. Let Γ = Z2 o Dd
∞, d ≥ 3 as in the second item of Exam-

ple 2.4, marked with generating subgroups A = Z2 o 〈aj , 1 ≤ j ≤ d〉, B =

Z2 o 〈bj , 1 ≤ j ≤ d〉. Fix an increasing sequence ns ∈ N, and let Γs = Z2 oDd
2ns .

Then Γs is a finite quotient of Γ. Let A(s), B(s) denote the projection of A
and B to Γs. There exists constant σd > 0 only depending on d such that
{Γs} satisfies the

Ä
σd, (2ns)

d
ä
-linear speed assumption. A proof of this fact is

included in Lemma C.4 in the appendix.

3.1.1. Bounds on speed and entropy in one copy. In the upper bound di-
rection, we will use the trivial bound that in each lamp group,

(4)
∣∣∣fWn
s (x)

∣∣∣
Γs
≤min

{
2T (ks, x, n)+1{L(x,n)>0}+1{L(x−ks,n)>0},diam (Γs)

}
,

where L(x, n) = #{0 < k ≤ n : Sk = x} is the local time at x. Recall that we
set the parameter ls = diam (Γs).

Lemma 3.4. There exists an absolute constant C > 0 such that for all
s ≥ 0,

E
[∣∣∣ÄfWn

s , Sn
ä∣∣∣

∆s

1{s≤s0(Wn)}

]
≤


Cn

1
2 min

ß
n

1
2

ks
, ls

™
if k2

s ≤ n,

C
Ä
n

1
2 + ks

ä
e−

k2
s

8n if k2
s > n.

Proof. From the metric upper estimate in Lemma 2.13,

∣∣∣ÄfWn
s , Sn

ä∣∣∣
∆s

≤ 9

Ñ∑
j∈Z

ks max
x∈Isj

∣∣∣fWn
s (x)

∣∣∣
Γs

+Rn

é
,
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where Rn = # {Sk : 0 ≤ k ≤ n} is the size of the range of simple random walk
on Z and Isj =

î
j ks2 , (j + 1)ks2

ä
. Observe that for each x ∈ Isj ,

(5) T (ks, x, n) ≤ T
Å
ks
2
, j
ks
2
, n

ã
,

because each excursion from x to the left that crosses x− ks must contain an
excursion from j ks2 to the left that crosses (j − 1)ks2 . Apply (4):∣∣∣ÄfWn

s , Sn
ä∣∣∣

∆s

≤ 9
∑
j∈Z

ks max
x∈Isj
{2T (ks, x, n)}+ 11(Rn)

≤ 11

Ñ∑
j∈Z

ksT

Å
ks
2
, j
ks
2
, n

ã
+Rn

é
.

By Lemma A.1,

ET

Å
ks
2
, j
ks
2
, n

ã
≤ 2Cn

1
2

ks
exp

Å
−(jks/2)2

2n

ã
.

The size of the range of the simple random walk on Z satisfies

P (Rn ≥ x) ≤ P

Å
max

0≤k≤n
|Sk| ≥

x

2

ã
≤ 4 exp

Å
−x

2

8n

ã
.

Recall that by definition of s0(g) in Section 2.2.2,

{s ≤ s0(Wn)} ⊆ {Rn ≥ ks}.

Summing up,

E
[∣∣∣ÄfWn

s , Sn
ä∣∣∣

∆s

1{s≤s0(Wn)}

]
≤ 11ks

∑
j∈Z

ET

Å
ks
2
, j
ks
2
, n

ã
+ 11E

[
(Rn)1{Rn≥ks}

]
≤ 11ks

∑
j∈Z

Cn
1
2

ks
exp

Å
−(jks/2)2

2n

ã
+ C ′n

1
2 e−

k2
s

8n

≤

C
′′
Ä
n
ks

+ n
1
2

ä
if k2

s ≤ n,

C ′′
Ä
n

1
2 + ks

ä
e−

k2
s

8n if k2
s > n.

For k2
s ≤ n, since

∣∣fWn
s (y)

∣∣
Γs

cannot exceed the diameter of Γs, together with
Lemma 2.13, we have a second upper bound

E|(fWn
s , Sn)|∆s ≤ 10lsE(Rn + ks) ≤ Clsn

1
2 .

Combining these bounds, we obtain the statement. �

Now we turn to the lower bound direction.
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Lemma 3.5. Suppose that {Γs} satisfies the (σ, c0ls)-linear speed assump-
tion. Then there exists an absolute constant C > 0 such that for s with k2

s ≤ n,

E
(∣∣∣ÄfWn

s , Sn
ä∣∣∣

∆s

)
≥ σ

C
min

ß
n

ks
, c0n

1
2 ls

™
and

H(fWn
s ) ≥ σ′

C
min

ß
n

ks
, c0n

1
2 ls

™
.

Proof. We use a weaker lower bound for the metric,

|(fs, z)|∆s
≥
∑
y∈Z
|fs(y)|Γs .

Applying the (σ, c0ls)-linear speed assumption of Definition 3.1, we have

E
(∣∣∣ÄfWn

s , Sn
ä∣∣∣

∆s

)
≥ E

Ñ∑
y∈Z

∣∣∣fWn
s (y)

∣∣∣
é
≥
∑
y∈Z

E [σmin {T (ks, y, n), c0ls}] .

Then by Lemma A.2, there exists a constant c > 0 for ks ≤ c2n
1
2 :

E [min {T (ks, y, n), c0ls}] ≥
1

2
min

ß
c
√
n

4k
, c0ls

™
P
(
L
(
y,
n

2

)
> 0
)
.

Summing up over y,∑
y∈Z

E [min {T (ks, y, n), c0ls}] ≥
1

2
min

ß
c
√
n

4ks
, c0ls

™
ERn/2,

where Rn/2 is the size of the range of simple random walk on Z up to n/2.
Since ERn ' n

1
2 , it follows that there exists a constant C > 1 such that for s

with k2
s ≤ n,

E
(∣∣∣ÄfWn

s , Sn
ä∣∣∣

∆s

)
≥ σ

C
min

ß
n

ks
, c0n

1
2 ls

™
.

Concerning entropy, we condition by the traverse time function (see, for
instance, [AV17] for the basic properties of entropy),

H(fWn
s ) ≥ H(fWn

s |T (ks, ·, n)) =
∑
z∈Z

EH(X
(s)
T (ks,z,n))

≥
∑
z∈Z

E
[
σ′min{T (ks, z, b), c0ls}

]
≥ σ′

C
min

ß
n

ks
, c0n

1
2 ls

™
,

using (3) and the same computation. �
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3.1.2. Speed and entropy estimates in the diagonal product ∆. Recall from
Assumption 2.11 that (ks) grows exponentially. In the diagonal product ∆, by
the metric upper estimate in Proposition 2.14 and speed upper estimates in
Lemma 3.4, we have

E(|Wn|∆) ≤ E

Ñ
500

∑
s≤s0(Wn)

∣∣∣ÄfWn
s , Sn

ä∣∣∣
∆s

é
≤

∑
s≤s0(n)

C

Å
min

ß
n

ks
, n

1
2 ls

™
+ n

1
2

ã
,

(6)

where
s0(n) = min

{
s : k2

s ≥ n
}
.

Indeed, denote xs = ks√
n
growing exponentially. Then∑

s>s0(n)

(n
1
2 + ks)e

− k
2
s

8n ≤ n
1
2

∑
xs≥1

(1 + xs)e
−x

2
s
8 ≤ Cn

1
2 .

In the lower bound direction, suppose {Γs} satisfies the (σ, c0)-linear speed
Assumption 3.1. Then by the metric lower estimate in Proposition 2.14 and
Lemma 3.5,

(7) E (|Wn|∆) ≥ max
s

E
(∣∣∣ÄfWn

s , Sn
ä∣∣∣

∆s

)
≥ σ

C
max
s≤s0(n)

min

ß
n

ks
, n

1
2 c0ls

™
.

To understand the upper bound (6), divide the collection of ∆s with s ≤
s0(n) into two subsets:

(i) Let s1(n) denote the index

s1(n) = max
¶
s ≥ 0 : n

1
2 ≥ ksls

©
.

Then the contribution of these s ≤ s1(n) to the sum is bounded by∑
s≤s1(n)

E
∣∣∣ÄfWn

s , Sn
ä∣∣∣

∆s

≤ Cn
1
2

∑
s≤s1(n)

(ls + 1).

(ii) The contribution of s ∈ (s1(n) + 1, s0(n)] to the sum is bounded by

s0(n)∑
s=s1(n)+1

E
∣∣∣ÄfWn

s , Sn
ä∣∣∣

∆s

≤ C
s0(n)∑

s=s1(n)+1

Å
n

ks
+ n

1
2

ã
.

Combining these parts, we have

(8) E(|Wn|∆) ≤ 2C

Ñ
n

1
2

s1(n)∑
s=0

ls +

s0(n)∑
s=s1(n)+1

n

ks

é
.
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Proposition 3.6. Suppose that {Γs} satisfies the (σ, c0ls)-linear speed
assumption and diam(Γs) ≤ C0ls . Suppose there exists a constant m0 > 1 such
that

ks+1 > 2ks, ls+1 ≥ m0ls for all s.
Let

s0(n) = min
{
s : k2

s ≥ n
}
, s1(n) = max

¶
s ≥ 0 : n

1
2 ≥ ksls

©
.

Then
σc0

2C

Ç
n

1
2 ls1(n) +

n

ks1(n)+1

å
≤ E |Wn|∆ ≤

4C

1− 1/m0

Ç
n

1
2 ls1(n) +

n

ks1(n)+1

å
.

The same bounds hold for the entropy H(W∆
n ) with σ replaced by σ′ =

(
σ
4

)2
and C replaced by a constant C ′ > 0 that only depends on the size of generating
sets |A|+ |B|.

Proof. The lower bound is a direct consequence of (7). For the upper
bound, apply (8) and note that because of the assumption on growth of ks, ls,
the sums satisfy ∑

s≤s1(n)

ls ≤ ls1(n)
1

1− 1/m0
,

∑
s≥s1(n)+1

1

ks
≤ 2

ks1(n)+1
.

For the entropy, by [Ers03, Lemma 6 ], there is C ′ depending only on the
exponential rate of volume growth in Γ, which cannot exceed log(|A| + |B|),
such that H(W∆

n ) ≤ C ′E |Wn|∆, giving the upper bound. Lemma 3.5 gives the
lower bound (7). �

3.1.3. Possible speed and entropy functions.

Example 3.7. If Γs is an family as in Examples 3.2 or 3.3 and ks = 2βs+o(s)

and ls = 2ιs+o(s), with β, ι ∈ [1,∞), a direct application of Proposition 3.6
shows that the speed and entropy exponents are

lim
logE|Wn|∆

log n
= lim

logH(W∆
n )

log n
=

β + 2ι

2β + 2ι
= 1− 1

2(1 + ι
β )
,

which can take any value in (1
2 , 1).

Theorem 3.8. There exist universal constants c, C > 0 such that the
following holds. For any function % : [1,∞) → [1,∞) such that %(x)√

x
and x

%(x)

are non-decreasing, there exist a group ∆ and a symmetric probability measure
q of finite support on ∆ such that

c%(n) ≤ E |Wn|∆ ≤ C%(n) and c%(n) ≤ H(W∆
n ) ≤ C%(n).

Moreover, the group ∆ can be chosen to be 4-step solvable.
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Proof. The choice of a family of Γs as in Examples 3.2 or 3.3 guarantees
the existence of C1 > 1 such that for all x ≥ 1, there is Γs of diameter ls with
x
C1
≤ ls ≤ C1x.
As % belongs to C 1

2
,1, Corollary B.3 provides two sequences (ks) of integers

and (ls) among diameters of Γs with ks+1 ≥ m0ks and ls+1 ≥ m0ls for all s
such that the function

%̄(x) = x
1
2 ls +

x

ks+1
for (ksls)

2 ≤ x ≤ (ks+1ls+1)2

satisfies %̄(x) '2m0C5
1
%(x) for all x.

Combining with Proposition 3.6, the diagonal product ∆ associated to
these sequences has a speed and entropy satisfying

σc0

4m0CC5
1

%(x) ≤ E|Wn|∆ ≤
4m0CC

5
1

1− 1
m0

%(x).

For {Γs} as in Example 3.3, the group ∆ is 4-step solvable. �

Note that when the speed is linear, the last term of the sequence (ls)

is infinite, and thus the last quotient Γs is in fact the whole group Γ. In our
examples, Γ is either Z2oDd

∞ for d ≥ 3 or a lattice in SL(3, F ). In the latter case,
the finite diagonal product ∆ is non-amenable. When the speed is diffusive,
the last term of the sequence (ks) is infinite, and the group ∆ is a diagonal
product of finitely many groups ∆s where the lamp groups Γs are finite.

3.2. The case of ∆ with dihedral groups. In this subsection we focus on
the case where {Γs} is taken to be a sequence of finite dihedral groups. Since
the unlabelled Cayley graph of D2l is the same as a cycle of size 2l, the simple
random walk on D2l can be identified with the simple random walk on the cycle
of size 2l. Consider a simple random walk on the cycle as the projection of the
simple random walk on Z. Then the classical Gaussian bounds on the simple
random walk on Z imply that there exist constants c, C > 0 such that for all
1 ≤ t ≤ l2s , 1 ≤ x ≤ t

1
2 ,

(9) c exp
(
−Cx2

)
≤ P

Å∣∣∣X(s)
t

∣∣∣
D2ls

≥ xt
1
2

ã
≤ C exp

(
−cx2

)
,

where X(s)
t is a random alternating word in {e, a(s)} and {e, b(s)}.

Lemma 3.9. Suppose Γs = D2ls . There exists an absolute constant C > 0

such that in each ∆s ,

E
[∣∣∣ÄfWn

s , Sn
ä∣∣∣

∆s

1{s≤s0(Wn)}

]
≤


C min

ß
n

3
4k
− 1

2
s log

1
2 ks, nk

−1
s , n

1
2 ls

™
if k2

s < n,

C
Ä
n

1
2 + ks

ä
e−

k2
s

8n if k2
s ≥ n.
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Proof. From the upper bounds in Lemma 3.4 that are valid for any choice
of {Γs}, the only bound we need to show here is that if ks ≤ n

1
2 , then

(10) E
[∣∣∣ÄfWn

s , Sn
ä∣∣∣

∆s

1{s≤s0(Wn)}

]
≤ Cn

3
4k
− 1

2
s log

1
2 ks.

To prove this, note that the collection
Ä∣∣fWn

s (z)
∣∣
D∞

ä
z∈Isj

as a vector is

stochastically dominated by the random vectorÄ∣∣XT (ks/2,jks/2,n)(z)
∣∣
D∞

+ 1{L(n,z)>0} + 1{L(n,z−ks)>0}
ä
z∈Isj

,

where {Xt(z)} is a sequence of independent random alternating words in A(s)

and B(s) of length t. Then maxz∈Isj
∣∣fWn
s (z)

∣∣
D∞

is stochastically dominated
by

max
z∈Isj

∣∣XT (ks/2,jks/2,n)(z)
∣∣
D∞

+ 1{L(n,Isj )>0} + 1{L(n,Isj−2)>0)}.

Plug in the metric estimate in Lemma 2.13,

E
∣∣∣ÄfWn

s , Sn
ä∣∣∣1{s≤s0(Wn)}

≤ 9ks

Ñ∑
j∈Z

Emax
z∈Isj

∣∣XT (ks/2,jks/2,n)(z)
∣∣
D∞

é
+ 11E

[
Rn1{Rn≥ks}

]
.

(11)

From the upper bound in (9), since maxz∈Isj |Xt(z)| is maximum of ks/2 inde-
pendent and identically distributed random variables,

P

Ç
max
z∈Isj
|Xt(z)| ≤ xt

1
2

å
≥
(
1− c1 exp

(
−c2x

2
))|Isj | .

Then

E

ñ
max
z∈Isj

∣∣XT (ks/2,jks/2,n)(z)
∣∣∣∣∣∣∣ |T (ks/2, jks/2, n)

ô
≤ C1T (ks/2, jks/2, n)

1
2 log

1
2 ks,

where C1 depends on c1, c2. Applying Lemma A.1,

E

ñ
max
z∈Isj

∣∣XT (ks/2,jks/2,n)(z)
∣∣ô ≤ C2

Ç
n

1
2

ks
exp

Å
−(jks/2)2

2n

ãå 1
2

log
1
2 ks.

Plugging in the estimates in (11) and summing up over j, we obtain (10),
because of the Gaussian tail. The main contribution comes from 1 ≤ j ≤
n

1
2 /ks. �

Lemma 3.10. Suppose Γs = D2ls . There exists an absolute constant c > 0

such that in each ∆s , for n ≥ ck2
s ,

E
∣∣∣(fWn

s , Sn)
∣∣∣
∆s

≥ cmin

ß
n

3
4k
− 1

2
s log

1
2 ks, nk

−1
s , n

1
2 ls

™
.
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Proof. For each z ∈ Isj = [ j2ks,
j+1

2 ks), the traverse time satisfies T (ks, z, n)

≥ T (2ks,
j+1

2 ks, n). So

Emax
z∈Isj

∣∣∣fWn
s (z)

∣∣∣
D2ls

≥ Emax
z∈Isj

∣∣∣∣Xs
T (2ks,

j+1
2
ks,n)

(z)

∣∣∣∣
D2ls

,

where {Xt(z)} is a sequence of independent random alternating words in A(s)

and B(s) of length t.
For any t ≥ 1 and 1 ≤ x ≤ t

1
2 ,

P

Å
|Xt(z)|D2ls

≥ min

ß
xt

1
2 ,
ls
2

™ã
≥ c1e

−c2x2
.

By independence, this implies the existence of c > 0 with

P

Ç
max
z∈Isj
|Xt(z)|D2ls

≥ min

ß
c log

1
2 kst

1
2 , ct,

ls
2

™å
≥ c.

Using Lemmas 2.13 and A.2, for some c > 0 and for all n ≥ ck2
s ,

E|(fWn
s , Sn)|∆s ≥

ks
4

∑
j∈Z

Emax
z∈Isj

∣∣∣∣Xs
T (2ks,

j+1
2
ks,n)

(z)

∣∣∣∣
D2ls

≥ cks
∑
j∈Z

min

ß
n

1
4k
− 1

2
s log

1
2 ks, n

1
2k−1
s ,

ls
2

™
· P0

Å
L

Å
j + 1

2
ks,

n

2

ã
> 0

ã
.

Finally
∑

j∈Z P0

Ä
L( j+1

2 ks,
n
2 ) > 0

ä
≥ ERn

2
/ks ≥ cn

1
2

ks
. �

Proposition 3.11. Suppose that Γs = D2ls and that there exists m0 > 1

such that ks+1 > 2ks , ls+1 > m0ls for all s. Define

t1(n) = max

ß
s :

l2sks
log ks

< n
1
2 and lsks < n

1
2

™
.

Then in the diagonal product ∆,

n
1
2

C

Ñ
lt1(n) + min

n 1
4

Ç
log kt1(n)+1

kt1(n)+1

å 1
2

,
n

1
2

kt1(n)+1


é
≤ E(|Wn|∆)

≤ 2Cn
1
2

1− 1/m0

Ñ
lt1(n) + min

n 1
4

Ç
log kt1(n)+1

kt1(n)+1

å 1
2

,
n

1
2

kt1(n)+1


é
.

Remark 3.12. The bounds here are more complicated than the linear case
because in Lemmas 3.9 and 3.10 we have to consider minimum over three
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quantities. If we further assume that ls ≥ log ks for all s, then the bounds
simplify to

E(|Wn|∆) 'Cm0 n
1
2 lt1(n) + n

3
4

Ç
log kt1(n)+1

kt1(n)+1

å 1
2

.

Proof. By Proposition 2.14 and the third line of Lemma 3.9,
c max
s≤s0(n)

E |Wn|∆s
≤ E |Wn|∆ ≤ C

∑
s≤s0(n)

E |Wn|∆s
.

The choice of t1(n) implies that

min

ß
n

3
4k
− 1

2
s log

1
2 ks, nk

−1
s , n

1
2 ls

™
=

n
1
2 ls ∀s ≤ t1(n),

min

ß
n

3
4k
− 1

2
s log

1
2 ks, nk

−1
s

™
∀s > t1(n).

Using Lemmas 3.9 and 3.10 and the exponential growth of (ks), (ls) gives the
proposition. �

Example 3.13. Let ks = 2βs and ls = 2ιs, with β > 1, ι > 0, and Γs = D2ls .
Proposition 3.11 implies with this choice of parameters that

E (|Wn|∆) ' n
3ι+β
4ι+2β (log n)

ι
2ι+β .

Theorem 3.14. There exist universal constants c, C > 0 such that the
following holds. For any continuous function % : [1,∞) → [1,∞) satisfying

%(1) = 1 and %(x)

x
1
2 log1+ε x

, x
3
4

%(x) non-decreasing for some ε > 0, there exists a

3-step solvable group ∆ with dihedral groups Γs and a symmetric probability
measure q of finite support on ∆ such that

c%(n) ≤ E |Wn|∆ ≤ C%(n).

Remark 3.15. The lower condition on %(x) is only technical. There is
no gap that would isolate diffusive behaviors among 3-step solvable groups.
Indeed, it easily follows from Lemmas 3.9 and 3.10 that for any %(x) such that
%(x)√
x

tends to infinity, there is a group ∆ with dihedral Γs such that cn
1
2 ≤

E|Wn|∆ ≤ C%(n) for all n.

Proof. By Corollary B.3, we can find two sequences (κs), (ls) satisfying
log κs ≤ ls such that %̄(x) and %(x) agree up to multiplicative constants.

Let us set κs =
Ä

ks
log ks

ä 1
2 . Then log ks ' log κs ≤ l

1
1+ε
s . By Corollary 3.11,

the diagonal product ∆ with dihedral groups Γs = D2ls and sequence (ks)

satisfies, for any (lsκs)
4 ≤ n ≤ (ls+1κs+1)4,

c%̄(x) = c

Ç
n

1
2 ls +

n
3
4

κs+1

å
≤ E |Wn|∆ ≤ C

Ç
n

1
2 ls +

n
3
4

κs+1

å
= C%̄(x).

