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Abstract

We analyze the problem of finding the maximal number of edges on a strongly multi-
plicative graph on n vertices, a problem which has applications to network modeling. Such a
graph has n vertices labeled by the integers 1,2, ..., n such that if each edge is labeled with
the product of adjacent vertices, no two edges have the same label. This value is denoted by
A(n), and we construct an analogous function where the two factors, a and b, are chosen from
sets of differing cardinalities, denoted by f(z,y). We establish the difference function é;(x, y)
which is equal to the number of products constructible for the first time as the cardinality
of the set of cardinality y — 1 is increased by 1. We prove the periodicity and symmetry of
d¢(z,y) and use it to create a linear approximation for f(z,y) for fixed x in terms of y, and

prove this approximation is the least squares regression line.

Summary

We analyze the problem of finding the maximal number of edges on a specific type of
graph, a problem which has applications to network modeling. We equate this to finding the
number of distinct products that can be made by multiplying two factors together. These
factors are taken from separate sets that contain consecutive natural numbers starting at
one. By holding the size of one of the sets constant, and adding numbers to the other
set, we obtain a sequence of values for the number of products. We then establish a linear
approximation for this sequence. Finally, we prove that this approximation is statistically

the best possible line to fit the values of the sequence.
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1 Introduction

Graphs with labeled edges are commonly used to model networks, with restrictions on the
network represented as restrictions on the labels of edges. For instance, when modeling
transportation networks, such labels can be used to represent a variety of factors, from
cost to level of traffic flow. More generally, Ahuja, Magnati and Orlin [1] point out various
applications in statistical physics, particle physics, computer science, biology, economics,
operations research, and sociology. One of the more classical examples was first introduced
by Beineke and Hegde [2], who developed the notion of the strongly multiplicative graph. Such
a graph has n vertices labeled by the integers 1,2,...,n such that, if each edge is labeled
with the product of adjacent vertices, no two edges have the same label. Using this, they
then address the question of constructing a strongly multiplicative graph on n vertices with
the maximal number of edges, which we denote A(n). See Figures 1 and 2 in the Appendix
for examples of strongly multiplicative graphs on 5 and 6 vertices with A(5) and A(6) edges,

respectively. Additionally, they give the upper bounds
A4r) < 6r?

MAr 4+ 1) < 6r* + 4r,
Mdr +2) <6r* +6r +1,
M4r +3) < 6r* +10r + 3.

However, no nontrivial lower bound for A(n) has been found [3].

2 Strongly Multiplicative Graph Notations

We establish notation to more efficiently represent the problem.
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Define [n] = {1,2,...,n}, and let lem[n| be the least common multiple of all integers
from 1 to n.
The set
A, ={z]z=ab, a,ben], a#b}

represents all possible edge labels on a strongly multiplicative graph on n vertices. Since A(n)
is equal to the maximal number of distinct edge labels on a strongly multiplicative graph,
A(n) = A,

We next construct the analogous function where the two factors are taken from separate

sets [z] and [y]. We denote the set of all such products by

Ay ={zlz=0ab, ae€lz], bely], a#b},

and, as above, A\(z,y) = |A;,|. This number is the maximal number of distinct edge labels
for a matching constructed between = points labeled 1,...,x and y points labeled 1,... )y
such that no two points of the same label have a connecting edge.

We also define §(n) = A(n) — A(n — 1), which is the number of new edge labels that can
be constructed by adding an nth vertex. Similarly, let §(z,y) = M(x,y) — A(xz,y — 1) be the
number of new edge labels that can be constructed when adding a yth vertex to a matching
between x vertices and y — 1 vertices.

We define a similar set, in which we allow the factors a, b to be equal. Let

Coy={zlz=10ab, aclz], belyl}.

Then f(z,y) = |Cy | is the maximal number of edge labels allowing indistinct factors. Again,
let d¢(z,y) = f(x,y) — f(z,y — 1), analogous to the difference function for A(z,y).

Next, we would like to count those edge labels in C,, which are solely constructible by
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using the same vertex label twice. If
Dyy=A{zlz=0a* aclz]nly, P, bele], celyl, b#ec, 2=be},

then g(z,y) = |Dy,| is the desired count.
By studying the function 0;(z,y) and how it determines f(z,y), and also analyzing
g(x,y), we can establish general bounds for A(z,y), since by definition, A(z,y) = f(z,y) —

g(x,y). These bounds can be modified for the specific case of A\(n).

