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Equiangular lines with a fixed angle

By Zilin Jiang, Jonathan Tidor, Yuan Yao, Shengtong Zhang,

and Yufei Zhao

Abstract

Solving a longstanding problem on equiangular lines, we determine, for

each given fixed angle and in all sufficiently large dimensions, the maximum

number of lines pairwise separated by the given angle.

Fix 0 < α < 1. Let Nα(d) denote the maximum number of lines

through the origin in Rd with pairwise common angle arccosα. Let k

denote the minimum number (if it exists) of vertices in a graph whose

adjacency matrix has spectral radius exactly (1 − α)/(2α). If k < ∞,

then Nα(d) = bk(d − 1)/(k − 1)c for all sufficiently large d, and otherwise

Nα(d) = d+o(d). In particular, N1/(2k−1)(d) = bk(d−1)/(k−1)c for every

integer k ≥ 2 and all sufficiently large d.

A key ingredient is a new result in spectral graph theory: the adja-

cency matrix of a connected bounded degree graph has sublinear second

eigenvalue multiplicity.

1. Introduction

A set of lines passing through the origin in Rd is called equiangular if

they are pairwise separated by the same angle. Equiangular lines and their

variants appear naturally in pure and applied mathematics. It is an old and

natural problem to determine the maximum number of equiangular lines in

a given dimension. The study of equiangular lines was initiated by Haantjes

[12] in connection with elliptic geometry and has subsequently grown into an

extensively studied subject. Equiangular lines show up in coding theory as

tight frames [21]. Complex equiangular lines, also known under the name

SIC-POVM, play an important role in quantum information theory [20].

The problem of determining N(d), the maximum number of equiangular

lines in Rd, was formally posed by van Lint and Seidel [18]. The exact value
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of N(d) has been determined for only finitely many d (see [2], [10]). A general

upper bound N(d) ≤
(d+1

2

)
was shown by Gerzon (see [17]). It had remained

open for some time whether there is a matching quadratic lower bound, until

de Caen [4] gave a remarkable construction showing N(d) ≥ 2
9(d+ 1)2 for d of

the form d = 6 ·4i−1, which, in particular, implies that N(d) = Θ(d2) for all d.

All examples of sets of Θ(d2) equiangular lines in Rd have angles approaching

90◦ as d→∞. It turns out that a completely different behavior emerges when

the common angle is held fixed as d→∞, which is the focus of this paper.

Let Nα(d) denote the maximum number of lines in Rd through the origin

with pairwise angle arccosα. Equivalently, Nα(d) is the maximum number of

unit vectors in Rd with pairwise inner products ±α. Lemmens and Seidel [17]

in 1973 initiated the problem of studying Nα(d) for fixed α and large d. They

completely determined the values of N1/3(d) for all d and, in particular, proved

that N1/3(d) = 2(d−1) for all d ≥ 15. Neumann (see [17]) showed that Nα(d) ≤
2d unless 1/α is an odd integer. It was conjectured by Lemmens and Seidel [17]

and subsequently proved by Neumaier [19] that N1/5(d) = b3(d− 1)/2c for

all sufficiently large d. Neumaier [19] writes that “the next interesting case

[α = 1/7] will require substantially stronger techniques.”

We focus on the problem for fixed α and large d and refer the readers to

[7] for discussion on bounds for smaller values of d.

Recently there were a number of significant advances giving new upper

bounds on Nα(d), starting with the work of Bukh [3] who proved that Nα(d)

is at most linear in the dimension for every fixed α.1 Then came a surprising

breakthrough of Balla, Dräxler, Keevash, and Sudakov [1], who showed that

lim supd→∞Nα(d)/d, as a function of α ∈ (0, 1), is maximized at α = 1/3, and

in fact this limit is at most 1.93 unless α = 1/3, in which case the limit is 2.

In addition to introducing many new tools and ideas, their important paper

presents an approach to the equiangular lines problem that forms a bedrock

for subsequent work.

An outstanding problem is to determine limd→∞Nα(d)/d for every α.