The group ∆ clearly has a trivial third derived subgroup. �
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Proposition 3.16. There exist two constants c, C > 0 such that on any
diagonal product ∆ with dihedral Γs satisfying Assumption 2.11, the entropy of
the switch-walk-switch random walk satisfies

c
√
n ≤ H(W∆

n ) ≤ C
√
n log2 n.

Proof. By Proposition 2.14, the entropy of the random walk on ∆ is related
to the entropy on the factors ∆s by the following:

max
s≥0

H(fWn
s , Sn) ≤ H((fWn

s ), Sn) ≤ H(Sn) +
∑

s≤s2(n)

H(fWn
s ),

where s0(Wn) ≤ s2(n) = max{s : ks ≤ n} and H(Sn) ' log n. The lower
bound comes from the first factor H(fWn

0 , Sn), which is the usual random walk
on the lamplighter group with finite lamps.

Denote by Tns = T (ks, ·, n) the traverse time function and by [suppTns ] the
convex envelope of its support. Using conditional entropy (see, for instance,
[KV83] or [AV17] for standard properties of conditional entropy), we have

H(fWn
s ) ≤ H(fWn

s |Tns ) +H(Tns )

≤ H(fWn
s |Tns ) +H(Tns |[suppTns ]) +H([suppTns ]).

(12)

The convex envelope [suppTns ] is included in Range(Wn), and therefore
H([suppTns ]) ' log n and E|[suppTns ]| ≤ C

√
n. As for all z, 0 ≤ Tns (z) ≤ n,

we deduce that

H(Tns |[suppTns ]) ≤ E [|[suppTns ]|] log n ≤ C
√
n log n.

As each fWn
s (z) is distributed as an independent sample of a random walk

on Γs of length T (ks, z, n), we have

H(fWn
s |Tns ) =

∑
z∈Z

EH(X
(s)
T (ks,z,n)).

The groups Γs being dihedral H(X
(s)
t ) ≤ log t, we therefore have

H(fWn
s |Tns ) ≤

∑
z∈Z

E log T (ks, z, n) ≤ C
√
n log n.

Obviously n ≥ ks0(Wn), so finally piling up the inequalities,

H((fWn
s ), Sn) ≤ C log(n)(1 + 2

√
n log n+ log n). �

3.3. Joint evaluation of speed and entropy. Using the idea of Amir [Ami17]
of taking the direct product of two groups, we can combine the speed and
entropy estimates on ∆ together with the results of Amir-Virag [AV17] to
show the following result concerning the joint behavior of growth of entropy
and speed.
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Recall that for symmetric probability measure µ on G with finite support,
entropy and speed satisfy

1

n

Å
1

4
Lµ(n)

ã2

− 1 ≤ Hµ(n) ≤ (v + ε)Lµ(n) + log n+ C,

where v is the volume growth rate of (G, suppµ) and C > 0 is an absolute
constant ([Ers03], [AV17]).

Proposition 3.17. Let f, h : N→ N be two functions such that h(1) = 1

and
• either f(n)

n
3
4

and n1−ε

f(n) are non-decreasing for some ε > 0 and

h(n) ≤ f(n) ≤
 
nh(n)

log n
,

• or h(n)

n
1
2 log2 n

and n
3
4

f(n) are non-decreasing and

h(n) ≤ f(n) ≤
»
nh(n).

Then there exist a constant C > 0 depending only on ε > 0, a finitely generated
group G and a symmetric probability measure µ of finite support on G such that

Lµ(n) 'C f(n) and Hµ(n) 'C h(n).

As a corollary, we derive the Corollary 1.3 regarding joint entropy and
speed exponents (Conjecture 3 in [Ami17]).

Proof of Corollary 1.3. If θ ∈
[

1
2 , 1
)
, then take functions

h(n) = max
¶
n

1
2 log2 n, nθ

©
, f(n) = max {nγ , h(n)} .

Note that in the case γ < 1, the pair of functions f and h is covered by one of
the cases in Proposition 3.17; the statement follows.

If θ = 1, in this case γ = 1 as well. We can take G to be any finitely gen-
erated group that admits a symmetric probability measure µ of finite support
such that (G,µ) has linear entropy growth. �

Proof. We follow Amir’s approach in [Ami17] to take the direct product
of two appropriate groups such that one would control the speed function and
the other would control the entropy function.

In the first case where both f(n)/n
3
4 and n1−ε/f(n) are non-decreasing,

consider the direct product of the following two groups. By [AV17], there exist
a group G1 = Z oSMm and step distribution q1 on G1 such that

Lq1(n) ' f(n) and Hq1(n) ' f(n)2

n
log(n+ 1).
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By Theorem 3.8, there exist a group ∆ and step distribution q2 on ∆ such that

Lq2(n) ' Hq2(n) ' h(n).

Then on the direct product G1 ×∆ with step distribution q1 ⊗ q2,

Lq1⊗q2(n) ' max {Lq1(n), Lq2(n)} ' f(n),

Hq1⊗q2(n) ' max {Hq1(n), Hq2(n)} ' max

ß
f(n)2

n
log(n+ 1), h(n)

™
= h(n).

In the second case, where f(n)/
Ä
n

1
2 log2 n

ä
and n

3
4/f(n) are non-decreasing,

by Theorem 3.14 and Proposition 3.16, there exist a group ∆1 and step distri-
bution q′1 on ∆1 such that

Lq′1(n) ' f(n) and
1

C
n

1
2 ≤ Hq′1

(n) ≤ Cn
1
2 log2 n.

By Theorem 3.8, there exist a group ∆2 and step distribution q′2 such that

Lq′2(n) ' Hq′2
(n) ' h(n).

Then on the direct product ∆1 ×∆2 with step distribution q′1 ⊗ q′2,

Lq′1⊗q′2(n) ' max
¶
Lq′1(n), Lq′2(n)

©
' f(n),

Hq′1⊗q′2(n) ' max
¶
Hq′1

(n), Hq′2
(n)
©
' h(n). �

Remark 3.18. This method permits us to prove Corollary 1.3 but cannot
handle functions that oscillate cross the n

3
4 borderline. The problem can be

reduced to finding extremal examples where the speed follows a prescribed
function while entropy growth is as slow as possible. The Amir-Virag result
covers the case where speed grows at least like n

3
4 . The construction of the

diagonal product ∆ is not designed to achieve such a goal.

4. Isoperimetric profiles and return probabilities

In this section we consider the isoperimetric profiles and return proba-
bilities of ∆ when {Γs} are taken to be expanders or dihedral groups. For
convenience of calculation, we take the switch-or-walk measure q = 1

2(µ+ν) on
∆ where µ is the simple random walk measure on the base Z, µ

(
τ±1

)
= 1

2 , and
ν is uniform on {αi, βj : 1 ≤ i ≤ |A| , 1 ≤ j ≤ |B|}. Let qs be the projection of
q to the quotient ∆s.

4.1. Isoperimetric profiles. We first recall some background information.
Given a symmetric probability measure φ on G, the p-Dirichlet form associated
with (G,φ) is

Ep,φ(f) =
1

2

∑
x,y∈G

|f(xy)− f(x)|pφ(y)
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and the `p-isoperimetric profile Λp,G,φ : [1,∞)→ R is defined as

(13) Λp,G,φ(v) = inf {Ep,φ(f) : |support(f)| ≤ v, ‖f‖p = 1}.

The most important ones are the `1 and `2-isoperimetric profiles. Using an
appropriate discrete co-area formula, Λ1,φ can equivalently be defined by

Λ1,G,φ(v) = inf

{
|Ω|−1

∑
x,y

1Ω(x)1G\Ω(xy)φ(y) : |Ω| ≤ v

}
.

If we define the boundary of Ω to be the set

∂Ω = {(x, y) ∈ G×G : x ∈ Ω, y ∈ G \ Ω}

and set φ(∂Ω) =
∑

x∈Ω,xy∈G\Ω φ(y), then

Λ1,G,φ(v) = inf{φ(∂Ω)/|Ω| : |Ω| ≤ v}.

When φ is a symmetric measure supported by a finite generating set S, then
Λ1,G,φ(v) is closely related to the Følner function : (0,∞)→ N defined as

FolG,S(r) = min

ß
|Ω| : Ω ⊂ G, |∂SΩ|

|Ω|
<

1

r

™
,

where |∂SΩ| = {x ∈ Ω : ∃u ∈ S, xu /∈ Ω}. Namely, let p∗ = min{φ(u) : u ∈
S, u 6= id}; then

Λ−1
1,G,φ(1/r) ≤ FolG,S(r) ≤ Λ−1

1,G,φ(p∗/r),

where Λ−1
1,G,φ is the generalized inverse of Λ1,G,φ .

We will repeatedly use the following two facts.
For any 1 ≤ p ≤ q ≤ 2, the isoperimetric profiles Λp,G,φ and Λq,G,φ are

related by the Cheeger type inequality

(14) c0Λ
q/p
p,G,φ ≤ Λq,G,φ ≤ C0Λp,G,φ,

where c0, C0 are absolute constants; see [LS88], [SCZ16, Prop. 2.8].
Let H be a quotient group of G, and let φ̄ be the projection of φ on H.

Then by [Tes13, Prop. 4.5], for all 1 ≤ p <∞,

Λp,G,φ ≥ Λp,H,φ̄.

4.1.1. Isoperimetric profiles of one factor. Let {Γs} be a family of ex-
panders, as in Example 2.3. Let ν = νs be the uniform distribution on
A(s) ∪B(s) in Γs. Denote by h(Γs, ν) the Cheeger constant

h (Γs, ν) = inf

ß
Λ1,Γs,ν(v) : v ≤ |Γs|

2
, v <∞

™
.

In one copy ∆s=ΓsoZ, we establish the following lower bound of `p-isoperimetric
profile of ∆s.
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Lemma 4.1. Let p ∈ [1, 2], Γs be a finite group marked with generating
subgroups A(s), B(s). Let qs be the uniform distribution on {τ±1}∪A(s)∪B(s)

in ∆s . Then there exists an absolute constant C > 1 such that the following is
true:
• (Slow phase) for 1 ≤ v ≤ 2ks/2 ,

Λp,∆s,qs(v) ≥ (log2 v)−p

C (|A(s)|+ |B(s)|)
.

• (Fast, then slow down) for |Γs|r ≤ v ≤ |Γs|r+1 , r ≥ ks ,

Λp,∆s,qs(v) ≥ h(Γs, ν)p

C (|A(s)|+ |B(s)|) rp
.

Remark 4.2. By monotonicity of the profile function Λp,∆s,qs , we have that

Λp,∆s,qs(v) ≥ h(Γs, ν)p

C (|A(s)|+ |B(s)|) kps
for v ∈

Ä
2ks/2, |Γs|ks

ä
.

Proof. We prove a lower bound for the `1-isoperimetric profile Λ1,∆s,qs

and use the Cheeger inequality (14) to derive a lower bound on Λp,∆s,qs . Given
r ≥ 1, consider the product of Γs in the zero-section over the segment [0, r],
namely,

Πr =
∏

x∈[0,r]

(Γs)x .

We now construct a product kernel ζr on Πr and discuss its `1-isoperimetry.

Phase I. In the first phase, r < ks/2. Let ηx denote the uniform measure
on the finite subgroup As ' Z/2Z in the copy (Γs)x. Let ζr denote the product
kernel

ζr = η0 ⊗ · · · ⊗ ηr.
Then ζr is indeed the uniform measure on the subgroup

∏
x∈[0,r] (As)x in the

zero section of ∆s, it follows that

Λ1,∆s,ζr(v) ≥ 1

2
for all v ≤ 1

2

(
2r+1

)
.

Phase II. In the second phase, r > ks. Let νx denote the uniform measure
on the generating set A(s)∪B(s) in the copy (Γs)x. Let ζr denote the product
kernel

ζr = ν0 ⊗ · · · ⊗ νr.
As a transition kernel, ζr changes every copy (Γs)x independently according
to νx. By [BH97, Th. 1.1], the Cheeger constant of ζr on Πr satisfies

h(Πr, ζr) ≥
1

2
√

6
h(Γs, ν).
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In other words, for r > ks,

Λ1,∆s,ζr(v) ≥ 1

2
√

6
h(Γs, ν) for all v ≤ 1

2
|Γs|r+1 .

By the Cheeger inequality (14), for p ∈ [1, 2],

Λp,∆s,ζr(v) ≥ c0Λ1,∆s,ζr(v)p.

Now we go back to the simple random walk kernel q. By construction of the
transition kernel ζr in both cases, the metric estimate in Lemma 2.13 implies
every element g in the support of ζr satisfies

|g|∆s
≤ 40r.

By the standard path length argument (see [PSC00, Lemma 2.1]), we have by
comparison of Dirichlet forms on ∆s that

2 (|A|+ |B|) Ep,∆s,qs ≥
1

(40r)p
Ep,∆s,ζr .

It follows that
• for r < ks

2 ,

Λp,∆s,qs (v) ≥ c0

2 (|A|+ |B|) (40r)p
for all v ≤ 2r;

• for r > ks,

Λp,∆s,qs (v) ≥ c0h(Γs, ν)p

2 (|A|+ |B|)
Ä
80
√

6r
äp for all v ≤ 1

2
|Γs|r+1 . �

When Γs = Γ is an infinite group, we have the following bound.

Lemma 4.3. Let p ∈ [1, 2], Γs = Γ be an infinite group marked with gen-
erating subgroups A,B . Let ν be the uniform distribution on A∪B . Then there
exists an absolute constant C > 1 such that the following is true:
• for 1 ≤ v ≤ 2ks/2 ,

Λp,∆s,qs(v) ≥ (log2 v)−p

C (|A(s)|+ |B(s)|)
;

• for v > 2ks/2 ,

Λp,∆s,qs(v) ≥ h(Γ, ν)p

C (|A(s)|+ |B(s)|) kps
.

Proof. The first item is the same as in proof of Lemma 4.1. For the second
item, consider the copy of Γ at 0 and regard ν as a measure supported on the
subgroup (Γ)0. Then

C (|A(s)|+ |B(s)|) kpsEp,∆s,qs ≥ Ep,Γ,ν ,

and the result follows. �
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4.1.2. Isoperimetric profile of the diagonal product. First we put together
isoperimetric estimates on the copies ∆s to describe the isoperimetric profile of
the diagonal product ∆. Let us denote `s = log |Γs|. Mind the difference with
the diameter ls of Γs. For a family of expanders, these two quantities differ
only by multiplicative constants depending only on the volume growth and the
spectral gap of {Γs}.

Proposition 4.4. Suppose {(Γs, A(s) ∪B(s))} with A(s) ' A,B(s) ' B
is a family of groups with the Cheeger constant h(Γs, νs) ≥ δ > 0, where νs is
uniform on A(s) ∪ B(s). Suppose {ks} satisfies the growth assumption 2.11.
Let ∆ be the diagonal product constructed with {Γs} and parameters {ks}, and
let q be the uniform measure on {τ±1} ∪A ∪B in ∆.

There exists an absolute constant C > 1 such that the following estimates
hold for any s ≥ 0, p ∈ [1, 2]:

(1) for volume v ∈
[
eks`s , eks+1`s

)
,

Λp,∆,q(v) ≥ 1

|A|+ |B|

Å
δ`s

C log v

ãp
,

Λp,∆,q

Å
v

∑
j≤s `j
`s

ã
≤
Å
C`s
log v

ãp
;

(2) for volume v ∈
[
eks+1`s , eks+1`s+1

]
,

Λp,∆,q(v) ≥ 1

|A|+ |B|

Å
δ

Cks+1

ãp
,

Λp,∆,q (v) ≤
Å

C

ks+1

ãp
if v ≥ exp

ÑÑ∑
j≤s

`j

é
ks+1

é
.

The upper bounds are valid without the requirement of a positive Cheeger
constant.

Proof. Let U∆
r = {((fs), z) : Range(fs, z) ⊂ [−r, r]}, and take a function

supported on the subset U∆
r ,

ϕr ((fs), z) =

Å
1− |z|

r

ã
1U∆

r
(((fs), z)).

Let U∆
r (0) = {((fs), 0) : Range(fs, 0) ⊂ [−r, r]}. Then U∆

r can be viewed
as the product of U∆

r (0) and the interval [−r, r]. To compute the Rayleigh
quotient of the function ϕr, first note that ϕr (Zαi) = ϕr(Zβj) = ϕr(Z) for all
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Z ∈ ∆ and αi ∈ A, βj ∈ B. For the generator τ ,∑
((fs),z)∈U∆

r

|ϕr ((fs), z + 1)− ϕr ((fs), z)|p =
1

rp
(2r)

∣∣∣U∆
r (0)

∣∣∣ ,
∑

((fs),z)∈U∆
r

ϕr ((fs), z)
p =

∑
z∈[−r,r]

Å
1− |z|

r

ãp ∣∣∣U∆
r (0)

∣∣∣ .
Therefore

Ep,∆,q(ϕr)
‖ϕr‖pp

∼ 1 + p

2rp
.

For the size of support of ϕr,

|suppϕr| ≤
∏
ks≤2r

|suppϕsr| ≤
∏
ks≤2r

|Γs|r = er
∑
ks≤2r `s .

In the first interval v ∈
[
eks`s , eks+1`s

)
, let

r =
log v

`s
.

The test function ϕ∆
r gives the upper bound on Λp,∆,q stated. For the lower

bound on Λp,∆,q, consider the projection to the quotient ∆s. Then from the
first item in Lemma 4.1, for v ∈

[
eks`s , eks+1`s

)
, we have

Λp,∆,q(v) ≥ Λp,∆s,qs(v) ≥ 1

|A|+ |B|

Å
δ

Cks

ãp
.

In the second interval v ∈
[
eks+1`s , eks+1`s+1

]
, first consider the projection

to the quotient ∆s+1. The second item in Lemma 4.1 provides

Λp,∆,q

Å
1

2
|Γs+1|ks+1

ã
≥ Λp,∆s,qs

Å
1

2
|Γs+1|ks+1

ã
≥ 1

|A|+ |B|

Å
δ

Cks+1

ãp
.

In the upper bound direction, note that the right end point in the first interval
gives

Λp,∆,q

Ñ
exp

ÑÑ∑
j≤s

`j

é
ks+1

éé
≤
Å

C

ks+1

ãp
.

The statement follows from monotonicity of Λp,∆,q. �

Example 4.5. A direct application of Proposition 4.4 shows that when ks =

2βs and `s = 2ιs with β, ι > 0, then for p ∈ [1, 2],

Λp,∆,q(v) ' (log v)
− p

1+ ι
β ,

and the exponent p
1+ ι

β
can take any value in (0, p).
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We allow the sequence (ks), (ls) to take the value ∞; the bounds are still
valid. In our convention, ks+1 =∞ means ∆s+1 is trivial. In this case we only
use the first item in Proposition 4.4, which covers v ∈

[
eks`s ,∞

)
. The bounds in

Proposition 4.4 are good when {`s} grows at least exponentially. In particular,
from these estimates of isoperimetric profiles we deduce that Λp,∆,q ◦ exp can
follow a prescribed function satisfying some log-Lipschitz condition.

Theorem 4.6. There exist universal constants c, C > 0 such that for
any p ∈ [1, 2] and for any non-decreasing function %(x) such that xp

%(n) is non-
decreasing, there is a group ∆ such that

∀v ≥ 3,
c

%(log v)
≤ Λp,∆,q(v) ≤ C

%(log v)
.

Proof. We write %(x) =
Ä

x
f(x)

äp
with f(x) between 1 and x. The sets

K = Z+ ∪ {∞} and L = {log |Γm|,m ≥ 1} ∪ {∞}, where {Γs} are groups in
the family of Examples 2.3, satisfy the assumptions of Proposition B.2. So we
can find sequences (ks), (ls) taking values in K and L such that the function
defined by f̃(x) = ls on [ksls, ks+1ls] and f̃(x) = x

ks+1
on [ks+1ls, ks+1ls+1]

satisfies f̃(x) 'm0C5
1
f(x). Since the infinite group Γ in Example 2.3 has

Property (T ), there exists a constant δ > 0 such that the Cheeger constants
satisfy h(Γs, νs) ≥ δ for all s ≥ 1.

We use Proposition 4.4 to evaluate the profile of the group ∆ associated
to these sequences. The lower bounds show that for all x ≥ 1,

Λp,∆,q ◦ exp(x) ≥
Ç
δf̃(x)

Cx

åp
≥ cδp

%(x)
.

As
∑

j≤s `j ≤ 1
1− 1

m0

`s, making the change of variable x =
Ä
1− 1

m0

ä
y =

log v, the first upper bound shows that

Λp,∆,q ◦ exp(y) ≤
Å
Cls
log v

ãp
=

Ñ
Cf̃
Ä
(1− 1

m0
)y
ä

(1− 1
m0

)y

ép

≤
Ç
Cf̃(y)

y

åp
≤ C ′

%(x)

for 1
1− 1

m0

ks`s ≤ y ≤ 1
1− 1

m0

ks+1`s. The second upper bound shows that

Λp,∆,q◦exp(y) ≤
Å

C

ks+1

ãp
=

Ç
Cf̃(ks+1ls)

ks+1ls

åp
=

Ñ
Cf̃
Ä
(1− 1

m0
)y
ä

(1− 1
m0

)y

ép

≤ C ′′

%(y)

for 1
1− 1

m0

ks+1`s ≤ y ≤ 1
1− 1

m0

ks+1`s+1. We used the fact that %̃(x) is constant

on the interval [ks+1`s, ks+1`s+1]. �
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We derive the following corollary regarding Følner functions from Theo-
rem 1.1. The definition of a Følner function is recalled in the beginning of Sec-
tion 4. We use the convention that on a non-amenable groupG, if 1/r ≤ inf |∂S||S| ,
then FolG,S(r) =∞.

Corollary 4.7. There exists an universal constant C > 1. Let g :

[1,∞) → [1,∞] be any non-decreasing function with g(1) = 1 and log(g(x))
x

non-decreasing. Then there exists a group ∆ marked with finite generating set
T such that

g(r/C) ≤ Fol∆,T (r) ≤ g(Cr).

Further, when range of g is contained in [1,∞), the group ∆ constructed is
elementary amenable and there exists a symmetric probability measure q with
finite generating support on ∆ such that (∆, q) is Liouville.

Proof. Let p∗ = min{q(u) : u ∈ T , u 6= id}; then p∗ ≥ 1
2(|A|+|B|) . Recall

that by definition of the Følner function

Λ−1
1,∆,q(1/r) ≤ Fol∆,T (r) ≤ Λ−1

1,∆,q(p∗/r).