3 Properties of §(n)

Recall that §(n) is the number of new edge labels in which n is one of the factors. We begin

by examining the special case of §(p) where p is prime.
Proposition 1. If p is a prime, then 6(p) =p — 1.

Proof. We can construct p — 1 edges between the pth vertex and one vertex from 1 through
p—1.If K < p—1such that kp already exists as a label for some edge in a graph with p — 1
vertices. Then ab = kp for some a,b < p, which is impossible. Therefore, there does not exist
such a vertex k. Hence, all such edges yield new edge labels, and we can form p — 1 new

edges. Thus, 0(p) =p — 1. ]
Now, we construct a lower bound for d(n) when n is composite.
Proposition 2. If p is a prime and q > 2 is an integer, then §(pq) > p.

Proof. We can construct p edges between the pgth vertex and a vertex labeled between pqg—p
and pg — 1. Suppose that there exists some vertex k such that pg —p < k < pg—1 and kpq

already exists as a label for some edge with pg — 1 vertices. Then ab = kpq. Since a < pq,
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b > k, and by symmetry, a > k. This implies that p { a and p 1 b, which is a contradiction.

Hence, all p of these edges yield new edge labels, so d(pq) > p. O
The strongest bound that can be given by Proposition 2 is presented in Corollary 1.

Corollary 1. Let n be composite with greatest prime divisor r. Then §(n) > r.

4 Properties of §/(z,y)

When considering the function A\(n) as n increases, both of the cardinalities of the sets of
possible values for each factor are increasing. Therefore, we simplify the problem by fixing
the cardinality of one of the sets, which gives A(z, y). Furthermore, we have the weak bound
g(x,y) < min(x,y) so we focus on finding a lower bound for f(z,y).

By definition, f(z,y) =Y 7, d¢(x,7), so we analyze d;(z,y) to decompose f(z,y).

4.1 Characterizing the Structure of ;(z,y)

First, we analyze when the minimal values of d;(z, y), or equivalently, the number of products

y,2y,3y, ..., ry that are not expressible as ab where a € [z] and b € [y — 1], for a given x.
Proposition 3. z|y if and only if §¢(z,y) = 1.

Proof. Assume z|y. The maximal product in C, ,_; is x(y —1). Let ky be a product in C, ,_4
for k < ax—1. Then % € Z and % < y. Therefore, ky € Cp 41 for k <z —1,but zy ¢ Cy 4
so dp(x,y) = 1.

Assume 6¢(z,y) = 1. Since 2y ¢ Cpy_1, (x — 1)y € C,,—1. Hence, there exists some
a € [z] and some b € [y — 1] suchthatab:(x—l)y.a:@ and b<y = a>ux—1,

so a = x. Then z|(z — 1)y, and since ged(x,xz — 1) = 1, z|y. O

Next, we analyze where the maximal values of 0;(z,y) for given x occur.
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Proposition 4. ged(lem[z],y) =1 if and only if §¢(x,y) = .

Proof. Assume ged(lem[z],y) = 1. Suppose there exists some product ky such that ky €
Cyy—1. Then ky = ab for some a € [z] and b € [y — 1]. Since ged(lem[z], y) = 1, ged(a,y) =1
so y|b. This is a contradiction. Hence, d¢(z,y) = .

Assume 0f(z,y) = x. Then y is not an element of C,,_1, which implies that Fa, b such
that a € [z] and b € [y — 1] where y = ab. Suppose there exists some prime p such that
p| ged(lem[z], y). Then % € 7Z and Z‘]—j < y, which implies that y € C,,_1, so we have a

contradiction. Thus, ged(lem[z], y) = 1. O

Now that we have characterized where the minimal and maximal values of §(x,y) occur
for some given z, we continue our analysis by characterizing the structure of d;(x,y) more

generally. We prove that it is periodic for fixed # and symmetric within its period.
Proposition 5. For all positive integers x,y, é¢(x,y) = d¢(z,lem[z] £ y) holds.

