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Abstract

In this paper, we study a Diophantine problem from mathematical physics and prove that for every positive
integer k, there exists infinitely many sets of k n−tuples of positive integers with the same sum and the same
sum of their cubes. Each set of k n−tuples is “primitive” in the sense that the greatest common divisor
of all kn elements is 1. We reduce the corresponding Diophantine system to a family of elliptic curves and
apply Nagell’s algorithm, Nagell-Lutz theorem and the theorem of Poincaré and Hurwitz to deal with it. In
the end, we raise two open questions about this Diophantine problem.
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1 Introduction

In mathematical physics, a Racah operator is a linear operator acting on a particular abstract Hilbert
space and gives rise to the Racah coefficients. A full discussion could be found in [1], you could also see
the motivation and the importance of the study of the Racah coefficients in Quantum Theory. Considerable
interest has been shown in the nontrivial zeros of the Racah coefficients, because these determine vector spaces
belonging to the null space of a Racah operator and accordingly give structural information concerning the
operator itself.

In 1985, Brudno and Louck in [4] found the relation between the all nontrivial zeros of weight 1 6j Racah
coefficients and the all non-negative integer solutions of the Diophantine system{

x1 + x2 + x3 = y1 + y2 + y3,

x3
1 + x3

2 + x3
3 = y31 + y32 + y33 .

(1)

They mentioned that the special parametric solution given by Gerardin ([8], P. 713) in 1916 was very useful
for their problem.

In 1986, Bremner in [2] got more solutions including Gerardin’s. In the same year, complete solutions
were given in terms of cubic polynomials in four variables by Bremner and Brudno in [3], as well as by
Labarthe in [9], and the parameter solutions obtained by them are different in the form.

In 1991, a complete solution in terms of eight variables was given by Choudhry in [5]. In 2010, Choudhry
in [6] gave a complete four-parameter solution in terms of quadratic polynomials. Of course, these two
parameter solutions are different from the previous ones.
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In this paper, we consider the positive integer solutions of the Diophantine chains⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n∑
j=1

x1j =
n∑

j=1

x2j = · · · =
n∑

j=1

xkj = A,

n∑
j=1

x3
1j =

n∑
j=1

x3
2j = · · · =

n∑
j=1

x3
kj = B,

n ≥ 2, k ≥ 1,

(2)

where A,B are positive integers, which are determined by k n−tuples (xi1, xi2, · · ·, xin), i = 1, · · ·, k. For
n = 2, k = 2, it has been shown in [11] that (2) have no nontrivial integer solutions, so we consider n ≥ 3.
For n = 3, k = 2, (2) reduce to (1). For n = 3, k ≥ 3, Choudhry in [6] gave a parameter solution in rational
numbers of (2), but the solutions are not all positive, i.e., there are arbitrarily long Diophantine chains of
the form (2) with n = 3.

The Diophantine chains (2) can be transformed into the following Diophantine system⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xi1 + · · ·+ xin = A,

x3
i1 + · · ·+ x3

in = B,

xij > 0, A > 0, B > 0,

i = 1, · · ·, k, j = 1, · · ·, n, n ≥ 2, k ≥ 1.

(3)

In 2011, Zhang and Cai in [13] studied a Diophantine system which is similar to (3), the method of this
paper is inspired by their paper’s, but we use the Nagell’s algorithm to get a family of elliptic curves.

We mainly investigate the positive integer solutions of (2) or (3) for n ≥ 3, k ≥ 1, and prove the following
theorem by using the theory of elliptic curves, including Nagell’s algorithm, Nagell-Lutz theorem and the
theorem of Poincaré and Hurwitz. The method used here is different from the methods used by Choudhry
in [5], [6] and the result is stronger than Choudhry’s.

Theorem 1. For n ≥ 3, k ≥ 1, the Diophantine chains (2) have infinitely many coprime positive integer
solutions. Equivalently, for every positive integer k, there exists infinitely many primitive sets of k n−tuples
of positive integers with the same sum and the same sum of their cubes.