The results in [17], [19] suggest, and it is explicitly conjectured in [3, Conj. 8],

that N1/(2k−1)(d) = kd/(k − 1) + Ok(1) as d → ∞. A conjectural value of

limd→∞Nα(d)/d for every α was given in [13] in terms of the following spectral

graph quantity.

Definition 1.1 (Spectral radius order). Define the spectral radius order,

denoted k(λ), of a real λ > 0 to be the smallest integer k so that there exists

1In fact a stronger version of the inequality was shown by Bukh [3], namely, that for every

fixed β > 0, one cannot have more than Cβd unit vectors in Rd whose mutual inner products

lie in [−1,−β] ∪ {α}.
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a k-vertex graph G whose spectral radius λ1(G) is exactly λ. (When we say

the spectral radius or eigenvalues of a graph, we always refer to its adjacency

matrix.) Set k(λ) =∞ if no such graph exists.

Jiang and Polyanskii [13] conjectured that limd→∞Nα(d)/d = k/(k − 1)

where k=k(λ) with λ=(1− α)/(2α). They proved their conjecture whenever

λ<
√

2 +
√

5≈2.058. (The cases α= 1/3, 1/5, corresponding to λ= 1, 2, were

known earlier, as discussed.) In particular, it was shown that N1/(1+2
√

2)(d)=

3d/2 + O(1). Furthermore, it was shown that Nα(d) ≤ 1.49d for every α /∈
{1/3, 1/5, 1/(1 + 2

√
2)} and sufficiently large d > d0(α), improving the earlier

bound in [1].

There is a natural limitation to all previous techniques when λ≥
√

2+
√

5,

which Neumaier had already predicted at the end of his paper [19] (hence his

comment about α= 1/7, i.e., λ= 3, mentioned earlier). We refer to [13] for

discussion.

We completely settle all these conjectures in a strong form.

Theorem 1.2 (Main theorem). Fix α ∈ (0, 1). Let λ = (1 − α)/(2α)

and k = k(λ) be its spectral radius order. The maximum number Nα(d) of

equiangular lines in Rd with common angle arccosα satisfies

(a) Nα(d) = bk(d− 1)/(k − 1)c for all sufficiently large d > d0(α) if k <∞;

(b) Nα(d) = d+ o(d) as d→∞ if k =∞.

Remark. Our proof of (a) works for d > 22Cλk with some constant C.

For (b), it is known [13, Props. 15 and 23] that d ≤ Nα(d) ≤ d+ 2 unless λ is

a totally real algebraic integer that is largest among its conjugates.2 For the

remaining values of α, we leave it as an open problem to determine the growth

rate of Nα(d)− d.

If k ≥ 2 is an integer and α = 1/(2k − 1), then λ = k − 1 and k(λ) = k

(the complete graph Kk is the graph on fewest vertices with spectral radius

k − 1), so the following corollary confirms Bukh’s conjecture [3] in a stronger

form, and extending the only two previously known cases of k = 2 [17] and

k = 3 [19].

Corollary 1.3. For every fixed integer k ≥ 2, one has N1/(2k−1)(d) =

bk(d− 1)/(k − 1)c for all sufficiently large d > d0(k).

2. Proof ideas

In this section we summarize several key ideas used in the proof and discuss

their origins.

2The conjugates of an algebraic integer λ are the other roots of its minimal polynomial.

We say that λ is totally real if all its conjugates are real.
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Connection to spectral graph theory. Choose a unit vector in the direction

of each line in the equiangular set. By considering the Gram matrix, we recast

the problem to one concerning the spectrum of the adjacency matrix of an

associated graph. The connection between equiangular lines and spectral graph

theory has been well known from early works, making equiangular lines one of

the foundational problems of algebraic graph theory (e.g., see [8, Ch. 11]).

Forbidden induced subgraphs. Using the fact that the Gram matrix is pos-

itive semidefinite, we show that the associated graph cannot have certain in-

duced subgraphs. This idea has appeared in the early works of Lemmens and

Seidel [18] and Neumaier [19], and it was reintroduced in recent papers [1], [3],

[13] under the guise of taking an orthogonal projection onto some subspace. In

our proof, we do not take projections; instead we simply verify the forbidden

induced configurations by testing positive semidefiniteness using appropriately

chosen vectors.