Proof. Consider the products ky, where k € [z] and ky € C,,_1. Since d¢(z, y) is the number
of products ly where | € [z] that are not elements of C,,_1, there are x — d¢(x,y) such
products ky. For each ky, there exists some a such that alky, a € [z], and % < y. We then
consider the corresponding product k(lem[z] £ v). Since a € [z], a|lem[z], so a|k(lem[z] £ y).
Additionally, & < y = % < lem[z] & y. Therefore, k(lem[z] &+ y) € Cpiemfa)ty—1-
Hence, at least © — d¢(z,y) of the products of the form k(lem[x] + y) where k£ € [z] are
elements of Oy jemfe]4y—1, 50 0f(2,lem[z] & y) is at most @ — (x — d¢(x,y)) = d¢(x,y). Hence,
Op(x,y) = op(x, lem(z] £ y).

By a similar argument, 6;(x,lem[z] £ y) > d¢(z,y).

Therefore, §¢(x,y) = 0f(z,lem[z] £ y). O
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4.2 Properties of §¢(z,y) for Fixed y

Now we analyze the behavior of §¢(x,y) for fixed y, rather than for fixed =, because this
will potentially allow for a recursive method of defining f(x,y). We begin by bounding the

values of d;(z + 1,y) with d;(z,y).
Proposition 6. For all positive integers x,y, d¢(x,y) +1 > d¢(x + 1,y) holds.

Proof. Consider the products ky where k € [z] and ky € C,,_1. As shown in the proof
of Proposition 5, there are x — d¢(x,y) such products. For any such product ky, Ja € [z]
and 3b € [y — 1] such that ab = ky. Now consider the products y,2y,3y,...,zy,zy + y.
We analyze the number of these products that are elements of C,y;,_1, that is, for how
many ly where | < z + 1, 3¢ € [z + 1] and 3d € [y — 1] such that c¢d = ly. The number
of these products that are elements of Cy1q,_ 1 is at least x — d¢(x,y), so the number of
elements of C,1, that are not elements of Cy11,_1, or, equivalently, d;(z + 1,y), is at most

(x+1) — (x — d¢(x,y)) = df(x,y) + 1. Hence, 0¢(z,y) +1 > dp(x + 1,y). O

Now we establish some instances in which equality holds for the inequality established in

Proposition 6.
Proposition 7. ged(z +1,y) =1 = 0f(x,y) + 1 =d¢(z + 1,9).

Proof. Assume ged(z+1,y) = 1. Consider the products y, 2y, 3y, . .., xy. Exactly x —d¢(x,y)
of these are elements of C,,_1. Now consider the products y, 2y, 3y, ..., zy, xy + y. At least
x — 0f(z,y) of these are elements of C,1;,_1 because the same factors can be used. Now we
consider the case where a =« + 1. If (x + 1)b = ky for some k < z + 1, then = + 1|ky, and
since ged(z + 1,y) = 1, x + 1|k. Hence, k = x + 1. Then, b = y, which is a contradiction, so
all of the remaining d¢(x,y) + 1 products are not elements of Cyy1,_1. Thus, d(z,y) +1 =

dr(z+1,y). O
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We now consider the sum of the values of d;(k,y) as k goes from 1 to m — 1 where m
is a multiple of lem[z]. This is a special case of the analogue to the function f(x,y) that

is formed by summing the values of d(x, k) but for fixed z and with k going from 1 to y

instead.
m—1 m

Lemma 1. Iflemn| divides m then Z d¢(i,n) = Eéf(m —1,n).
i=1

Proof. By definition, é(i,n) = f(i,n) — f(i,n — 1). Therefore,

m—1 m—1
Z(Sf(z,n) = Zf(zan) - f(ian_ 1)
i=1 i=1
By the symmetry of f(z,y),
m—1 m—1

S i) = 3 flnyi) — = 1,0). (1)

=1 i=1

m—1 m—1 m—1

We then separate Z f(n,i)— f(n—1,4) into two summations, Z f(n,1) and Z f(n—1,14).
i=1 i=1 i=1

By definition,

YINICHED B SLIT! @)

In this expression, d¢(n, z) for 1 < z < m will appear m — z times, so

m—1 m—1

S (m — )3 (ni) =

i=1 i=1
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By equations (2), (3), and (4),

3
L

J(n,0) = 5 f(n,m = 1). (5)

Similarly,
-1

ﬂn—Lo:%ﬂn—Lm—n. (6)

1

3

i

By combining equations (1), (5), and (6),
Z5f(i,n) = %(f(n,m— )= f(n—1,m—1)).

