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Abstract

This paper investigates how to efficiently allocate the scarce resources of transportation by

using the price mechanism. High time cost consumer can have priority to access the transportation 

resources by paying the congestion tolls, which reduces the overall social welfare loss resulting

from traffic congestion. Minimizing the overall social welfare loss, we build up an optimal pricing 

model for congestion tolls, considering factors including distributional randomness of individual 

time cost, differentiate transportation capacity, and variation of traffic flow during driving peak 

and off peak time. The numerical analysis employing data from Nanjing implies the significant 

positive impact of congestion tolls on social welfare. Furthermore, we show that significant

influence of the price mechanism to the behavior of drivers as well as the driving speed of toll 

facilities.

Keywords: Congestion Tolls; Price Mechanism; Optimal Pricing; Truncated Normal 

Distribution
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I. Introduction and Related Literatures 

Traffic congestion, resulting from more lagging construction of urban infrastructures than 

rapid economic development, has increasingly become a serious social problem, and the way to 

minimize traffic congestion costs under constraints of scarce road resources has become a hot 

topic drawing the public’s attention. This paper discusses the way to minimize social costs of 

traffic congestion through the price mechanism based upon a congestion charge system.

The traffic congestion charge system essentially is a price mechanism, broadly speaking, it 

contains all charges levied on road users for traffic congestion adjustment, including charges 

levied on tunnels, bridges, highways and other road infrastructures, as well as road use charges 

levied against specific regions and time periods. In the case of serious urban traffic congestion, the 

congestion charge is important for public regulators in traffic demand guidance and adjustment, 

and thus in realization of overall social welfare improvement.

Vehicles in traffic environment that lacks of congestion charge system may excessively

occupy scarce traffic resources, so all road users may expend certain time on waiting and thus 

result in certain time costs, therefore a total of the individual time costs borne by all road users 

may constitute the total social costs, that is, the total social welfare losses caused by traffic

congestion. As unit time cost of different road users varies, road users bearing a higher time cost 

will, despite of the same time period for traffic congestion, bear more time losses than those 

bearing a lower cost, resulting in higher total social welfare losses. Price mechanism based upon 

the congestion charge system can be used for road demand management. Without compromising 

fairness as much as possible, public regulators will effectively reduce the overall social welfare 

losses by allowing road users bearing a higher time cost to use road resources with priority after 

paying toll.

This paper discusses the optimal social congestion charges minimizing the total social 

welfare losses when unit time cost of different individuals varies. This paper has firstly

constructed a road use model that individual time costs satisfy certain probability distribution, and 

derived a function of the total social welfare losses. Secondly, this paper respectively assumes

distributions of individual time costs as uniform distribution and truncated normal distribution and,

based upon the field research data coming from the Nanjing Yangtze River Tunnel and the Nanjing 
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Yangtze River Bridge, calculates and analyzes the optimal congestion charges by numerical 

analysis. It concludes that overall social welfare losses will be effectively reduced by allowing 

road users bearing a higher time cost to use road resources with priority after paying toll.

A variety of literatures have discussed on the traffic congestion and congestion charges.

Professor Pigou from the University of Cambridge firstly proposed the theory of traffic congestion 

in 1920, and indicated that the demand for road traffic involved complicated traffic behaviors. On 

the basis of the research of Pigou (1920), Button and Verhoef (1998) constructed a static pricing

model of congestion charges. Virkrey, Nobel laureate in economics, established a congestion 

model for bottleneck sections in 1969, afterwards, Braid (1989), Arnott (1993) and a plenty of

researchers have developed this model into a dynamic pricing model of congestion. However, 

models established above may not apply to special total social welfare analysis, and a majority of 

literatures only take into account the condition of a single road, but ignore other alternatives for

road users. This paper has constructed a pricing model of congestion charges based upon the total 

social welfare losses minimization, and taken into account the presence of multiple roads selective 

for road users. This paper has further taken into account the pricing rules of optimal congestion 

charges in presence of peak and off peak hours for traffic. In addition, This paper has also brought 

the uncertainty (caused by differences of individual time costs) into the model.

The structure of this paper is as follows: Part II constructs an optimal pricing model of 

congestion charges based upon total social welfare losses minimization; Part III makes data 

description, analyzes the optimal level of charges for the Nanjing Yangtze River Tunnel and the 

Nanjing Yangtze River Bridge under the assumption of uniform distribution and truncated normal 

distribution, and makes an in-depth discussion on price mechanism based upon the congestion

charge system; Part IV concludes the paper.