A set S of n−tuples of positive integers is called primitive if the greatest common divisor of all elements
of all n−tuples of S is 1.

In geometry, for each i, we can consider (3) as the intersection of a hyperplane and a hypersurface. To
find the positive integer points on their intersection, we fix n−3 variables in the n−tuples, then the problem
is transformed into finding positive integer points on a family of cubic curves, which is essentially a family
of elliptic curves. Hence, we can use the theory of elliptic curves to deal with the new problem. The exact
process will be given in sections 3 and 4.

2 The theory of elliptic curves

The Diophantine equation is one of the oldest branches of number theory, which deals with the solutions
of polynomial equations or systems of equations in integers or rational numbers. One of the fascinations of
the Diophantine equation is that the problems of it are usually easy to state, but sometimes very difficult
to solve. When they can be solved, they always need extremely sophisticated mathematical theories and
tools. The typical example is the Fermat’s Last Theorem. The problem about Diophantine equation is called
Diophantine problem.
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Figure 1: group law for y2 = x3 + ax2 + bx+ c

Elliptic curve is a very useful tool to study Diophantine equation, it is not only an important investigated
object of number theory, but also a basic investigated object of algebraic geometry. We shall give the
definition and some basic properties of elliptic curve. There are many definitions of it, the simplest form is
defined by the Weierstrass equation in the field of rational numbers Q:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (ai ∈ Q),

where the discriminant of this equation is not zero, which can reduce to y2 = x3 + ax2 + bx + c or y2 =
x3 + ax+ b.

A very beautiful property of elliptic curve is the group law, i.e., the all rational points on the elliptic
curve form a group under an operator, then the theory of group can be applied on the elliptic curve. The
group law is illustrated in figure 1, through any two rational points on the elliptic curve, say P and Q, we
can get the third point, denoted by P ∗ Q. The reflective point of P ∗ Q about the x axis is denoted by
P +Q, where the symbol “ + ” is the operator of the group. When Q = P , we can get P + P .

Let E(Q) = {(x, y)| y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6}

⋃{O}, it is an abelian group under the
operator “ + ”, where O denotes the point at infinity on the elliptic curve, which is the zero element of the
group. Then we have the following famous theorem.

Mordell’s Theorem. The group E(Q) is finitely generated.

When we have the group law and the operator, the order of an element is defined, i.e., the order of a
rational point. A rational point P on the elliptic curve is said to have order m, if

[m]P = P + · · ·+ P︸ ︷︷ ︸
m

= O,

and m′P �= O, 1 ≤ m′ ≤ m. If such an m exists, then P has finite order; otherwise it has infinite order.

Next, we give the process of calculating [2]P = P +P , let P = (x0, y0) be a rational point on the elliptic
curve E : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6 (ai ∈ Q), then the slope of the tangent line at P is

k =
3x2

0 + 2a2x0 + a4 − a1y0
2y0 + a1x0 + a3

,

the tangent line is y = k(x−x0)+y0, substitute it into the equation of E, we get a cubic equation of x, from
the relation between the roots and coefficients, we obtain the coordinates of the intersection point (x1, y1),
then we have [2]P = (x1,−y1 − a1x1 − a3).

To prove our theorem, we need the following two profound theorems.

3

Page - 121



Nagell-Lutz Theorem ([10], P. 56). Let the equation of the elliptic curve be

y2 = x3 + ax2 + bx+ c (a, b, c ∈ Z),

the discriminant of the cubic polynomial is Δ = −4a3c + a2b2 + 18abc − 4b3 − 27c3, let P = (x, y) be a
rational point of finite order, then x and y are integers; and either y = 0 or else y|Δ.

From this theorem, we know that if x or y is not an integer, then P = (x, y) is a rational point of infinite
order, hence there are infinitely many rational points on the elliptic curve.