=1

By the symmetry of f(z,v),

4.3 Establishing the Average Value of 0;(z,y)

We define 7 by 7 = lim M

Y—r00 y

if such a limit exists. Analyzing this value allows us to obtain
a linear approximation for f(z,y) by using the equation y = Ty + z,. for some constant .
that is dependent on x. We begin by establishing that this limit does exist and obtain a

formula for 7.

f(x,lemlz])

Theorem 1. 7 = Tem[z]
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x
Proof. By definition, we can rewrite lim f(@.y) as
Y—r00 Y

Since the values of §¢(x, ) are periodic by Proposition 5, and are bounded by the inequality

1 <d¢(z,y) <, this limit is the average value of the period, so

lem|[z]
O¢(x,i
5 o)
lem|[z] lem[z]

]

Now that we have established that the average value can be determined by = = f(af%r[‘;[f‘]),

we use a result given in Lemma 1 to create an expression for 7.

1 =1
m + m?2

Lemma 2. Iflcmn| divides m, then n =

Proof. Recall that the proof of Lemma 1 showed that

m—1

f(n,i) = %f(n,m— 1).

i=1

as this was equation (5). Multiplying through by 2 gives

S Fnyi) = flnm—1). (7)

By Proposition 3, §¢(n,m) =1, so f(n,m) = f(n,m —1)+ 1. By combining this result with
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equation (7),

m—1
Flnm) =15 37 o)

Since n = @, we divide through by m to obtain the desired result of
m—1
2) " f(ni)
_ 1 i—1
n=—+ 3
m m

]

We consider the difference between the function f(z,y) and our approximation, Ty, and

prove that these differences are periodic for fixed x.

Proposition 8. For all positive integers x,y, f(x,y) —Ty = f(x,lem[z] +y) —Z(lem[z] + y)
holds.

Proof. Note that
lem(z]+y

flademlz] +y) = Y o),
i=1
and by Proposition 5,
lem[z])+y lem|[z] y
S i) = 3 0wi) + 3 0(i) = fla,lemfa]) + f(r,y).
i=1 i=1

i=1

Hence, by Theorem 1,

f(x,lem[z] +y) — Z(lem([z] +y) = f(x,lem[z]) + f(z,y) — T(lem[z] +y) = f(z,y) — Ty.

]

We use the periodicity of the error values to establish the average error, which we will

then shift our approximation by to get a more accurate linear regression.

10
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Theorem 2. The average value of f(n,i) — ni for fixed n is ﬁT_l

Proof. We wish to find

lim
Tr—r00 s

By Proposition 8, these values are periodic and bounded, so this limit is equal to

lem[n]
> fni) —mi
=1

lem(n]

Algebraic manipulation on the result given in Lemma 2 gives that

terain] -1 2n — lem|n]

Z f(ni) = lem|[n] .

By Theorem 1,

]?7 — lem[n]

> fn,) = LI oo )

1%1} . lem[n](lem[n] + 1)ﬁ _ lem[n|(lem[n]n + 7) (10)
2 2
i=1
We substitute equations (9) and (10) into equation 8 to obtain
lem(n)
f(n,i) —m _ L
izl _ lcm[n]Qg—lcm[n] + lcm[n]ﬁ . lcm[n](lc;n[n}n—‘rn) _ 71
lem([n] lem([n] 2
[
11
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5 A Linear Approximation for f(x,y)

We now take our approximation of y = Ty + ””T_l and prove that this is the line of best fit

with respect to y. See Figures 3 and 4 in the Appendix for examples of this approximation.
Theorem 3. §y =7y + 57—1 is the least squares regression line for f(z,y) with respect to y.

Proof. First, we show that the slope of the least squares regression line is equal to Z. Suppose
that the slope is actually Z+€ for some € # 0, and we let the approximation be § = (Z+¢€)y+c

for some constant c¢. By Proposition 8, we note that

kgﬂ (f(x,z') - (EH TT_l)Y = klg} <f(a:,z’) - (THE; 1>>2_

Since the sum on the right hand side is finite, let

d:lmid (f(x,i) - (EZ—FT; 1))2.

