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Abstract 
 
 
 
 

he falling-down of dominoes is a process where gravitational energy converts 
to kinetic energy. Dominoes fall at an increasing speed as more gravitational 

energy converts. We derive the recurrence relations between angles, energy and 
time when an ideal domino queue (dominoes with negligible thickness and friction) 
collapse forwards, and analyze when energy loss and thickness of dominoes are 
inevitable. 

Finally, approximation is introduced to allow fast computation. 

It turns out that many positive feedback systems fall under this model. 
Specifically, we give application to: 

1. Connection between CO2 and global warming. 

2. Domino effect when companies go bankrupt during financial crisis. 
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Chapter I Introduction 
 

 

 

omino has been a popular game worldwide ever since it was invented, for it 
strengthens the players’ mind and helps to develop their creativity. Even 

though countless people have done some researches on domino, they only paid their 
attention on increasing the numbers of dominoes and innovating different ways to 
arrange the dominoes. However, necessary researches on the angular velocity and 
the energy relations of dominoes when they fall down are deficient. 

The falling-down process of dominoes is a process where gravitational energy 

converts to kinetic energy. As the dominoes fall, gravitational energy releases and 
kinetic energy accumulates. As a result, the angular velocity of the dominoes 
increases rapidly. 

In practice, the angular velocity of the falling dominoes has a limit due to loss of 
energy when one domino hits another. When the energy loss is equivalent to the 
energy released (so called equilibrium), the angular velocity becomes stable. 

To give a mathematical model of domino we established: I. the recurrence 
relations between angles; II. time for one domino to hit the next one (t); III. time for 
N dominoes in a line to fall down (TN); IV. the limit of angular velocity when loss of 
energy is taken into account by introducing a parameter Q to measure the loss of 
energy. 

The extreme complexity of accurate function resulted in the computation 
disability of computers and the unpracticability of the model. To solve the problems, 
we introduced reasonable simplification and approximation to the model. 

The accumulation of CO2 shares similarity with the accumulation of t (time for 
one domino to hit the next) to TN (time for N dominoes to fall down) in a domino line. 
The model contributes to the prediction of relationship between concentration of 
CO2 in atmosphere and global mean temperature.  

The model also has its application in economics. Domino effect takes place 
when an essential company bankrupts and a great many follow, resulting in a 
financial crisis. We studied the case of the great depression of 1929 in the US 
because the market at that time was acting freely without the interference from the 

government. The application is introduced to measure the graveness of a financial 
crisis and to provide suggestion to governments and financial institutions when 
enacting the fiscal and monetary policies. 
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Chapter II Modeling and Analysis 
 

2.1 Preliminary & Notation 

2.1.1 Lemmas  

Lemma I 

 

When  x→0，sinx~x，cosx~1，tanx~x 

When  x→0，(1 + x)a ≈ 1 + ax +
a(a−1)

2
x2 

 

Lemma II   

 

The kinetic energy of a pole of weight m, length 2h, rotating at angular velocity 

𝜔 is 

 

E =
2

3
𝑚𝜔2ℎ2 

 

Proof: 
 

E = 1
2⁄ 𝑚 (

𝑑𝑠

𝑑𝑡
)
2

 

dE = 1
2⁄
𝑑𝑥

2ℎ
𝑚(𝜔ℎ)2 

E = ∫ 1
2⁄
𝑚(𝜔𝑥)2

2ℎ
𝑑ℎ = 1

6⁄ 𝑚𝜔24ℎ2 =
2

3
𝑚𝜔2ℎ2

2ℎ

0

 

 

Lemma III 

 

 
Figure 2.1.1 
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According to the midpoint rule, it is easy to get 

 

∑f(i) ≈ ∫ f(x) dx
n+0.5

z−0.5

n

i=z

 

 

Proof: 

Take the graph of the function in Figure 2.1.1 as an example. We translate the 

y-value of z (an integer) half unit to the left and half unit to the right then draw a 

rectangle with the y-value of z as the length and 1 unit as the width.  

As can be seen in figure 2.1.1, the area of the red (the redundant area) one and 

the black (the vacant area) are almost the same. Thus, the integration of the function 

can be expressed as the area of the sum of the rectangles: 

 

∑f(i) = f(z) + f(z + 1) + f(z + 2)……+ f

n

i=z

(n) 

 
= 1 ∗ f(z) + 1 ∗ f(z + 1) + 1 ∗ f(z + 2)……+ 1 ∗ f(n) 

 

Obviously, the straighter the curve is, the more accurate the approximation is. 

The equation above can be regarded as the area of the trapezium (circled by 
x=z-0.5, x=n+0.5, f(x)). Thus, 

∑f(i) ≈ ∫ f(x) dx
n+0.5

z−0.5

n

i=z
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2.1.2 Notations and Assumptions 

As seen in Figure 2.1.2, dominoes are regarded as poles with negligible 

thickness and friction. Dominoes rotate around its intersecting point with the earth. 

Energy loss during collision is ignored in Chapter 2.2 to 2.3 for simplicity and 

will be discussed in Chapter 2.4 

 

 

 

 

 

 

 

 

 

 

I. Each domino has length 2h, thus its centroid is at the height of h when 

the domino is upright; 

II. The gap between every two dominoes is d; 

III. When a domino falls down and hits the next piece, its angle against the 

ground is  0;  

IV. Let k=
 

2ℎ
=co  0, thus  0 = a cco  ( ) 

V. EN be the total kinetic energy of N dominoes in line 

VI. When taking the loss of energy in collision into account, each collision 

preserves Q of the original kinetic energy; 

 

  

𝜃0 

2h 

d 

Figure 2.1.2 
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2.1.3 Setting up coordinate system and numbering dominoes 

 

 

 

Figure 2.1.3 represents a moment of the falling-down process of dominoes. 

It is obvious according to the figure that all the dominoes would not fall down 

to the ground, and each domino has kinetic energy. However, some posterior 

dominoes have very small angles against the ground that can be neglected. 

At this very moment, shown in Figure 2.1.3, the rightmost domino is numbered 

the 1st domino (N=1), from right to left the dominoes are numbered the 2nd, the 3rd 

(N=2, 3…) and so on. If N dominoes have non-zero kinetic energy at this moment, 

then the one on the very left should be numbered as the Nth. 

The motion of the top of a domino is a circle with a radius of its length (2h) 

centered at the bottom of the domino. Hence the position of the top the Nth domino 

is determined by that of the (N-1)th domino: the circle of one domino (nth) and the 

prior domino (n-1)th intersect at one point, and the straight line between the 

intersection point and the rotating center of the nth domino is where the nth domino 

is. 

We set up the coordinate system as illustrated in Figure 2.1.3: rotating center of 

the 1st domino as the origin, the direction for the dominoes to fall down as the 

positive direction of x-axis (Dominoes are supposed to fall down from left to right in 

the following deduction). 

Denote that    be the angle between the ground and the nth domino, and On, 

be the circle describing the motion of the top of the domino. 