The theorem of Poincaré and Hurwitz ([12], P. 78). If the elliptic curve has infinitely many rational
points, then it has infinitely many rational points in every neighborhood of any one of them.

3 Two propositions

In this section, we give two propositions, where the proposition 3 is the key step to prove our theorem.
And the proofs of these two propositions are the applications of the theory of elliptic curves and need many
calculations.

In fact, in order to prove the theorem, we only need the case for n = 3 of proposition 2. However, the
proposition 2 and its proof are of interest for their own sake, so it’s worth including them even though they
provide more information than it is needed.

Proposition 2. For n ≥ 3, the Diophantine system⎧⎪⎨
⎪⎩

x1 + · · ·+ xn =
n(n+ 1)

2
,

x3
1 + · · ·+ x3

n =
n2(n+ 1)2

4
,

(4)

has infinitely many rational solutions.

Proof. It’s easy to see that x1 = 1, x2 = 2, · · ·, xn = n is a solution of (4). Taking x1 = 1, x2 =
2, · · ·, xn−3 = n− 3, we have {

xn−2 + xn−1 + xn = 3(n− 1),

x3
n−2 + x3

n−1 + x3
n = 3(n− 1)(n2 − 2n+ 3).

Eliminating xn−2, we get

3x2
n−1xn + 3xn−1x

2
n + 9(1− n)x2

n−1 + 9(1− n)x2
n + 18(1− n)xn−1xn

+ 27(n− 1)2(xn−1 + xn)− 6(n− 1)(2n− 1)(2n− 3) = 0,

leading to

3
xn

xn−1
+ 3

(
xn

xn−1

)2

+ 9(1− n)
1

xn−1
+ 9(1− n)

(
xn

xn−1

)2
1

xn−1
+ 18(1− n)

xn

xn−1

1

xn−1

+ 27(n− 1)2
(

1

x2
n−1

+
xn

xn−1

1

x2
n−1

)
− 6(n− 1)(2n− 1)(2n− 3)

1

x3
n−1

= 0.

Put

u =
xn

xn−1
, v =

1

xn−1
,
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we have

− 6(n− 1)(2n− 1)(2n− 3)v3 + 9(1− n)u2v + 27(n− 1)2uv2 + 3u2 + 18(1− n)uv

+ 27(n− 1)2v2 + 3u+ 9(1− n)v = 0.

Next, we use the Nagell’s algorithm ([7], P. 115) to transform the above equation into the Weierstrass
equation. Let both sides of the above equation be divided by v3, and let t = u

v , we get(
9(1− n)t2 + 27(n− 1)2t− 6(n− 1)(2n− 1)(2n− 3)

)
v2

+ (3t2 + 18(1− n)t+ 27(n− 1)2)v + 3t+ 9(1− n) = 0.

Because of the coefficient 9(1− n)t2 + 27(n− 1)2t− 6(n− 1)(2n− 1)(2n− 3) is not zero for n ≥ 3 and any
t ∈ Q, we can consider it as a quadratic equation of v, if it has rational solutions, the discriminant should
be a perfect square, i.e.,

Δ(t) = 9(t− 3n+ 3)(t3 + (3n− 3)t2 − 9(n− 1)2t+ (n− 1)(5n2 − 10n− 3))

is a square of some rational number.

Let

ρ = τ4Δ(t) = 9(t− 3n+ 3)(t3 + (3n− 3)t2 − 9(n− 1)2t+ (n− 1)(5n2 − 10n− 3))τ4,

putting t = 3n− 3 + 1
τ , we have

ρ = 72(n− 1)(2n− 1)(2n− 3)τ3 + 324(n− 1)2τ2 + 108(n− 1)τ + 9.