II. Model 

(I) Basic assumptions 

It is assumed that road 1 and road 2 can be selected to move from place A to place B. Road 

capacity is of road i (i = 1,2) is defined as the maximum traffic flow loadable by road i per unit 

Page - 49



6 

time. If we assume that the road capacity of road 1 is higher than that of road 2 (that is, 1 1s s� )

and, in view of the presence of peak and off peak hours for traffic actual traffic flow during peak 

hours as HN , during off peak hours as LN ( H LN N� ), and actual traffic flow of road i during 

the m time period as m
iN ( { , }m H L� ), then

1 2
m m mN N N� � (1.1) 

If m
it indicates the time required to transport m

iN vehicles with road i during the time period m, 

then

m
m i
i

i

Nt
s

� (1.2) 

Let jL be the unit time cost of No. j vehicle and satisfies the continuous probability 

distribution ( )F � ( j=1 2…) on [0, ]L ....

We define the total social welfare losses caused by traffic congestion as the total time cost of 

all vehicles during the peak and off peak hours:

0
{ , } 1

( ) ( )
mN L m

j j j
m H L j

W t L L dF L
� �

� � �� (1.3) 

where ( )m
jt L indicates the travel time for No. j vehicle moving from place A to place B during 

time period m, for any {1,2, }mj N� , 1 2( ) { , }m m m
jt L t t� .

  (II) Travel road selection of vehicles and total social welfare with unavailability of the 

congestion charge system 

Time required for vehicles to pass through road 1 and road 2 must be equal if the congestion 

charge system is unavailable. Because roads that can be passed through in a shorter travel time 

will attract more vehicles, until the time for travel on the two roads turns to be equal. Therefore, 

for any { , }m H L� , by the following conditions:
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1
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2

2

1 2

m m

m
m

m
m

m m m
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Nt
s

Nt
s
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�

 �




� �
�

(2.1) 

We may conclude:

1 2
1 2 1 2

1 2 1 2 1 2

, ,
m

m m m m m mN s st t N N N N
s s s s s s

� � � �
� � �

(2.2) 

From the above equation, it is evident that enhancement of the road capacity will accelerate the

transportation efficiency. If H LN N� , then 1 1
H Lt t� , it indicates that traffic flow at peak

hours will be heavier. For any time period, if 1 1s s� , then 1 2
m mN N� , it indicates that more 

vehicles will take the initiative to drive on roads with relatively higher road capacity available.

Total social welfare losses are:

1 10 0

2 2 0

1 2

( ) ( )

( )
( ) ( )

L LH H L L
j j j j

L

j jH L

W N t L dF L N t L dF L

L dF L
N N

s s

� �


 �� �� � �

� �

� (2.3) 

According to the above equation, the total social welfare losses will increase as the traffic flow N 

increases. Only enhancement of the road capacity 1s and 2s can reduce the total social welfare 

losses when the congestion charge system is unavailable.

  (III) Travel road selection of vehicles and optimal level of charges under the congestion 

charge system

We assume that crossing fees are charged on road 1, if the toll for road 1 is set as 0P � , then,

for any vehicle j, if and only if the total cost charged on road 1 (including time costs and tolls) is

less than that of road 2 (only including the time cost), that is, 1 2
m m

j jt L P t L� � , road 1 will be 

selected by vehicle j; if and only if 1 2
m m

j jt L P t L� � , road 2 will be selected by vehicle j.

Therefore, for any vehicle j,
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1 1 2

2 1 2

,
( )

,

m m m
j jm

j m m m
j j

t t L P t L
t L

t t L P t L
	 � �
� � � �
�

(3.1) 

For any toll P , 0
mL is available under the equilibrium state to enable

1 0 2 0
m m m mt L P t L� � (3.2) 

Then, vehicles j satisfying 0
m

jL L� will choose road 1, while vehicles j satisfying 0
m

jL L� will 

choose road 2. In that case, actual traffic flow of road 1 and road 2 during the time period m will 

respectively be:

1 0Pr( )m m m
jN N L L� � (3.3) 

2 1
m m mN N N� � (3.4) 

Given ( )jF L , we may conclude the following from(1.1), (1.2), (3.2) and (3.4):

0 0 1 2( , , , )m m mL L P N s s� (3.5) 

According to the 0
mL , we can further solve for 1

mt and 2
mt , and calculate the total social 

welfare losses when the congestion charge system is available :

0

0
1 1 2 20

{ , }
( ) ( )

m

m

L Lm m m m
j j j jL

m L H
W N t L dF L N t L dF L

�

� �� �� �
� �� � � (3.6)  

Optimal level of congestion charge minimizes the total social welfare losses:

* arg minP W� (3.7) 

The above equation is the optimal pricing function for congestion charges based upon 

minimization of the total social welfare losses.

In part III, we examine the optimal level of congestion charges when jL is under uniform 

distribution and truncated normal distribution and, based upon the field research data made on the 

Nanjing Yangtze River Tunnel and the Nanjing Yangtze River Bridge, we calculate and analyze 

the optimal and specific congestion charge by numerical analysis.