  

Figure 2.1.3 
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2.2 Solutions to the model 

 

2.2.1 Relations between angles 

 

For the nth domino, the equation of On (1 ≤ n ≤ N − 1) is 
 

[x+(n-1)d]2+y2=(2ℎ)2 
 

In its parameter form  
 

{
𝑥 = 𝑐𝑜𝑠 𝜃𝑛 ∙ (2ℎ) − (𝑛 − 1)𝑑

𝑦 = 𝑠𝑖𝑛 𝜃𝑛 ∙ (2ℎ)
 

 

The (n-1)th domino is in the position of the straight line: 
 

{
x = t − (n − 2)d
𝑦 = 𝑡 ∙ tan𝜃𝑛−1

 

 

Solve the simultaneous parameter equations, we get 
 

tan 𝜃n−1 =
 in𝜃𝑛 ∙ (2ℎ)

co 𝜃𝑛 ∙ (2ℎ) − 𝑑
 

 

Let k=
 

2ℎ
, the equation above can be simplified to 

 

tan𝜃n−1 =
 in𝜃𝑛

co 𝜃𝑛 − 𝑘
                        …… (1) 

 

Thus, 
 

(tan2 𝜃𝑛−1 + 1) co 2 𝜃𝑛 − 2𝑘 tan2 𝜃𝑛−1 ∙ co 𝜃𝑛 + 𝑘2 ∙ tan2 𝜃𝑛−1 − 1 = 0 
 

Using extraction of root to solve, the solution is: 
 

co 𝜃𝑛 =
𝑘 tan2 𝜃𝑛−1 +√tan2 𝜃𝑛−1 − 𝑘2 tan2 𝜃𝑛−1 + 1

tan2 𝜃𝑛−1 + 1
 

 

Also because 
 

tan 𝜃𝑛 = √
1− co 2 𝜃𝑛
co 2 𝜃𝑛

 

 

Recurrence relations for angles is 
 

tan 𝜃𝑛+1 =
tan𝜃𝑛∙ √(1 − 𝑘2) tan2 𝜃𝑛 + 1 + 𝑘2 − 2𝑘√(1 − 𝑘2) tan2 𝜃𝑛 + 1

𝑘 ∙ tan2 𝜃𝑛 +√(1 − 𝑘2) tan2 𝜃𝑛 + 1
   ……(2) 
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The equation above is very complicated. When n is increasing, equation (1) can 
be simplified as 

 

 n−1 =
 n
1 −  

 

 

It is obvious that the equation above is a geometric progression, hence 
 

𝜃𝑛+1 ≈ 𝜃1(1 − 𝑘)𝑛                      …… (3) 
 

To examine the precision of the approximation，we used Matlab to calculate the 
values and used Excel to plot the function.  

 
Series I&II are graphs drawn with k=0.6,𝜃 = a cco (0.6); series I is the graph of 

the accurate equation (2), series II is the graph of the simplified equation(3) 
Series III&IV are graphs drawn with k=0.8, 𝜃 = a cco (0.8); series III is the 

graph of the accurate equation (2), series IV is the graph of the simplified 
equation(3). 

 

Figure 2.2.1 
 
As can be seen in the figure, the approximation is highly precise. To simplify the 

following deduction and to enhance the practicability of the model, the formula (3) 
will be adopted to the recurrence relations between angles. 

 

2.2.2 Analysis of Energy and Time 
For a moment during the falling-down process of dominoes (assume N pieces 

are rotating at this moment), the sum of the kinetic energy of the domino line (EN) is 

equivalent to the gravitational energy released: 
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EN = nmgh −∑mgh ∙  in  i                    …… (4)

N

i=1

 

 

According to lemma II, the kinetic energy can be formulated with another 
formula: 

 

EN =
2

3
mh2∑ωi

2

N

i=1

 

 

In 2.2.1 we have already known that the recurrence relations between angles 
(formula (3)) follow the geometric progression, thus the relation between pal 
stances also follows the geometric progression, and the common ratio is also (1-k) 

 
ωn+1 ≈ ω1(1 −  )n 

 

Thus, 
 

EN =
2

3
mh2∑ωi

2

N

i=1

=
2

3
mh2 ·

ω1
2[1 − (1 −  )2N]

2 −  2
 

 

The two equations related to E𝑁 yield, 
 

(N−∑ in  i

N

i=1

)mgh =
2

3
mh2 ·

ω1
2[1 − (1 −  )2N]

2 −  2
 

 

Thus, 
 

ω1 = √
3g

2h
(N −∑ in i

N

i=1

)(
2 −  2

1 − (1 −  )2N
)              …… (5) 

 

It can be expressed in another expression  
 

1

√
3g
2h
(N − ∑  in  i

N
i=1 ) (

2 −  2

1 − (1 −  )2N
)

 d 1 = dt 

 

We already know the rightmost domino has an angle 𝜃0 = a cco (
 

2ℎ
) with 

the ground when it hits the next domino, thus the integration to 𝜃1 is the time for 
each domino to hit the next one (t). 

t = √
1 − (1 −  )2N

2 −  2
√
2h

3g
∫ (N−∑ in  i

N

i=1

)

−0.5

 d 1              …… (6)
0.5π

θ0

 

So the time for N dominoes to fall down (T𝑁) is 
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TN =∑t = √
2h

3g
∙∑√

1 − (1 −  )2N

2 −  2
∫ (N−∑ in  i

N

i=1

)

−0.5

 d 1            …… (7)
0.5π

θ0

N

i=1

 

 
 

2.3 Simplification and Approximation to the model  
 

From the previous deduction we can see that the falling-down process of 

dominoes is very complicated and the formulas we got were inconvenient to be used. 

If the formulas were not simplified, it would take a long time for personal computer 

to operate. Moreover, the summing function is unfittable. Thus, simplification and 

approximation to the formula is necessary. It was not after the simplifications were 

we able to put the model into application. 

 

2.3.1 Approximation to Energy  
 

From formula (5) we know that when n is very big, the first several dominoes 

have insignificant influence on the kinetic energy of the first domino. 

Thus, we divide the domino line into the posterior p dominoes and prior N-p 

dominoes. 