Taking the transformation

(τ, ρ) =

(
X

c
,
Y 2

c2

)
,

where c = 72(n− 1)(2n− 1)(2n− 3), we get a family of elliptic curves

En : Y 2 =X3 + 324(n− 1)2X2 + 7776(n− 1)2(2n− 1)(2n− 3)X

+ 2162(n− 1)2(2n− 1)2(2n− 3)2,

where n ≥ 3 is a positive integer.

The birational transformation of this process is⎧⎪⎨
⎪⎩

xn−1 =
−Y − 216(n− 1)(2n− 1)(2n− 3)

6X
,

xn =
3(n− 1)(X + 24(2n− 1)(2n− 3))

X
,

(5)

the inverse transformation is⎧⎪⎪⎨
⎪⎪⎩

X =
72(n− 1)(2n− 1)(2n− 3)

xn − 3n+ 3
,

Y =
216(n− 1)(2n− 1)(2n− 3)(3n− 3− 2xn−1 − xn)

xn − 3n+ 3
.

(6)

The discriminant of En is Δ(n) = 58773123072(n− 1)4(2n− 1)3(2n− 3)3, where n ≥ 3, it’s easy to see
that Δ(n) �= 0, i.e., En is nonsingular.

Noting that x1 = 1, x2 = 2, · · ·, xn = n is a solution of (4), let xn−1 = n− 1, xn = n in (6), we get

X = −72(n− 1)(2n− 1), Y = 216(n− 1)(2n− 1).
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It means that the point P = (−72(n − 1)(2n − 1), 216(n − 1)(2n − 1)) lies on En. Using the group law on
the elliptic curve, we obtain the points

[2]P = (144(n− 1)(2n− 1),−216(n− 1)(2n− 1)(18n− 17)),

[3]P = (−4(6n− 5)(6n− 7), 8(108n2 − 216n+ 109)),

[4]P = (X4, Y4),

where

X4 =
288(n− 1)(2n− 1)(18n− 19)

(18n− 17)2
,

Y4 =
216(n− 1)(2n− 1)(11664n4 − 42768n3 + 57456n2 − 33084n+ 6731)

(18n− 17)3
.

To prove that there are infinitely many rational points on En, it is enough to find a rational point on En

with x−coordinate not in Z. We consider the x−coordinate of the point [4]P , when the numerator of the
x−coordinate of it is divided by the denominator, the remainder equals

r = −704n+
2080

3
,

for n ≥ 3, r is not an integer, and the denominator (18n− 17)2 is an integer, then X4 is not an integer. By
the Nagell-Lutz theorem ([10], P. 56), [4]P is a point of infinite order, hence En has infinitely many rational
points for n ≥ 3. From the birational transformation (5), we have

xn−2 =
Y − 216(n− 1)(2n− 1)(2n− 3)

6X
,

then the Diophantine system (4) has infinitely many rational solutions. �

Next, we state the proposition 3, and the proof is relatively simpler than the proposition 2, which is due
to the theorem of Poincaré and Hurwitz, this is the key point in our paper.

Proposition 3. For n ≥ 3, the Diophantine system (4) has infinitely many positive rational solutions.

Proof. Because of x1 = 1, x2 = 2, · · ·, xn−3 = n − 3, to prove that there are infinitely many xj > 0, j =
1, · · ·, n, we only need to prove xj > 0, j = n−2, n−1, n. From (5) and xn−2, we have the following equivalent
condition ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn−2 =
Y − 216(n− 1)(2n− 1)(2n− 3)

6X
> 0,

xn−1 =
−Y − 216(n− 1)(2n− 1)(2n− 3)

6X
> 0,

xn =
3(n− 1)(X + 24(2n− 1)(2n− 3))

X
> 0,

⇐⇒ X < −24(2n− 1)(2n− 3), |Y | < 216(n− 1)(2n− 1)(2n− 3). (7)