 It is noted that tolls payment will not be calculated into the total social welfare losses, because, from the view of 
the entire society, tolls payment will only lead to the transfer and redistribution of wealth, not the reduction of total 
social wealth. 
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III. Numerical Analysis 

In this part, we will construct a theoretical model when jL is under uniform distribution and

truncated normal distribution. Further, we will, based upon the field research data made on the 

Nanjing Yangtze River Tunnel and the Nanjing Yangtze River Bridge by a project team, conduct 

numerical analysis on the model constructed using mathematical software Matlab and 

Mathematica, and discuss the optimal level of congestion charges.

  (I) Data description

1s indicates the road capacity of the Nanjing Yangtze River Tunnel (hereinafter referred to as 

the "Tunnel"), and 2s indicates the road capacity of the Nanjing Yangtze River Bridge 

(hereinafter referred to as the "Bridge"). According to historical records, daily traffic flow 

designed at the Tunnel is of 40,000, and that of the Bridge is of 20,000, then we assume that

1 22s s� (4.1) 

In order to obtain actual and specific 1s and 2s , the Team members have carried out field 

research on Tunnel road capacity on August 13, 2012, and obtained the statistical data in Table 1. 

It indicates that the Tunnel traffic flow during peak hours is 3,816 per hour, and researchers also 

find that vehicles will, even in peak hours from 17:30 to 18:30, be able to pass through the Tunnel 

in 3 minutes on average, therefore, we may assume that 1 4000s � and 2 2000s � according 

to data in Table 1 and the actual situation.

Table 1 Traffic Flow Statistics of the Tunnel made on August 13, 2012

Time 
Vehicles out 

(unit)

Vehicles in 

(unit)

Traffic Flow per hour in corresponding time 

period

12:35 to 12:40 67
1716

12:45 to 12:50 76

16:00 to 16:05 98
2520

16:06 to 16:11 112
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17:46 to 

17:51�
131

3816
17:52 to 

17:57�
187

Note: The symbol � indicates that the time period is in peak hours for daily traffic.

(II) Optimal level of congestion charges under uniform distribution  

This part examines the way to adjust road capacity and improve social welfare through the 

congestion charge system when unit cost of vehicles satisfies the uniform distribution. We will

firstly construct a theoretical model under uniform distribution based upon part II of this paper,

and secondly, by numerical analysis, seek after the optimal level of charges and reveal and discuss

the way for the price mechanism based upon the congestion charge system to affect social welfare,

travel road selection of vehicles and transportation efficiency.

(1)Theoretical model

If jL satisfies uniform distribution on [0, ]L , the following conditions can be derived

from (2.2), (2.3) and (2.4):

1 2
0 0

1 2

0
1

0
2

m m
m m

m
m

m
m

N NL P L
s s

L LN N
L
LN N
L

	
� �





 �
 ��





�


�

                     (4.2)

Then we have:

2 1 2 1 2
2 2

0
1 2

4( )( )

2( )

m
m

s s s s LPs L s L
NL

s s

�
� �

�
�              

(4.3)

Total social welfare losses are:
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2 32
0 0 0

2
1 2

( ) ( ) ( )( )
2

m m mm

m

L L L L LNW
L s s


 �� �
� �� �

� �
�

         
(4.4)

(2)Calculations and analysis

We will firstly calculate the optimal level of congestion charges at the Tunnel minimizing the 

total welfare losses when actual traffic flow at peak hours HN are respectively of 10,000, 15,000 

and 20,000, actual traffic flow at off peak hours LN are respectively of 6,000 and 10,000, and

maximum unit time costs of vehicles are respectively of RMB 10, 20, 30, 50 and 100. Results are 

shown in Table 2.

Table 2 Optimal Level of Congestion Charges and Social Welfare Improvement under Uniform 

Distribution

HN

(ten thousand 

units)

LN

(ten thousand 

units)

L

(RMB)

*P

(RMB)

W

(
510�

RMB)

'W

(
510�

RMB)

Social Welfare 

Improvement

(1 / 'W W� )

1.0 0.6 10 3.67 1.06 1.13 6.66%

1.5 0.6 10 5.06 2.04 2.18 6.24%

2.0 1.0 10 7.01 3.90 4.17 6.47%

1.0 0.6 20 7.34 2.12 2.27 6.66%

1.5 0.6 20 10.11 4.08 4.35 6.24%

2.0 1.0 20 14.02 7.79 8.33 6.47%

1.0 0.6 30 11.01 3.17 3.40 6.66%

1.5 0.6 30 15.17 6.12 6.53 6.24%

2.0 1.0 30 21.03 11.69 12.50 6.47%

1.0 0.6 50 18.34 5.29 5.67 6.66%

1.5 0.6 50 25.28 10.20 10.88 6.24%

2.0 1.0 50 35.06 19.48 20.83 6.47%

1.0 0.6 100 36.69 10.58 11.33 6.66%
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1.5 0.6 100 50.56 20.39 21.75 6.24%

2.0 1.0 100 70.12 38.97 41.67 6.47%

Note: W indicates the total social welfare losses of the Tunnel under the optimal level of 

congestion charges *P , 'W indicates the total social welfare losses if the congestion charge 

system is unavailable. 1 / 'W W� reflects the reduction of total social welfare losses after tolls

charged at the Tunnel.