If the p posterior dominoes have very small angle with the ground (𝜃 → 0), the 

completely released gravitational energy of the p dominoes, according to Lemma I, 

is: 

 

Eposterior 𝒑 dominoes ≈ pmgh −𝑚𝑔ℎ ∑ 𝜃𝑖

𝑁

𝑖=N−p+1

 

 

According to formula (3) 
 

𝜃𝑛+1 ≈ 𝜃1(1 − 𝑘)𝑛 
 

Using summation formula of geometric progression, released gravitational 
energy of the posterior p dominoes is,  

 

Eposterior p dominoes ≈ (p −
1 − (1 −  )p

 
∙  N−p+1)mgh 

 

Because the angles of the prior (n-p) cannot be neglected, the gravitational 
energy they released is calculated in accordance to the formula (4), that 

 

Eprior N−p dominoes = *(N − p) − ∑  in  i

N−p

i=1

+mgh 

 

Thus, after the division of the domino line, the sum of the kinetic energy of each 
domino is 
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E𝑁 = Eposterior 𝒑 dominoes+Eprior 𝑵−𝒑 dominoes ≈ *N −
1 − (1 − 𝑘)𝑝

𝑘
∙ 𝜃𝑁−𝑝+1 −∑  in𝜃𝑖

𝑁−𝑝

𝑖=1

+𝑚𝑔ℎ 

 

In conclusion, the sum of the kinetic energy of all the dominoes is simplified as 
 

E𝑁 = (N−∑ in𝜃𝑖

𝑁

𝑖=1

)mgh ≈ *N −
1 − (1 − 𝑘)𝑝

𝑘
∙ 𝜃𝑁−𝑝+1 −∑  in𝜃𝑖

𝑁−𝑝

𝑖=1

+𝑚𝑔ℎ     …… (𝟖) 

 

When p increases, the simplified equation above would be more accurate 
compared with the original formula. When p=0, simplified equation equals to the 
original equation. 

 

2.3.2 Approximation to t 
 

According to equation (8) and the deduction above, when N is big enough, the 
simultaneous equations about 𝐄𝑵 is 

 

*N −
1 − (1 − 𝑘)𝑝

𝑘
∙ 𝜃𝑁−𝑝+1 −∑  in𝜃𝑖

𝑁−𝑝

𝑖=1

+𝑚𝑔ℎ ≈
2

3
𝑚ℎ2 ·

ω1
2[1 − (1 −  )2N]

2 −  2
 

 

In this occasion, the solution of 𝜔1 is  
 

 
⇒𝜔1 = √

3g

2ℎ
(

2 −  2

1 − (1 −  )2N
)(N −

1 − (1 − 𝑘)𝑝

𝑘
∙ 𝜃𝑁−𝑝+1 −∑  in𝜃𝑖

𝑁−𝑝

𝑖=1

) 

 

Thus, 
 

𝑡 ≈ √
2h(1 + (1 −  )N)

3g[(1 −  )N − 1]( 2 − 2 )
∫ *N −

1 − (1 − 𝑘)𝑝

𝑘
∙ 𝜃𝑁−𝑝+1 −∑  in𝜃𝑖

𝑁−𝑝

𝑖=1

+

−0.5

 𝑑 1  
0.5𝜋

𝜃0

 

 

When N is very big, prior several dominoes also have insignificant influence on 
the kinetic energy of the first domino, thus let p=N in the equation above. 

We are able to get the integration of this equation: 

 

t = −2𝑘√
2h(1 + (1 −  )N)

3g[(1 −  )N − 1]( 2 − 2 )
(√

(1 − 𝑘)𝑁 − 1

𝑘
0.5𝜋 + N −√

(1 − 𝑘)𝑁 − 1

𝑘
𝜃0 +N)      …… (9) 

 
We used Excel to plot the function to prove the precision of the approximation. 

Series I&II are drawn with k=0.6, 𝜃 = ac co (0.6). Series I is the graph of the 
accurate function (6); series II is the graph of the simplified function (9) 
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Figure 2.3.2 

 
As can be seen in the figure 2.3.2, two curves coincide with each other when 

N>5, thus the simplified function is practicable. 
 

2.3.3 Approximation to TN 

 

The expression of T𝑁 can be obtained according to the previous deduction that 

 

TN =∑t = √
2h

3g
∙∑√

1 − (1 −  )2N

2 −  2
∫ (N−∑ in i

N

i=1

)

−0.5

 d 1 
0.5π

θ0

N

i=1

 

 

 

 

≈ −2 √
2h

3g
∙∑√

1 + (1 −  )N

[(1 −  )N − 1]( 2 − 2 )
(√

(1 −  )N − 1

 
0.5π + N −√

(1 −  )N − 1

 
 0 +N)

N

i=1

 

 
According to Lemma III, the formula above can be simplified as 
 

TN ≈ −2 √
2h

3g
∙ ∫ √

1 + (1 −  )N

[(1 −  )N − 1]( 2 − 2 )
(√

(1 −  )N − 1

 
0.5π + N −√

(1 −  )N − 1

 
 0 +N)dN

N+0.5

0.5

 

 

When N is very big, because k∈ (0, 1), hence (1 − 𝑘)𝑁→0, the equation above 
can be further simplified as 

 

TN ≈ −2 √
2h

3g
∙ √

−1

( 2 − 2 )
∫ (√

−1

 
0.5π + N −√

−1

 
 0 +N)  dN

N+0.5

0.5

                …… (10) 
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=
−4 

3
√

−2h

3g( 2 − 2 )
*√(

−π

2 
+ N + 0.5)

3

−√(
− 0
 

+ N + 0.5)
3

−√(
−π

2 
+ 0.5)

3

+√(
− 0
 

+ 0.5)
3

+…… (11) 

 

2.3.4 Further simplification to TN with Taylor Series 

Expansion Method 

 

Considering the formula (11) is still quite inconvenient to be used, we further 

simplified the formula with Taylor series expansion. 

We have already got the conclusion about T𝑁 that 

 

TN =
−4 

3
√

−2h

3g( 2 − 2 )
*√(

−π

2 
+ N + 0.5)

3

−√(
− 0
 

+ N + 0.5)
3

−√(
−π

2 
+ 0.5)

3

+√(
− 0
 

+ 0.5)
3

+ 

 

With second order of Taylor series expansion we have 

 

TN = √
−2h

3g( 2 − 2 )
*(2 0 − π)n0.5 −

4 0
2 + π2 − 2 (2 0 + π)

8 
n−0,5+      …… (12) 

 

Since the formula above is still complex, we wanted to further simplify the 

formula to the one in the formation similar to 

 
TN = ax0.5 + bx−0.5 

 

We predicted a, b according to the equation (12) that 

 

a =  √
t1h

 2 − 2 
 

 

b = (t2 − t3)√
h

 2 − 2 
 

  

(𝑡1，𝑡2，𝑡3 represent the parameters that need fitting) 

 

By substituting series of k and h into formula (11), we obtained a series of graph 

which we fitted to obtain a series values of a and b. we set up a trilinear coordinate 

with k,h,a and k,h,b to be the x,y,z-axis of the coordinate and put the dots into the 

coordinate. 