In virtue of the theorem of Poincaré and Hurwitz ([12], P. 78), En has infinitely many rational points in
every neighborhood of any one of them. Hence, if we find a rational point satisfies (7), we can prove that
there are infinitely many rational points satisfy (7). It’s easy to check that for n ≥ 3, the points P and [3]P
satisfy (7). Therefore, there are infinitely many rational points on En satisfying (7), then we prove that (4)
has infinitely many positive rational solutions. �

Example for n = 3, from the points

(X,Y ) = (−432, 1296), (−572, 364),
(−97511580

190969
,
−243727681320

83453453

)
,

6
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Figure 2: E3, x = −360 and y = ±6480

we get

(x1, x2, x3) = (1, 2, 3),

(
318

143
,
29

333
,
113

39

)
,

(
319586

180577
,
674461

219811
,
182271

156883

)
.

In figure 2, we display the elliptic curve E3 and the three lines of (7), from it we find that the rational points,
lie on the closed curve C, satisfy (7).

4 The proof of Theorem 1

Proof. Take any k positive rational solutions in (4), denote (xi1, · · ·, xin), i = 1, · · ·, k, where xi1 = 1, xi2 =
2, · · ·, xi,n−3 = n− 3. Let d be the least common denominator of all the numbers xij (j = 1, · · ·, n, i ≤ k), we
have

xij =
aij
d
, aij ∈ Z+,

(
gcdi,j (aij), d

)
= 1,

where ai1 = d, ai2 = 2d, · · ·, ai,n−3 = (n− 3)d.

Then
n∑

i=1

aij =
n(n+ 1)

2
d,

n∑
i=1

a3ij =
n2(n+ 1)2

4
d3 (i ≤ k),

hence
gcdi,j (aij) = 1.

For two sets of solutions {(xi1, · · ·, xin), i ≤ k} and {(x′i1, · · ·, x′in), i ≤ k}, if the sets of n-tuples of positive
integers {(ai1, · · ·, ain), i ≤ k} and {(a′i1, · · ·, a′in), i ≤ k} coincide, then d = d′. Hence, the sets of solutions
themselves coincide.

By proposition 3, there are infinitely many choices of k n−tuples from an infinite set, and gcdi,j (aij) = 1,
hence for every positive integer k, there exists infinitely many primitive sets of k n−tuples of positive integers
with the same sum and the same sum of their cubes. �
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Example for n = 3, from the positive rational triples

(x1, x2, x3) = (1, 2, 3),

(
318

143
,
29

333
,
113

39

)
,

(
319586

180577
,
674461

219811
,
182271

156883

)
,

we have d = 33853311921, then the three triples of positive integers

(33853311921, 67706623842, 101559935763),

(75282190146, 29749880173, 98087801207),

(59913746178, 39331712277, 103874413071)

have the same sum 203119871526 and the same sum of their cubes 1396709184949924985734645154986596.

5 Two open questions

When we communicated with Professor Michael Zieve, he posed some questions, where the following two are
interesting.

Question 4. Whether there are infinitely many n−tuples of positive integers have no common element with
the same sum and the same sum of their cubes for n ≥ 4?

In this paper, we do it for n = 3 by using (5), xn−2 and some calculations. But for n = 4, we get
the rational quadruples which all have the form (1, x, y, z), there is a common element 1 for all rational
quadruples. It’s natural to use a more restrictive definition of “primitive”, i.e., the all n−tuples have no
common element and the greatest common divisor of all elements is 1. Then question 4 is whether there
are infinitely many “primitive” n−tuples of positive integers with the same sum and the same sum of their
cubes for n ≥ 4.

We conjecture that the answer to question 4 is yes, but we can’t prove it for n ≥ 4. There are some
examples for n = 4, such as (1, 2, 13, 24) and (4, 5, 6, 25) have the same sum 40 and the same sum of their
cubes 16030, (1, 2, 17, 20) and (3, 6, 8, 23) have the same sum 40 and the same sum of their cubes 12922,
(1, 2, 19, 24) and (4, 6, 9, 27) have the same sum 46 and the same sum of their cubes 20692.