Switching. Given a set of unit vectors representing an equiangular lines

configuration, we may negate some unit vector without changing the configura-

tion of lines. The corresponding operation on the associated graph picks some

vertex and swaps the adjacency and non-adjacency relations coming from that

vertex. The idea of switching already appears in the early work of van Lint and

Seidel [18]. It was further used by Neumaier [19] together with an application

of Ramsey’s theorem to determine N1/5(d).

A novel extension of the switching argument was introduced in [1], com-

bining the knowledge of forbidden induced subgraphs (mentioned above) with

an application of Ramsey’s theorem. This can be used to show that one can

switch some of the vertices in the associated graph so that it has bounded

degree.

Theorem 2.1. For every α ∈ (0, 1), there exists some ∆ (depending only

on α) so that for every set of equiangular lines in Rd with common angle

arccosα, one can choose a set S of unit vectors, with one unit vector in the

direction of each line in the equiangular set, so that each unit vector in S has

inner product −α with at most ∆ other vectors in S.

The proof of this theorem follows by combining Lemmas 2.7 and 2.8 of [1].

Since this result is an important ingredient of our proof and does not appear

explicitly in [1], we give a self-contained and streamlined proof in Section 5.

Second eigenvalue multiplicity. Our most significant new contribution is

an upper bound on the second eigenvalue multiplicity of the associated graph.

Let λ1(G) ≥ λ2(G) ≥ · · · ≥ λ|G|(G) be the eigenvalues of the adjacency matrix

of G, accounting for multiplicities as usual. We call λj(G) the j-th eigenvalue

of G.
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Theorem 2.2. For every j and every ∆, there is a constant C = C(∆, j)

so that every connected n-vertex graph with maximum degree at most ∆ has

j-th eigenvalue multiplicity at most Cn/ log logn.

We only need j = 2 in this paper, though the proof for any fixed j is

essentially the same. The j-th eigenvalue multiplicity bound is used in a follow-

up work on spherical two-distance sets [14].

We introduce a novel approach to bound eigenvalue multiplicity using the

Cauchy interlacing theorem along with comparing local and global spectral

data via counting closed walks in the graph after deleting a small fraction of

the vertices. See Section 4 for the proof as well as remarks on bounds.

In contrast, the strategy in [1] and later adapted in [13] had the flavor of

using projections to exclude a finite set of subgraphs with spectral radii exceed-

ing λ, though this strategy runs into a serious limitation when λ ≥
√

2 +
√

5, as

foreseen by Neumaier [19], since the family of forbidden subgraphs has infinitely

many minimal elements [13]. Our method overcomes this significant barrier.

3. Proof of the main theorem

A set of N equiangular lines can be represented by unit vectors v1, . . . , vN
∈ Rd with 〈vi, vj〉 = ±α for all i 6= j. The Gram matrix (〈vi, vj〉)i,j is a positive

semidefinite matrix with 1’s on the diagonal and ±α everywhere else, so it is

equal to (1 − α)I + α(J − 2AG), where I is the identity matrix, J the all-1’s

matrix, and AG the adjacency matrix of an associated graph G on vertex set

[N ] where ij is an edge whenever 〈vi, vj〉=−α. Dividing by 2α, we can rewrite

this matrix as λI−AG+ 1
2J , where λ= (1 − α)/(2α). Conversely, for every G

and λ for which the above matrix is positive semidefinite and has rank d, there

exists a corresponding configuration of N equiangular lines in Rd, one line for

each vertex of G, with pairwise inner product ±α. Thus the equiangular lines

problem has the following equivalent spectral graph theoretic formulation.

Lemma 3.1. There exists a family of N equiangular lines in Rd with com-

mon angle arccosα if and only if there exists an N -vertex graph G such that

the matrix λI−AG+ 1
2J is positive semidefinite and has rank at most d, where

λ = (1− α)/(2α) and J is the all-1’s matrix. �

We first establish the lower bounds.

Proposition 3.2. Let α ∈ (0, 1) and λ = (1 − α)/(2α). Let d be a

positive integer. One has Nα(d) ≥ d. If k = k(λ) < ∞, then Nα(d) ≥
bk(d− 1)/(k − 1)c.