Fit the dots according to the expectation formula to obtain values of 𝑡1，𝑡2，𝑡3 
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The results are as follows 

 

1. Relations between a and k, h (interpolated) 

 

 

Figure 2.3.4(1) 

 

Relations between a and k, h (fitted) 

 

 

Figure 2.3.4(2) 
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2. Relations between b and k, h (interpolated) 

 

 

Figure 2.3.4(3) 

 

Relations between a and k, h (fitted) 
 

 

Figure 2.3.4(4) 
 

Solution of fitting is 
 

t1 = 0.3099 
t2 = −1.796     
  t3 = −0.8449 

 
Because h and g have similar influence on the graph, so make g=9.7930, 
Thus the empirical formula is  
 

TN = √
−h

 2 − 2 
[0.5567 ∙ N

1
2 + (0.845 − 1.8 )N−

1
2] 

 
We draw graphs to examine its precision, the curves fit quite well. Thus, the empirical 

formula is practicable. 
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(origin 1,2,3 means the graph of the original formula, fitted 1,2,3, means the 
graph of the empirical formula) 

Graphs of origin 1 and fitted 1 is drawn with k=0.4, h=0.1; origin 2 and fitted 2 is 
drawn with k=0.6, h=0.05; origin 3 and fitted 3 is drawn with k=0.6, h=0.1 

 

 
Figure 2.3.4(5) 

 

2.4 Loss of Energy 
 

The loss of energy would increase as the angular velocity of dominoes increase. 

In reality, the loss of energy cannot be neglected; otherwise the velocity of dominoes 

would not have its limit. 

We assume that Q% of the energy would be preserved in collision.  Q ∈ (0，1) 

In this occasion, the expression of 𝐸 𝑁 is 
 

E N = E N−1 ∙ Q + mg(h − h  in  ) 
 

Thus, when the system comes to equilibrium, 𝐸 𝑁 follows the equation that 
 

lim
N→∞

 EN−1(1 − Q) = mgh 

 

Thus, according to Lemma II, 
 

mghQ

1 − Q
+mgh(1 −  in  ) = 1

6⁄ mω2(2h)2 

 

ωmax = √
3g

2h
(

1

1 − Q
+  in  )                            …… (13) 
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When the angular velocity reaches its limit, the minimum time for the first 
domino to hit the next is  

 

tmin = √
2h

3g
∫ [

1

1 − Q
+  in  ]

−0.5

 d 0

0.5π

θ0

 

 

tmin = √
2h

3g
(

1

1 − Q
)
−0.5

∫ [1 + (1 − Q) in  ]−0.5 d 0

0.5π

θ0

 

 
 

2.5 Conclusion 
Following conclusions are drawn based on the above deduction. 
 
1. The recurrence relations between angles 
 

 n+1 ≈  1(1 −  )n 
 

2. The sum of kinetic energy of N pieces in a domino line 
 

E = (N−∑ in i

N

i=1

)mgh ≈ *N −
1 − (1 −  )p

 
∙  N−p+1 −∑  in i

N−p

i=1

+mgh 

 

The angles between the domino and the ground are regarded as 0 from the pth 
domino to the last one. Angles of the prior (N-p) pieces are unneglectable. 

 

3. Time for the first domino to hit the next piece when there are totally N pieces 
in the line. 

 

t = −2 √
2h(1 + (1 −  )N)

3g[(1 −  )N − 1]( 2 − 2 )
(√

(1 −  )N − 1

 
0.5π + N −√

(1 −  )N − 1

 
 0 + N) 

( a cco ( ) =  0 ) 
 

4. Time for an array of N dominoes to fall down (T𝑁) is 
 

TN =
−4 

3
√

−2h

3g( 2 − 2 )
*√(

−π

2 
+ N + 0.5)

3

−√(
− 0
 

+ N + 0.5)
3

−√(
−π

2 
+ u − 0.5)

3

+√(
− 0
 

+ u − 0.5)
3

+ 

 

With Taylor series expansion, the equation above can be simplified and the 
empirical formula is  

 

TN = √
−h

 2 − 2 
[0.5567 ∙ N

1
2 + (0.845 − 1.8 )N−

1
2] 

 

5. When the loss of energy during collision is taken into account and Q% of the 
energy would be preserved, the minimum time for the first domino to hit the next is 
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tmin = √
2h

3g
(

1

1 − Q
)
−0.5

∫ [1 + (1 − Q) in  ]−0.5 d 0

0.5π

θ0

 

 

Chapter III Verifying the Model 
 

3.1 Measures to verify the Model 

 

To prove the validity of our deduction to the mathematical model of domino, we 

arranged domino lines with 50, 100, 150, 200, 250,300, 400 dominoes. We recorded 

the time for each line to fall down and calculated the parameter Q in the experiment. 

Then we analyzed the video we shot during the experiment frame by frame to prove 

the validity of the formula (9) (related to t). 

 

3.2 Statistics from the Experiment 

* Dominoes used in the experiment measures 4.3cm in height (2h=4.3 cm)and 
0.7 in thickness (s=0.7cm) and are arranged with 1.0cm space in between (d=1.0cm). 

Experiment 1: time for N dominoes to fall down 

 

Total number of 
the dominoes 

Time to fall 
down (TN)/s 

50 1.160 

100 1.998 

150 2.834 

200 4.287 

250 5.00 

300 6.147 

350  

400 7.928 

Table 3.2(1) 
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The graph of the statistics in the table is shown in Figure 3.2(1) 

 

Figure 3.2(1) 

 

 

Experiment 2: time for one domino to hit the next (analysis to the videos)  

 

Number of the 
dominoes 

Time to hit the next domino (t)/s 

1 0.1678 

2 0.0649 

3 0.0351 

4  

5 0.0332 

6  

7 0.0335 

8  

9 0.0165 
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10  

11  

12  

13 0.0147 

14  

15  

16  

17 0.0149 

18  

19  

20 0.0194 

21  

22  

23 0.0186 

24  

25  

26 0.0206 

Table 3.2(2) 

 

Because of the restriction of the video camera, some frames are not clear 
enough for us to obtain statistics. Consequently, statistics of some dominoes are 
missing. 

The graph of the above statistics is shown in Figure 3.2(2) 
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Figure 3.2(2) 

 

3.3 The Experiment 

 

3.3.1 Adjustment to the relations between angles 

 

 

Figure3.3.1 (1) 

 

As can be seen in figure 3.3.1(1), the dominoes would not fall down to the 

ground in practice, because of their thickness. Thus, adjustment to the recurrence 

relations between angles is necessary.  
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Figure 3.3.1(2) 

We abstract the diagonal of the domino to another type of domino (without 
thickness) 

 

2tan𝛼𝑛 ∙ co 𝛼𝑛+1 ∙ ℎ = 2  in𝛼𝑛+1 ∙ ℎ −
𝑠

co 2 𝛼𝑛
+ 𝑑 tan𝛼𝑛                 …… (14) 

 

When 𝛼 → 0.4244, we used the Taylor series expansion 

 

 in𝛼 = 0.911286α + 0.025 

co 𝛼 = −0.411774α + 1.086 

tan𝛼 = 1.204178𝛼 − 0.059 

Also, according to Figure 3.3.1(2) 

 

α = γ − β = γ − 0.1614 

 

Substitute the above four equations to equation (14),  

 

γn+1 =
0.147257293γn

2 − 0.4000134261γn − 0.03929680348

0.087796599γn2 − 0.07449846871γn − 0.414207213
 

 