By Proposition 4.6, there exist universal constants C > 0 such that for any
function %(x) between 1 and x, there is a group ∆ such that

∀v ≥ 3,
1

C%(log v)
≤ Λ1,∆,q(v) ≤ C

%(log v)
.

In particular, in the construction of ∆ we can choose {Γs} from Lafforgue’s
expanders as in Example 2.3, where |A| = 2, |B| = r0 for some fixed r0.
Therefore

exp
(
%−1(r/C)

)
≤ Fol∆,T (r) ≤ exp(%−1(Cr0r)).

Since % is any function between 1 and x, the statement about the Følner func-
tion follows.

When the range of g is in [1,∞), the group ∆ in the proof of Proposition 4.6
is constructed with an infinite sequence of finite groups {Γs} and {ks} satisfying
the growth assumption (2.11). By Fact 2.10, ∆ is elementary amenable. Apply
Theorem 3.6, we have that Lq(µ) and Hq(µ) have sub-linear growth, thus (∆, q)

is Liouville. �

4.2. Return probabilities of simple random walk on ∆. By Theorem 4.6
with p = 2, we have that Λ2,∆,q ◦ exp can follow a prescribed function satis-
fying some log-Lipschitz condition. Now we turn the `2-isoperimetric profile
estimates into return probability bounds using the Coulhon-Grigor′yan theory.
Let µ be a symmetric probability measure on a group G. Between discrete time
random walk and continuous time random walk, we have (see [PSC00, §3.2])

µ(2n+2)(e) ≤ 2hµ2n(e) and hµ4n(e) ≤ e−2n + µ(2n)(e),
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where

(15) hφt = e−t
∞∑
0

tk

k!
φ(k).

Define the function ψ : [0,+∞)→ [1,+∞) implicitly by

(16) t =

ˆ ψ(t)

1

dv

vΛ2,G,µ(v)
.

Then by [Cou96, Prop. II.1], we have

µ(2n+2)(e) ≤ 8

ψ(8n)
.

In the current context, it is convenient to do a change of variable in (16).
Setting v = exp(s),

(17) t =

ˆ w(t)

1

ds

Λ2,∆,q ◦ exp(s)
.

If, in addition, Λ2,G,µ ◦ exp is doubling, namely, Λ2,G,µ ◦ exp(2s) ≥ cΛ2,G,µ ◦
exp(s) for all s > 1, then by [BPS12, Prop. 2.3], w′(t) is doubling with the
same constant. Applying [CG97, Th. 3.2 ],

µ(2n)(e) ≥ 1

exp ◦ψ(8n/c)
− e−2n.

Combining the upper and lower bounds, if Λ2,G,µ ◦ exp(2s) ≥ cΛ2,G,µ ◦ exp(s),
we have

(18) − logµ(2n)(e) 'C w(2n)

with constant C > 0 only depending on the doubling constant c.

Theorem 4.8. There exist universal constants c, C > 0 such that the
following is true. Let γ : [1,∞) → [1,∞) be any function such that γ(n)

n
1
3

and
n

γ(n) are non-decreasing. Then there is a group ∆ such that

∀t ≥ 1, cγ(t) ≤ − log
Ä
q(2t) (e∆)

ä
≤ Cγ(t).

Proof. Given such a function γ : [1,∞)→ [1,∞), which is strictly increas-
ing and continuous, define % : [1,∞)→ [1,∞) by

%(x) =
1

x
γ−1(x).

From the assumption on γ we have γ(1) = 1 and a
1
3γ(x) ≤ γ(ax) ≤ aγ(x) for

any a, x ≥ 1. Thus

aγ−1(x) ≤ γ−1(ax) ≤ a3γ−1(x),
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and therefore

%(x) ≤ %(ax) ≤ a2%(x),

which satisfies the assumption of Proposition 4.6 with p = 2.
By Proposition 4.6, there exist universal constants c, C > 0 such that there

is a group ∆, for all v ≥ 3:

c

% (log v)
≤ Λ∆,q(v) ≤ C

%(log v)
.

Note that since %(2x) ≤ 4%(x), it follows that for all s > 0,

Λ∆,q ◦ exp(2s) ≥ c

4C
Λ∆,q ◦ exp(s).

In particular, the function Λ∆,q◦exp : (0,∞)→ R is doubling at infinity. Then
by [BPS12, Lemma 2.5], the solution w(t) to (17) satisfies

Λ∆,q ◦ exp ◦w(t) ≤ w(t)

t
≤ DΛ∆,q ◦ exp ◦w(t),

where D is a constant that only depends on the doubling constant c/4C. Plug-
ging in the estimate of Λ∆,q, we have

c

%(w(t))
≤ w(t)

t
≤ DC

%(w(t))
.

By the definition of %,

γ(t)% (γ(t)) = t,

note that x%(x) is strictly increasing, and therefore

c
1
3γ(t) ≤ γ(ct) ≤ w(t) ≤ γ(DCt) ≤ DCγ(t).

Since the constants c, C,D are universal, from (18) provided by the Coulhon-
Grigor′yan theory, we conclude that

∀t ≥ 1, c′γ(t) ≤ − log
Ä
q(2t) (e∆)

ä
≤ C ′γ(t),

where c′, C ′ > 0 are universal constants. �

Example 4.9. When ks = 2βs and ls = 2ιs with β > 1, ι > 0, the L2-profile
given in Example 4.5 turns to return probability

− log
Ä
q(2t) (e∆)

ä
' t

β+ι
3β+ι ,

where the exponent can take any value in (1
3 , 1).
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4.3. The case of dihedral groups. In this subsection we estimate decay of
return probability of simple random walk on ∆ where Γs = D2ls are dihedral
groups. We show that in this case the return exponent of simple random walks
is 1

3 . Obtaining more precise estimates requires further work.

Proposition 4.10. There exists an absolute constant C > 0 such that the
following holds. Let ∆ be the diagonal product constructed with Γs = D2ls and
parameters {ks} satisfying Assumption (2.11). Then

1

C
n

1
3 ≤ − log q(2n) (e∆) ≤ Cn

1
3 log

4
3 n.

Proof. Since ∆ projects onto ∆0 ' (Z/2Z× Z/2Z) o Z, we have

q(2n) (e∆) ≤ q
(2n)
0 (e∆0).

The lower bound on − log q(2n) (e∆) follows from the decay of return probability
on ∆0 (see [PSC02]),

q
(2n)
0 (e∆0) ≤ exp

Å
− 1

C
n

1
3

ã
.

In the other direction we construct a test function on ∆. First take a test
function ψr on D2ls :

ψr(g) = max

®
1−
|g|D2ls

r
, 0

´
for 1 ≤ r ≤ ls.

Recall that the set U∆
r is defined as U∆

r = {((fs), z) : Range(fs, z) ⊂ [−r, r]}.
Let S(r) =

{
s : ks ≤ r, ls ≥ r2

}
, and take

Ψ∆
r ((fs), z) =

Å
1− |z|

r

ã
1U∆

r
(((fs), z))

∏
s∈S(r)

∏
x∈[−r+ks,r]

ψr2(fs(x)).

Depending on the sequences (ks), (ls), the set S(r) might be empty, in which
case we recover the test function of Proposition 4.4. (Recall the notation `s =

log |D2ls | = log 2ls.) As in the proof of Proposition 4.4, we have∑
Z∈∆

(
Ψ∆
r (Z)−Ψ∆

r (Zτ)
)2

‖Ψ∆
r ‖

2
2

≤ C1

r2
.

By Cauchy-Schwarz inequality, we have∑
Z∈∆

(
Ψ∆
r (Z)−Ψ∆

r (Zα)
)2

‖Ψ∆
r ‖

2
2

≤ |S(r)|
∑
s∈S(r)

∑
g∈D2ls

(ψr2(ga(s))− ψr2(g))2

‖ψr2‖2l2(D2ls )

≤ C1 |S(r)|2 r−4.
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The same estimates holds for β with a(s) replaced by b(s). Since {ks} satisfies
the growth assumption (2.11), we have |S(r)| ≤ log2 r, and therefore

E∆,q

(
Ψ∆
r

)
‖Ψ∆

r ‖
2
2

≤ C1r
−2.

The support of function Ψ∆
r is bounded by∣∣∣suppΨ∆

r

∣∣∣ ≤ (2r + 1)

Ñ ∏
s:ks≤r,ls<r2

(2ls)
4r

éÑ ∏
s:ks≤r,ls>r2

(
2r2
)4ré

≤ (2r + 1)
(
2r2
)4r log2 r .

From these test functions we have

(19) Λ2,∆,q(v) ≤ C ′1
(log log v)4

log2 v
.

By the Coulhon-Grigor′yan theory, we conclude that there exists an absolute
constant C,

q(2n) (e∆) ≥ exp
Ä
−Cn

1
3 log

4
3 (2n)

ä
. �

Remark 4.11. To get an estimate for Λp,∆,q, p ∈ [1, 2], note that by pro-
jecting onto ∆0, we have

Λ1,∆,q(v) ≥ Λ1,∆,q0(v) ≥ 1

C log v
,

and in the proof above we have an upper bound (19) for Λ2,∆,q. By the Cheeger
inequality (14), we have

1

Cp

1

logp v
≤ Λp,∆,q(v) ≤ Cp

(log log v)2p

logp v
.

5. Review: distortions of metric embeddings

We first recall the standard definition of distortion of a map between metric
spaces. Given an injective map f : X → Y between two metric spaces (X, dX)

and (Y, dY ), the distortion of f measures quantitatively how far away f is from
being a homothety,

distortion(f) =

Ç
sup

u,v∈X,u 6=v

dY (f(u), f(v))

dX(u, v)

åÇ
sup

u,v∈X,u 6=v

dX(u, v)

dY (f(u), f(v))

å
.

When f is C-Lipschitz, the first sup is bounded by C. In this case, the distortion
is comparable to the second factor. It is the inverse of the expansion ratio,
defined as

ratio(f) = inf
u,v∈X,u 6=v

dY (f(u), f(v))

dX(u, v)
.



SPEED OF RANDOM WALKS 49

The smallest distortion with which X can be embedded in Y is denoted by
cY (X),

cY (X) = inf {distortion(f) : f : X ↪→ Y }.

To connect with uniform embedding of an infinite group G, it is well
known that a sequence of finite metric spaces (Xk, dk) embedded in the group
G can provide obstruction for good embedding of the whole space; see, e.g.,
Arzhantseva-Drutu-Sapir [ADS09] and Austin [Aus11]. We quote a special case
of a lemma in [Aus11].

Lemma 5.1 (The Austin Lemma [Aus11]). Let X be a metric space. Let
Γ be a finitely generated infinite group equipped with a finite generating set S ,
and let d denote the word distance on the Cayley graph (Γ, S). Suppose that we
can find a sequence of finite graphs (Xn, σn), where σn is a 1-discrete metric
on Xn , and embeddings ϑn : Xn ↪→ Γ such that there are constants C,L ≥ 1,
δ > 0 that are independent of n:

• diam(Xn, σn)→∞ as n→∞;
• there exists a sequence of positive reals (rn)n≥1 such that

1

L
rnσn(u, v) ≤ d (ϑn(u), ϑn(v)) ≤ Lrnσn(u, v) for all u, v ∈ Xn, n ≥ 1

and moreover, rn ≤ C diam(Xn, σn)β for all n ≥ 1;
• distortion of (Xn, σn) into X is large in the sense that

cX(Xn, σn) ≥ δ diam(Xn, σn)η,

and then

α∗X(Γ, d) ≤ 1− η

1 + β
.

The second assumption in Lemma 5.1 requires that under the embed-
ding ϑk, the induced metric d(G,S) only dilates dk with uniformly bounded
distortion. This point-wise assumption is rather restrictive. In what follows we
will present some bounds that are more flexible.

The term “Poincaré inequalities” in the context of metric embeddings was
first systematically used in Linial-Magen-Naor [LMN02]. It is a key ingredient
for many existing lower bounds for distortion of finite metric spaces. We review
the basic idea now. Let (M, dM) be a finite metric space, a = (au,v), b = (bu,v),
where u, v ∈ M are two non-zero arrays of non-negative real numbers. A
p-Poincaré type inequality for f :M→ X is an inequality of the form

(20)
∑

u,v∈M
au,vdX(f(u), f(v))p ≤ C

∑
u,v∈M

bu,vdX(f(u), f(v))p.
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The infimum of the constant C such that the inequality holds for all non-trivial
f :M→ X is known as the X-valued Poincaré constant associated with a,b,

Pa,b,p(M,X) = sup

∑
u,v au,vdX(f(u), f(v))p∑
u,v bu,vdX(f(u), f(v))p

,

where the sup is taken over all f :M→ X such that
∑

u,v au,vdX(f(u), f(v))p

6= 0. It follows from definition of the Poincaré constant thatÅ
inf

u,v∈M,u6=v

dX(f(u), f(v))p

dM(u, v)p

ãÑ ∑
u,v∈M

au,vdM (u, v)p

é
≤ Pa,b,p(M,X)

(∑
u,v

bu,vdX(f(u), f(v))p

)
;

that is, the expansion ratio of f satisfies

inf
u,v∈M,u6=v

dX(f(u), f(v))p

dM(u, v)p
≤ Pa,b,p(M,X)

Ç∑
u,v bu,vdX(f(u), f(v))p∑

u,v au,vdM (u, v)p

å
.

To relate to compression function, we need an extra ingredient that re-
sembles a mass distribution assumption. We say that the array a satisfies the
(p; l, c)-mass distribution condition if

(21)
∑

dM(u,v)≥l au,vdM(u, v)p∑
dM(u,v) au,vdM(u, v)p

≥ c;

in other words, the c-fraction of the total a array sum is from vertices at least
l apart. Under this additional assumption, for any f : M → X, there exists
u, v ∈M with dM(u, v) ≥ l such that

ρf (l) ≤ dX (f(u), f(v))

≤ diam(M)Pa,b,p(M,X)
1
p

Ç∑
u,v bu,vdX(f(u), f(v))p

c
∑

u,v au,vdM (u, v)p

å 1
p

.
(22)

This compression upper bound is very useful. In practice, to apply this we
need to choose the arrays a, b and obtain a good Poincaré inequality of the form
(20). This is not an easy task in general. In what follows we review some special
cases. These settings have been investigated extensively in the literature, thus
established results are available for application to metric embeddings.

5.1. Poincaré inequalities in the classical form. Pioneered by work of En-
flo [Enf69], it is well known that the spectral gap of certain Markov oper-
ators on a finite metric space (X, d) can be used to show the lower bound
for distortion of the embedding of (X, d) into Hilbert spaces. This method ap-
peared in Linial-Magen [LM00], Newman-Rabinovich [NR03] and was extended
in Grigorchuk-Nowak [GN12], Jolissaint-Valette [JV14] and Mimura [Mim15].
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Interested readers may also consult Chapter 13.5 in the book [LP16] for a nice
introduction to this topic.

Let (M, dM) be a finite metric space, and let K : M×M → [0, 1] be a
Markov transition kernel kernel on M. Suppose K is reversible with respect
to stationary distribution π. The most familiar Poincaré inequality for such a
finite Markov chain takes the following form: for f :M→ R,∑

u,v

|f(u)− f(v)|2 π(u)π(v) ≤ C
∑
u,v

|f(u)− f(v)|2K(u, v)π(u).

The reciprocal of the Poincaré constant is known as the spectral gap,

(23) λ(K) = inf
f :M→R,f 6=c

®∑
u,v∈M |f(u)− f(v)|2K(u, v)π(v)∑
u,v∈M |f(u)− f(v)|2 π(u)π(v)

´
.

In this case the Poincaré constant is often referred to as the relaxation time
ofK. Mixing times of finite Markov chains have been a very active research area
in the past decades. For a great variety of Markov chains, good estimates of
their spectral gaps are known; examples can be found in [SC97], [LPW09]. Note
that the same Poincaré inequality holds for Hilbert space valued functions f :

M→H. This fact can be checked by eigenbasis expansion. In some examples,
based on the `2-Poincaré inequality, one can apply Matoušek extrapolation (see
[Mat97] and the version in [NS11]) to obtain useful Poincaré inequalities for
`p-valued functions.

In the setting of inequality (20), having variance of f on the left side of
the inequality and Dirichlet form on the right side corresponds to taking

(24) au,v = π(u)π(v) and bu,v = π(u)K(u, v).

Define λp(M,K,X) of the Markov operator K on Y to be

(25) λp(M,K,X) =
1

Pa,b,p(M,X)
,

where a,b are specified by (24). When X is a Hilbert space and p = 2, this
definition agrees with the standard variational formula of the spectral gap.

We now formulate an analogue of Lemma 5.1. Since the bound relies
crucially on the X-valued Poincaré constants 1/λp(Xn,Kn,X) of the Markov
operator Kn on Xn, we refer to it as the spectral method for bounding com-
pression functions.

Lemma 5.2. Let G be an infinite group equipped with a metric d and
p ∈ [1,∞). Let Xn be a sequence of finite subsets in G and Kn be reversible
Markov kernels on Xn with stationary distribution πn . Suppose there exist a
constant c ∈ (0, 1) and an increasing sequence {ln}such that the array an defined
as an(u, v) = π(u)π(v) satisfies the (p; ln, c)-mass distribution condition (21).
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Let f : G→ X be a 1-Lipschitz uniform embedding. Then the compression
function of f satisfies

ρf (ln) ≤ diamd(Xn)

Ç
1

λp(Xn,Kn,X)

Ç∑
u,v∈Xn dX(f(u), f(v))pKn(u, v)πn(v)

c
∑
u,v∈Xn d(u, v)pπ(u)π(v)

åå 1
p

.

Proof. Equip Xn with the metric induced by the metric d on G; the in-
equality follows from (22). �

Example 5.3. Consider the special case where Xn is a sequence of finite
subgroups in G and d is a left invariant metric on G, e.g., the word metric. Take
µn to be a symmetric probability measure on Xn and Kn(u, v) = µn

(
u−1v

)
.

Then the Markov chain with transition kernel Kn is the random walk on Xn

with step distribution µn. It is reversible with respect to the uniform distri-
bution Un on Xn. In this case, because of transitivity, the mass distribution
condition is easily satisfied, namely,∑

v: d(u,v)≥ 1
2

diamd(Xn)

Un(v) ≥ 1

2
for every u ∈ Xn.

It follows that an = (Un(u)Un(v)) satisfies the
(
p, 1

2 diamd (Xn), 1
2

)
-mass dis-

tribution condition, and the bound in Lemma 5.2 simplifies to

ρf

Å
diamd(Xn)

2

ã
≤
Ç

2p+2∑
u,v∈Xn dX(f(u), f(v))pKn(u, v)πn(v)

λp(Xn,Kn,X)

å 1
p

.

5.2. Markov type inequalities . The notion of the Markov type of a metric
space was introduced by K. Ball in [Bal92]. It has found important applications
in metric geometry. In [LMN02], Linal, Magen and Naor pointed out that the
basic assumption of this concept can be viewed as Poincaré inequalities. The
Markov type method for bounding a compression exponent was first introduced
by Naor and Peres in [NP08] and later significantly extended in [NP11].

Definition 5.4 (K. Ball [Bal92]). Given a metric space (X, dX) and p ∈
[1,∞), we say that X has Markov-type p if there exists a constant C > 0 such
that for every stationary reversible Markov chain {Zt}∞t=0 on {1, . . . , n}, every
mapping f : {1, . . . , n} → X and every time t ∈ N,

(26) EdX(f(Zt), f(Z0))p ≤ CptEdX(f(Z1), f(Z0))p.

The least such constant C is called the Markov-type p constant of X and is
denoted by Mp(X).

Theorem 2.3 in Naor-Peres-Sheffield-Schramm [NPSS06] implies the fol-
lowing results for the classical Lebesgue spaces Lp. For p ∈ (1, 2], the space Lp
has Markov type p and Mp (Lp) ≤ 8

(2p+1−4)1/p ; and for every p ∈ [2,∞), Lp has
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Markov type 2 and M2 (Lp) ≤ 4 (p− 1)
1
2 . See [NPSS06] for more examples of

metric spaces of known Markov type.
In the setting of (20), the inequality (26) in the definition of Markov type

p can be viewed as a Poincaré inequality with

au,v = Kt(u, v)π(u) and bu,v = K(u, v)π(u),

where K is the transition kernel of a reversible Markov chain on state space
M of n points, and π is its stationary distribution. The Poincaré inequality
provided by (26) reads∑
u,v∈M

dX(f(u), f(v))pKt(u, v)π(u) ≤Mp
p (X) t

∑
u,v∈M

dX(f(u), f(v))K(u, v)π(u)

for all functions f : M → X. Note that the notion of Markov type is very
powerful. If X has Markov type p, then the inequality above is valid for any
finite state spaceM and any reversible Markov transition kernel K onM.

Now we examine the mass distribution condition. Let (M, dM) be a finite
metric space, and let K be a reversible Markov kernel on M with stationary
distribution π. Let {Zt}∞t=0 be a stationary Markov chain onM with transition
kernel K. At time t, set

γ(t)p =
1

2
Eπ [dM(Zt, Z0)p] .

Then

Eπ[dM(Zt, Z0)p1{dM(Zt,Z0)>γ(t)}]

= Eπ [dM(Zt, Z0)p]−Eπ
[
dM(Zt, Z0)p1{dY (Zt,Z0)≤γ(t)}

]
≥ Eπ [dM(Zt, Z0)p]− γ(t)p =

1

2
Eπ [dM(Zt, Z0)p] .

That is, the array a satisfies the
(
p;
(

1
2Eπ [dM(Zt, Z0)p]

) 1
p , 1

2

)
-mass distribu-

tion condition, where a is defined by au,v = Kt(u, v)π(u). From the inequal-
ity (22) we derive the following upper bound on compression function.

Lemma 5.5. Let G be an infinite group equipped with a metric d. Let
f : G → X be a 1-Lipschitz uniform embedding. Assume that X has Markov
type p.