It can be seen from Table 2 that, when unit cost of vehicles satisfies uniform distribution, 

tolls charged at the Tunnel based upon minimized total social time costs will effectively reduce the 

total social time costs by 6% to 7%. The congestion charge system enables crowd with higher unit 

cost (that is, higher requirements on road traffic) to pass through in a shorter time after completion 

of payment less than their time costs. From the perspective of society as a whole, we may give 

priority to crowd with higher requirements on road traffic to pass through by use of the price 

mechanism and meanwhile control losses thus caused to crowd with lower requirements on road 

traffic within certain limits, thereby effectively improving the transportation efficiency aimed at 

the overall social welfare.

We can also come to conclusions as below by further observations towards Table 2. Firstly, 

the higher HN (that is, the higher actual traffic flow during peak hours together with the higher 

maximum unit time costs of vehicles), the higher optimal tolls charged by the Tunnel, it fully 

reflects the economic laws of "high demand - high price". Secondly, we also find that, under the 

uniform distribution, improvement of the total social welfare losses is mainly affected by traffic 

flow at peak hours and off peak hours, while welfare improvement will not be affected by the 

changes of L .

Based upon the theoretical model constructed in this part, we can analyze variations of travel 

road selection and speed of vehicles in Tunnels by numerical analysis (See Table 3 and Table 4).

Table 3 shows effects of variations of actual traffic flow on travel road selection of vehicles. 

The left figure of Table 3 shows the increase of actual traffic flow during peak hours (keep traffic 

flow at off peak hours unchanged), the right figure of Table 3 shows the increase of actual traffic 

flow during off peak hours (keep traffic flow at peak hours unchanged). The horizontal axis 
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represents the actual traffic flow, and the vertical axis represents the proportion of vehicles 

selecting to travel in Tunnel by paying tolls, that is 1
m

m

N
N

( { , }m H L� ). On the whole,

proportion of vehicles selecting the Tunnel at peak hours is relatively stable, less affected by 

variations of actual traffic flow; on the contrary, proportion of vehicles selecting the Tunnel at off 

peak hours will encounter a great change when actual traffic flow varies. Specifically, the left 

figure of Table 3 indicates that amount of vehicles selecting the Tunnel will increase slowly as 

traffic flow at peak hours increases, while vehicles selecting the Tunnel will reduce rapidly at off 

peak hours. This is because that increase of traffic flow enables the improvement of *P , thereby 

greatly reducing the tendency of road users to select the Tunnel at off peak hours. Similarly, we 

can observe from the right figure of Table 3 that *P increases due to increase of traffic flow at 

off peak hours and that amount of vehicles selecting the Tunnel during peak hours is reduced.

Table 3  Variations of Travel Road Selection of Vehicles

Table 4 reflects the way for travel speed in Tunnel to change as traffic flow varies. The travel 

speed in Tunnel stated in Table 4 is a relative speed to that on the Bridge, that is, 2

1

m

m

t
t

( { , }m H L� ). Similar to Table 3, whether in peak hours or off peak hours, the changes to the 

actual traffic flow will not significantly impact the travel speed in Tunnel during peak hours, but 

Page - 57



14

will have an obvious impact on that during off peak hours. In view of the left figure of Table 4, 

travel speed in Tunnel in peak hours declines gradually as actual traffic flow increases at the same 

time, while the travel speed in Tunnel in off peak hours increases rapidly. This phenomenon can 

be explained by use of the price mechanism according to Table 3. As shown in Table 3, as traffic 

flow in peak hours increases, *P will be adjusted accordingly and enable the proportion of 

vehicles traveling in Tunnel to be relatively stable, and thus keep the relative speed in Tunnel 

stable. However, for off peak hours, relative time for vehicles passing through the Tunnel will be 

rapidly shortened as vehicles traveling in Tunnel drastically reduce. Similarly, we can explain the 

phenomenon shown in the right figure of Table 4.

In view of the above analysis, it can be seen that the price mechanism is vital in improving 

social welfare, regulating road capacity and enhancing traffic efficiency.