The approximate solution for the general formula is 
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γn+1 = 0.43225230 +
−0.000015656383

1 − 0.999962892
n−1 ∙ (

γ1 − 0.42845666
γ1 − 0.42847283

)2
n

 

 

3.3.2 Solving Q 

 

 

Figure 3.3.2(1) 

The angle γ when a domino is fallen down is 

 

γ = α + β = a c in
 

d
+ a ctan

 

2h
= 0.4244 + 0.1614 = 0.5858 

 

Thus, the true gravitational energy released in reality is 

 

Eeach domino = mg(AB − CD) = mg(h −
√4h2 +  2

2
 in γ) = 0.009457mg 

 

When the system come to equilibrium, 

 

lim
N→∞

 En−1(1 − Q) = 0.009457mg 

 

Thus, 
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0.009457mgQ

1 − Q
+mgh(1 −  in(β +  )) = 1

6⁄ mω2( 2 + 4h2) 

 

The solution for ω1 is 

 

ω1 =
1

2
√
119.5827gQ

1 − Q
+ 271.8651g[1 −  in(β +  )] 

 

Thus, the upper limit of integration should be(0.5𝜋 + β), and the down limit 

should be(a cco (
 −𝑠

2ℎ
) + β). The solution for the minimum time for the first domino 

to hit the next is 

 

tmin = 2∫ [
119.5827gQ

1 − Q
+ 271.8651g[1 −  in(β +  )]]

−0.5

 d 0            …… (15)
0.5π+β

arccos(
d−s
2h

)+β

 

 

 

 

Figure 3.3.2(2) 

 

In figure 3.3.2(2), the x-axis is Q(0 ≤ Q ≤ 1), the y-axis is 𝑡𝑚𝑖𝑛. 

According to statistics from the experiment, the minimum time is 0.02s. 

The red straight line in the figure in y=0.02 and the blue curve is the equation (15).  
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From the intersection point, we get the percentage of the energy preserved is 

 

Q = 0.2953 = 29.53% 

 

In other words, almost 70% of the energy would be lost in reality. 

 

3.3.3 Calculation to the prior 50 dominoes 

 

Q obtained, with the adjusted recurrence relations of angles, time for one 
domino to hit the next (t) can be calculated.  

Dots are taken frame by frame from the video we shot, the green curve is 
calculated in accordance to the previous deduction, and they fit very well. 

The red curve is the graph of the formula without the loss of energy and 
thickness of dominoes. The divergence between the green and the red is obvious. 

 

Figure 3.3.3 

 

3.4 Conclusion 

 

The above two experiment with t and TN successfully proved the validity of our 
model as well as all the deduction. The success convinced us of the practicability of 
our model and the reasonability to put it into applications. 
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Chapter IV Application 1 

Relationship between concentration of CO2 in the 

atmosphere and global mean temperature 

 

4.1 Background 

 

Nowadays, the global warming is commanding more and more attention of the 
world. A great many studies showed that the carbon dioxide is the main composition 
of the greenhouse gases, and the global mean temperature is closely related to its 
concentration. From the time of Industrial Revolution in 1860s, the amount of the 
carbon dioxide emitted to the atmosphere by humans has been increasing year by 
year. With this, the global mean temperature has been on the trend to rise. This is 
what we call the greenhouse effect. 

The principle is that the carbon dioxide reduces the radiation of the earth back 
to space. According to the law of thermodynamics, when the earth receives the same 
level of solar radiation, the temperature of the surface of the earth is supposed to 
rise, if the concentration of carbon dioxide increases. 

We believe that a certain concentration of carbon dioxide in the atmosphere 
contributes to a certain rise in the global mean temperature. This conforms to the 
mathematical model of domino in the formula related to TN. 

We can draw an analogy between the model of domino and the rise in the 
global mean temperature caused by CO2 that: a domino represents a unit volume of 
CO2, the time for a domino to fall until it hit the next domino (t) is similar to the 
contribution of a unit volume of CO2 makes to a certain rise in global mean 
temperature. As the dominoes continue to fall, the time for one to hit the next (t) will 
reduce ceaselessly. Analogously, with the CO2 accumulation, the thermal 
contribution of an equivalent volume of CO2 emitted into the atmosphere will 
subsequently reduce gradually. Then, the total falling time of N dominoes is 
equivalent to the accumulated rise of global mean temperature caused by N units’ 
volume of CO2. 

 

4.2 Modeling and Calculation 

 

4.2.1 Obtaining statistics 

CO2 concentration in the atmosphere from 1960 to 2010 

*According to Hawaii Mauna Loa observatory 
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Figure 4.2.1(1) 

 

 

Global mean temperature from 1860 to 2010 

*According to IPCC 4th report WG1 

 

Figure 4.2.1(2) 

Statistics from the above figures: 

CO2 concentration in 
the atmosphere (ppmv) 

Global mean temperature（℃） 

316 13.8 
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319 13.9 

325 13.95 

330 14 

338 14.05 

343 14.1 

353 14.2 

360 14.3 

368 14.37 

379 14.4 

386 14.43 

Table 4.2.1 

We draw the graph of the statistics, concentration of CO2 as the horizontal axis 
and global mean temperature as the vertical axis. 

 

Figure 4.2.1(3) 

4.2.2 Analysis and Calculation  

 

Because the study on the global mean temperature requires high precision, we 
used formula (11) to fit the statistics. The intercept of the graph has its meaning as 
the global mean temperature without any CO2 in the atmosphere. 
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The formula (11) is 

 

TN =
−4 

3
√

−2h

3g( 2 − 2 )
*√(

−π

2 
+ n + 0.5)

3

−√(
− 0
 

+ n + 0.5)
3

−√(
−π

2 
+ 0.5)

3

+√(
− 0
 

+ 0.5)
3

+ + C 

 

Combining the constant terms, we get 

 

 TN =
−4 

3
√
2h

3g
√

−1

( 2 − 2 )
*√(

−π

2 
+ n + 0.5)

3

−√(
− 0
 

+ n + 0.5)
3

+ + C′ 

 

*make 
−4

3
√2ℎ

3𝑔
=p as a new parameter while fitting. Thus, 

TN =  p√
−1

( 2 − 2 )
*√(

−π

2 
+ n + 0.5)

3

−√(
− 0
 

+ n + 0.5)
3

+ + C′ 

The solution of fitting is 

K=0.9629 (0<k<1)      

P=-0.171 (p<0)      

C’=7.939 

The parameters are all in its domain of definition. 

Substitute the parameters into the formula (7) (accurate), the graph is shown in 
figure 4.2.2(1) 

 

Figure 4.2.2(1) 
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Figure 4.2.2(2) 

 

The high precision of the fitting implies the potential relationship between 
concentration of CO2 in the atmosphere and global mean temperature.  

Despite the fitting curve has similarity with the linear function in a narrow 
range, the tendencies are different in the long run, as can be seen in Figure 4.2.2(1). 