Let Xn be a sequence of finite sets of G, and let Kn be a reversible Markov
kernel on Xn with stationary distribution πn . Let

¶
Z

(n)
t

©∞
t=0

be a stationary
Markov chain on Xn with transition kernel Kn . Then for any tn ∈ N, the
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compression function of f satisfies

ρf

(Å
1

2
Eπn

[
d
Ä
Z

(n)
tn , Z

(n)
0

äp]ã 1
p

)

≤

Ñ
2Mp

p (X)tn diam(G,d) (Xn)p
Eπn

[
dX
Ä
f
Ä
Z

(n)
1

ä
, f
Ä
Z

(n)
0

ääp]
Eπn

[
d
Ä
Z

(n)
tn , Z

(n)
0

äp] é 1
p

.

Remark 5.6. This upper bound on the compression function is in the same
spirit as the argument of Naor and Peres in Section 5 of [NP11]. The difference
is that in [NP11] the authors considered random walks on the infinite group G
starting at identity and f is taken to be a 1-cocycle on G. Then the Markov
type inequality for 1-cocycles was applied to bound the compression function.
One restriction for such an approach is that the step distribution of the random
walk needs to have finite p-moment. While in the finite subsets, in principle
one can experiment with any reversible transition kernel and choose the best
one available. Examples that illustrate this point can be found in Section 7.1.

5.3. Comparing spectral and Markov type methods. It is interesting to com-
pare the classical Poincaré inequalities and the ones from Markov type method.
Suppose in the infinite group G that we have chosen a sequence of subsets {Xn}
and reversible Markov kernels Kn on Xn. With this sequence {(Xn,Kn)} we
compare the results given by the two methods. Let X be a metric space of
Markov type p and f : G → X be a 1-Lipschitz embedding from (G, d) to
(X, dX). To compare terms in the bounds of Lemmas 5.2 and 5.5, first note that

EdX
Ä
f
Ä
Z

(n)
1

ä
, f
Ä
Z

(n)
0

ääp
=

∑
u,v∈Xn

dX(f(u), f(v))pKn(u, v)πn(u).

Now we choose tn to be comparable to the Poincaré constant Pp(Xn,Kn,X). (It
corresponds to relaxation time when X is a Hilbert space and p = 2.) Suppose
in addition that πn satisfies the (p; θ diam(Xn), c)-mass distribution condition.
Then essentially the difference in the two bounds comes from the ratio

diam(G,d) (Xn)p

Ed
Ä
Z

(n)
tn , Z

(n)
0

äp .
Thus if there is a constant c1 > 0 such that for tn ' Pp (Xn,Kn,X),

EdXn
Ä
Z

(n)
tn , Z

(n)
0

äp
≥ cp1 diam(G,d)(Xn)p,

then up to some multiplicative constants, the two methods give the same com-
pression upper bound.

It is important in applications that the choice of the sequence of finite
subsets Xn and Markov kernels Kn is flexible. For example, in order to use
Poincaré inequalities to obtain an upper bound on the compression function of
uniform embedding f from G into a Hilbert space, the subsets Xn should be
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chosen to capture some worst distorted elements in the group under f , and the
Markov kernel Kn on Xn should be chosen so that

1

λ(Kn)

Ñ ∑
u,v∈Xn

dH(f(u), f(v))2Kn(u, v)πn(v)

é
is as small as possible. That is, Kn needs to achieve a balance between spectral
gap and Dirichlet form EKn(f). This point will be the guideline for the choice
of (Xn,Kn) in the examples we treat.

5.4. Metric cotype inequalities. The notion of type and cotype plays a cen-
tral role in the local theory of Banach spaces. The classical linear notion of type
and cotype is defined as follows. A Banach space X is said to have (Rademacher)
type p > 0 if there exists a constant T > 0 such that for every n and every
x1, . . . , xn ∈ X,

E

∥∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥∥
p

X

≤ T p
n∑
j=1

‖xj‖pX ,

where E is the expectation with respect to uniform distribution on (ε1, . . . , εn) ∈
{−1, 1}n. A Banach space X is said to have (Rademacher) cotype q > 0 if there
exists a constant C > 0 such that for every n and every x1, . . . , xn ∈ X,

E

∥∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥∥
q

X

≥ 1

Cq

n∑
j=1

‖xj‖qX .

Given a Banach space X, define

pX = sup {p : X has type p}, qX = inf {q : X has cotype q}.

The space X is said to be of non-trivial type if pX > 1, and it is of non-trivial
cotype if qX <∞.

Mendel and Naor [MN08] introduced the non-linear notion of metric co-
type. By [MN08, Def. 1.1], (X, dX) has metric cotype q with constant Γ if
for every integer n ∈ N, there exists an even integer m, such that for every
f : Znm → X,

n∑
j=1

∑
u∈Znm

dX

(
f
(
u+

m

2
ej

)
, f(u)

)q
π(u)

≤ Γqmq
∑
u∈Znm

E [dX (f (u+ ε), f(u))q]π(u),

where π is the uniform distribution on Znm and E is the expectation taken with
respect to uniform distribution on ε = (ε1, . . . , εn) ∈ {−1, 0, 1}n, and {ej} is
the standard basis of Rn. Mendel and Naor proved in [MN08] that for a Banach
space X and q ∈ [2,∞), X has metric cotype q if and only if it has Rademacher
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cotype q. As a key step, they established the following sharp estimate, which
we will refer to as the metric cotype inequality.

Theorem 5.7 ([MN08, Th. 4.2]). Let π be the uniform distribution on Znm
and σ be the uniform distribution on {−1, 0, 1}n . Let X be a Banach space of
Rademacher type p > 1 and cotype q ∈ [2,∞). Then for every f : Znm → X,

∑
u∈Znm

n∑
j=1

dX

(
f
(
u+

m

2
ej

)
, f(u)

)q
π(u)

≤
(

5 max
{
C(X)m,n

1
q

})q ∑
u∈Znm

∑
ε∈{−1,0,1}n

dX (f(u+ ε), f(u))q σ(ε)π(u),

where C(X) > 0 is a constant that only depends on the cotype constant and
Kq-convexity constant of X.

For our purposes, the Mendal-Naor metric cotype inequality can be viewed
as a Poincaré inequality with a rather unusual choice of arrays a,b on Znm,
namely,

au,v =
n∑
j=1

π(u)1{v=u+m
2
ej} and bu,v =

∑
ε∈{−1,0,1}n

π(u)1{v=u+ε}σ(ε).

Then the Poincaré constant is bounded by

Pa,b,2 (Znm,X) ≤
(

5 max
{
C(X)mn

1
2
− 1
q , n

1
2

})2
.

It captures a subtle comparison between a transition kernel that moves far in
one fiber and another kernel that moves by ±1 across the whole product.

Among many other applications of metric cotype, such inequalities provide
sharp lower bound for the distortion of embeddings of the `∞-integer lattice
[m]n∞ into Banach spaces of non-trivial type and cotype q; see Theorem 1.12 in
[MN08]. In Section 8 we will apply these metric cotype inequalities in the study
of compression of diagonal product ∆ constructed with dihedral groups, exactly
because of the presence of l∞-lattices of growing side length in the group.

6. Compression of ∆ with embedded expanders

In this section we consider compression of the diagonal product ∆ con-
structed with {Γs} chosen to be certain families of expanders. Let X be a
Banach space. A map Ψ : G → X is called G-equivariant if there exists
an action τ of G on X by affine isometries and a vector v ∈ X such that
Ψ(g) = τ(g)v for all x ∈ G. Such a map is called a 1-cocycle; see [dCTV07].

A couple of functions (g1, g2) is an equivariant-X–compression gap of G if
any 1-Lipschitz G-equivariant embedding ϕ : G→ X satisfies ρϕ(t) ≤ g2(t) for
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all t ≥ 1 and there exists a 1-Lipschitz G-equivariant embedding Ψ : G → X

such that ρΨ(t) ≥ g1(t) for all t ≥ 1.
We address the question regarding possible Lp-compression exponents of

finitely generated amenable groups.

Proposition 6.1. For any γ ∈ [0, 1], there exists a finitely generated
elementary amenable group ∆ such that for all p ≥ 1,

α#
p (∆) = γ.

This result follows from a more precise result about the equivariant com-
pression gap of the diagonal product group ∆; see Theorem 6.11. We will see
that when the lamp groups {Γs} are chosen to be expanders, single copies of
these lamp groups provide sufficient obstruction for embedding. In some sense
this case can be viewed as an amenable analogue of [ADS09].

6.1. An upper bound in any uniformly convex Banach spaces. In this sub-
section we take {Γs} as a subsequence in the Lafforgue super expanders {Γm}
described in Example 2.3. By Fact 2.15, each group Γs embeds homothetically
in the diagonal product ∆ with ratio ks+ 1, i.e., there is group homomorphism
ϑs : Γs → ∆ satisfying

|ϑs(γ)|∆ = (ks + 1) |γ|Γs .

From these distortion estimates and the embeddings ϑs : Γs ↪→ ∆, we imme-
diately derive an upper bound on the compression function of ∆ into X by
Lemma 5.2.

Lemma 6.2. Let ∆ be the diagonal product with parameters (ks) and lamp
groups {Γs} chosen as a subsequence of Lafforgue super expanders in Exam-
ple 2.3, diam(Γs) = ls . Then for any uniformly convex Banach space X, there
exists a constant δ = δ (Γ,X, |A|+ |B|) > 0 such that the compression function
of any 1-Lipschitz embedding Ψ : ∆→ X satisfies

ρΨ

Å
1

2
(ks + 1)ls

ã
≤ 4δ−

1
2 (ks + 1).

Proof. Take Xs = ϑs (Γs) and Ks(u, v) = νs
(
ϑ−1
s (u−1v)

)
, where νs is

uniform on the generating set A(s) ∪ B(s). To apply Lemma 5.2, note that
diamd∆

(Xs) = (ks + 1)ls, the Poincaré constant P2 (Xs,Ks,X) ≤ 1/δ by Laf-
forgue’s result (1), where δ is a constant only depending on Γ,X and |A|+ |B|.
Since Ψ is 1-Lipschitz with respect to |·|∆,∑

u,v∈Xs

dX(Ψ(u),Ψ(v))2Ks(u, v)πs(u) ≤ (ks + 1)2.

Since πs is the uniform distribution on the subgroupXs, the upper bound on ρΨ

then follows from the Poincaré inequalities (1) in Example 5.3 with p = 2. �
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6.2. Compression gaps of embeddings of ∆ into Lp . In this subsection we
focus on the case where Lp, p ≥ 1, are target spaces for embedding.

6.2.1. Upper bound when {Γs} are expanders. When the target space is
Lp, p ≥ 1, a more precise piecewise upper bound of the compression gap can be
obtained. Recall that a symmetric probability measure µ on a group G defines
a Markov transition kernel K(u, v) = µ(u−1v) that is reversible with respect
to the uniform distribution on G. Its `2-spectral gap λ (G,µ) = λ (G,K) is
defined as in (23).

Proposition 6.3. Let ∆ be the diagonal product with parameters (ks) and
lamp groups {Γs} expanders where diam(Γs) = ls <∞. Suppose {Γs} satisfies
Assumption 2.1 and

λ (Γs, νs) ≥ δ > 0 for all s with ls <∞,

where νs is uniform on A(s)∪B(s). Then there exists a constant C0 depending
only on |A| , |B| such that for any 1-Lipschitz embedding Ψ : ∆ → Lp , the
compression function of Ψ satisfies, for all s ≥ 1 with ks, ls <∞,

ρΨ

Å
1

2
x

ã
≤ C(δ, p)

x

ls
if x ∈ [ksls, ks+1ls] ,

where C(δ, p) =

{
C0δ

− 1
p if 1 ≤ p ≤ 2,

C0pδ
− 1

2 if p > 2.
(27)

Remark 6.4. If ks+1, ls+1 < ∞, then by monotonicity of the compression
function, the bound extends to the interval [ks+1ls, ks+1ls+1]; namely, for x ∈
[ks+1ls, ks+1ls+1],

ρΨ

Å
1

2
x

ã
≤ ρΨ

Å
1

2
ks+1ls+1

ã
≤ C(δ, p)ks+1.

If ls+1 =∞, the situation is different. We need to have information regarding
compression of the infinite group Γ; see Lemma 6.6.

Proof. Consider the subgroup

Γ′s = [A(s), B(s)]Γs = ker (Γs → A(s)×B(s)) .

Take the symmetric generating set R(s) for Γ′s using the Reidemeister-Schreier
algorithm in Lemma 2.18, where F = A(s)×B(s), S = A(s)∪B(s). Then the
inclusion map from (Γ′s, R(s)) into (Γs, A(s) ∪B(s)) is bi-Lipschitz, |γ|R(s) ≤
|γ|Γs ≤ 5|γ|R for all γ ∈ Γ′s. Let µs be the uniform distribution on R(s). It is
known that if there is a (C,C)-quasi isometric map ψ : (G,S) → (H,T ) and
if the image ψ(G) is R dense in H, then the Poincaré constant of (H, ν) is
comparable to the Poincaré constant of (G,µ) with constants only depending
on C,R, |S| , |T |, where µ (resp. ν) is the uniform distribution on S∪S−1 (resp.
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T ∪ T−1); see the proof of [CSC95, Prop. 4.2] or [PSC00, Th. 1.2]. In the
current situation, since the inclusion map (Γ′s, R(s)) into (Γs, A(s) ∪B(s)) is
a (5, 5)-quasi-isometry and Γ′s is 2-dense in Γs, there exists a constant c0 only
depending on |A| and |B| such that the spectral gap of µs satisfies

λ(Γ′s, µs) = δ̃ ≥ c0δ.

Let t ∈ [ks, ks+1]. Consider the direct product Πt
s of t copies of Γ′s in the

factor ∆s at site 0, 1, . . . , t− 1. By Section 2.3, Πt
s is an embedded subgroup of

∆. Denote such an embedding by θs : Πt
s ↪→ ∆. On Πt

s, take the product kernel
ζt = (µs)0 ⊗ · · · ⊗ (µs)t−1. By the tensorizing property of classical Poincaré
inequalities, we have that for any function f : Πt → R,∑
u,v∈Πt

|f(u)− f(v)|2 πΠts
(u)πΠts

(v) ≤ δ̃−1
∑

u,v∈Πt

|f(u)− f(v)|2 πΠt(u)ζt
(
u−1v

)
.

By Matoušek’s extrapolation lemma for Poincaré inequalities [Mat97] (see the
version in [NS11, Lemma 4.4]), it follows that for any f : Πt → `p,

• if 1 ≤ p ≤ 2, then∑
u,v∈Πts

‖f(u)− f(v)‖pp πΠts
(u)πΠts

(v)

≤ δ̃−1
∑

u,v∈Πts

‖f(u)− f(v)‖pp πΠts
(u)ζt

(
u−1v

)
;

• if p > 2, then∑
u,v∈Πts

‖f(u)− f(v)‖pp πΠts
(u)πΠts

(v)

≤ (2p)pδ̃−p/2
∑

u,v∈Πts

‖f(u)− f(v)‖pp πΠts
(u)ζt

(
u−1v

)
.

Let ϕ : ∆ → `p be a 1-Lipschitz uniform embedding of ∆ with respect to the
word metric |·|∆. Apply Lemma 5.2 to the subset θs (Πt) equipped with the
kernel ζt ◦ θ−1

s . With the mass distribution condition satisfied by Lemma 2.16,
we have

ρϕ

Å
1

2
tls

ã
≤ c(δ̃, p)t,

where the constant c(δ̃, p) is given by

(28) c(δ̃, p) =

{
4(2/δ̃)

1
p if 1 ≤ p ≤ 2,

4 · 21+ 1
p δ̃−

1
2 p if p > 2.

From the standard fact that Lp is (1 + ε)-finitely presentable in lp (see, for
example, the proof of [JV14, Th. 1.1]), we conclude that for for any 1-Lipschitz
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uniform embedding Ψ : ∆→ Lp, the same bound holds:

ρΨ

Å
1

2
tls

ã
≤ c(δ̃, p)t. �

6.2.2. Upper bound with an infinite group Γs having strong property (T ).
Next we consider the case where Γs = Γ is an infinite group. (It corresponds
to ls = ∞.) Let Γ be a discrete group equipped with a finite generating set
S, and let X be a Banach space. A linear isometric Γ-representation on X is a
homomorphism % : Γ→ O(X), where O(X) denotes the groups of all invertible
linear isometries of X. Denote by X%(Γ) the closed subspace of Γ-fixed vectors.
When X is uniformly convex, by [BFGM07, Prop. 2.6] the subspace of X%(Γ) is
complemented in X, X = X%(Γ) ⊕ X′(%), and the decomposition is canonical.

Definition 6.5. Let Γ be a discrete group equipped with a finite generating
set S, and let X be a uniformly convex Banach space.

• Following [BFGM07], we say that Γ has Property (FX) if any action of Γ on
X by affine isometries has a Γ-fixed point.
• We say Γ has Property (TX) if there exists a constant ε > 0 such that for
any representation % : Γ→ O(X),

max
s∈S
‖%(s)v − v‖X ≥ ε ‖v‖X for all v ∈ X′(%).

The maximal ε with this property is called the X-Kazhdan constant of Γ

with respect to S and is denoted by κX(Γ, S).

By [BFGM07, Th. 1.3 and Rem. 2.28], Property (FX) implies Property
(TX) in any uniformly convex Banach space X with uniformly convex dual.

Lemma 6.6. Let ∆ be the diagonal product with parameters (ks)s≤s0 and
lamp groups {Γs}s≤s0 , where Γs0 = Γ is an infinite group marked with generat-
ing subgroups A,B . Suppose X is a uniformly convex Banach space and Γ has
Property (FX). Then for any equivariant 1-Lipschitz embedding Ψ : ∆→ X, the
compression function of Ψ satisfies

ρΨ (x) ≤ 2

κX(Γ, A ∪B)
(ks0 + 1) for all x ∈ [ks0 + 1,∞] .

Proof. Since the embedding ϑs0 : Γ ↪→ ∆ is a homothety with |ϑs0(γ)|∆ =

(ks0 +1) |γ|Γ, ψ = Ψ◦ϑs0 : Γ→ X is a (ks0 +1)-Lipschitz equivariant embedding.
Consider ψ̃ = ψ

ks0+1 . Since ψ̃ equivariant, it is a 1-cocycle with respect to
some representation % : Γ → O (X). Since Γ has Property (FX), H1(Γ, %) =

Z1(Γ, %)/B1(Γ, %) vanishes. It follows that ψ̃ is a 1-coboundary; that is, there
exists v ∈ X such that

ψ̃(g) = %(g)v − v.
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We may take v in the complement X′(%). Then by Property (TX),

max
s∈A∪B

‖%(s)v − v‖X ≥ κ ‖v‖X , where κ = κX(Γ, A ∪B).

Since ψ̃ is 1-Lipschitz, we have κ ‖v‖X ≤ maxs∈A∪B

∥∥∥ψ̃(s)
∥∥∥
X
≤ 1. It follows

that for any g ∈ Γ,∥∥∥ψ̃(g)
∥∥∥
X

= ‖%(g)v − v‖X ≤ ‖%(g)v‖X + ‖v‖X = 2 ‖v‖X ≤ 2/κ.

Now we get back to Ψ. Since Ψ◦ϑs0 = (ks0 +1)ψ̃ and |ϑs0(γ)|∆ = (ks0 +1) |γ|Γ,
we deduce from

∥∥∥ψ̃(g)
∥∥∥
X
≤ 2/κ that

ρΨ (x) ≤ 2

κX(Γ, A ∪B)
(ks0 + 1) for all x ∈ [ks0 + 1,∞]. �

Remark 6.7. In practice, we use the bound in Lemma 6.6 for the interval
[(ks0 + 1) ls0−1,∞], because for smaller length x, the copies Γs with s ≤ s0 − 1

provide better upper bounds.

Property (FX) is very strong. By Bader-Furman-Gelander-Monod (see
[BFGM07, Th. B]) and standard Hereditary properties ([BdlHV08, §2.5]), the
lattice Γ in Example 2.3 has Property FLp for all 1 < p <∞.

When we specialize to Lebesgue spaces Lp, p ∈ (1,∞), the p-Kazhdan
constant can be estimated in terms of the Kazhdan constant in Hilbert space,
via the explicit Mazur map.

Fact 6.8 (Follows from [BFGM07], [Maz29]). Let Γ be a discrete group
equipped with finite generating set S , and suppose that Γ has the Kazhdan prop-
erty (TL2). Then for p > 2, κLp(Γ, S) ≥ 1

p2p/2
κL2(Γ, S); for 1 < p < 2,

κLp(Γ, S) ≥ 2
− p+2

p κ
2/p
L2

(Γ, S).

Proof. Let % : Γ → O(Lp) be a Γ-representation in Lp, and take any unit
vector f in the complement X′(%). Let Mp,q : Lp → Lq be the Mazur map

Mp,q(f) = sign(f)|f |p/q.

By [BFGM07, Lemma 4.2], the conjugation U 7→Mp,2 ◦ U ◦M2,p sends O(Lp)

to O(L2). Define π : Γ→ O(L2) by π(g) = Mp,2 ◦ %(g) ◦M2,p. By definition of
the Mazur map, we have ‖Mp,2(f)‖22 = ‖f‖pp = 1.

Consider first the case p > 2. From [Maz29],

(29)
∣∣∣|a| 2p sign(a)− |b|

2
p sign(b)

∣∣∣ ≤ 2|a− b|
2
p ,

and so we have ‖M2,p(u)−M2,p(v)‖pp ≤ 2p ‖u− v‖22 for u, v ∈ L2. Note that

Mp,2 maps L%(Γ)
p onto Lπ(Γ)

2 , and therefore for any unit vector f ∈ X′(%), we
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have
inf

v∈Lπ(Γ)
2

‖Mp,2(f)− v‖22 ≥
1

2p
inf

h∈L%(Γ)
p

‖f − h‖pp ≥
1

2p
;

that is, the projection of Mp,2(f) to
Ä
L
π(Γ)
2

ä⊥
has L2-norm at least 2−p/2. By

[Maz29],

(30)
∣∣∣|a|p/2sign(a)− |b|p/2sign(b)

∣∣∣ ≤ p

2
|a− b|

Ä
|a|

p
2
−1 + |b|

p
2
−1
ä
,

and so we have

‖π(s)u− u‖22 =

ˆ ∣∣∣|%(s)f |p/2sign(%(s)f)− |f |p/2sign(f)
∣∣∣2 dm

≤
ˆ (p

2

)2
|%(s)f − f |2

Ä
|%(s)f |

p
2
−1 + |f |

p
2
−1
ä2
dm

≤
(p

2

)2
Åˆ
|%(s)f − f |p dm

ã2/p Åˆ Ä
|%(s)f |

p
2
−1 + |f |

p
2
−1
ä 2p
p−2 dm

ã p−2
p

.