Table 4 Variations for Travel Speed in Tunnel

(III) Optimal level of congestion charges under truncated normal distribution

(1) Theoretical model

The L is the maximum unit time cost for vehicles, and we assume that the standard 

deviation of original normal distribution� satisfies:

2 L� � (4.5) 

According to the property of normal distribution, the assumption enables L to be effectively in line 
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with the meaning of "maximum". To simplify the analysis, we further assume that the mean value 

of normal distribution is 0 (zero). According to the property of normal distribution,

2
~ (0,1)jL

N
L

(4.6) 

The jL is truncated at 0 and L , according to the property of truncated normal distribution,

 ! 0
0

0

0

2 22Pr 0 Pr( 0 2)

2(2) ( )

(2) (0)
22 2 ( )

m
j jm

j j

m

m

L LLL L L L
L L L

L
L

L
L

� � � � � � �

" �"
�

" �"

# � "

(4.7) 

 !
0

0

0

2( ) (0)
Pr 0

(2) (0)
22 ( ) 1

m

m
j j

m

L
LL L L L

L
L

" �"
� � � �

" �"

# " �

(4.8) 

In which, ( )" � is the cumulative distribution function of normal distribution. For any value of m,

we can solve for the following by substitution of (4.7) and (4.8) into (3.2):

0 0

0
2 1

2 22 ( ) 1 2 2 ( )
m m

m m

L L
L LP N L
s s


 �
" � � "� �

� �� �
� �
� �� �

(4.9) 

According to the property of truncated normal distribution, for ~ (0,1)N$ ,

( )( )
1 ( )

cE c
c

%$ $ � �
�"

(4.10) 

(0) ( )( 0 )
( ) (0)

cE c
c

% %$ $ �
� � �

" �"
(4.11) 

In which, ( )% � is the probability density function of standard normal distribution.

By use of (4.10) and (4.11), we can conclude

Page - 59



16

0 0

0

0
0

0

0

0

( ,0 )
( 0 )

(2) (0)
1 ( , )

(2) (0)

21 ( ) (2) ( )
(2) (0)

2(2) ( )
( )

(2) (0)

2(2) (

m m

L L j j
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j j j j

m
m

j j j j

m
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� �
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" �"� �
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#

(4.12) 

Similarly

0 0
0

2( ) (0) ( )
m mL

j j
LL dF L L
L

% %

 �

# �� �
� �

� (4.13) 

By substitution of (4.12) and (4.13) into the total social welfare losses (3.6), we can solve for 0
mL ,

that is, the solution of the constrained optimization problem as below:

0 0

2 2

0 0 0 0

2

{ , } { , } 1 2

0 0 0 0

0 0
2 1 2 1

2 2 2 22 2 ( ) ( ) 2 ( ) 1 (0) ( )
min ( )

2 2 2 22 ( ) 1 2 2 ( ) 2 ( ) 1 2 2 ( )
. .

H L

m m m m

m

L L m L H

H H L L

H H L L

L L L L
L L L L

W N L
s s

L L L L
L L L Ls t N L N L
s s s s

% % %

�


 �� � � � � �
� " " � �� �� � � � � �

� �� � � � � �� �� �
� �
� �� �


 � 
 �
" � � " " � � "� � � �

� � �� � �
� � �
� � �� � � �

�

0��
�
�

(3.14) 

By solving for the solution of the optimization problem 0
mL above and substituting it into (4.9), we 

will conclude the optimal level of congestion charge *P when the unit time cost for vehicles is 
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under truncated normal distribution.

(2) Calculations and analysis

We also calculate the optimal level of congestion charges and corresponding social welfare 

improvement when actual traffic flow at peak hours HN are respectively of 10,000, 15,000 and 

20,000, actual traffic flow at off peak hours LN are respectively of 6,000 and 10,000, and 

maximum unit time costs of vehicles are respectively of RMB 10, 20, 30, 50 and 100. Calculations 

are shown in Table 5.

Table 5 Optimal Level of Congestion charges and Corresponding Social Welfare Improvement

under Truncated Normal Distribution

HN

(ten 

thousand 

units)

LN

(ten 

thousand 

units)

L

(RMB)

*P

(RMB)

W

(
510� RMB)

'W

(
510� RMB)

Welfare 

Improvement

1 / 'W W�

1.0 0.6 10 4.11 0.41 0.904 54.65%

1.5 0.6 10 5.78 0.81 1.744 53.56%

2.0 1.0 10 7.97 1.53 3.336 54.14%

1.0 0.6 20 8.28 0.82 1.816 54.85%

1.5 0.6 20 11.69 1.61 3.48 53.74%

2.0 1.0 20 15.93 3.05 6.664 54.23%

1.0 0.6 30 12.10 1.23 2.72 54.78%

1.5 0.6 30 17.53 2.42 5.224 53.68%

2.0 1.0 30 23.80 4.58 10 54.20%

1.0 0.6 50 20.67 2.06 4.536 54.59%

1.5 0.6 50 29.02 4.03 8.704 53.70%

2.0 1.0 50 39.83 7.63 16.664 54.21%

1.0 0.6 100 41.16 4.11 9.064 54.66%
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1.5 0.6 100 58.11 8.05 17.4 53.74%

2.0 1.0 100 80.55 15.25 33.336 54.25%

Note: The W indicates the total social welfare losses of the Tunnel under the optimal level of 

congestion charges *P , the 'W indicates the total social welfare losses if the congestion charge 

system is unavailable. The 1 / 'W W� reflects the reduction of total social welfare losses after

tolls charged at the Tunnel.