 

4.3 Conclusion 

The figure mentioned above shows that the calculated results tally with the 
real facts very well and the usage of the simplified formula won’t cause too much 
error. Obviously, the model has its universality to a considerable degree.  

Though the concentration of CO2 is not the only factor (other factors are the 
effect of surface of the earth, the emission of other kinds of greenhouse gases, the 
activity of the sun, etc.), we hope to try to establish a model of relations between the 
concentration of CO2 and the rise of global mean temperature with reasonable 
assumptions, and offer our suggestion on the situation and tendency of the change 
of global temperature. According to our model, each 100 ppmv rise of concentration 

of CO2 will cause 1.1℃ of rise in global mean temperature.  

It will bring very severe influence on the atmospheric circulation and the 
entire ecosystem. With the present growth rate of concentration of CO2, the 
foreseeable tremendous changes will come soon in the near future. Therefore, it is 
becoming more and more important to reduce the emission of greenhouse gases and 
to save energy. 
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Chapter V Application 2 

Domino effect in Financial Crisis 
 

5.1 Background 

In present world economy, the financial crisis occurs periodically. Under the 
background of globalization of the world economy, it is necessary to establish related 
mathematical models so that we can monitor the process of economic crisis better. 

Every financial crisis is usually sparked by a minor event. At the stage of the 
beginning, the influence is very limited. As the crisis develop, more and more 
enterprises and fields will be involved and the deterioration of economic situation 
will accelerate. For example, a company went bankrupt because of a financial crisis 
and affected the related companies involved in its business or debts. Some ones 
among them broke consequently. Subsequently, the same process happened and 
more companies followed. Hence, the crisis swept through. 

In the field of economics, this phenomenon is often referred to as domino 
effects. The inner link of these two indicates the possibility to describe the outbreak 
of financial crisis with the model of domino. 

Because of this, we obtained the related data of the financial crisis started in 
USA in 1929 in the MBER database. Because Hoover government was pursuing a 
policy of non-intervention at the stage of the beginning of crisis, the performance of 
the market most directly presented the Domino effects in economics. 

In our model, a bankrupted company is similar to a fallen domino, N of the total 
number of bankrupted companies is analogized to N fallen dominoes. The time T for 
the N companies to bankrupt is equivalent to the total time it takes for the N 
dominoes to fall down (TN). 

The following figure is the graphs of the statistics of the bankrupted companies 
from Jan 1919 to Aug 1938 (specific statistics is attached in the appendix). 

 

Figure 5.1 
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5.2 Calculation and Analysis 

Studies suggest that the first climax of bankruptcy appears before the great 
depression. There were dramatic changes in the American economy. Because of the 
excessive optimism among Americans, the economic bubbles were not taken 
seriously. Massive newly-established corporations went bankrupt and lost the ability 
to pay their debts. This resulted in a break in the capital chain and sparked the great 
depression.  

We summed up the total number of bankrupt companies from January of 1919, 
got the graph with the total number of bankrupt companies as the x-axis and the 
time (months) as the y-axis. 

 

Figure 5.2 (1) 

It is obvious that the bigger the slope is, the slower the corporations go 
bankrupt. 

 

 

Empirical formula is used in this application, because it is more straightforward 
to find out the relationship between k, h and the stability of a market. 

The empirical formula is 

 

T𝑁 = √
−ℎ

𝑘2 − 2𝑘
[0.5567𝑘 ∙ 𝑁

1
2 + (0.845 − 1.8𝑘)𝑁−

1
2] 

 

Blue dots are from the database 
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Parameters of the red fitting curve is 

 

    h =0.1229      

k =0.7873 

 

They are all in domain of definition. 

 

 

Figure 5.2(2) 

 

The Figure 5.2(1) showed that the bankruptcy rate in the beginning 50 months 
conforms to the model of domino. Historical materials suggest that the Hoover’s 
government didn’t take any actions to stop the bankruptcy of corporations, thus the 
performance of the corporation in this period of time is the most direct reflect of 
domino effect. This set the stage for a period of wide trade imbalances and for the 
depression that followed. 

From the 50th month to the 120th month, economy of America is in prosperity 
(the green curve in the graph). Thus, the curve separated from the curve of the 
function. The bankruptcy rate slowed down, and is slower than our prediction. 

From the 120th month to the 180th month, America was in the ‘great depression’. 
Though the austerity financial program adopted by the Hoover’s government aroused 
fiery criticism towards it, in fact, the program did not have much negative influence 
on the economy, according to the graph. 

It was 181 months after the outburst of the crisis that Roosevelt come into his 
power and revived the badly-weakened US economy. As can be seen in Figure 
5.2(3),the curve goes steeper (the blue part of the curve). 
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Figure 5.2(3) 

 

 

 

5.2 Further studies on the empirical formula 

Apart from the fitting above, we analyzed bankruptcy of business, 
manufacturing and trading companies in that financial crisis. By doing this, we aimed 
to prove the comprehensive practicability of our model (especially the empirical 
formula) and to conjecture the meaning of k and h in reality. 

The empirical formula is 

 

T𝑁 = √
−ℎ

𝑘2 − 2𝑘
[0.5567𝑘 ∙ 𝑁

1
2 + (0.845 − 1.8𝑘)𝑁−

1
2] 

 

The results of fitting are shown in the below figures. 
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Business companies 

 

Figure 5.2(3) 

Parameters: 

k=0.9744   h=0.1638      

(r2=0.9935) 

 

 

Manufacturing companies 

 

Figure 5.2(4) 
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Parameters: 

k=0.4032   h=2.639     

(r2=0.9967) 

 

 

 

Trading companies 

 

Figure 5.2(5) 

 

Parameters:  

k=0.5873   h=0.5217    

(r2=0.9903) 
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*Analysis to the empirical formula and the fitting result 

 

T𝑁 = √
−ℎ

𝑘2 − 2𝑘
[0.5567𝑘 ∙ 𝑁

1
2 + (0.845 − 1.8𝑘)𝑁−

1
2] 

 

 

 

 

We summed up the number of bankrupted companies and their assets in each 
fields. The even scales of the corporations are almost the same in the three fields, 
thus the implied meaning of k and h of the three territories can be compared with 
each other. 

Considering the meaning of k and h in economics, the bigger the k is, the less 
connected the corporations are (the bigger TN is); the bigger the h is, the more stable 
the corporations are (the bigger the TN is). They exert impact on the bankruptcy 
speed of companies at the same time. 

Theoretically, business is engaged in the exchanging of products. The scarcity of 
raw materials and capital will firstly strike business companies, and secondly, 
manufacturing companies. As can be seen in the fitting parameters, the k for 
business is 0.9744 and the k for manufacturing is 0.9921. The two values are close 
and are both very big. This showed the potential relations between the companies in 
the two fields. Because of the less-related inner structure and the rigid demand from 
the society, manufacturing has the highest stability (h=0.7815), while business has 
the weakest stability (h=0.1638) 

Trading companies involve in the international market, therefore, the 
connection between them is the tightest among the three economics fields 
(k=0.5873). Its stability (h=0.5217) is higher than the business but weaker than the 
manufacturing 

 

5.4 Conclusion 

By analyzing the most far-reaching economic crisis in American history, we can 
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conclude that in a market without intervention or with stable policies, the relations 
between the number of bankrupted companies and the corresponding time tallies 
with our model. 

The model of domino can precisely predict the number of bankrupted 
companies and provide timely market forecast. 

We hope, through this attempt, to provide reference suggestions to the 
government and financial institutions in economic forecasting and early-warning of 
financial crisis and other important issues so that they can adjust the policies and 
take proper measures according to the changes of the situation, finally to ensure and 
reduce the financial risks. 
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Chapter VI Retrospect 

he considerable application of domino effect aroused our interests in setting 

up the mathematical model of domino. People in the past described a 

certain situation as domino effect only to indicate the speeding-up impact, but didn’t 

quantify the phenomenon. Through the study, we expressed the domino effect with 

simple mathematical formulas.  

The study led us to the usage of mathematical software which is impossible for 

us to experience in daily study. Physical knowledge such as kinetic energy, 

gravitational energy, angular velocity, etc. is introduced in our mathematical model of 

domino. 

Though we encountered a great many difficulties during the deduction, we 

tackled them one by one with the limit knowledge of mathematics we possessed. To 

enhance the practicability of our model, we reasonably simplified the model five 

times in our deduction and made adjustment to reduce the error caused by the 

simplification. The pursuit of preciseness encouraged us to conduct an experiment to 

prove the validity of our mathematical model. 

However, in the process of encountering and tackling problems, the study has 

greatly improved our capacity of mathematical thinking, and has helped us to realize 

the beauty of mathematics. 

From modeling to analyzing till application, one thing intrigued us is the close 

connection between mathematics and the real world. Throughout this project, we 

obtained the ability to analyze the world as well as to predict the future with 

mathematical models. 

 

Despite all our effort to tackle with difficulties we encountered during the study, 

there are still some flaws in the paper that are far beyond our capability to deal with: 

1. We did not manage to use the formula with thickness and loss of energy 

because of the extreme complexity and our unmanagement with elliptic function. 

2. We simplified the multiple compositions of the atmosphere and complex 

market environment in our application. Besides, we are lack of the ability to obtain 

more statistics to further convince people about the reasonability of our application. 

3. Apart from the loss of energy and thickness, there are many other factors to 

influence the falling-down process of dominoes, which are ignored by us. 

 

At the very end, we want to express our sincere thankfulness to those who 

helped us out from troubles and provided us with instructions. This is surely not the 

destination of our project, we hope the model will continue to be perfected in the 

future as our mathematical knowledge grows. 

 

T 
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Appendix I: Programme of MATLAB & 1STOPT 

Relations between angles 

clear all; 

clc; 

n=1; 

i=input('input theta 0=') 

k=input('input k=') 

i=tan(i) 

while n<=150;  

j=i*sqrt((1-k^2)*(i)^2+1+k^2-2*k*sqrt((1-k^2)*(i)^2+1))/(k*(i)

^2+sqrt((1-k^2)*(i)^2+1)) 

p=atan(j) 

mat(n)=p;  

i=j; 

n=n+1; 

end 

 

t-N 

clear all; 

clc; 

z=2; 

g=9.7930 

syms x; 

k=input('input k='); 

i=input('input n='); 

h=input('input h='); 

y=input('input theta 0='); 

while z<=i; 

    if ceil(z)==i 

        return; 

    else 

          r=z; 

          n=1; 

          m=sin(x); 

    while n<=(r-1); 

          b=(1-k)^(n)*x; 

          w=m+sin(b); 

          m=w; 

          n=n+1;   

     end 

        t=(r-m)^(-0.5) 

        fun=inline(t)  
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        j=quad(fun,y,0.5*pi) 

        mat(z)=real(sqrt(2*h/(3*g))*j); 

        z=z+1 

    end 

end  

 

clear all; 

clc; 

n=2; 

g=9.7930 

k=input('input k='); 

i=input('input n='); 

h=input('input h='); 

y=input('input theta 0='); 

while n<=i; 

        

j=2*k/((1-k)^(n)-1)*(sqrt(((1-k)^(n)-1)*0.5*pi/k+n)-sqrt(((1-k)^(

n)-1)*y/k+n)); 

        mat(n)=real(sqrt(2*h/(3*g))*j);        

  n=n+1; 

end  

 

 

Q 

clear all; 

clc; 

n=1; 

g=9.7930 

syms x 

while n<=1000; 

       Q=n/1000 

       

j=(119.5827.*9.7930.*Q./(1-Q)+271.8651.*9.793.*(1-sin(0.1614+x)))

.^-0.5 

       p=inline(j) 

       r=quadl(p,1.49749,1.7322) 

       mat(n)=2*r;        

 n=n+1; 

end  

 

TN-N 

clear all; 

clc; 

z=2; 
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g=9.7930 

syms x 

k=0.6 

h=0.05 

i=input('input n=') 

y=pi/3 

u=0 

for v=1:(i-1) 

while z<=(v+1); 

          r=z 

          n=1; 

          a=x   

          m=sin(a) 

    while n<=(r-1); 

          b=(1-k)^(n)*a 

          w=m+sin(b) 

          m=w 

          n=n+1;   

    end 

        t=(r-m)^(-0.5)  

        fun=inline(t)  

        j=quad(fun,y,0.5*pi) 

        u=real(j)+u;     

        z=z+1 

        mat(v)=sqrt(2*h/(3*g))*u 

end  

end 

 

clear all; 

clc; 

z=1; 

g=9.7930 

syms x 

k=0.23256 

h=0.043 

i=50 

y=1.3361 

u=0; 

for v=1:i 

          r=z; 

          s=r+1; 

          n=1; 

          a=x; 

          m=sin(a); 

    while n<=r; 

            b=(1-k)^(n)*a; 
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          w=m+sin(b); 

          m=w; 

          n=n+1;   

    end 

        t=(s-m)^(-0.5)  

        fun=inline(t)  

            j=quad(fun,y,0.5*pi)     

j1=real(2*k/((1-k)^(v+1)-1)*(sqrt(((1-k)^(v+1)-1)*0.5*pi/k+v+1)-s

qrt(((1-k)^(v+1)-1)*y/k+v+1))) 

    if abs(((j1-j)/j))<=0.01 

        j=j1 

        break 

     end 

        u=j+u;  

        z=z+1 

      mat(v)=sqrt(2*h/(3*g))*u 

end 

for v=v:i 

    w=v+1;   

j=real(2*k/((1-k)^(w+1)-1)*(sqrt(((1-k)^(w+1)-1)*0.5*pi/k+w+1)-sq

rt(((1-k)^(w+1)-1)*y/k+w+1))) 

    u=j+u;     

    mat(v)=sqrt(2*h/(3*g))*u 

end 

 

solving Q 

fzero(@(Q)quadl(@(x)2*(119.5827.*9.7930.*Q./(1-Q)+271.8651.*9.