Question 5. For which triples (i, j, k) of positive integers such that the Diophantine system{
x+ y + z = i+ j + k,

x3 + y3 + z3 = i3 + j3 + k3,
(8)

has infinitely many rational solutions?

To this problem, we get an incomplete result but very interesting. Eliminating z of (8), we get

(i+ j + k − y)x2 − (i+ j + k − y)2x+ (i+ j + k)y2 − (i+ j + k)2y + (i+ j)(j + k)(k + j) = 0.

Noting that (x, y, z) = (i, j, k) is a solution of (8), let y = t(x− i) + j in the above equation, we have

(x− i)
(
(t2 + t)x2 − ((2i+ j + k)t2 + 2(i+ k)t+ i+ k)x

+ (i2 + ik + ij)t2 + (i2 − 2ik − j2 + k2)t+ (i+ k)k
)
= 0.

Solving it, we get

x = i,
(2i+ j + k)t2 + 2(i+ k)t+ i+ k ±√Δ

2(t2 + t)
,

8
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where

Δ = (j + k)2t4 + 4j(j + k)t3 + 2(2i2 + ij + ik + jk + 2j2 − k2)t2 + 4i(i+ k)t+ (i+ k)2.

If x is a rational number, we need Δ to be a perfect square. Following the usual procedure described by
Dickson ([8], P. 639), we can find values of t that would make Δ a perfect square. One such value of t is
given by

t = − i2 − k2

j2 − k2
,

and this leads to a rational solution of (8) as following⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1(i, j, k) = x =
i3 + j3 + k3 − ijk − ij2 − ik2

(i− j)(i− k)
,

y1(i, j, k) = y = − i3 + j3 + k3 − ijk − i2j − jk2

(i− j)(j − k)
,

z1(i, j, k) = z =
i3 + j3 + k3 − ijk − i2k − j2k

(i− k)(j − k)
.

(9)

By the symmetry of i, j, k in (9), we know that for i �= j �= k,

x1(i, j, k) �= y1(i, j, k) �= z1(i, j, k).

From (9), we get an identity{
x1(i, j, k) + y1(i, j, k) + z1(i, j, k) = i+ j + k,

x1(i, j, k)
3 + y1(i, j, k)

3 + z1(i, j, k)
3 = i3 + j3 + k3,

where i �= j �= k are arbitrary positive integers, replace i, j, k by x1(i, j, k), y1(i, j, k) and z1(i, j, k), respec-
tively, to get another identity{

x2(i, j, k) + y2(i, j, k) + z2(i, j, k) = x1(i, j, k) + y1(i, j, k) + z1(i, j, k),

x2(i, j, k)
3 + y2(i, j, k)

3 + z2(i, j, k)
3 = x1(i, j, k)

3 + y1(i, j, k)
3 + z1(i, j, k)

3.

In fact, we can repeat this process any times to get an arbitrarily long Diophantine chains of the type{
xn(i, j, k) + yn(i, j, k) + zn(i, j, k) = · · · = x1(i, j, k) + y1(i, j, k) + z1(i, j, k) = i+ j + k,

xn(i, j, k)
3 + yn(i, j, k)

3 + zn(i, j, k)
3 = · · · = x1(i, j, k)

3 + y1(i, j, k)
3 + z1(i, j, k)

3 = i3 + j3 + k3,

where n = 1, 2, · · ·.

However, we can’t prove the chains don’t have cycles after some steps. On the other hand, the rational
solutions, we get in this form, are not all positive.

Example, let (i, j, k) = (1, 2, 3), from (9) we have

(x1, y1, z1) =

(
17

2
,−10, 15

2

)
,

then

(x2, y2, z2) =

(−5237
148

,
7834

1295
,
4947

140

)
.

In the future study, we shall deal with these two questions and more related problems from mathematical
physics by using the methods of number theory.
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