The most significant difference between calculations in Table 5 and Table 2 is that the 

optimal congestion charges charged in Tunnel will greatly reduce the total social cost by at least 

60% when unit time cost for vehicles satisfies truncated normal distribution, while the congestion 

charge system under uniform distribution can only reduce the total social costs by 6% to 7%. The 

calculations demonstrate that the price mechanism based on the congestion charge system has 

different effects for different distributions of unit time costs, and that public regulators should,

during the establishment of charging policies, take into account the traffic flow, road capacity and 

other actual factors, and comprehensively examine related information to road users. In addition to 

welfare improvement, other natures of optimal congestion charges under truncated normal 

distribution are basically in line with that under uniform distribution.

IV. Conclusion 

As an important tool to regulate traffic demand by public regulators, a reasonable congestion 

charge system is effective to alleviate traffic congestion and can enhance the level of social 

welfare. This paper has constructed the optimal pricing model of congestion charges based upon 

total social welfare losses minimization. And by using numerical analysis, we conclude that 

overall social welfare losses will be effectively reduced by allowing road users to bear a higher 

time cost in order to use road resources with priority after certain payment, or to bear a lower time 

cost to use other alternative roads. This paper also concludes that if there are multiple roads for 

selection and road capacities are different, relative travel speed and proportion for selection of 

roads with high road capacity during peak hours may be relatively stable, but may encounter large

changes during off peak hours as traffic flow varies.
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This paper concludes that public regulators, when managing the road demand by use of the 

price mechanism, need pay attention to the price mechanism that may have complicated influence

to behaviors of road users. For example, in order to ensure the transport efficiency during peak 

hours, congestion charges on roads with high road capacity would be higher, therefore, road users

would not select the road with high road capacity, thereby resulting in a waste of road resources.

On the basis of this paper, we can further examine the price mechanism of optimal 

congestion charges under conditions of other time cost distributions and availability of multiple

alternative roads. At the same time, we can also discuss how to charge peak and off peak hours

with different fees, and the way to use different charging methods in the most efficient manner

(for example, charged by frequency, day, month and year, and charged by bundling with other 

transport services), etc.
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Appendix
1. Matlab program code calculated in Table 2

function y=findminWelfareUniform(NH,NL,s1,s2,Lup)
y=fminbnd(@WelfareUniform,0,Lup);

function y=WelfareUniform(P)
y=NH^2/(2*Lup^2)*((Lup-((s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup

*P/NH))/(2*(s1+s2))))^2*(Lup+((s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup
*P/NH))/(2*(s1+s2))))/s1+((s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P/N
H))/(2*(s1+s2)))^3/s2)+NL^2/(2*Lup^2)*((Lup-((s2*Lup+sqrt((s2*Lup)^2+4*(s1
+s2)*s1*s2*Lup*P/NL))/(2*(s1+s2))))^2*(Lup+((s2*Lup+sqrt((s2*Lup)^2+4*(s1
+s2)*s1*s2*Lup*P/NL))/(2*(s1+s2))))/s1+((s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s
1*s2*Lup*P/NL))/(2*(s1+s2)))^3/s2);

end
end

function y=averageWelfare(x)
NH=x(1);
NL=x(2);
s1=x(3);
s2=x(4);
Lup=x(5);
y=(NH^2+NL^2)*Lup/(2*(s1+s2));
end

function y = WelfareUniform(x)
P=x(1);
NH=x(2);
NL=x(3);
s1=x(4);
s2=x(5);
Lup=x(6);
y=NH^2/(2*Lup^2)*((Lup-((s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P/NH))/(2*(s1
+s2))))^2*(Lup+((s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P/NH))/(2*(s1+s2))))/s1
+((s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P/NH))/(2*(s1+s2)))^3/s2)+NL^2/(2*Lu
p^2)*((Lup-((s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P/NL))/(2*(s1+s2))))^2*(Lup
+((s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P/NL))/(2*(s1+s2))))/s1+((s2*Lup+sqrt(
(s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P/NL))/(2*(s1+s2)))^3/s2);
end