=1

Then we have that

klem[z] 71 2
> (}(xJ)—-(zi+- 5 )> = kd.
i=1
If we then consider the sum of the squares of the errors for the other approximation, it is
clear that
klem[z]
Y. (@) = (@+e)i+e)’ > (fla,klemlz]) — (T + €) klem[z] + ¢))*.
i=1

With a bit of algebra and the result from Theorem 1, we obtain that this is equivalent to
klem(z]
> (i) = (@+e)i+ ) > (kelem[z] + ).
i=1

It is clear that (kelem[z] + ¢)? > k(d + 1) for sufficiently large k, which means that the

12
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regression line with slope T + € is not the line of best fit.

Next, we show that the constant %’1 is the optimal constant for the line of best fit. We
begin by demonstrating that for every error of €, there exists a corresponding error of —e. We
only show this for the first lem[x] errors, since by Proposition 8, these values are periodic.

First, note that

fatens]) = (temle] + 5+ ) = = (fGotenle] = 1) = (aliemfa] - 1)+ 75 ).

since by Theorem 1, the left hand side is equivalent to 1’75 Also using Proposition 3, we

know that §¢(z,lem[z]) = 1, or equivalently, f(x,lem[z] —1) = f(z,lem[z]) — 1, the right
hand side is also equivalent to 1_75

Next, note that

ﬂ@m—6w+f;1)——(ﬂ%mmﬂ—1—m—(ﬂm@ﬂ_1_m+fgl)>.un
This is because f(z, k)+ f(,lem[z] —1—k) = S5 6;(x, i)+ Zig[m]_l_k d¢(x,i). By Propo-

lem[z]—1
i=lem[z]—k

sition 5, we can rewrite this further as f(x,k) + f(z,lem[z] =1 —k) =
ST bl d) = ST 0w 1) = S, lemfa] — 1)

Additionally, (Z(lem[z] — 1 — k) + %52) + (Th + %) = Tlem[z] — 1.

(5f([E, Z) +

By Proposition 3 and Theorem 1, we have that f(x,lem[z]—1) = Zlem[z]—1, so equation
(11) holds.

Therefore every error € has a corresponding error —e. If we add a constant a to the current
constant of 57—17 then the new errors become ¢ — a and —e — a. The sum of the squares of
these new errors is 2¢2 + 2a?, which is strictly greater than the sum of the squares of the old
errors, 2¢2, assuming a # 0. Hence, the constant we have chosen is the optimal constant for

the least squares regression line. O]

13
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6 A Recursive Formula for the Average Value for Primes

Now that we have established the least squares regression line for f(x,y) in terms of T, we

create a recursive definition for p where p is a prime.

Proposition 9. For p a prime, p = (P—lglﬁ + 1.
Proof. Consider f(p,lemlp]). By definition,

lem([p] plem[p—1]

=1

plem[p—1]
Now we rewrite Z d¢(p,i) as two summations by separating those indices which are

divisible by p into the second summation. This yields

lem[p—1 ip—1 lem[p—1]
f(p,lem[p] Z Z S d)+ D (p,pi).
] j=@GE—-1)p+1 i=1

Suppose that for some 7, p {i. Then ged(p,i) = 1, so by Lemma 1, 6(p, i) = ép(p—1,7) + 1.

If p|é, then by Proposition 3, d¢(p,i) = 1. Hence,

lem[p ip—1 lem[p—1]
f(p,1lem][p] }: }: Grlp—Li)+D+ > 1L
j=@{-1)p+1 i=1

Since there are in total, lem[p] terms, we can remove all of the 1’s and rewrite this as

lcm[p 1] ip—1

f(p, lem(p]) = lem(p 2{: 2{: or(p—1,7). (12)

j=(G—-1)p+1

Now consider the integers j, j+lcm[p—1], ..., j+(p—1) lem[p—1] such that 1 < j <lem[p—1].
Since p 1 lem[p—1], all p of these integers have different residues modulo p. Therefore, exactly

(p—1) of these have residues that are nonzero modulo p. Let k be one of these p— 1 integers.