(31)

The last step uses Hölder inequality. By triangle inequality in L p
p−2

and
%(s) ∈ O(Lp),Åˆ Ä

|%(s)f |
p
2
−1 + |f |

p
2
−1
ä 2p
p−2 dm

ã p−2
p

≤ 4 ‖f‖p−2
p = 4.

Let u′ be the projection of u to L′2(π). Then

max
s∈S
‖π(s)u− u‖2 = max

s∈S

∥∥π(s)u′ − u′
∥∥

2
≥ κL2(Γ, S)

∥∥u′∥∥
2
≥ 2−p/2κL2(Γ, S).

Combining with (31), we have

1 ≤ 2p

κL2(Γ, S)2
max
s∈S
‖π(s)u− u‖22 ≤

Ç
p2p/2

κL2(Γ, S)

å2

max
s∈S
‖%(s)f − f‖2p .

We conclude that κLp(Γ, S) ≥ 1
p2p/2

κL2(Γ, S).
In the case 1 < p < 2, rewrite (29) as

|a− b|p ≤ 2p
∣∣∣|a|p/2sign(a)− |b|p/2sign(b)

∣∣∣2 .
We deduce that the projection of Mp,2(f) to

Ä
L
π(Γ)
2

ä⊥
has L2-norm at least

2−p/2. Applying (29), we get

‖π(s)u− u‖22 =

ˆ ∣∣∣|%(s)f |p/2sign(%(s)f)− |f |p/2sign(f)
∣∣∣2 dm

≤
ˆ

4|%(s)f − f |pdm = 4 ‖%(s)f − f‖pp .

It follows that κLp(Γ, S) ≥ 2
− p+2

p κ
2/p
L2

(Γ, S). �
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6.2.3. Basic test functions and 1-cocycles on ∆. The discussion in this
subsection is valid for any choice of {Γs} that satisfies Assumption 2.1. The
1-cocycle constructed using the basic test functions will be useful in later sec-
tions as well.

First recall some basic test functions on ∆ constructed in Section 4.1.2.
They capture the feature that in each copy of Γs in ∆s, the generators ai(s)
and bi(s) are kept distance ks apart. In the group ∆, for r ≥ 2, define the
subset Ur as

Ur = {Z ∈ ∆ : Range(Z) ⊆ [−r, r]}.

Recall that Range(Z) is defined in Section 2.2.2; it is the minimal interval of Z
visited by the cursor of a path representing Z. Take a function supported on
the subset Ur,

(32) ϕr ((fs), z) = max

ß
0, 1− |z|

r

™
1Ur ((fs), z).

Let q be the switch-or-walk measure q = 1
2(µ+ν) on ∆, where ν is the uniform

measure on {αi, βj : 1 ≤ i ≤ |A| , 1 ≤ j ≤ |B|} and µ is the simple random walk
measure on the base Z, µ

(
τ±1

)
= 1

2 . We have seen in the proof of Proposi-
tion 4.4 that for p = 2,

E∆,q (ϕr)

‖ϕr‖22
∼ 3

2r2
.

Define ϕ1 to be the indicator function of the identity e∆,

ϕ1 = 1e∆ .

Motivated by Tessera’s embedding in [Tes11, §3], given a non-decreasing func-
tion γ : Z≥0 → R+ with γ(0) = 1 and

(33) C(γ) =
∞∑
t=1

Å
1

γ(t)

ã2

<∞,

we define a 1-cocycle bγ : ∆→ ⊕∞j=0`
2(∆) ⊂ L2,

(34) bγ(Z) =
∞⊕
j=0

(
1

γ(j)

ϕ2j − τZϕ2j

E∆,q (ϕ2j )
1
2

)
,

where τg denote right translation of functions, τgϕ(h) = ϕ
(
hg−1

)
.

Lemma 6.9. The 1-cocycle bγ : ∆ → L2 defined in (34) is
√

2C(γ)-
Lipschitz. Suppose in addition that there exists m0 ≥ 2 such that ks+1 ≥ m0ks ,
ls+1 ≥ m0ls for any s ≥ 1. Then there is a constant C(m0) > 0 depending only
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on m0 such that

ρbγ (x) ≥ C(m0)
x/ls

γ(log2(x/ls))
if x ∈ [ksls, ks+1ls),

ρbγ (x) ≥ C(m0)
ks+1

γ (log2 ks+1)
if x ∈ [ks+1ls, ks+1ls+1).

Proof. Clearly ‖bγ(Z)‖ = 1 when Z is a generator in A∪B and ‖bγ(Z)‖ =√
2C(γ) when Z = τ is the generator of the cyclic base Z.

The 1-cocycle bγ captures the size of Range(Z). Denote Z = ((fs), i) and
observe that if Range(Z) > 2j+2, then

(suppϕ2j ) ∩ (suppτZϕ2j ) = ∅.

Indeed, either there exist ι /∈ [−2j+1, 2j+1] and s ≤ s0(Z) with fs(ι) 6= e∆s

and then this also holds for all elements of suppτZϕ2j and none of suppϕ2j , or
|i| > 2j+1 and then the projections on the base of the two supports are disjoint.
Therefore

‖ϕ2j − τZϕ2j‖
2
2

E∆,q (ϕ2j )
=

2 ‖ϕ2j‖
2
2

E∆,q (ϕ2j )
∼ 4 · 22j

3
.

By construction of bγ , this implies that if Range(Z) > 2j+2, then

‖bγ(Z)‖2 ≥
2j√

3γ(j)
.

By Definition 2.8, for Z with Range(Z) = r ∈ [ks, ks+1), we have s0(Z) ≤ s.
Denote Z = ((fs), i). Then by Lemma 2.13,

|(fs, i)|∆s = |πs(Z)|∆s ≤ 18(r + 1)ls

because at most 2r/ks+1 intervals contribute to the essential contribution. By
Proposition 2.14, the word distance of Z to e∆ is bounded:

|Z|∆ ≤ 500 · 18(r + 1) (l0 + · · ·+ ls) ≤
9000(r + 1)ls

1− 1/m0
.

It follows that

ρbγ

Å
9000(r + 1)ls

1− 1/m0

ã
≥ r

8γ(log2 r)
.

To write it into the first inequality stated, note that since bγ is equivariant, ρbγ
is subadditive.

The second bound follows from the first bound evaluated at x = ks+1ls
and the monotonicity of the compression function ρbγ . �

Remark 6.10. The function t/γ ◦ log(t) with γ satisfying (33) does not
satisfy any a priori majoration by a sublinear function. More precisely, [Tes11,
Prop. 8] implies that for any increasing sublinear function h : R+ → R+, there
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exist a non-decreasing function γ satisfying (33), a constant c > 0 and an
increasing subsequence of integers ni, such that

kni
γ ◦ log2 (kni)

≥ ch (kni) for all i.

It follows that the upper bound in Proposition 6.3 cannot be improved.

6.2.4. Possible compression gaps of embeddings into Lp . The 1-cocycle
bγ defined in (34) is almost optimal in the sense that the lower bounds of
Lemma 6.9 match with the upper bounds of Proposition 6.3 up to the fac-
tor sequence 1/γ ◦ log2(ks). The following result is an analogue of [ADS09,
Th. 5.5(II)] in our setting.

Theorem 6.11. There exist absolute constants δ > 0, C > 0 such that
the following holds. Let ρ(x) be any non-decreasing function such that x

ρ(x)

is non-decreasing. Then there exists a finitely generated group ∆ such that(
1
Cε

ρ
log(1+ρ)(1+ε)/2 , Cp2

p/2ρ
)
is an equivariant Lp-compression gap of ∆ for any

p > 1.
Furthermore, if limx→∞ ρ(x) =∞, then the group ∆ constructed is elemen-

tary amenable, and
(

1
Cε

ρ
log(1+ρ)(1+ε)/2 , Cρ

)
is an equivariant L1-compression

gap of ∆.

Proof. We write ρ(x) = x
f(x) with f(x) between 1 and x. The sets K =

Z+∪{∞} and L = {diam Γm,m ≥ 1}∪{∞} of diameters of Lafforgue expanders
from Example 2.3 satisfy the assumptions of Proposition B.2. So we can find
sequences (ks), (ls) taking values in K and L such that the function defined
by f̃(x) = ls on [ksls, ks+1ls] and f̃(x) = x

ks+1
on [ks+1ls, ks+1ls+1] satisfies

f̃(x) 'm0C5
1
f(x). Then ρ̃(x) = x

f̃(x)
'm0C5

1
ρ(x). Let ∆ be the diagonal

product associated to these sequences.
By Proposition 6.3 and Lemma 6.6, any 1-Lipschitz equivariant embedding

Ψ : ∆→ Lp satisfies, for all x,

ρΨ(x) ≤ Cρ̃(2x) ≤ 2m0C
5
1Cρ(x),

where by Fact 6.8,

C ≤ max{C(δ, p),
2

κLp(Γ)
)} ≤ max{C ′p, C ′′p2p/2}.

This gives the upper bound of the compression gap. For p = 1, Lemma 6.6
does not hold, so the upper bound is valid only on the condition that all the
diameters ls are finite, which is satisfied when ρ is unbounded, or equivalently,
f is not asymptotically linear.
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The lower bound is given by the 1-cocyle bγ : ∆→ `2 of Lemma 6.9 with
γ(x) = Cεx

1+ε
2 , where Cε ∼ 1

ε is such that
√

2C(γ) = 1. For all x,

ρbγ (x) ≥ CεC(m0)
ρ̃(x)

log2(ρ̃(x))
1+ε

2

≥ 1

Cε

ρ(x)

log(1 + ρ(x))
1+ε

2

.

Since `2 embeds isometrically in Lp for all p ≥ 1 (see Lemma 2.3 in [NP08]), it
is also an Lp-compression lower bound. �

7. Lp-compression of the wreath product H o Z

In general, for the diagonal products constructed with {Γs} chosen to
be finite groups other than expanders, the analysis of Lp-compression is more
involved. Since our main object ∆ is a diagonal product of a sequence of wreath
products, in this section we first understand compression of uniform embedding
of a single copy of the wreath product H o Z.

In [NP08], Naor and Peres prove that if α#
2 (H) = 1

2β∗(H) , where β
∗(H) is

the supremum of upper speed exponent of symmetric random walk of bounded
support on H, then ([NP08, Cor. 1.3])

α#
2 (H o Z) =

2α#
2 (H)

2α#
2 (H) + 1

.

In their subsequent work [NP11], which significantly extends the method in
[NP08], the Lp-compression exponent of Z o Z is determined ([NP11, Th. 1.2]):
for every p ∈ [1,∞),

α#
p (Z o Z) = max

ß
p

2p− 1
,
2

3

™
.

In [NP11] Naor and Peres also prove the following result when the base group
is of polynomial volume growth at least quadratic. Let H be a non-trivial
finitely generated amenable group and Γ a group of polynomial volume growth.
Suppose the volume growth rate of Γ is at least quadratic. Then [NP11, Th. 3.1]
states that for every p ∈ [1, 2],

α#
p (H o Γ) = min

ß
1

p
, α#

p (H)

™
.

One central idea in these works is the Markov type method that connects
compression exponents of G to the speed exponent of certain random walks
on G. The aim of this section is to obtain the following generalization of the
aforementioned results of Naor and Peres.
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Theorem 7.1. Let p ∈ [1, 2], and let H be a finitely generated infinite
group. Then the equivariant Lp-compression exponent of H o Z is

α#
p (H o Z) = min

 α#
p (H)

α#
p (H) +

Ä
1− 1

p

ä , α#
p (H)

.
Remark 7.2. It will be transparent in the proof of Theorem 7.1 that there

is a dichotomy of the kind of obstruction that H o Z observes, depending on
α#
p (H) as indicated in the formula. Namely, when α#

p (H) > 1
p , then the

sequence of subsets Xn as defined in the proof of Proposition 7.3 captures
distorted elements under the embedding; when α#

p (H) ≤ 1
p , then one single

copy of H already provides sufficient distortion, and in the latter case we have
α#
p (H o Z) = α#

p (H).

7.1. Upper bound of compression function of H o Z. Let Ψ : H o Z→ X be
an equivariant embedding of G = H o Z into metric space (X, dX). Recall that
the group H is naturally identified with the lamp group over site 0,

i : H ↪→ G,

h→ (hδ0, 0).

Then the embedding Ψ induces an equivariant embedding of H into X. We
denote it by ψH

(35) ψH(h) = Ψ ◦ i(h) = Ψ ((hδ0, 0)).

Denote the compression function of ψH : H → X by ρψH . Since distortion of
the inclusion map i is 1, |h|H = |i(h)|G, it follows that

(36) ρΨ(t) ≤ ρψH (t) for all t ≥ 1.

We now explain how to apply the spectral method to derive a second upper
bound on ρΨ when Ψ is a uniform embedding of G into Lp, p ∈ (1, 2]. The
novelty here is in the choice of Markov kernels on lamplighter graphs.

Proposition 7.3. There exists a constant C > 0 such that for any p ∈
(1, 2] and any 1-Lipschitz equivariant embedding Ψ : G → Lp of G = H o Z
into Lp , the compression function ρΨ of Ψ satisfies

(37) ρΨ(t) ≤ C
Å

p

p− 1

ã 1
p (

2ρψH ◦ τ
−1(t)

) p
p−1 log

1
p
(
2ρψH ◦ τ

−1(t)
)
,

where ψH is the induced embedding of the subgroup H into Lp as in (35) and
the function τ : R+ → R+ is defined as

τ(x) = 2
1
p−1x (ρψH (x))

p
p−1 .
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Proof. By definition of the compression function ρψH , for every n ≥ 1,
there exists an element hn ∈ H such that |hn|H ≥ n and

‖ψH (hn)− ψH (eH)‖p ≤ 2ρψH (n).

Take Xn to be a finite subset in G defined by

Xn =

®
(f, z) : z ∈ [0,mn − 1] ,

f(x) ∈ {eH , hn} for x ∈ [0,mn − 1]

f(x) = eH for x /∈ [0,mn − 1]

´
.

The length mn will be determined later. Note that Xn has the structure
of a lamplighter graph; namely, let Lmn be lamplighter graph over segment
[0,mn − 1] defined in Appendix C. Then there is a bijection

σn : Lmn → Xn,

σn (f, x) =
Ä
f̃ , x
ä
, where f̃(z) = hf(z)

n .

In Appendix C we define a Markov transition kernel pmn on Lmn that moves
on the base segment with a Cauchy-like step distribution ζmn . On Xn, take
the Markov kernel Kn to be pmn ◦ σ−1

n ; that is,

Kn(u, v) = pmn
(
σ−1
n (u), σ−1

n (v)
)
.

Denote by πn the stationary distribution of Kn on Xn, πn = Umn ◦σ−1
n . Under

the bijection σn, the Poincaré inequality that Ψ ◦ σn : Lmn → Lp satisfies as in
Lemma C.1 implies∑

u,v∈Xn

‖Ψ(u)−Ψ(v)‖pp πn(u)πn(v)

≤ Cmn logmn

∑
u,v∈Xn

‖Ψ(u)−Ψ(v)‖ppKn (u, v)πn(u).
(38)

Now we deduce an upper bound on ρΨ from Poincaré inequalities (38) by
applying Lemma 5.2. Because of equivariance of Ψ, for any u ∈ G,

‖Ψ (u · (hδ0, 0))−Ψ(u)‖p = ‖Ψ ((hδ0, 0))−Ψ(eG)‖p = ‖ψH (h)− ψH(eH)‖p .

Recall thatKn moves as a “switch-walk-switch” transition kernel. By the Hölder
inequality,∑
u,v∈Xn

‖Ψ(u)−Ψ (v))‖ppKn(u, v)πn(u)

≤ 2 · 3p−1 ‖ψH(eH)− ψH(hn)‖pp
+ 3p−1

∑
(f,z)∈Xn

∑
y∈[0,mn−1]

‖Ψ((f, z))−Ψ ((f, z) · (eH , y))‖pp ζmn(z, y)πn((f, z))

≤ 3p

(2ρψH (n))p +
∑

z,y∈[0,mn−1]

|z − y|p ζmn(z, y)Cmn(z)

 ,
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where Cmn(z) denotes the stationary distribution of ζmn . The last step used
the choice that ‖ψH (hn)− ψH (eH)‖p ≤ 2ρψH (n) and the assumption that Ψ

is 1-Lipschitz. From the explicit formula that defines ζmn , for p > 1, we have∑
z,y∈[0,mn−1]

|z − y|p ζmn(z, y)Cmn(z) ≤ Cmp−1
n .

Set
mn =

†
(2ρψH (n))

p
p−1

£
,

so that the two terms in the Lp-energy upper bound are comparable. Then

(39)
∑

u,v∈Xn

‖Ψ(u)−Ψ (v))‖ppKn(u, v)πn(u) ≤ 3p(1 + C)mp−1
n .

From the explicit lamplighter structure, one checks that the set Xn satisfies
diamG(Xn) = (2 + |hn|H)mn, and that for any u ∈ Xn,

(40)
∑
v∈Xn

1{dG(u,v)≥ 1
2(|hn|H+2)mn}πn(v) ≥ 1

5
.

Applying (38), (39), and (40) in Lemma 5.2, we have

ρΨ

Å
(2 + |hn|H)mn

2

ã
≤
(
C ′mp−1

n ·mn logmn

) 1
p .

Since |hn|H ≥ n, it follows that there exist u, v ∈ Xn, dG(u, v) ≥ 1
2 (n+ 1)mn,

and
‖Ψ(u)−Ψ(v)‖p ≤ C

′mn log
1
p mn.

Note that by definition of τ , τ(n) = 1
2n (2ρψH (n))

p
p−1 , with the choice of mn =†

(2ρψH (n))
p
p−1

£
, the statement follows from rewriting the inequality

ρΨ

Å
1

2
nmn

ã
≤ C ′mn log

1
p mn. �

The Markov type method can also be applied to this situation; it actually
yields more general results. We presented the proof for Lp-compression of G
with p ∈ (1, 2] using the Poincaré inequalities because spectral gap considera-
tions motivate the choice of the α-stable walk on the base with α = 1. Now we
explain how to apply the Markov type method. Let (X, dX) be a metric space
of Markov type p, p > 1, and let Ψ : H o Z → X be a 1-Lipschitz equivariant
embedding. Make the same choice of a sequence of finite subsets Xn and Kn

as in the proof of Proposition 7.3 with

mn =
†
(2ρψH (n))

p
p−1

£
.

Let Zt denote a Markov chain on Lmn with transition kernel pmn . Then Z̃t =

σn (Zt) is a Markov chain on Xn with transition kernel Kn. Run the Markov
chain Z̃t up to time tn = mn logmn. To apply Lemma 5.5, we need a lower
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bound for Eπn
î
dG
Ä
Z̃tn , Z̃0

äpó
. The bijection σn : Lmn → Xn induces a metric

on Lmn by

dσn(u, v) = dG (σn(u), σn(v)).

Direct inspection shows that this metric dσn coincides with the metric dwn with
wn = (1, |hn|H) introduced in Appendix C. By Lemma C.2, we have that for
tn = mn logmn,

Eπn
î
dG
Ä
Z̃tn , Z̃0

äpó
= EUα,mn [dwn (Ztn , Z0)p]

≥ EUα,mn [dwn (Ztn , Z0)]p

≥ (c (1 + |hn|H)mn)p .

In the proof of Proposition 7.3 we checked that

Eπn
î
dX
Ä
Ψ
Ä‹X1

ä
,Ψ
Ä‹X0

ääpó
=

∑
u,v∈Xn

dX (Ψ(u),Ψ(v))pKn(u, v)πn(v)

≤ 3p
[
(2ρψH (n))p + Cmp−1

n

]
.

Choose mn =
†
(2ρψH (n))

p
p−1

£
, and plug these estimates into Lemma 5.5. Then

we have

ρΨ

( c
2

(1 + |hn|H)mn

)
≤ C ′Mp (X)mn log

1
p mn.

Recall that |hn|H ≥ n, and therefore

ρΨ

( c
2
nmn

)
≤ C ′Mp (X)mn log

1
p mn.

The result given by the Markov type method is recorded in the following propo-
sition. By [NPSS06], Lp space with p > 2 has Markov type 2. Proposition 7.4
applies to Lp with p > 2 as well and therefore is more general than Proposi-
tion 7.3.

Proposition 7.4. There exists a constant C > 0 such that the following
holds. Let (X, dX) be a metric space of Markov type p, p > 1, and let Ψ :

H o Z → X be a 1-Lipschitz equivariant embedding. The compression function
ρΨ satisfies

(41) ρΨ(t) ≤ C
Å

p

p− 1

ã 1
p

Mp (X)
(
2ρψH ◦ τ

−1(t)
) p
p−1 log

1
p
(
2ρψH ◦ τ

−1(t)
)
,

where ψH is the induced embedding of the subgroup H into X as in (35),Mp (X)

is the Markov-type p constant of X, and the function τ : R+ → R+ is defined as

τ(x) =
1

C
x (2ρψH (x))

p
p−1 .
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7.2. Lp-compression exponent of H o Z. For the lower bound in the Lp-
compression gap ofH oZ, p ∈ [1, 2], we use the embedding constructed in [NP08,
Th. 3.3 ]. An explicit description of an equivariant embedding is included here
as a warm-up for Section 8. Given a good equivariant embedding ϕ of the
group H into Lp ,

‖ϕ(h1)− ϕ(h2)‖p ≥ ρ− (dH (h1, h2)),

we exhibit an embedding of G = H oZ into Lp with ϕ as building blocks. Recall
that for an element (f, z) ∈ G, the word distance is given by

|(f, z)|G = |ω|+
∑
x∈Z
|f(x)|H ,

where ω is a path of shortest length that starts at 0, visits every point x in the
support of f , and ends at z. We refer to such a path as a traveling salesman path
for (f, z). The embedding of G into Lp consists of two parts: Part I captures
the length of ω, and Part II embeds the lamp configurations {f(x)}x∈Z using
the embedding of H into Lp.

Part I. This part is essentially the same as an embedding of Z2 oZ into Lp.
Consider the following sequence of functions on G = H o Z:

(42) φn ((f, z)) = 1{suppf⊆[−2n,2n]}max

ß
1− |z|

2n
, 0

™
.

Note that if g ∈ G is in the support of φn, then

|ωg| ≤ 4 · 2n,

where ωg denotes a traveling salesman path for g. Also,

(suppφn) (suppφn)−1 ⊆ suppφn+1.

As in [Tes11], given a non-decreasing function γ : N → R+ with γ(1) = 1 and∑∞
t=0

Ä
1
γ(t)

äp
= Cp(γ) <∞, take a cocycle bγ : G→ Lp defined as

(43) bγ (g) =
∞⊕
n=1

1

γ(n)

Ç
τgφn − φn
Ep (φn)1/p

å
,

where τg denotes the right translation of a function φ : G→ R,

τgφ(u) = φ
(
ug−1

)
.

Because of the normalization in the definition of bγ , one readily checks that bγ
is (2Cp(γ))

1
p -Lipschitz.

Given g = (f, x) ∈ G, we say a path ω on Z is a traveling salesman path
for g if it starts at 0, visits every z ∈ Z where f(z) 6= eH , and ends at x. Let
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ωg be a shortest traveling salesman path for g. Suppose |ωg| > 2n+3. Then
g /∈ (suppφn) (suppφn)−1, and it follows that in this case,

‖τgφn − φn‖pp
Ep (φn)

=
2 ‖φn‖pp
Ep (φn)

≥ (2n)p .

Putting the components together, we have that

‖bγ(g)‖p ≥
|ωg|

8γ (log2 |ωg|)
.

Part II. Let ϕ : H → Lp be a 1-Lipschitz equivariant embedding of H
into Lp. Define a map Ξϕ : G→ Lp as

Ξϕ((f, z)) =
⊕
x∈Z

ϕ (f(x)).

Since the map Ξϕ factors through the projection G → ⊕x∈ZH and ϕ is equi-
variant, it follows that Ξϕ is a cocycle. By construction, Ξϕ is 1-Lipschitz
and

‖Ξϕ((f, z))‖pp =
∑
x∈Z
‖ϕ(f(x))‖pp .

Combining the two parts, we define

Φ : G→ Lp,

Φ(g) = bγ(g)
⊕

Ξϕ(g).
(44)

Then we have that Ψ is (2Cp(γ))1/p-Lipschitz and

‖Φ(g)‖pp = ‖bγ(g)‖pp +
∑
x∈Z
‖ϕ(f(x))‖pp

≥ |ωg|p

8γ (log2 |ωg|)
+ c

∑
x∈Z

ρ− (|f(x)|H)p .

Let p ∈ (1, 2]. The bounds (35), (36) and the embedding constructed above
provide rather detailed information about the Lp-compression gap of G = H oZ
in terms of Lp-compression gap of H. We now derive the formula relating the
Lp-compression exponents of G and H stated in Theorem 7.1.

Proof of Theorem 7.1. We first treat the case p ∈ (1, 2]. Let Ψ : G → Lp
be a 1-Lipschitz equivariant embedding of G = H oZ into Lp and ψH its induced
embedding H ↪→ Lp. From (36), it is always true that α#

p (H o Z) ≤ α#
p (H).

Now we apply Proposition 7.3 to prove the upper bound. By definition of
the compression exponent, there exists a constant C = C (ψH) > 0 and an
increasing sequence ni ∈ N with ni →∞ such that

ρψH (ni) ≤ Cn
α#
p (H)
i .
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Along the sequence {ni}, by Proposition 7.3,

ρΨ(ni) ≤ C1(C, p)n
pα

p−1+αp

i log
1
p

Å
n

pα
p−1+αp

i

ã
,

where α = α#
p (H) and C1(C, p) is a constant depending on C and p. Therefore

α#
p (H o Z) ≤ α#

p (H)

α#
p (H) +

Ä
1− 1

p

ä .
We have proved the upper bound.

Note that if α#
p (H) = 0, then α#

p (G) = 0. Thus in the lower bound
direction, we consider the case α#

p (H) > 0. For any 0 < ε < α#
p (H), let

ϕ : H → Lp be a 1-Lipschitz equivariant embedding such that

ρϕ(t) ≥ (ct)α
#
p (H)−ε,

and set γ(n)=log
1+ε
p (1+n). Take the embedding Φ : G→Lp as defined in (44).

Then

‖Φ(g)‖pp = ‖bγ(g)‖pp +
∑
x∈Z
‖ϕ(f(x))‖pp

≥ |ωg|p

8 log1+ε (1 + |ωg|)
+
∑
x∈Z

(c |f(x)|H)
Ä
α#
p (H)−ε

ä
p .

Such an embedding Φ is analyzed in [NP08]. As ε is arbitrarily small, the proof
of [NP08, Th. 3.3 ] applies to show that if α#

p (H) ≤ 1
p , then αp(Φ) ≥ α#

p (H),
and if α#

p (H) > 1
p , then

α#
p (Φ) ≥ α#

p (H)

α#
p (H) + 1− 1/p

.

Finally when p=1, from ρΨ(t) ≤ ρψH (t) and the explicit embedding Φ : G→L1

given a good embedding ϕ : H → L1, we deduce that

α#
1 (G) = α#

1 (H). �

8. Compression of ∆ constructed with dihedral groups

Throughout this section ∆ denotes a diagonal product with input {Γs =

D2ls}. The main result of this section is the following.

Theorem 8.1. Let ∆ be the diagonal product with {Γs = D2ls} and pa-
rameters (ks), and set

θ := lim sup
s→∞

log ls
log ks

.

Assume that (ks) satisfies the growth assumption 2.11. Then
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(i) for p ∈ [1, 2],

α∗p (∆) = max

ß
1

1 + θ
,
2

3

™
;

(ii) for q ∈ (2,∞),

α∗q(∆) =
1

1 + θ
if 0 ≤ θ ≤ 1

q
,

max

 θ + 1− 2
qÄ

2− 1
q

ä
θ + 1− 2

q

,
2

3

 ≤ α∗q (∆) ≤
2θ + 1− 2

q

3θ + 1− 2
q

if θ >
1

q
.

When p ∈ [1, 2], the upper bound on α∗p (∆) is a consequence of the Mendel-
Naor metric cotype inequality cited in Section 5.4; in the lower bound direction
we construct an explicit embedding ∆ → `2. The case of p ∈ (2,∞) is more
involved. The proof of Theorem 8.1 is completed in Section 8.4.

Since ∆ is 3-step solvable, in particular it is amenable. By [NP11, Th. 1.6],
we have

α∗p(∆) = α#
p (∆) for all p ∈ [1,∞).

8.1. Upper bounds on compression functions. We first explain why it is
necessary to examine the distortion in a block of side length ks in ∆s. For
notational convenience, assume that (ks), (ls) are multiples of 4. As in Sec-
tion 2.3, consider the subset Π

ks/2
s of ∆ defined as in (2). Note that Π

ks/2
s

is isomorphic to the direct product of ks/2 copies of D′2ls ' Zls/2. Denote
by ϑs : Zks/2ls/2

→ Π
ks/2
s the isomorphism. Write elements of Π

ks/2
s as vectors

u = (u(0), . . . , u(ks − 1)), u(j) ∈ Zls/2.
Now consider the induced metric on Π

ks/2
s of the word metric d∆ on ∆.

Then by Lemma 2.16, we have that for u ∈ Π
ks/2
s ,

|u|∆ '72 ks max
0≤j≤ks/2−1

|u(j)|Z/lsZ .

Therefore the induced metric |·|∆ on Π
ks/2
s can be viewed as the `∞ metric

being dilated by ks.
Let [m]k∞ denote the set {0, 1, . . . ,m}k equipped with the metric induced

by `∞,
d∞(x, x′) := max

0≤j≤k−1

∣∣xj − x′j∣∣ , x = (x0, . . . , xk−1).

Let X be a Banach space of non-trivial type and cotype q. Then by [MN08,
Th. 1.12], there exists a constant c(X, q) depending only on X and q such that
the distortion of embedding of [m]k∞ into X satisfies

cX
Ä
[m]k∞

ä
≥ c(X, q)

(
min

{
k

1
q ,m

})
.
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We now explain how to apply this distortion lower bound and the Austin
lemma to derive an upper bound on α∗X(∆). Define

ms =

õ
min

ß
k

1
q
s ,

1

4
ls

™û
,

and consider {0, 1, . . . ,ms} as elements in Zls . The grid [ms]
ks
∞ is embedded

in the group ∆ via the map ϑs . Let θ := lim sups→∞
log ls
log ks

, and suppose
θ ∈ (0,∞). For any ε > 0, select a subsequence sn such that lsn ≥ Cεk

θ−ε
sn

along this subsequence. To apply Lemma 5.1 using the sequence of finite metric
spaces

Ä
[msn ]ksn∞ , d∞

ä
, we check that

• diamd∞

Ä
[msn ]ksn∞

ä
= msn + 1;

• the word distance on ∆ relates to the metric d∞ on [msn ]ksn∞ by

d∆(ϑsn(u, o), ϑsn(u′, 0)) '72 ksnd∞(u, u′)

and

ksn ≤ C ′ε
Ä
diamd∞

Ä
[msn ]ksn∞

ä
;
ämin{q, 1

θ−ε} ;

• the distortion of [msn ]ksn∞ satisfies

cX
Ä
[msn ]ksn∞

ä
≥ c(X, q)msn ≥

c (X, q)

2
diamd∞

Ä
[msn ]ksn∞

ä
.

Then by Lemma 5.1, we have that if X is a Banach space of non-trivial type
and cotype q, then

α∗X(∆) ≤ 1− 1

1 + min
{
q, 1

θ

} = max

ß
1

1 + θ
,

q

1 + q

™
.(45)

Note that the X-distortion of the grid [msn ]ksn∞ selected is comparable to
its d∞-diameter. Unlike the case with {Γs} taken to be expanders, the size of

ms is constrained by k
1
q
s . We will see in Section 8.2 that when qX > 2 and X

is of Markov type p < 2, this upper bound on α∗X(∆) can be improved. In the
rest of this subsection we give a more detailed description of distorted elements
and derive an upper bound for the compression functions.

8.1.1. A first upper bound by the metric cotype inequality.

Proposition 8.2. Let ϑs and Π
ks/2
s be introduced as above, and suppose X

is a Banach space of non-trivial type and cotype q . Then there exists a constant
C = C(X, q) such that for any 1-Lipschitz equivariant embedding ϕ : ∆→ X,

ρϕ

Å
1

8
ks min

ß
ls, k

1
q
s

™ã
≤ C(X, q)ks.
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This proposition improves on (45) as it applies to functions. Its proof will
also be useful to “locate” the obstructions and derive a better upper bound in
the next subsection.

Proof. Take m ≤ ls/4, and consider 0, . . . ,m+ 1 as elements of Zls/2. By
[MN08, Lemma 6.12], for each ε > 0, Zn2m equipped with an `∞ metric embeds
with distortion 1 + 6ε into [m+ 1](d1/εe+1)n

∞ . Take ε = 1, and fix a 1-Lipschitz
embedding

ψs : Zks/22m → [m+ 1]ks∞

with distortion c(ψs) ≤ 8. Let d̃∆ be the induced metric by d∆ on Zks/22m

d̃∆(u, v) = d∆ (ϑs ◦ ψs(u), ϑs ◦ ψs(v)),

and let ϕ̃ be the induced embedding

ϕ̃ = ϕ ◦ ϑs ◦ ψs : Zks/22m → X.

Let Us be the uniform measure on Zks/22m and σs be the uniform measure on
{−1, 0, 1}ks/2. Let {ej}ks/2−1

j=0 be the standard basis of Rks/2. Since X is a
K-convex Banach space of cotype q, then by the metric cotype inequality in
[MN08, Th. 4.2] (cited in Section 5.4),

ks/2−1∑
j=0

∑
u∈Zks/22m

‖ϕ̃(u)− ϕ̃ (u+mej)‖qX Us(u)

≤ Ωp
∑

u∈Zks/22m

∑
ε∈{−1,0,1}ks/2

∥∥∥∥∥∥ϕ̃(u)− ϕ̃

Ñ
u+

ks/2−1∑
j=0

εjej

é∥∥∥∥∥∥q
X

σ(ε)Us(u),

(46)

where

Ω = 5 max

{
C (X, q)m,

Å
ks
2

ã 1
q

}
and C (X, q) is a constant that only depends on the cotype constant and Kq-
convexity constant of X.

Since ϕ is 1-Lipschitz, by Lemma 2.16 we have∥∥∥∥∥∥ϕ̃(u, 0)− ϕ̃

Ñ
u+

ks/2−1∑
j=0

εjej , 0

é∥∥∥∥∥∥
X

≤ d̃∆

Ñ
u+

ks/2−1∑
i=0

εiei, u

é
≤ 72ks.
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Plug in (46):
ks/2−1∑
j=0

∑
u∈(Z/2mZ)ks/2

‖ϕ̃(u)− ϕ̃ (u+mej)‖qX Us(u)

≤
Å

5 max

ß
C(X)m, k

1
q
s

™ãq
(72ks)

q .

It follows that there exist u ∈ (Z/2mZ)ks/2 and j0 ∈ {0, . . . , ks/2− 1} such
that

‖ϕ̃(u)− ϕ̃ (u+mej0)‖X ≤ 360 max

ß
C(X)mk

1− 1
q

s , ks

™
.

To obtain the upper bound on ρϕ, choose m =

õ
1
4 min

ß
ls, k

1
q
s

™û
. By

Lemma 2.16,

d̃∆ (u, u+mej0) ≥ 1

2
mks,

and it follows that

ρϕ

Å
1

2
ksm

ã
≤ 360C(X)ks. �

Remark 8.3. Since L1 has trivial type, embeddings ϕ : ∆ ↪→ L1 are not
covered by the lemma. However it is true that there exists constant C > 0 such
that for ϕ : ∆→ L1 a 1-Lipschitz embedding,

ρϕ

Å
1

C
ks min

ß
ls, k

1
2
s

™ã
≤ Cks.

To see this, as pointed out in [MN08, Rem. 7.5], since L1 equipped with the
metric

√
‖x− y‖1 is isomorphic to a subset of Hilbert space, [MN08, Th. 4.2]

applied to the Hilbert space gives
ks/2−1∑
j=0

∑
u∈u∈(Z/2mZ)ks/2

‖ϕ̃(u)− ϕ̃ (u+mej)‖L1
Us(u) ≤ C2 max

{
m2, ks

}

·
∑

u∈u∈(Z/2mZ)ks/2

∑
ε∈{−1,0,1}ks

∥∥∥∥∥∥ϕ̃(u)− ϕ̃

Ñ
u+

ks−1∑
j=0

εjej

é∥∥∥∥∥∥
L1

σ(ε)Us(u),

which implies the stated bound.

8.2. A more refined upper bound when X has cotype > 2 . In this subsection
we develop an improvement of the compression upper bound in Proposition 8.2.
The idea is that when qX > 2, we can further apply the Markov type method
to find obstruction in lamplighter graphs with elements in blocks of side length
ks considered as lamp configurations. The argument is similar to the one for
the wreath product H o Z in Section 7.1.



78 JÉRÉMIE BRIEUSSEL and TIANYI ZHENG

We continue to use notation introduced at the beginning of Section 8.1.
Let ϕ : ∆ → X be an equivariant 1-Lipschitz embedding of the group ∆ into
X, and assume that X is a Banach space of cotype q and non-trivial type
p > 1. From the proof of Proposition 8.2, we have that there exists an element
hs0 = ϑs

Ä
ls
2 ej0 , 0

ä
satisfying |hs0|∆ ≥

1
4ksls:

(47) ‖ϕ (hs0)− ϕ(e∆)‖X ≤ C(X, q) max

ß
lsk

1− 1
q

s , ks

™
.

The element hs0 is in the zero section of ∆s, and it is supported at site j0
in the interval [0, ks − 1). Let hsj denote the translation of hs0 to the block
[jks, (j + 1)ks),

hsj(x) = hs0(x− jks).
Consider the following subset (not a subgroup) in ∆s:

Lsm =

(fs, z) :

fs �[jks,(j+1)ks)∈
¶
0, hsj �[jks,(j+1)ks)

©
, 0 ≤ j ≤ m− 1

suppfs ⊆ [0,mks)

z ∈ {0, ks, . . . , (m− 1)ks}.

.
Again Lsm is naturally embedded in ∆, and we identify it with its embedded
image and consider Lsm as a subset of ∆. The subset Lsm has the structure of
a lamplighter graph over a segment, and the lamp configuration is divided into
blocks of side length ks. In each block it is either identically zero or it coincides
with hsj . As explained in Section 7.1, we can apply the Markov type method
to derive a lower bound for distortion of Lsm.

Proposition 8.4. Let X be a Banach space of cotype q and Markov type
p such that 2 < q < ∞, p > 1. Then there exists a constant C > 0 such that
for any 1-Lipschitz equivariant embedding ϕ : ∆→ X, for each s ∈ N, we have

• if ls ≤ k
1
q
s , then

ρϕ

Å
1

4
ksls

ã
≤ C(X, q)ks;

• if ls > k
1
q
s , then

ρϕ

Ç
1

2C
ksls

Å
lsk
− 1
q

s

ã p
p−1

å
≤ C

Å
p

p− 1

ã 1
p

Mp (X)C(X, q)ks

Å
lsk
− 1
q

s

ã p
p−1

log
1
p

Å
lsk
− 1
q

s

ã
.

Proof. The case where ls ≤ k
1
q
s is covered by Proposition 8.2.

In the case where ls > k
1
q
s , we apply the Markov type method. Let Lsm

be defined as above. There is a natural bijection σsm between the lamplighter
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graph Lm over the segment {0, . . . ,m− 1} and Lsm; explicitly,

σsm : Lm → Lsm,

σsm(u, x) = (fu,mx) where fu �[jks,(j+1)ks)=
(
hsj
)u(j)

.

Let pm be the lamplighter kernel on Lm defined in Appendix C. Under the bijec-
tion σsm, letKs

m = pm◦(σsm)−1 be the corresponding Markov kernel on Lsm. Now
we run the Markov chain with transition kernel Ks

m up to time t = m logm.
Lemma 5.5 implies

ρϕ

(Å
1

2
Eπd∆ (Zt, Z0) p

ã 1
p

)

≤
Å

2Mp
p (X)t diam∆ (Lsm)p

EπdX (ϕ (Z1), f (Z0)) p

Eπd∆ (Zt, Z0) p

ã 1
p

,

(48)

where π is the stationary distribution of Ks
m and Zt is a stationary Markov

chain on Lsm with transition kernel Ks
m.

Now we estimate the quantities that appear in the inequality. Let d∆ be
the metric on Lm induced by word metric on ∆,

d∆(u, v) = d∆ (σsm(u), σsm(v)).

Then direct inspection shows that there exists an absolute constant C > 0 such
that

1

C
dw(u, v) ≤ d∆(u, v) ≤ Cdw(u, v), w = (ks, ksls).

It follows that diam∆ (Lsm) ≤ 2C (ks + ksls)m. By Lemma C.3, we have that
for t = m logm,

Eπn [d∆ (Zt, Z0)p] ≥ (c (ks + ksls)m)p .

For the other term, using Lemma C.2 and (47) when lqs > ks, we have

Eπ [dX (ϕ (Z1),Ψ (Z0))p] =
∑

u,v∈Xn

dX (ϕ(u), ϕ(v))pKn(u, v)πn(v)

≤ 3p
ï
Ckpsm

p−1 +

Å
C(X)lsk

1− 1
q

s

ãpò
.

With the choice

m =

¢Å
lsk
− 1
q

s

ã p
p−1

•
,

(48) implies

ρΨ

Å
1

2C
kslsm

ã
≤ C

Å
p

p− 1

ã 1
p

Mp (X)C(X, q)ks

Å
lsk
− 1
q

s

ã p
p−1

log
1
p

Å
lsk
− 1
q

s

ã
.

�
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The upper bound on the compression function immediately yields the fol-
lowing upper bound on compression exponent.

Corollary 8.5. Let X be a Banach space of cotype q and Markov type p
with 2 < q <∞ and p > 1. Let ∆ be the diagonal product with Γs = D2ls ,

θ := lim sup
s→∞

log ls
log ks

.

Then

α#
X (∆) ≤


1

1+θ if θ ≤ 1
q ,

pθ+p−1− p
q

(2p−1)θ+p−1− p
q

if θ > 1
q .

8.3. An explicit embedding of ∆ into Lq , q ≥ 2. We construct an embed-
ding of ∆ into Lq in two parts, similar to the embedding of wreath products in
Section 7.2.

We first recall a standard embedding of finite dihedral groups into the
Euclidean plane R2. The (unlabelled) Cayley graph of D2l is the same as a
cycle of size 2l. One can embed it as vertices of a regular 2l-gon in the plane.
For each element γ ∈ D2l, fix a word of minimal length in a and b such that
the word represents γ and starts with the letter a. Let k(γ) be the length of
such a chosen word, and let ka(γ) (resp. kb(γ)) be the number of occurrence of
a (resp. b) in this word. Take θl : D2l → R2 as

θl(γ) =
1

2 sin (π/2l)

Å
cos

Å
πk(γ)

l

ã
, sin

Å
πk(γ)

l

ãã
.

It is clear that θl is 1-Lipschitz and equivariant. We also consider maps to
vertices of l-gons. Let θ(a)

l : D2l → R2 be the map given by

θ
(a)
l (γ) =

1

2 sin (π/l)

Å
cos

Å
2πka(γ)

l

ã
, sin

Å
2πka(γ)

l

ãã
.

The map θ
(b)
l : D2l → R2 is defined in the same way with ka(γ) replaced by

kb(γ). Since |ka(γ)− kb(γ)| ≤ 1 for any element γ ∈ D2l, by definition of θ(a)
l ,

θ
(b)
l we have ∥∥∥θ(a)

l (γ)− θ(b)
l (γ)

∥∥∥
2
≤ 1.

Recall the classical fact that `2 embeds isometrically in Lq for all q ≥ 1; see
[AK06, Prop. 6.4.2]. For each q > 2, fix an isometric embedding iq : `2 → Lq,
and set bγ,q = iq ◦ bγ . Similarly, write θ(a)

l,q = iq ◦ θ(a)
l , θ(b)

l,q = iq ◦ θ(b)
l .