clear;
s1=4000;
s2=s1/2;
Lup=50;
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NH=10000;
NL=6000;
P=findminWelfareUniform(NH,NL,s1,s2,Lup);
x1=[P NH NL s1 s2 Lup];
x2=[NH NL s1 s2 Lup];
Wuniform=WelfareUniform(x1);
Waverage=averageWelfare(x2);
Wratio=Wuniform/Waverage;
L0H=(s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P/NH))/(2*(s1+s2));
L0L=(s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P/NL))/(2*(s1+s2));
N1H=1-L0H/Lup;
N1L=1-L0L/Lup;
N1Haverage=s1/(s1+s2);
t1H=NH*N1H/s1;
tHaverage=NH/(s1+s2);
tHratio=((1-N1H)*s1)/N1H*s2;
tLratio=((1-N1L)*s1)/N1L*s2;
result=[NH NL Lup P Wuniform Waverage Wratio N1H N1L t1H tHaverage tHratio tLratio];

2. Matlab program code calculated in Table 3
clear;
s1=4000;
s2=s1/2;
Lup=50;
NH=10000:2:20000;
NL=6000;
P=zeros(numel(NH),1);
L0H=zeros(numel(NH),1);
L0L=zeros(numel(NH),1);
N1H=zeros(numel(NH),1);
N2H=zeros(numel(NH),1);
for i=1:numel(NH)

P(i)=findminWelfareUniform(NH(i),NL,s1,s2,Lup);
L0H(i)=(s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P(i)/NH(i)))/(2*(s1+s2));

L0L(i)=(s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P(i)/NL))/(2*(s1+s2));
N1H(i)=1-L0H(i)/Lup;
N1L(i)=1-L0L(i)/Lup;

end
plot(NH,N1H)
hold on
plot(NH,N1L)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;
s1=4000;
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s2=s1/2;
Lup=50;
NH=10000;
NL=6000:2:8000;
P=zeros(numel(NL),1);
L0H=zeros(numel(NL),1);
L0L=zeros(numel(NL),1);
N1H=zeros(numel(NL),1);
N2H=zeros(numel(NL),1);
for i=1:numel(NL)

P(i)=findminWelfareUniform(NH,NL(i),s1,s2,Lup);
L0H(i)=(s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P(i)/NH))/(2*(s1+s2));
L0L(i)=(s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P(i)/NL(i)))/(2*(s1+s2));
N1H(i)=1-L0H(i)/Lup;
N1L(i)=1-L0L(i)/Lup;

end
plot(NL,N1H)
hold on

plot(NL,N1L)

3. Matlab program code calculated in Table 4
clear;
s1=4000;
s2=s1/2;
Lup=50;
NH=10000:2:20000;
NL=6000;
P=zeros(numel(NH),1);
L0H=zeros(numel(NH),1);
L0L=zeros(numel(NH),1);
N1H=zeros(numel(NH),1);
N2H=zeros(numel(NH),1);
tHratiozeros(numel(NH),1);
tLratio=zeros(numel(NH),1);
for i=1:numel(NH)

P(i)=findminWelfareUniform(NH(i),NL,s1,s2,Lup);
L0H(i)=(s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P(i)/NH(i)))/(2*(s1+s2));

L0L(i)=(s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P(i)/NL))/(2*(s1+s2));
N1H(i)=1-L0H(i)/Lup;
N1L(i)=1-L0L(i)/Lup;
tHratio(i)=((1-N1H(i))*s1)/N1H(i)*s2;
tLratio(i)=((1-N1L(i))*s1)/N1L(i)*s2;

end
plot(NH,tHratio)
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hold on
plot(NH,tLratio)
hold off
%%%%%%%%%%%%%%%%
clear;
s1=4000;
s2=s1/2;
Lup=50;
NH=10000;
NL=6000:2:8000;
P=zeros(numel(NL),1);
L0H=zeros(numel(NL),1);
L0L=zeros(numel(NL),1);
N1H=zeros(numel(NL),1);
N2H=zeros(numel(NL),1);
tHratio=zeros(numel(NL),1);
tLratio=zeros(numel(NL),1);
for i=1:numel(NL)

P(i)=findminWelfareUniform(NH,NL(i),s1,s2,Lup);
L0H(i)=(s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P(i)/NH))/(2*(s1+s2));
L0L(i)=(s2*Lup+sqrt((s2*Lup)^2+4*(s1+s2)*s1*s2*Lup*P(i)/NL(i)))/(2*(s1+s2));
N1H(i)=1-L0H(i)/Lup;
N1L(i)=1-L0L(i)/Lup;
tHratio(i)=((1-N1H(i))*s1)/N1H(i)*s2;
tLratio(i)=((1-N1L(i))*s1)/N1L(i)*s2;

end
plot(NL,tHratio)
hold on
plot(NL,tLratio)

hold off

4. Mathematica program code calculated in Table 5
(* 1. Calculate expression of the objective function and the constraints according to parameters in
the first line of the Table*)