793.*(1-sin(0.1614+x))).^-0.5, 1.49749,1.7322)-0.02 ,0.4) 

 

fitting a (as an example) 

function [fitresult, gof] = createFit(k, h, b) 

%      X Input : k 

%      Y Input : h 

%      Z Output: b 

 

%% Fit: 'untitled fit 4'. 

[xData, yData, zData] = prepareSurfaceData( k, h, b ); 

 

% Set up fittype and options. 

ft = fittype( 'loess' ); 

opts = fitoptions( ft ); 

opts.Robust = 'LAR'; 

opts.Span = 0.5; 

opts.Normalize = 'on'; 
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% Fit model to data. 

[fitresult, gof] = fit( [xData, yData], zData, ft, opts ); 

 

% Plot fit with data. 

figure( 'Name', 'untitled fit 4' ); 

h1 = plot( fitresult, [xData, yData], zData ); 

legend( h1, 'untitled fit 4', 'b vs. k, h', 'Location', 

'NorthEast' ); 

% Label axes 

xlabel( 'k' ); 

ylabel( 'h' ); 

zlabel( 'b' ); 

grid on 

view( 12.5, 66 ); 

 

fitting h and k in the application of CO2 

function [fitresult, gof] = createFit(b, n) 

%  Data for 'untitled fit 1' fit: 

%      X Input : b 

%      Y Output: n 

 

%% Fit: 'untitled fit 1'. 

[xData, yData] = prepareCurveData( b, n ); 

 

% Set up fittype and options. 

ft = 

fittype( 'sqrt(-h/(k^2-2*k))*(0.5567*k*x^0.5+(-1.8*k+0.845)*x^(-0

.5))+c', 'independent', 'x', 'dependent', 'y' ); 

opts = fitoptions( ft ); 

opts.Display = 'Off'; 

opts.Lower = [-Inf 0 0]; 

opts.MaxFunEvals = 60000; 

opts.Robust = 'Bisquare'; 

opts.StartPoint = [0.350727103576883 0.939001561999887 

0.875942811492984]; 

opts.Upper = [Inf Inf 1]; 

 

% Fit model to data. 

[fitresult, gof] = fit( xData, yData, ft, opts ); 

 

% Plot fit with data. 

figure( 'Name', 'untitled fit 1' ); 

h = plot( fitresult, xData, yData ); 

legend( h, 'n vs. b', 'untitled fit 1', 'Location', 'NorthEast' ); 
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% Label axes 

xlabel( 'b' ); 

ylabel( 'n' ); 

grid on 

 

fitting the graph with 1stopt  

Title "hello good morning"; 

Parameters k=[0.5,1],d,c,z; 

Variable n,y; 

Function 

y=k*d*sqrt((2*k-k^2)^-1)*(sqrt((-pi/(2*k)+n+0.5)^3)-sqrt((-z/k+n+

0.5)^3)-sqrt((-pi/(2*k)+300.5)^3)+sqrt((-z/k+300.5)^3))+c; 

Data; 

n y 

316 13.8 

319 13.9 

325 13.95 

330 14 

338 14.05 

343 14.1 

353 14.2 

360 14.3 

368 14.37 

379 14.4 

386 14.43 

 

Appendix II: Statistics used to generate the figures  

Statistics of figure 2.2.1  
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series 1 series 2 series 3 series 4
0.20303 0.20944 0.15005 0.15708

0.080815 0.083776 0.029955 0.031416
0.032301 0.03351 0.0059906 0.0062832
0.012919 0.013404 0.0011981 0.0012566

0.0051674 0.0053617 0.00023963 0.00025133
0.0020669 0.0021447 4.79E-05 5.03E-05

0.00082677 0.00085786 9.59E-06 1.01E-05
0.00033071 0.00034315 1.92E-06 2.01E-06
0.00013228 0.00013726 3.83E-07 4.02E-07

5.29E-05 5.49E-05 7.67E-08 8.04E-08
2.12E-05 2.20E-05 1.53E-08 1.61E-08
8.47E-06 8.78E-06 3.07E-09 3.22E-09
3.39E-06 3.51E-06 6.13E-10 6.43E-10
1.35E-06 1.41E-06 1.23E-10 1.29E-10
5.42E-07 5.62E-07 2.45E-11 2.57E-11
2.17E-07 2.25E-07 4.91E-12 5.15E-12
8.67E-08 9.00E-08 9.82E-13 1.03E-12
3.47E-08 3.60E-08 1.96E-13 2.06E-13
1.39E-08 1.44E-08 3.93E-14 4.12E-14
5.55E-09 5.76E-09 7.85E-15 8.24E-15
2.22E-09 2.30E-09 1.57E-15 1.65E-15
8.88E-10 9.21E-10 3.14E-16 3.29E-16
3.55E-10 3.68E-10 6.28E-17 6.59E-17
1.42E-10 1.47E-10 1.26E-17 1.32E-17
5.68E-11 5.90E-11 2.51E-18 2.64E-18  

 

Statistics of Figure 2.3.2 

series 1 series 2 percentage of deviation
0.76854 0.82356 0.071590288
0.59381 0.62268 0.048618245
0.50045 0.51815 0.035368169
0.44044 0.45246 0.027290891
0.39781 0.40657 0.022020563
0.36555 0.37228 0.018410614
0.34006 0.34541 0.015732518
0.31925 0.32364 0.013750979
0.30185 0.30554 0.012224615
0.28701 0.29017 0.011010069
0.27417 0.27691 0.009993799
0.26292 0.26532 0.009128252
0.25294 0.25508 0.008460504
0.24402 0.24593 0.007827227
0.23599 0.23771 0.007288444  
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0.22204 0.22347 0.006440281
0.21594 0.21725 0.0060665
0.21031 0.21152 0.005753412
0.2051 0.20622 0.005460751

0.20026 0.2013 0.005193249
0.19574 0.19672 0.005006641
0.19152 0.19243 0.004751462
0.18756 0.18842 0.004585199
0.18384 0.18464 0.00435161  
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Statistics for application of Financial Crisis in 5.2 

Months total number of bakrupted companies

1 1291

2 2438

3 3631

4 4667

5 4667

6 6590

7 7461

8 8361

9 9266

10 10155

11 11210

12 12329

13 13419

14 14356

15 15432

16 16385

17 17430

18 18722

19 20030

20 21315

21 22613

22 24397

23 26424

24 29377

25 33075

26 36251

27 38836

28 41723

29 44361

30 46919

31 49726

32 52746

33 55591

34 58905

35 62753

36 67523  
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25 33075

26 36251

27 38836

28 41723

29 44361

30 46919

31 49726

32 52746

33 55591

34 58905

35 62753

36 67523

37 72812  
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