Proof. Let G be the empty graph on d vertices, so that AG = 0 and

λI − AG + 1
2J is positive semidefinite and has rank d. So Nα(d) ≥ d by

Lemma 3.1.
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Now assume k < ∞. Let H be a k-vertex graph with λ1(H) = λ. Let

G be the disjoint union of b(d− 1)/(k − 1)c copies of H along with (d− 1)−
(k − 1) b(d− 1)/(k − 1)c isolated vertices. The number of vertices in G is

(d− 1) + b(d− 1)/(k − 1)c = bk(d− 1)/(k − 1)c.
Since λ is the spectral radius of G and the multiplicity of λ in G is

b(d− 1)/(k − 1)c, the matrix λI − AG is positive semidefinite and has rank

d − 1. Because 1
2J is also positive semidefinite and has rank 1, their sum

λI −AG + 1
2J is positive semidefinite and has rank at most d. By Lemma 3.1,

Nα(d) ≥ bk(d− 1)/(k − 1)c. �

We now prove the upper bounds in Theorem 1.2 assuming Theorems 2.1

and 2.2.

Proof of Theorem 1.2. The lower bounds follow from Proposition 3.2. For

the upper bounds, consider N equiangular lines in Rd. By Theorem 2.1, there

is some constant ∆ = ∆(α) such that we can choose one unit vector in the

direction of each line so that the associated graph (whose edges correspond to

negative inner products) has maximum degree at most ∆. Let C1, . . . , Ct be

the connected components of G, numbered such that λ1(G) = λ1(C1).

If λ is not an eigenvalue of AG, then λI−AG has full rank. As J has rank 1,

d ≥ rank(λI −AG + 1
2J) ≥ N − 1.

Thus N ≤ d + 1, and Theorem 1.2 clearly holds. Therefore we may assume

that λ is an eigenvalue of AG.

First consider the case λ1(G) = λ. By the definition of spectral radius

order, k = k(λ) <∞. Since both λI −AG and J are positive semidefinite,

ker(λI −AG + 1
2J) = ker(λI −AG) ∩ ker(J).

By the Perron–Frobenius theorem, there is a top eigenvector of G with non-

negative entries. This vector lies in ker(λI − AG) but not in ker(J), implying

that dim ker(λI − AG + 1
2J) ≤ dim ker(λI − AG) − 1. By the rank-nullity

theorem, we obtain

rank(λI −AG) ≤ rank(λI −AG + 1
2J)− 1 ≤ d− 1.

Without loss of generality, suppose C1, . . . , Cj are the components of G with

spectral radius exactly λ, and thus |C1| , . . . , |Cj | ≥ k by the definition of

spectral radius order. By the Perron–Frobenius theorem, the multiplicity of λ

in each component is at most 1. Thus

dim ker(λI −AG) = j and rank(λI −AG) ≥ (k − 1)j.

Combining the upper and lower bounds on rank(λI − AG), we obtain j ≤
(d− 1)/(k − 1). Thus,

N = rank(λI −AG) + dim ker(λI −AG) ≤ d− 1 + j ≤ k(d− 1)

k − 1
.

Therefore Theorem 1.2 holds in this case.
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Now we consider the complementary case λ1(C1) > λ. Since λI−AG+ 1
2J

is positive semidefinite and J is a rank 1 matrix, λI − AG has at most one

negative eigenvalue. Thus λ2(G) ≤ λ.

We claim that this implies that the spectral radius of all the remaining

components is strictly less than λ. By the Perron–Frobenius theorem, there

are top eigenvectors u,v for C1, Ci with non-negative entries (positive in the

component under consideration and 0 outside it). Since both 1ᵀu and 1ᵀv are

positive, we can choose c 6= 0 such that w = u − cv satisfies 1ᵀw = 0. Now

since λI −AG + 1
2J is positive semidefinite, we have

0 ≤ wᵀ(λI −AG + 1
2J)w = wᵀ(λI −AG)w.