(0)=PDF[NormalDistribution[0,1],0]
((2 Lh)/Lup)=PDF[NormalDistribution[0,1],(2 Lh)/ Lup]
((2 Ll)/ Lup)=PDF[NormalDistribution[0,1],(2 Ll)/ Lup]
((2 Lh)/ Lup)=CDF[NormalDistribution[0,1],(2 Lh)/ Lup]
((2 Ll)/ Lup)=CDF[NormalDistribution[0,1],(2 Ll)/ Lup](*define CDF and PDF of standard 

normal distribution *)(*Define CDFand PDF of standard normal distribution*)
Nh=10000
Nl=6000
Lup =10
s1=4000
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s2=2000 (*Use parameters in the first line of the Table*)
W=Nh^2 Lup ((( (0)- ((2 Lh)/ Lup)) (2 ((2 Lh)/ Lup)-1)^2)/s2+( ((2 Lh)/ Lup) (2-2 ((2 
Lh)/ Lup))^2)/s1)+Nl^2 Lup ((( (0)- ((2 Ll)/ Lup)) (2 ((2 Ll)/ Lup)-1)^2)/s2+( ((2 Ll)/ Lup) 
(2-2 ((2 Ll)/ Lup))^2)/s1)
(*W refers to the objective function required to be optimized*)
B=Lh *Nh ((2 ((2 Lh)/ Lup)-1)/s2-(2-2 ((2 Lh)/ Lup))/s1)-Ll *Nl ((2 ((2 Ll)/ 
Lup)-1)/s2-(2-2 ((2 Ll)/ Lup))/s1)
(*B refers to the constraints* )
(*2. Find the minimum of the objective function satisfying constraints and the corresponding Lh
and Ll by drawings*)
Manipulate[ContourPlot[10000 Lh ((erf(Lh/(5 Sqrt[2]))-1)/4000+erf(Lh/(5 Sqrt[2]))/2000)-6000
Ll((erf(Ll/(5Sqrt[2]))-1)/4000+erf(Ll/(5Sqrt[2]))/2000) 0,{Lh,0,10},{Ll,0,10},RegionFunction

({Lh,Ll,z} 1000000000 (((Lh^2/50) (1-erf(Lh/(5 Sqrt[2])))2)/(4000 Sqrt[2])+((1/Sqrt[2]-
(Lh^2/50)/Sqrt[2])erf(Lh/(5Sqrt[2]))2)/2000)+360000000(((Lh^2/50)(1-erf(Ll/(5Sqrt[2])))2)/(4000 
Sqrt[2])+((1/Sqrt[2]- (Lh^2/50)/ Sqrt[2]) erf(Ll/(5Sqrt[2]))2)/2000) M)],{M,40000,90000}]
(*After concluding the expression of the objective function W and the constraint B, draw the 

constraint line in a two-dimensional plane with a horizontal axis of Lh and a vertical axis of Ll. 
Assume that the objective function W is less than or equal to M, then find the points set on the 
constraint line satisfying the condition assumed. Then we will continuously reduce the maximum 
value M of the objective function, until the points set on the constraint line is finally compressed
to only one point, that is, a projection of the minimum of the objective function satisfying the 
constraints on the two-dimensional plane, then, the value of M is the minimum of the objective 
function satisfying the constraints, and thus we can find the minimum of the objective function 
and the corresponding Lh and Ll. The M in the following figure is a controllable switch, the 
leftmost takes the value of 40000, and the rightmost takes the value of 90000, when we adjust the 
M button from the right to the left, we can see that corresponding points set on the constraint line 
will be getting smaller and smaller, until finally to be a point, as gradually depressing the M
button.*)
(*3. Calculate the value of P*)

(0)=PDF[NormalDistribution[0,1],0]
((2 Lh)/Lup)=PDF[NormalDistribution[0,1],(2 Lh)/ Lup]
((2 Ll)/ Lup)=PDF[NormalDistribution[0,1],(2 Ll)/ Lup]
((2 Lh)/ Lup)=CDF[NormalDistribution[0,1],(2 Lh)/ Lup
((2 Ll)/ Lup)=CDF[NormalDistribution[0,1],(2 Ll)/ Lup]

Nh=10000
Nl=6000
Lup)=10
s1=4000
s2=2000
Lh=3.35
Ll=3.9
Ph=Lh *Nh ((2 ((2 Lh)/ Lup))-1)/s2-(2-2 ((2 Lh)/ Lup)))/s1)
Pl=Ll* Nl ((2 ((2 Ll)/ Lup))-1)/s2-(2-2 ((2 Ll)/ Lup)))/s1)
(*After we conclude that Lh=3.35 and Ll=3.9, we will respectively calculate values of Ph and Pl
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under high and low unit time costs*)
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