Direct inspection on θ(a)
l , θ

(b)
l shows the following.

Fact 8.6. For all γ, γ′ ∈ D2ls ,∥∥∥θ(a)
ls,2

(γγ′)− θ(a)
ls,2

(γ)
∥∥∥

2
=
∥∥∥θ(a)

ls,2
(γ′)− θ(a)

ls,2

(
eD2ls

)∥∥∥
2
.

The same equality holds with a replaced by b.
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Now we introduce a weight function. For s ∈ N, let ws : Z→ [0, 1] be the
function defined as

ws(y) =


1
2 for y ≤ −1

2ks or y ≥
3
2ks,

|y|
ks

for − 1
2ks < y < ks,

1− y−ks
ks

for ks ≤ y < 3
2ks.

It is a piecewise linear function taking value 1/2 outside [−ks/2, 3ks/2], 0 at
0 and 1 at ks, and its slope is in

{
± 1
k , 0
}
. For x ∈ Z, write τxws for the

translation of ws by x,
τxws(y) = ws(y − x).

Define the map Φs,p : ∆s → Lq =
(⊕

y∈Z(Lq)y
)
q
by setting for each y ∈ Z,

(49)

[Φs,q (fs, z)] (y) = k
1− 1

q
s

Ä
(τzws)(y)θ

(a)
ls,q

(fs(y)) + (1− (τzws)(y))θ
(b)
ls,q

(fs(y))
ä
.

In other words, at each coordinate y, the image of fs(y) is a linear combination
of θ(a)

ls,q
and θ(b)

ls,q
with the weights depending on the relative position between y

and the cursor z.
Recall the 1-cocycle constructed in Section 6.2.3. Fix a choice of an in-

creasing function γ : N → R+ such that γ(1) = 1, C(γ) =
∑∞

n=1 γ(n)−2 < ∞.
Let bγ : ∆ ↪→ L2 be the 1-cocycle defined by (34) with p = 2 using the basic
test functions. Finally define an embedding Φγ,q : ∆→ Lq by

(50) Φγ,q ((fs), z) =

( ∞⊕
s=0

Å
1

γ(s)
Φs,q (fs, z)

ã)⊕
bγ,q ((fs), z),

where
⊕

is direct sum in Lq.
We now check some basic properties of the map Φγ,q.

Lemma 8.7. Let γ : N → R+ be a function such that γ(1) = 1, C(γ) =∑∞
n=1 γ(n)−2 <∞. Assume q ≥ 2. The map Φγ,q : ∆→ Lq defined in (50) is

C-Lipschitz with C only depending on C(γ).

Proof. It suffices to check that for any u = ((fs), z) ∈ ∆ and s ∈ {τ, α, β}
a generator, the increment ‖Φγ,p(us)− Φγ,p(u)‖q is bounded by C.

For the generator α, ((fs), z)α = ((f ′s), z), where f ′s(y) = f ′s(y) for all
y 6= z and f ′s(z) = fs(z)a(s). Recall that by definition, the weight function ws
satisfies τzws(z) = 0, and the map θ

(b)
ls,q

satisfies θ(b)
ls,q

(γa(s)) = θ
(b)
ls,q

(γ) for all
γ ∈ D2ls . Then by (49),

Φs,q ((fs, z)α) = Φs,q ((fs, z)).

Therefore in the embedding (50),

‖Φγ,q (uα)− Φγ,q(u)‖q = ‖bγ (uα)− bγ(u)‖2 ≤
»

2C(γ).
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The last inequality uses the fact that the 1−cocycle bγ is Lipschitz; see Sec-
tion 6.2.3. Similarly, since τzws (z + ks) = 1 and θ(a)

ls,q
(γb(s)) = θ

(a)
ls,q

(γ) for all
γ ∈ D2ls , we have ‖Φγ,q (uβ)− Φγ,q(u)‖q = ‖bγ(uβ)− bγ(u)‖2 as well. For the
generator τ ,

Φs,q(uτ)

=

Å
k

1− 1
q

s

Ä
ws(y − z − 1)θ

(a)
ls,q

(fs(y)) + (1− ws(y − z − 1))θ
(b)
ls,q

(fs(y))
äã

y∈Z
.

Then

‖Φs,q(uτ)− Φs,q(u)‖qq
=
∑
y∈Z

kq−1
s |ws(y − z − 1)− ws(y − z)|q

∥∥∥θ(a)
ls,q

(fs(y))− θ(b)
ls,q

(fs(y))
∥∥∥q
q
.

Recall that
∥∥∥θ(a)

ls
(γ)− θ(b)

ls
(γ)
∥∥∥

2
≤ 1 for all γ ∈ D2ls , ws(y− z) 6= ws(y− z− 1)

only if y−z ∈
î
−ks

2 ,
3ks
2

ó
, and in this interval |ws(y − z)− ws(y − z − 1)| = 1

ks
.

Therefore

‖Φs,q(uτ)− Φs,q(u)‖qq ≤ 2ksk
q−1
s

Å
1

ks

ãq
= 2.

Summing up in the embedding (50),

‖Φγ,q (uτ)− Φγ,q(u)‖qq =
∑
s

1

γ(s)q
‖Φs(uτ)− Φs(u)‖qq + ‖bγ (uτ)− bγ(u)‖q2

≤ 2C(γ) + (2C(γ))
q
2 . �

Because of the presence of the weight function ws, the embedding Φγ,q :

∆ → Lq fails to be equivariant. But the increment ‖Φγ,q (uv)− Φγ,q(u)‖q is
actually comparable to ‖Φγ,q (v)‖q .

Lemma 8.8. There exists a constant c > 0 depending only on C(γ) such
that for q ≥ 2,

‖Φγ (uv)− Φγ(u)‖q ≥ c ‖Φγ(v)‖q .

Proof. By formula (49), which defines Φs,q, Φs,q(uv) is(
k

1− 1
q

s

Ä
ws(y − z − z′)θ(a)

ls,q

(
fs(y)f ′s(y − z)

)
+(1− ws(y − z − z′))θ(b)

ls,q

(
fs(y)f ′s(y − z)

)ä)
y∈Z

.
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Then by the triangle inequality and Fact 8.6,

‖Φs,q (uv)− Φs,q(u)‖q ≥ ‖Φs,q(v)‖q

−

Ñ
kq−1
s

∑
y∈Z

∣∣ws(y − z)− ws(y − z − z′)∣∣q ∥∥∥θ(a)
ls

(fs(y))− θ(b)
ls

(fs(y))
∥∥∥q

2

é 1
q

.

Since
∥∥∥θ(a)

ls
(γ)− θ(b)

ls
(γ)
∥∥∥

2
≤ 1 for all γ, and∑

y∈Z

∣∣ws(y − z)− ws(y − z − z′)∣∣q ≤ Å 1

ks

ãq
min

{∣∣z′∣∣ , 2ks},
we have ‖Φs,q (uv)− Φs,q(u)‖2 ≥ ‖Φs,q(v)‖2−2

1
q . Using (a− b)q+ ≥ (a/2)q− bq

for a, b ≥ 0,

‖Φγ,q (uv)− Φγ,q(u)‖qq ≥
∑
s

1

γ(s)q

(
‖Φs,q(v)‖q − 2

1
q

)q
+

+ ‖bγ,q(v)‖qq

≥ 1

4C(γ)

Ç∑
s

1

γ(s)q

Å
1

2q
‖Φs,q(v)‖qq − 2

ãå
+ ‖bγ,q(v)‖qq

≥ 1

22+qC(γ)

∑
s

1

γ(s)q
‖Φs,q(v)‖qq + ‖bγ,q(v)‖qq −

1

2

≥ 1

22+qC(γ)
‖Φγ,q(v)‖qq . �

8.4. The compression exponent α∗p(∆) . In this subsection we estimate the
Lp-compression exponent of ∆. Recall that for p ∈ [1, 2], Lp has Markov type
p and cotype 2; and for p ∈ (2,∞), Lp has Markov type 2 and cotype p; see
[NPSS06] and references therein.

Proof of Theorem 8.1. Upper bound in (i). For the upper bound on α∗p(∆),
p ∈ [1, 2], when θ = 0, the bound is trivially true. Assume now that θ ∈ (0,∞).
For any ε > 0 sufficiently small, take a subsequence {si}i∈N such that

log lsi
log ksi

> θ − ε.

Recall that the cotype of Lp is 2 for p ∈ [1, 2]. We apply Proposition 8.2,
or the remark after it for L1, along this subsequence of (ksi , lsi). We obtain
the required upper bound after sending ε → 0. The argument also extends to
θ =∞.

Upper bound in (ii). The upper bound on α∗q(∆) = α#
q (∆) is covered by

Corollary 8.5.

Lower bound in (ii). In the case θ ≤ 1
q , q≥2, simply take the 1-cocyle bγ :

∆→`2 defined in (34) using the basic test functions (32), with γ(n) = n−
1
2
−ε.
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Then Lemma 6.9 implies that the compression exponent of ∆ satisfies

α∗q(∆) ≥ α∗2(∆) ≥ lim inf
s→∞

log ks
log (ksls)

≥ 1

1 + θ
.

Now we focus on the case θ> 1
q . Consider the explicit embedding Φγ,q : ∆→Lq

defined in (50) with γ taken to be γ(n) = (1 + n)−
1+ε

2 . By Lemma 8.7, Φγ,q

is Lipschitz. By Lemma 8.8, there exists a constant c = c (C(γ)) such that for
any u, v ∈ ∆,

‖Φγ,q(uv)− Φγ,q(u)‖q ≥ c ‖Φγ,q(v)‖q .

Let v = ((fs), z) be an element of ∆. At each site y, from the definition of θ(a)
ls,q

,

θ
(b)
ls,q

, ∥∥∥(τzws)(y)θ
(a)
ls,q

(fs(y)) + (1− (τzws)(y))θ
(b)
ls,q

(fs(y))
∥∥∥
q

≥ 1

sin(π/ls)
sin

Å
π

2ls

Ä
|fs(y)|D2ls

− 1
ä

+

ã
≥ 1

π

Ä
|fs(y)|D2ls

− 1
ä

+
.

From the explicit formula (49), which defines Φs,q,

‖Φs,q(fs, z)‖qq ≥
∑
j∈Z

Ç
1

π
k

1− 1
q

s max
y∈Isj

Ä
|fs(y)|D2ls

− 1
ä

+

åq
.

In what follows we write R = |Range(v)|, and f̃s(y) =
Ä
|fs(y)|D2ls

− 1
ä

+
. We

have

‖Φγ,q(v)‖qq ≥
∑

s≤s0(v)

1

γ(s)q

∑
j∈Z

Ç
1

π
k

1− 1
q

s max
y∈Isj

f̃s(y)

åq
+ ‖bγ (v)‖q2

≥
∑

s≤s0(v)

1

γ(s)q

∑
j∈Z

Ç
1

π
k

1− 1
q

s max
y∈Isj

f̃s(y)

åq
+

Å
cR

γ ◦ log2(R)

ãq
.

The last step used Lemma 6.9 and the fact that since ks+1 ≥ 2ks for all s,
s0(v) ≤ log2R. Note that in the factor ∆s, the number of intervals Isj with
maxx∈Isj f̃s(y) 6= 0 is bounded from above by 2R/ks. Therefore by the Hölder
inequality,

∑
j∈Z

max
y∈Isj

f̃s(y)q ≥
Å

2R

ks

ã1−q
Ñ∑

j∈Z
max
y∈Isj

f̃s(y)

éq

= 2Rk−1
s `(s)q,

where

`(s) =
ks
∑

j∈Z maxy∈Isj f̃s(y)

2R
.
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Consider the following three cases:

• If 0 ≤ `(s) ≤ R
1
q , then

∑
j∈Z

Ç
1

2
k

1− 1
q

s max
y∈Isj

f̃s(y)

åq
+ (cR)q ≥ (cR)q ≥ (c/3)q (R+ 2R`(s))

q2

q+1 .

• If R
1
q ≤ `(s) ≤ R

1− 1
q k

2
q
−1

s , then it is necessary that R ≤ ks. From the
metric description in Section 2.2.3, R ≤ ks implies

∑
j∈Z maxy∈Isj f̃s(y) ≤ 1.

Then in this case,

∑
j∈Z

Ç
1

2
k

1− 1
q

s max
y∈Isj

f̃s(y)

åq
+ (cR)q ≥ (cR)q ≥ (c/3)q (R+ 2R`(s))q.

• If `(s) > R
1− 1

q k
2
q
−1

s , from the second item we only need to consider R > ks.

Recall that `(s) ≤ ls ≤ Cεk
θ+ε
s . It follows that R ≤

Å
Cεk

θ+ε+1− 2
q

s

ã q
q−1

.

Then in this case,

∑
j∈Z

Ç
1

2
k

1− 1
q

s max
y∈Isj

f̃s(y)

åq
+ (cR)q ≥ 1

2q−1
kq−1
s Rk−1

s `(s)q ≥ c′ε (R`(s))qγ(ε) ,

where

γ(ε) =
θ + ε+ 1− 2

qÄ
2− 1

q

ä
(θ + ε) + 1− 2

q

.

In the last inequality, we used `(s) > R
1− 1

q k
2
q
−1

s and R ≤
Å
Cεk

θ+ε+1− 2
q

s

ã q
q−1

.

Note that since θ > 1
q , when ε is sufficiently small, γ(ε) < q

q+1 . Thus the worst
case is represented by the third item, and we have

‖Φγ,q(v)‖qq ≥
∑

s≤s0(v)

c′ε
γ(s)q

(R+R`(s))qγ(ε) .

Recall that by the metric estimate Proposition 2.14,

|v|∆ ≤ 500

Ñ
R+

∑
s≤s0(v)

ks
∑
j∈Z

max
y∈Isj

f̃s(y)

é
= 500

Ñ
R+

∑
s≤s0(v)

2R`(s)

é
,
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and s0(v) ≤ log2R by Assumption 2.11. Combining with Lemma 8.8, we have
that for any u ∈ ∆,

‖Φγ,q(u)− Φγ,q(uv)‖2 ≥
c′

log
1
2

+ε

2 (R)
max
s≤s0(v)

(R+R`(s))γ(ε)

≥ c′

log
1
2

+ε

2 (R)

Å |v|∆
1000 log2(R)

ãγ(ε)

,

where c′ > 0 is a constant depending on θ and ε. Sending ε→ 0, we conclude
that when θ ∈

Ä
1
q ,∞
ó
,

α∗q(∆) ≥
θ + 1− 2

qÄ
2− 1

q

ä
θ + 1− 2

q

.

Note that the formula is simplified when q = 2, namely, α∗2(∆) ≥ 2
3 . Combining

with the fact that α∗q(∆) ≥ α∗2(∆), we obtain the statement.

Lower bound in (i). Since `2 embeds isometrically in all Lp, p ≥ 1, it
follows that

α∗p(∆) ≥ α∗2(∆) ≥ max

ß
1

1 + θ
,
2

3

™
.

This completes the proof of Theorem 8.1. �

Example 8.9 (Proof of Theorem 1.4). Considering the construction of ∆

with Γs = D2ls , the parameters {ks}, {ls} are chosen to be ks = 2βs, ls = 2ιs

with β > 1, ι ≥ 0. Then θ = ι/β.
For p ∈ [1, 2], Theorem 8.1 implies that

α∗p(∆) = max

ß
1

1 + θ
,
2

3

™
,

which can take any value in
[

2
3 , 1
]
.

For q > 2, θ > 1
q , the upper and lower bound in Theorem 8.1 do not match

up. But in some region of parameters we can still compare it to the Hilbert
compression exponent. For θ ∈

Ä
1
q , 1
ä
, we have

α∗q(∆) ≥
θ + 1− 2

qÄ
2− 1

q

ä
θ + 1− 2

q

> α∗2(∆) = max

ß
1

1 + θ
,
2

3

™
.

In particular, we can take θ = 1
2 . Then the corresponding diagonal product ∆1

satisfies

α∗q(∆1) ≥ 3q − 4

4q − 5
> α∗2(∆1) =

2

3
.
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9. Discussion and some open problems

The groups of Theorem 1.1 are diagonal products of lamplighter groups.
In particular, they contain many torsion elements and admit many quotients.

Problem 9.1. Find solutions to the inverse problems for speed, entropy,
return probability, isoperimetric profile or compression in the class of torsion-
free groups or in the class of simple groups.

In Theorem 3.8, we imposed the regularity assumption on % that %(n)/
√
n

is non-decreasing. This is not always satisfied; it is possible to construct exam-
ples of groups where the speed function is roughly constant over certain long
time intervals. The following question asks if this regularity assumption can be
dropped.

Problem 9.2. Let % : [1,∞) → [1,∞) be a non-decreasing subadditive
function satisfying %(x) ≥

√
x for all x. Are there a group G and a symmetric

probability measure µ of finite support on G such that

Lµ(n) ' %(n)?

Proposition 3.17 only partially answers the question of what joint behav-
ior of speed and entropy can occur. Further, the question of possible joint
behavior of speed, entropy and return probability, even restricting to group of
exponential volume growth, is wide open; see [Ami17, Question 6]. Solving the
following problem would be a step in this direction.

Problem 9.3. Find an open set O in (0, 1)3 such that for any point (α, β, γ)

∈ O, there exist a finitely generated group G and a symmetric probabil-
ity measure of finite support on G, such that (α, β, γ) is the exponent ofÄ
Lµ(n), Hµ(n),− logµ(2n)(e)

ä
.

In [Gou16], Gournay showed that if a simple random walk on G satisfies
that for some C > 0, γ ∈ (0, 1), φ(2n)(e) ≥ exp (−Cnγ), and an off-diagonal
decay bound

(51) φ(2n)(g) ≤ Cφ(2n)(e) exp

Å
−C|g|

2

n

ã
for all g ∈ G, n ∈ N,

then we have the Hilbert compression exponent α#
2 (G) ≥ 1 − γ. The off-

diagonal decay assumption (51) is difficult to check in general. We illustrate a
family of examples where it is not valid. In Figure 1, take the diagonal product
∆ with parameters

(
ks = 22s

)
and {Γs} expanders with diam(Γs) ' 22θ. When

θ > 1, we have

− log q(2n)(e) ' n
1+θ
3+θ , α∗2(∆) =

1

1 + θ
< 1− 1 + θ

3 + θ
.
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Therefore we deduce from [Gou16, Th. 1.4] that in this case the simple random
walk on ∆ fails the off-diagonal upper bound (51). On the other hand, we have
the strict inequality

α∗2(∆) =
1

1 + θ
>

1

2 + θ
=

1− γ
1 + γ

,

showing the gap is far from the lower bound of [Gou16, Th. 1.1]. A better un-
derstanding of the relation between return probability and compression remains
open.

Problem 9.4. Let G be a finitely generated infinite group such that for
some γ ∈ (0, 1), the simple random walk satisfies φ(2n)(e) ≥ exp (−Cnγ) for
some C > 0. Find the sharp lower bound for α#

2 (G) in terms of γ and explicit
examples where the bound is sharp.

In Theorem 7.1 we give an explicit formula that relates equivariant Lp-
compression exponents of H o Z and H when p ∈ [1, 2]. Less is known about
compression exponent of embeddings into Lp with p > 2. In particular, the
following problem is open.

Problem 9.5. For p > 2, is there an explicit formula that connects equi-
variant compression exponents α#

p (H o Z) and α#
p (H)?

The problem of determining α#
p (∆) for ∆ constructed with dihedral groups

as discussed in Section 8 is related to the previous problem.

Problem 9.6. Determine the equivariant compression exponent α#
p (∆),

p > 2, where ∆ is the diagonal product constructed with dihedral groups {D2ls}.

Appendix A. Some auxiliary facts about excursions

In this section we recall some classical facts about local time and excursions
of standard simple random walk on Z. Let {Sk} denote the standard simple
random walk on Z, starting at S0 = 0. Let L(x, n) denote the local time of the
random walk at site x,

L(x, n) = # {k : 0 < k ≤ n, Sk = x}.

The distribution of L(x, n) is known explicitly ([Rao12, Th. 9.4 ]) for x =

0, 1, 2, . . . :

P0 (L(x, n) = m) =


1

2n−m+1

(
n−m+ 1

(n+ x)/2

)
if n+ x if even,

1
2n−m

(
n−m

(n+ x− 1)/2

)
if n+ x if odd.
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Let ρ0 = 0 and ρm = min {j > ρm−1 : Sj = 0}. Then ρ1, ρ2−ρ1, . . . record the
time duration of the excursions from 0, and they form a sequence of independent
and identically distributed random variables with distribution

P0 (ρ1 > 2n) = P0(S2n = 0) ∼ 1√
4πn

.

The chance that an excursion from 0 crosses k is ([Rao12, Th. 9.6])

P0

Å
max

0≤i≤ρ1

Si ≥ k
ã

=
1

2k
, k = 1, 2, . . . .

For x ∈ Z, let ρ1(x) = min {j > 0 : Sj = x} denote the first time the random
walk visits x, and let T (k, x, n) be the number of excursions away from x that
cross x−k and are completed before time n. We need estimates on the moments
E0 [T (k, x, n)q] , 0 < q ≤ 1.

Lemma A.1. There exists constant C > 0 such that for all k, n ∈ N, x ∈ Z,

E0 [T (k, x, n)] ≤ C
√
n

k
exp

Å
−x

2

2n

ã
.

Proof. Let ρm(x) = min {j > ρm−1(x) : Sj = x} be the m-th time the
random walk visits x. Then

E0 [T (k, x, n)] ≤
∑
j≥0

E0

[
T (k, x, ρ2j+1(x))1{ρ2j

(x)≤n<ρ
2j+1

(x)}
]

≤
∑
j≥0

E0

[
T (k, x, ρ2j+1(x))1{ρ2j

(x)≤n}
]
.

Conditioned on the event {ρ2j (x) ≤ n}, the random variable T (k, x, ρ2j+1(x))

is stochastically dominated by a binomial random variable with parameter 2j+1

and 1
2k . Therefore∑

j≥0

E0

[
T (k, x, ρ2j+1(x))1{ρ2j

(x)≤n}
]

≤
∑
j≥0

2j+1

2k
P0 (ρ2j (x) ≤ n)

≤
∑
j≥0

2j+1

2k
P0 (ρ1(x) ≤ n)P0

(
L(n, 0) ≥ 2j

)
≤ 1

2k
P0(ρ1(x) ≤ n)E0 (4L(n, 0)).
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Plugging in the estimates

P0(ρ1(x) ≤ n) = P0

Å
max

0≤t≤n
St ≥ |x|

ã
≤ 2 exp

Å
−x

2

2n

ã
,

E0(L(n, 0)) =
n∑
t=0

P0(St = 0) ≤ Cn
1
2 ,

we obtain the statement. �

Lemma A.2. There exists a constant c > 0 such that for all x ∈ Z, k, n ∈ N
satisfying k ≤ c2n

1
2 ,

P0

Å
T (k, x, n) ≥ c

√
n

4k

ã
≥ 1

2
P0 (L(x, n/2) ≥ 1).

Proof. Conditioned on the event {ρ1(x) = t}, 0 ≤ t < n, the distribution
of T (k, x, n) is the same as T (k, 0, n− t). Therefore for any m > 0,

P0 (T (k, x, n) ≥ m) ≥ P0 (T (k, 0, n/2) ≥ m)P0 (L(x, n/2) ≥ 1).

Now we show that there exists a constant c > 0 such that for k ≤ c2n
1
2 ,

P0

Å
T (k, 0, n/2) ≥ c

√
n

4k

ã
≥ 1

2
.

Note that

{T (k, 0, n/2) ≥ m} ⊃
®
ρ⌊
cn

1
2

⌋(0) ≤ n

2

´
∩
®
T

Ç
k, 0, ρ⌊

cn
1
2

⌋å ≥ m´.
For ease of notation, in what follows write l =

ö
cn

1
2

ù
. Since ρl(0) is sum of l

independent and identically distributed random variables with distribution

P0 (ρ1 > 2t) = P0(S2t = 0) ∼ 1√
4πt

,

by classical theory of sum of independent and identically distributed α-stable
variables (here α = 1

2), there exists constant C = C(α) such that

P0 (ρl(0) ≥ t) ≤ C l

t
1
2

.

Therefore
P0

(
ρl(0) ≥ n

2

)
≤
√

2Cc.

For the other term, T (k, 0, ρl) is binomial with parameters l and 1/2k, and
therefore by Bernstein inequality (see, for example, [Rao12, Th. 2.3]),

P0

Ç
T (k, 0, ρl) ≤

cn
1
2

4k

å
≤ 2 exp

Å
− l

43k

ã
.
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Then

P0

Å
T (k, 0, n/2) ≥ c

√
n

4k

ã
≥ 1−

√
2Cc− 2 exp

Ç
−cn

1
2

43k

å
.

Choosing c sufficiently small so that
√

2Cc ≤ 1/4, exp
(
− 1

43c

)
≤ 1/8, we obtain

the statement. �

Appendix B. Approximation of functions

For p1, p2 ≥ 0, consider the following space Cp1,p2 of continuous functions
between xp1 and xp2 ,

Cp1,p2 =

f : [1,∞)→ [1,∞) :

f is continuous, f(1) = 1
f(x)
xp1 is non-decreasing
xp2
f(x) is non-increasing

.
Equivalently, Cp1,p2 is the set of functions with f(1) = 1 satisfying

ap1f(x) ≤ f(ax) ≤ ap2f(x) for all a, x ≥ 1.

We aim to approximate functions in Cp1,p2 up to multiplicative constants
by piecewise extremal functions.

Given two unbounded non-decreasing sequences (ks), (ls) of real numbers,
possibly finite with last value infinity, define the function

f̃(x) = f̃(ks),(ls)(x) =

{
ls for ksls ≤ x ≤ ks+1ls,
x

ks+1
for ks+1ls ≤ x ≤ ks+1ls+1.

(52)

Similarly, define

f̄(x) = f̄(ks),(ls)(x) = ls +
x

ks+1
for ksls ≤ x ≤ ks+1ls+1.(53)

Lemma B.1. For any f in C0,1 and for any m0 > 1, there exist two se-
quences (ks), (ls) of real numbers, possibly finite with last value infinity, such
that ks+1 ≥ m0ks and ls+1 ≥ m0ls for all s. The functions defined above satisfy

f̃(x) 'm0 f(x) and f̄(x) '2m0 f(x).

Moreover, if for some α > α0 > 0 the function f(x)
logα(x) is non-decreasing, it

is possible to find such functions with sequences (ks), (ls) satisfying log ks ≤ l
1
α0
s

for all s.

Proof. The proof is best understood looking at Figure 2. Observe that by
construction, f̃(x) is continuous and non-decreasing, which is not necessarily
true for f̄(x). By induction, assume ks, ls already known with f̃(ksls) = ls =

f(ksls). The hypothesis on f gives that ls ≤ f(x) ≤ x
ks

for all x ≥ ksls .
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x

f(ksls) = ls

m0ls

x
ks

x
m0ks

ksls m0ksls
q

ks+1ls
Case I

y
m0

q
ks+1ls
Case II

m2
0ksls y

q
ks+1ls+1

f(x) and f̃(x) in case I

f(x) and f̃(x) in case II

Figure 2. Approximation of functions in C0,1 by functions
piecewise constant and linear, as in the proof of Lemma B.1.

We consider the minimal y ≥ m2
0ksls such that m0ls ≤ f(y) ≤ y

m0ks
.

Assume first that such a y exists. By continuity of f , there are two cases.

Case I. If f(y) = y
m0ks

, set ks+1 = m0ks and ls+1 = y
m0ks

≥ m0ls. Then
for all ksls ≤ x ≤ ks+1ls+1 = y,

x

m0ks
≤ f̃(x) ≤ x

ks
,

and the same inequalities hold for f by sublinearity.

Case II. If f(y) = m0ls, set ls+1 = m0ls and ks+1 = y
m0ls

≥ m0ks. Then
for all ksls ≤ x ≤ ks+1ls+1 = y,

ls ≤ f̃(x) ≤ m0ls,

and the same inequalities hold for f (non-decreasing).
If such a y does not exist, there are again two cases:

• either f(x) ≥ x
m0ks

for all x ≥ ksls — then set ks+1 = m0ks and ls+1 = ∞
so f̃(x) = x

m0ks
for all x ≥ ksls, generalizing Case I;

• or f(x) ≤ m0ls for all x ≥ ksls — then set ks+1 = ∞ so f̃(x) = ls for all
x ≥ ksls, generalizing Case II.
Concerning the function f̄, a routine inspection (of the intervals [ksls, ks+1ls]

and [ks+1ls, ks+1ls+1] in both cases) shows that f̃(x) ≤ f̄(x) ≤ 2f̃(x) for any x.
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To check the last statement, it is sufficient to check that

f(m0ls exp((m0ls)
1
α0 )) ≥ m0ls.

Thus in Case II we take ls+1 = m0ls and get y ≤ ls+1 exp(l
1
α0
s+1) and ks+1 =

y
ls+1
≤ exp(l

1
α0
s+1). Our assumptions give

f(ls+1 exp(l
1
α0
s+1))≥ f(ksls)

Ñ
log(ls+1 exp(l

1
α0
s+1))

log(ksls)

éα

≥ ls

(
(m0ls)

1
α0

log ks + log ls

)α

≥ lsm
α
α0
0

Ñ
l

1
α0
s

l
1
α0
s + log ls

éα

,

and the last parenthesis tends to 1 as ls tends to infinity. �

Proposition B.2. Let C1 > 0 and K,L ⊂ [1,∞] such that for any x in
[1,∞], there exist k ∈ K and l ∈ L with k 'C1 x and l 'C1 x. For any f in
C0,1 and for any m0 > 1, there exist two sequences (ks), (ls) taking values in
K and L respectively such that ks+1 ≥ m0ks and ls+1 ≥ m0ls for all s. The
functions defined in (52) and (53) satisfy

f̃(x) 'm0C5
1
f(x) and f̄(x) '2m0C5

1
f(x).

Moreover, if for some α > α0 > 0 the function f(x)
logα(x) is non-decreasing, it is

possible to find such functions with sequences (ks), (ls) satisfying log ks ≤ l
1
α0
s

for all s.

Proof. We apply Lemma B.1 with m′0 > C2
1m0, and obtain two sequences

(ks), (ls) of real numbers satisfying ks+1 ≥ m0C
2
1ks and ls+1 ≥ m0C

2
1 ls. The

hypothesis on K,L permits us to find two sequences (k′s), (l
′
s) with k′s 'C1 ks

and l′s 'C1 ls. The choice of m′0 guarantees that k′s+1 ≥ m0k
′
s and l′s+1 ≥ m0l

′
s.

Denote by f̃ ′ and f̄ ′ the functions defined by (52) and (53) with the se-
quences (k′s), (l

′
s). It is sufficient to check that f̃ ′(x) 'C3

1
f̃(x).

When k′sl
′
s ≤ x ≤ k′s+1l

′
s, then f̃ ′(x) = l′s 'C1 ls. On the other hand,

ksls
C2

1
≤ x ≤ C2

1ks+1ls so

ls
C2

1

=
f̃(ksls)

C2
1

≤ f̃(
ksls
C2

1

) ≤ f̃(x) ≤ f̃(C2
1ks+1ls) ≤ C2

1 f̃(ks+1ls) = C2
1 ls.

Thus f̃ ′(x) 'C3
1
f̃(x).
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When k′s+1l
′
s ≤ x ≤ k′s+1l

′
s+1, set x = λk′s+1l

′
s + (1− λ)k′s+1l

′
s+1. Then

f̃ ′(x) = λl′s + (1− λ)l′s+1 'C1 λls + (1− λ)ls+1.

On the other hand, x 'C2
1
λks+1ls + (1− λ)ks+1ls+1 so f̃(x) 'C2

1
f̃(λks+1ls +

(1− λ)ks+1ls+1) = λls + (1− λ)ls+1. Thus f̃ ′(x) 'C3
1
f̃(x). �

Corollary B.3. Let C1 > 0 and K,L ⊂ [1,∞] such that for any x in
[1,∞], there exist k ∈ K and l ∈ L with k 'C1 x and l 'C1 x. For any % in
Cp1,p2 and for any m0 > 1, there exist two sequences (ks), (ls) taking values in
K and L respectively such that ks+1 ≥ m0ks and ls+1 ≥ m0ls for all s. The
function defined by

%̄(x) = xp1 ls +
xp2

ks+1
for (ksls)

1
p2−p1 ≤ x ≤ (ks+1ls+1)

1
p2−p1

satisfies
%̄(x) '2m0C5

1
%(x).

Moreover, if for any α > α0 > 0 the function %(x)
xp1 logα(x) is non-decreasing, it is

possible to find such functions with sequences (ks), (ls) satisfying log ks ≤ l
1
α0
s

for all s.

Proof. The application Tp1,p2 : C0,1 → Cp1,p2 given by

Tp1,p2f(x) = xp1f(xp2−p1)

is a bijection. Take f = T−1
p1,p2

%, apply Proposition B.2, and set %̄ = Tp1,p2 f̄ . �

Appendix C. Symmetric α-stable like walk
on lamplighter over a segment

For m > 1, let Im be a subgraph of one dimensional lattice Z with vertex
set {0, 1, . . . ,m− 1}. Consider the lamplighter graph Lm over the segment Im.
Formally, {(f, x) : f : Im → {0, 1}, x ∈ Im} is the vertex set of Lm, and an
edge connects (f, x) and (f ′, x′) if f ≡ f ′ and x ∼ x′ in Im, or x = x′, f 6= f ′

and f differs from f ′ only at site x. Random walks on lamplighter graphs have
been studied in [Ers03], [PR04]; see also references therein.

Random walk on Z driven by step distribution

να(x) ' 1

(1 + |x|)1+α , α ∈ (0, 2)

is often referred to as a symmetric α-stable like walk on Z. By abuse of terminol-
ogy, we call it an α-stable walk. General theory regarding heat kernel estimates
of α-stable walks on volume doubling graphs is available; see [CK08] and ref-
erences therein. The connection between α-stable walks and the Markov type
method for a bounding compression exponent was first introduced in [NP11],
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where the p-stable walk on Z is used to determine the Lp-compression exponent
of Z o Z, p > 1. For our purpose, we focus on the case of the stable walk of the
index α = 1 on the base graph.

On Im, define transition kernel

ζm(x, x′) =
cx,x′∑

x′∈Im cx,x′
, x, x′ ∈ Im,

where
cx,x′ =

1

1 + |x− x′|2
.

Then ζm is a Markov transition kernel on Im with stationary distribution
Cm(x) =

∑
x′∈Im cx,x′∑
x,x′∈Im cx,x′

. One readily checks that 1
5m ≤ Cm(x) ≤ 5

m for all x ∈ Im.
Now consider a random walk on the lamplighter graph Lm with transition

ζm on the base. Let pm be the transition kernel in Lm such that for x 6= x′,
pm((f, x), (f ′, x′)) = 1

4ζm(x, x′) if f(z) = f ′(z) for all z /∈ {x, x′}; for x = x′,
pm((f, x), (f ′, x′)) = 1

2ζm(x, x) if f(z) = f ′(z) for all z 6= x. In other words,
in each step the walker first randomizes the lamp configuration at the current
location, then moves according to the transition kernel ζm and randomizes the
lamp at the arrival location. This Markov chain is reversible with stationary
distribution

Um (f, x) = 2−mCm(x).

From the upper bound on relaxation time in [PR04, Th. 1.2], we have

Trel(Lm, pm) =
1

λ2(Lm, pm)
≤ max

x,y∈Im
Exτy,

where τy = min {t : Xt = y}, Xt denotes the Markov chain on Lm with tran-
sition kernel pm. Note that although in the statement of [PR04, Th. 1.2] it is
assumed that the Markov chain on the base is a lazy simple random walk on a
transitive graph, the coupling argument that proves the relaxation time upper
bound is completely general, and it applies to any reversible Markov chain on
the base graph. The quantity maxx,y∈Im Exτy is known as the maximal hitting
time of the chain pm. By [AF02, Lemma 4.1],

max
x,y∈Im

Exτy =
1

2

Ñ ∑
z,z′∈Im

cz,z′

é
max
x,y

Rx,x′ ,

where Rx,x′ denotes the effective resistance between vertices x and x′ in the
electric network on Im with edge conductances cz,z′ between the pair of vertices
z, z′. Estimates of effective resistance of α-stable walks follow from classical
methods. For the particular transition kernel ζm with α = 1, there exists a
constant C > 0

Rx,x′ ≤ C log
∣∣x− x′∣∣ ;
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see, for example, [CFG09, App. B.2]. We conclude that for the Markov chain
with transition kernel pm on Lm,

λ2(Lm, pm) ≥ c

m logm
.

Equivalently, we have the following Poincaré inequality: for any function f :

Lm → R,∑
u,v∈Lm

(f(u)− f(v))2 Um(u)Um(v)

≤ 2m logm

c

∑
u,v∈Lm

(f(u)− f(v))2 pm(u, v)Um(u).

By Matoušek’s extrapolation lemma for Poincaré inequalities (see [Mat97] and
[NS11, Lemma 4.4]), we deduce the following lp-Poincaré inequalities.

Lemma C.1. In the setting introduced above, there exists an absolute con-
stant C > 0 such that for any f : Lm → `p ,

• if 1 ≤ p ≤ 2, then∑
u,v∈Lm

‖f(u)− f(v)‖pp Um(u)Um(v)

≤ Cm logm
∑

u,v∈Lm

‖f(u)− f(v)‖pp Um(u)pm (u, v) ;

• if p > 2, then∑
u,v∈Lm

‖f(u)− f(v)‖pp Um(u)Um(v)

≤ (Cm logm)
p
2 (2p)p

∑
u,v∈Lm

‖f(u)− f(v)‖pp Um(u)pm (u, v).

Now we introduce a distance function on Lm. Let w = (w1, w2) ∈ R+
2 .

In the lamplighter graph Lm, let w(e) = w1 if the edge e connects (f, x) and
(f, x′), where x ∼ x′ (edges of first type); let w(e) = w2 if the edge e connects
(f, x) and (f ′, x), where f, f ′ only differs at site x (edges of second type). Define
dw to be distance on Lm

dw(u, v) = min

{∑
e∈P

w(e) : P is a path in Lm connecting u, v

}
.

From definition of pm, it is straightforward to check that the following.
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Lemma C.2. There exists a constant C > 0 such that for all p > 1,

∑
u,v∈Lm

dw(u, v)pUm(u)pm (u, v) ≤ C
Å
wp2 +

1

p− 1
wp1m

p−1

ã
,

∑
dw(u,v)≥ 1

4
(w2+w1)m

dw(u, v)pUm(u)Um(v) ≥ 1

C
(w2 + w1)m.

These ingredients allow us to carry out the Poincaré inequality method
to the upper bound Lp-compression function of H o Z. It can also be used in
the study of the diagonal product ∆ with dihedral groups. Alternatively, we
may apply the Markov type method. To this end, the following speed lower
estimate is needed.

Lemma C.3. Let Xt be a stationary Markov chain on Lm with transition
kernel pm reversible with stationary measure Um . Then there exists c > 0 such
that

EUm [dw (Xt, X0)] ≥ c (w1 + w2)
t

log∗ t
for all 1 ≤ t ≤ m logm.

Proof. Let S[0,t] = {Sn, 0 ≤ n ≤ t} denote the sites visited by the induced
random walk {St} on Im. Since in each step the chain randomizes the lamp
at the current and new locations, and any path in the graph Lm that connects
X0 to Xt must visit all the sites where the lamp configurations of X0 and Xt

differ, we have that for any u ∈ Lm,

Eu [dw (Xt, X0)] ≥ 1

2
(w1 + w2)Eu

[∣∣S[0,t]

∣∣] .
Thus the question is reduced to the range of the ζm-random walk on the base Im.
Methods to estimate the expected size of range of the random walk go back to
Dvoretzky and Erdos [DE51]. Here we include a straightforward adaptation of
the argument in [NP08, Lemma 6.3] for completeness.

In what follows E means taking expectation with the law of random walk
Sn on Im with step distribution ζm. For any k ∈ {1, . . . ,m}, denote by
V1, . . . , Vk the first k elements of Im that are visited by the random walk Sn.
Let

Yk(t) = |{0 ≤ n ≤ t : Sn ∈ {V1, . . . Vk}}| .

Note that {Yk(t) < t+ 1} =
{∣∣S[0,t]

∣∣ > k
}
. For any starting point z ∈ Im,

Ez [Yk(t)] =
k∑
l=1

Ez [|{0 ≤ n ≤ t : Sn = Vl}|] ≤ k
t∑

n=0

max
x∈Im

Px (Sn = x).
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Therefore

Ez
(∣∣S[0,t]

∣∣) ≥ kPz (∣∣S[0,t]

∣∣ > k
)
≥ k
Å

1− Ez [Yk(t)]

t+ 1

ã
≥ k
Ç

1− k
∑t

n=0 maxx∈Im Px (Sn = x)

t+ 1

å
.

(54)

The argument in [CK08, Th. 3.1 ] implies that the chain (Im, ζm) satisfies a
Nash inequality that there exists an absolute constant C > 0,

θ
Ä
‖u‖22

ä
≤ CEζm (u, u) for all u : Im → R, where θ(r) = r2.

This Nash inequality implies on-diagonal decay upper bound (see [DSC96])

Px (Sl = x) ≤ c2

l
for all l ≤ m, x ∈ Im.

For l > m, by monotonicity, Px (Sl = x) ≤ Px (Sm = x) ≤ c2l
−1. It follows

that for k ∈ {1, . . . ,m},
k log k∑
l=0

max
x∈Im

Px [Sl = x] ≤ c3 log k.

Together these estimates imply that

Eu
[
dw
(
Xk log∗ k, X0

)]
≥ c (w1 + w2) k for any k ∈ {1, . . . ,m}, u ∈ Lm. �

The same method can be used to estimate the speed of random walks on
lamplighter graphs over other choices of the base graph.

Lemma C.4. Let Γ = Z2 o Dd
∞ , d ≥ 3 as in the second item of Ex-

ample 2.4, marked with generating subgroups A = Z2 o 〈aj , 1 ≤ j ≤ d〉, B =

Z2 o 〈bj , 1 ≤ j ≤ d〉. Fix an increasing sequence ns ∈ N, and let Γs = Z2 oDd
2ns

be a finite quotient of Γ. Let A(s), B(s) denote the projection of A and B to
Γs . There exists a constant σd > 0 only depending on d such that {Γs} satisfies
the
Ä
σd, (2ns)

d
ä
-linear speed assumption.

Proof. Let Ā(s) = 〈aj , 1 ≤ j ≤ d〉, B̄(s) = 〈bj , 1 ≤ j ≤ d〉. Consider a ran-
dom alternating word X

(s)
t in A(s) and B(s) of length t, and let X̄(s)

t be its
projection to Dd

2ns . In other words, if the last letter in X(s)
t is a random ele-

ment in A(s), then to get to X(s)
t+1, the lamp configuration in the neighborhood

X̄
(s)
t B̄(s) is randomized, and the walker on the base Dd

2ns is multiplied by a
random element in B̄(s). Similarly if X(s)

t ends with B(s), then the next move
is uniform in A(s). From this description, we have that the lamps over the sites
visited by X̄(s)

t are randomized,∣∣∣X(s)
2t

∣∣∣
Γs
≥ 1

8

∣∣∣R(s)
[[0,2t]]

∣∣∣ ,
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whereR(s)
[[0,2t]] =

¶
x ∈ Dd

2ns : X̄
(s)
2l = x for some 0 ≤ l ≤ t

©
. Comparing

¶
X̄

(s)
2l

©
to the standard simple random walk on Dd

2ns , we have that there exists a
constant Cd > 0 such that

P
Ä
X̄

(s)
2l = e

ä
≤ Cd(2l)−

d
2 for all 1 ≤ l ≤ 2n2

s.

It follows that
(2ns)d∑
l=0

P
Ä
X̄

(s)
2l = e

ä
≤ 1 +

2n2
s∑

l=1

Cd(2l)
− d

2 + (2ns)
d (4n2

s)
−d/2

≤ 2Cd + 2.

To estimate E
∣∣∣R(s)

[[0,2t]]

∣∣∣ , we apply the argument as in Lemma C.3. For t ≤
(2ns)

d, in the inequality (54) choose k = t
4Cd+4 . We conclude that there exists

a constant σd > 0,

E
∣∣∣X(s)

2t

∣∣∣
Γs
≥ σdt. �
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