Expanding and using the fact that the supports of u and v are disconnected

in G, we find

λuᵀu + c2λvᵀv ≥ uᵀAGu + c2vᵀAGv = λ1(C1)uᵀu + c2λ1(Ci)v
ᵀv,

implying that λ1(Ci) < λ for all i > 1. Therefore λI − ACi is invertible for

all i > 1, so dim ker(λI − AG) = dim ker(λI − AC1). Since C1 has maximum

degree at most ∆, Theorem 2.2 gives

dim ker(λI −AC1) = O∆(N/ log logN).

Also,

rank(λI −AC1) ≤ rank(λI −AC1 + 1
2J) + 1 ≤ d+ 1.

Thus

N = rank(λI −AC1) + dim ker(λI − C1) ≤ O∆(N/ log logN) + d+ 1.

This implies that N ≤ d+O∆(d/ log log d). When k <∞, this is smaller than

bk(d− 1)/(k − 1)c for sufficiently large d. �

4. Bounding eigenvalue multiplicity

In this section we prove Theorem 2.2, which bounds the j-th eigenvalue

multiplicity of a connected bounded degree graph.

Definition 4.1. The r-neighborhood of a vertex v in a graph G, denoted

Gr(v), is the subgraph of G induced by all the vertices that are at most distance

r away from v. An r-net in G is a subset V of the vertices such that all vertices

in G are within distance r from some vertex in V .

Lemma 4.2. Let n and r be positive integers. Every n-vertex connected

graph has an r-net with size at most dn/(r + 1)e.

Proof. It suffices to prove the lemma in the case where G is a tree. Pick

an arbitrary vertex w. Take a vertex v at the maximum distance D from w. If

D ≤ r, then {w} is an r-net. Otherwise, let u be the vertex on the path between
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w and v at distance r from v. Add u to the net, and repeat the argument on

the component of w in G− u, which has at most n− r − 1 vertices. �

The next lemma tells us that removing an r-net from a graph significantly

decreases its spectral radius.

Lemma 4.3. Let r be a positive integer. If H (with at least 1 vertex) is

obtained from a graph G by deleting an r-net of G, then

λ1(H)2r ≤ λ1(G)2r − 1.

Proof. It suffices to prove the lemma in the case where G has no isolated

vertices. The result then follows from the Perron–Frobenius theorem and the

observation that A2r
H ≤ A2r

G − I entry-wise (padding zeros to extend AH to a

|G| × |G| matrix). Indeed, for each vertex v of H, the number of closed walks

of length 2r starting from v is strictly more in G than in H, since in G one can

walk to a nearest vertex in the r-net and then walk back (and then walking

back and forth along a single edge to reach length 2r) and this walk is not

available in H. �

The next lemma connects the spectrum of a graph with its local spectral

radii.

Lemma 4.4. For every graph G and positive integer r,

|G|∑
i=1

λi(G)2r ≤
∑

v∈V (G)

λ1(Gr(v))2r.

Proof. The left-hand side counts the number of closed walks of length 2r

in G. The number of such walks starting at v ∈ V (G) is 1ᵀvA2r
Gr(v)1v since such

a walk must stay within distance r from v. This quantity is upper bounded by

λ1(Gr(v))2r, completing the proof. �

Proof of Theorem 2.2. Let G be a connected n-vertex graph with maxi-

mum degree at most ∆. If λj(G) ≤ 0, the theorem holds as the graph has

bounded size. Indeed, in this case,

2 |E(G)| =
n∑
i=1

λi(G)2 ≤
j−1∑
i=1

λi(G)2 +

Ñ
n∑
i=j

λi(G)

é2

=

j−1∑
i=1

λi(G)2 +

(
j−1∑
i=1

λi(G)

)2

≤ j2∆2.

Now suppose λ = λj(G) > 0. Let r1 = bc log log nc and r2 = bc log nc,
where c = c(∆, j) > 0 is a sufficiently small constant. Let r = r1 + r2.
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Define U = {v ∈ V (G) : λ1(Gr(v)) > λ}. We wish to bound the size

of U . Let U0 be a maximal subset of U such that the pairwise distance (in G)

between any two elements of U0 is at least 2(r + 1). Then the graph Gr(U0)

induced by the r-neighborhood of U0 has |U0| connected components each with

spectral radius greater than λ. Hence λ|U0|(Gr(U0)) > λ = λj(G), and thus

|U0| < j by the Cauchy interlacing theorem. Due to the maximality of U0, its

2(r + 1)-neighborhood contains U , and hence |U | ≤ |U0|∆2(r+1) < j∆2(r+1).

Let V0 be an r1-net of size at most dn/(r1 + 1)e in G obtained from

Lemma 4.2. Let H be the graph obtained from G after removing V0 ∪ U .

For each v ∈ V (H), the vertices in Gr(v) not in Hr2(v) form an r1-net of

Gr(v), and hence by Lemma 4.3, λ1(Hr2(v))2r1 ≤ λ1(Gr(v))2r1 − 1 ≤ λ2r1 − 1.

By Lemma 4.4,

|H|∑
i=1

λi(H)2r2 ≤
∑

v∈V (H)

λ1(Hr2(v))2r2 ≤
(
λ2r1 − 1

)r2/r1 n.
Hence the multiplicity of λ in H is at most(

1− λ−2r1
)r2/r1 n ≤ e−r2λ−2r1/r1n ≤ e−

√
lognn,

provided that c is chosen to be small enough initially. (Here we note that λ ≤
λ1(G) ≤ ∆.) Since |V0| + |U | ≤ dn/(r1 + 1)e + j∆2(r+1) = Oj,∆(n/ log log n),

the Cauchy interlacing theorem implies that the multiplicity of λ in G is at

most Oj,∆(n/ log logn). �

Remark. Theorem 2.2 fails for disconnected graphs since λj(G) can be the

spectral radius of many identical small components.

It seems likely that the upper bound can be further improved. It cannot

be improved beyond O(n1/3) due to the following construction: let p ≥ 5

be a prime and G the Cayley graph of PSL(2, p) with two standard group

generators. ThenG is a connected 4-regular graph on p(p2−1)/2 vertices. Since

all non-trivial representations of PSL(2, p) have dimension at least (p − 1)/2,

all eigenvalues of G except λ1(G) have multiplicity at least (p− 1)/2 (see [6]).

More generally, one can use quasirandom groups [9], which are groups with no

small irreducible non-trivial representations.

The claim is false without the maximum degree hypothesis. Paley graphs

have p vertices and second eigenvalue (
√
p− 1)/2 with multiplicity (p− 1)/2.

Other strongly regular graphs and distance-regular graphs have similar prop-

erties.

5. Switching to a bounded degree graph

It remains to prove Theorem 2.1, which says that one can choose the unit

vectors for the equiangular lines so that the associated graph G has bounded

degree. Recall that the edges of G correspond to pairs of unit vectors with
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inner product −α. This argument essentially appears in [1] though phrased

differently. Here we give a self-contained and streamlined proof.

We begin by using the positive semidefiniteness of the Gram matrix to

show that certain induced subgraphs cannot appear in G.

Lemma 5.1. Let α ∈ (0, 1). Let G be the associated graph of a set of unit

vectors with pairwise inner products ±α. Then the largest clique in G has size

at most α−1 + 1.

Proof. Let v1, . . . , vM be unit vectors corresponding to a clique in G, so

that 〈vi, vj〉 = −α for i 6= j. Then 0 ≤ ‖v1 + · · ·+ vM‖22 = M −M(M − 1)α.

Hence M ≤ α−1 + 1. �

Definition 5.2. For a graph G and sets A ⊆ X ⊆ V (G), define CX(A) to

be the set of vertices in V (G) \ X that are adjacent to all vertices in A and

not adjacent to any vertices in X \A.

Lemma 5.3. Let α ∈ (0, 1) and λ = (1 − α)/(2α). There exist positive

integers M1,M2 depending only on α such that the following holds. Let G be

the associated graph of a set of unit vectors with pairwise inner products ±α.

If X is an independent set of G with at least M1 vertices, then

(a) the maximum degree of the subgraph of G induced by CX(∅) (i.e., the

non-neighbors of X) is at most dλ2e; and

(b) |CX(Y )| ≤M2 for every non-empty proper subset Y of X .

Proof. (a) Assume for contradiction that there exists a star K1,D in CX(∅)

with vertex set V1 where D = dλ2e+1. Consider the vector v that assigns
√
D

to the center of the star, 1 to all other vertices in V1, −(D +
√
D)/ |X| to all

vertices in X, and 0 to all other vertices of G. We have

vᵀ
(
λI −AG + 1

2J
)
v ≥ 0

due to positive semidefiniteness. Since Jv = 0,

0 ≤ λ(vᵀv)− vᵀAGv ≤ λ
Ç

2D +
(D +

√
D)2

|X|

å
− 2D

√
D.

As λ <
√
D, this gives a contradiction when |X| ≥M1 is sufficiently large.

(b) Write a = |Y |, b = |X \ Y |, and c = |CX(Y )|. For any real numbers

α, β, γ, we consider the vector v that assigns α to the vertices in Y , β to the

vertices inX\Y , γ to the vertices in CX(Y ), and 0 to all other vertices. We have

0 ≤ vᵀ
(
λI −AG + 1

2J
)
v ≤ λ(aα2 + bβ2 + cγ2)− 2acαγ + 1

2(aα+ bβ + cγ)2

for all real α, β, γ. Taking β = −(aα+ cγ)/(b+ 2λ), we obtain

λ(aα2 + cγ2)− 2acαγ +
λ

b+ 2λ
(aα+ cγ)2 ≥ 0
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for all real numbers α and γ. This is a quadratic form in α and γ. For it to

take non-negative values, its discriminant must be non-positive. Thus

4
(b+ λ)2

(b+ 2λ)2
a2c2 − 4

Å
λa+

λa2

b+ 2λ

ãÅ
λc+

λc2

b+ 2λ

ã
≤ 0,

which simplifies to

(b+ λ)2ac ≤ (λa+ λb+ 2λ2)(λc+ λb+ 2λ2).

Rearranging the inequality gives

c ≤ λ2(a+ b+ 2λ)

ab− λ2
.

Since a, b are positive integers, we have the easy bound ab ≥ a+b−1. Recalling

that a+ b = |X| ≥M1, we can take M1 ≥ 2λ2 + 2 to give the somewhat crude

bound

c ≤ λ2(a+ b+ 2λ)

ab− λ2
≤ λ2(a+ b+ 2λ)

a+ b− (λ2 + 1)
≤ 2λ2(a+ b+ 2λ)

a+ b

= 2λ2 +
4λ3

a+ b
≤ 2λ2 + 2λ.

Choosing M1,M2 appropriately, we conclude |CX(Y )| = c ≤ M2, as de-

sired. �

Proof of Theorem 2.1. For a set ofN equiangular lines in Rd with common

angle arccosα, choose unit vectors v1, . . . , vN in the directions of the lines

arbitrarily. LetG be the associated graph, whose vertex set is V = {v1, . . . , vN}
with an edge between two vectors if their inner product is −α.

LetM0 = dα−1e+2, and defineM1,M2 as in Proposition 5.3. By Ramsey’s

theorem, there exists R = R(M0, 2M1) such that if |V | > R, then G contains

either a clique of size M0 or an independent set of size 2M1. As long as we

choose ∆ ≥ R, the result is trivially true for |V | ≤ R. Thus we may assume

that |V | > R. By Lemma 5.1, G does not contain a clique of size M0. Thus G

must contain an independent set of size 2M1, which we call V1.

We perform the following switching operation, modifying our set of vectors

{v1, . . . , vN}. For any vertex vi 6∈ V1 adjacent to more than half of the vertices

in V1, replace vi by −vi.
Considering how each vertex in V \ V1 is attached to V1, the set V \ V1

can be partitioned as a disjoint union of CV1(Y ) as Y ranges over all subsets

of V1 with at most |V1| /2 elements, since the above switching step ensures

that CV1(Y ) is empty for |Y | > |V1| /2. By Proposition 5.3(b), |CV1(Y )| ≤M2

for each Y 6= ∅. Let V2 = CV1(∅), the non-neighbors of V1. We know that

|V \ V2| ≤M := 2M1 + 22M1M2.

It remains to bound the degree of vertices in V . If v ∈ V1, then v is only

adjacent to vertices in V \ V2 and thus has degree at most M . Now suppose
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v 6∈ V1. Let Y be the set of non-neighbors of v in V1. The switching ensures

that |Y | ≥ |V1| /2 = M1. Applying Proposition 5.3(a), the maximum degree

of the subgraph induced by CY (∅) is at most dλ2e. This set CY (∅) includes

V2 and v, implying that v has degree at most D :=
⌈
λ2
⌉

+ M . Thus we have

bounded the degree of every vertex by D, a constant depending only on α. �

6. Further remarks

Our main theorem completely determines Nα(d) for sufficiently large d

in the case k(λ) <∞. However, it is still open what happens exactly when

k(λ)=∞. The construction in Proposition 3.2 only gives a lower bound Nα(d)

≥ d, whereas the proof of Theorem 1.2 shows Nα(d) = d + Oα (d/ log log d).

The following conjecture was made in [13] and has been verified except when

λ is a totally real algebraic integer that is largest among its conjugates [13,

Props. 15 and 23].

Conjecture 6.1. Fix α ∈ (0, 1), and let λ = (1−α)/(2α). If k(λ) =∞,

then Nα(d) = d+Oα(1).

Question 6.2. How large does d need to be for Theorem 1.2 to hold?

Many interesting questions can be asked regarding Theorem 2.2 as well.

Question 6.3. Fix ∆. What is the maximum possible second eigenvalue

multiplicity of a connected n-vertex graph with maximum degree at most ∆?

Theorem 2.2 shows that the λ2 multiplicity is O∆(n/ log log n). On the

other hand, it cannot be better than O(n1/3) when ∆ ≥ 4. (See the remark at

the end of Section 4.)

Remark. It is interesting to ask the same question when restricted to

Cayley graphs of finite groups. For abelian or nearly abelian groups (e.g.,

nilpotent of bounded step), the problem of eigenvalue multiplicities has in-

teresting connections to deep results in Riemannian geometry. Following the

approach of Colding and Minicozzi [5] on harmonic functions on manifolds and

Kleiner’s proof [15] of Gromov’s theorem on groups of polynomial growth [11],

Lee and Makarychev [16] showed that in groups with bounded doubling con-

stant K = maxR>0 |B(2R)| /|B(R)| (where B(R) is the ball of radius R), the

second eigenvalue multiplicity of such a Cayley graph is bounded, namely at

most KO(logK). Note that a Cayley graph on a nilpotent group of bounded

step (e.g., an abelian group) with a bounded number of generators has bounded

doubling constant.

The above discussion gives a substantial improvement to Theorem 2.2

for non-expanding Cayley graphs. On the other hand, for expander graphs

(not necessarily Cayley), say, satisfying |N(A)| ≥ (1 + c) |A| for all vertex
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subsets A with |A| ≤ n/2, the bound in Theorem 2.2 can be improved to

O∆,j,c(n/ log n). Indeed, for such expander graphs, Lemma 4.2 can be improved

as follows. Every maximal r-separated set is necessarily an r-net, and the size

of such a set in this expander graph is at most n/(1 + c)br/2c, as can be seen

by considering the sizes of the br/2c-neighborhoods that must necessarily be

disjoint. However, there are Cayley graphs that expand at some scales and

have bounded doubling at other scales. Neither of these techniques applies to

such graphs.

The following more refined question, where we fix λ > 0, appears to be

more relevant to the problem of equiangular lines, especially in pinning down

the asymptotics of the error term in Theorem 1.2.

Question 6.4. Fix ∆, λ > 0. What is the maximum multiplicity that λ can

appear as the second eigenvalue of a connected n-vertex graph with maximum

degree at most ∆?

If the answer is O(1) for some λ and sufficiently large ∆, then our proof

shows that Conjecture 6.1 holds for this λ.

Finally, there are many similarly flavored questions regarding s-distance

sets and codes in Rn, the sphere, and other spaces. Complex versions and

higher dimensional analogs are also worth exploring further. We state one of

these questions here, which is partially addressed in a follow-up work [14].

Question 6.5. Fix 1 > α ≥ 0 > β ≥ −1. What is the maximum size of

a spherical {α, β}-code in Rd? That is, what is the maximum number of unit

vectors in Rd such that all pairwise inner products are α or β?
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