14
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lem[p—1] ip—1
Then d;(p—1,k) will be included in >~ Y~ §;(p—1,). Additionally, by Proposition
i=1  j=(i—1)p+1
5, for all such k, 6;(p — 1,k) = d7(p — 1, j). Therefore,

ip—1 lem[p—1]

lem[p—1]
Z Z de(p—1,j)=(p—1) 25 —1,4).
=1 j=(i—1)p+1
Then, by definition, we have
lem[p—1] ip—1
Z Z 3s(p—1,5) = (p— 1) f(p — 1,lem]p — 1]). (13)

J=(i—1)p+1

By combining equations 7 and 8, we obtain

f(p,lem[p]) = (p — 1) f(p — 1,1cm[p — 1]) + lem]p]. (14)
By Theorem 1,

By combining equations 9 and 10,

5= P Dflp—Llemp—1)) +lemlp] _ (p—Df(p—1Llemp—1)
lem([p] plem[p — 1]

So, by Theorem 1,

1 =1
(p—1p 1

1
I

15
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7 Conclusion

Since A(n) is a special case of A(x,y), which is equal to f(z,y) — g(x,y), and we have
given an upper bound for g(x,y), determining a lower bound for f(x,y) would allow for the
construction of a lower bound on A(z,y), and by extension, A(n). We have analyzed d¢(z,y),
the difference function of f(x,y) as x is held constant, and concluded that this function is
both periodic and symmetric within this period. More specifically, we have characterized
the maximal and minimal values of d(x,y) and given their exact locations in the period.
Finally, we have established the least squares regression line for f(z,y) that involves the
average value of d¢(x,y) and proved a recursive relation for obtaining the average value of
the period for primes p. This is in terms of the average value of the period for p — 1 and
uses proven relationships between 6;(x — 1,y) and d;(z,y) in general, and for the specific
case in which ged(z,y) = 1. Further analysis either in how f(x,y) can be bounded based on
f(z — 1,y) or on the values of T would potentially be able to obtain a strong lower bound

on the function.
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A Appendix

Figure 1: A strongly multiplicative graph on 5 vertices with A(5) edges.

[y

P 5

e \S@\
6

2\6\3/

Figure 2: A strongly multiplicative graph on 6 vertices with A(6) edges.
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70

5 10 15 20 25 30 35

Figure 3: The least squares regression line for f(3,y) vs. y.

5 10 15 20 25 30 35

Figure 4: The least squares regression line for f(4,y) vs. y.
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	Let A be one of our repeaters, covering a perceptual area of  . Let   be the area of the inscribed regular polygon of circle A.  is the difference between area and area  , which is also the overlap area of two adjacent circles. Thus we get:
	    ①
	In ①,   stands for the number of sides of the inscribed polygon.
	When   . Therefore, we can get the smallest overlap area   when  , which is to say:
	3.3  Minimum Number of Repeaters and Its Justification
	(1)  Conjecture of the Minimum Number
	(2)  Justification—Model 1 (the “Honeycomb Model”)
	Recall the radio signal transmission system we mentioned in Introduction. Recall the Assumptions we set previously. With the models and theories we deduced just now, we can set up an integrated model that simulates the network of repeaters under Case One. GRAPH-3.8 is displayed below.
	 
	We now present Model 1, aka., the “Honeycomb Model”. 
	STEP 3
	We can obtain a number of different combinations which satisfy our stipulations above. The next thing to do is to screen out the combinations which don’t qualify for a successful transmission of radio signals. 
	STEP 4
	(1)  Conjecture of the Minimum Number
	(2)  Justification—Model 2
	Since a hexagon in a cell splitting network has a capacity of 12 repeaters while the theoretical minimum number of repeaters is 186, the minimum number of hexagons needed to satisfy the needs of all 186 repeaters is:
	186 / 12 = 16
	Thus, a total of 16 hexagons will be included in Model 2. 
	Recall Model 1. Recall the Assumptions we set previously. With the models and theories we deduced just now, we can set up an integrated model that approximates the network of repeaters under Case Two. GRAPH-4.7 is displayed below.
	In pursuit of higher efficiency, we tend to preserve as many locations of repeaters set in Model 1 as possible. Hence, how to set up 16 hexagons in Model 2 on the original network of 19 hexagons from Model 1 becomes a pressing problem to solve. This means that 3 hexagons are spared in our new network. By subtracting a total area of 3 hexagons from the original network of Model 1, we thus get the new network of Model 2, which is presented below:





