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WINDOWS

Abstract 

This paper mainly studies about the summation of numbers appearing in 

the Windows Minesweeping” game. The summation of the numbers is first 

written down through the methods of combinatorics. The maximum of this

summation is figured out, and the situations in which the maximum reached is 

then found. 

1. An Introduction of the Game Minesweeping 

Minesweeping is a popular computer game. A rectangle is divided into a 

matrix of squares. Every square is assigned with a mine or an integer, the 

number of mines around it. The goal of the game is to click out all the squares 

not assigned mines. The playing of the game is as follows. Click a square 

which is known not assigned a mine to get the number of mines around this 

square. Then, using the gotten numbers, speculate a new square which is not a 

mine. Repeat the process until all the squares not filled with mines be clicked.

If, on any step, a mine is clicked, the game fails.
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If a square is not assigned a mine, the number of mines around it is 

called its number. For a square assigned a mine, we denote its number as

0. The summation of all the numbers of the squares is called the 

summation of the assignment.  

2. The Main results 

In this paper, we study the summation of the mine assignments. We 

obtain the upper bound of summations of assignments for ordinary 

minesweeping games and a kind of generalized games which we call cyclic 

minesweeping games. In addition, we give the conditions in which the 

summations reach the upper bounds. 
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3. Descriptions and Proofs 

3.1 The upper bound of summation of numbers for ordinary case 

For ordinary minesweeping game, the number for a square is determined 

by the cases of the adjacent squares assigned mines or not. The summation of 

an assignment is equal to the number of pairs of adjacent squares being 

assigned different. Suppose that the grid of the game is with m rows and n

columns. Denote the summation of the numbers with ,m nA , and the number of 

pairs of adjacent squares assigned same (both be mines or neither be mine) as 

, .m nB  Then the total number of pairs of adjacent squares is  

( 1) ( 1) 2( 1)( 1) 4 3 3 2.S n m m n m n mn m m� � � � � � � � � � �

Thus we have , , 4 3 3 2.m n m nA B S mn m m� � � � � �

Denote , , , .m n m n m nB A X� �  Then we have , ,2 .m n m nA S X� �  This means that finding

the upper bound of ,m nA  is equivalent to find the lower bound of , .m nX

To discuss the value of , ,m nX  we need to differentiate the case of being 

assigned mine or not. Define 

,

1, if the square of ith row and jth column is assigned a mine,
=

1, otherwise.i ja 	
���

This implies that for each pair of adjacent squares of row 1i , column  1j  and 

row 2i , column 2j ,
1 1 2 2, 1i j i ja a �  if and only if they are assigned same and 

1 1 2 2, 1i j i ja a � �  if and only if they are assigned different. Thus we have 

1 1 1 1 1

, , 1, , , 1 , 1, 1 , 1, 1
1 1 1 1 j=1 1 j=2 1

.
n m m n n m n m

m n i j i j i j i j i j i j i j i j
j i i j i i

X a a a a a a a a
� � � � �

� � � � � �
� � � � � �

� � � ��� �� �� ��
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First, we prove 

Proposition 3.1 For a minesweeping game of m  rows and n  columns. If

m n� , then , , ( )(2 1).m n n nX X m n n� � � �

Proof  We have

1 1 1 1 1

, , 1, , , 1 , 1, 1 , 1, 1
1 1 1 1 j=1 1 j=2 1

n m m n n m n m

m n i j i j i j i j i j i j i j i j
j i i j i i

X a a a a a a a a
� � � � �

� � � � � �
� � � � � �

� � � ��� �� �� ��

2 1 1 1 1 2

, 1, 1, , , , 1 , , 1 , 1, 1
1 1 1 1 1 1 j=1 1

n m n m n n n m

i j i j m j m j i j i j m j m j i j i j
j i j i j j i

a a a a a a a a a a
� � � � � �

� � � � � �
� � � � � � �

� � � � ��� � �� � ��

1 2 1

1 , , + 1 , 1 , 1 1
1 j = 2 1 1

+ +
n n m n

m j m j i j i j m j m j
j i j

a a a a a a
� � �

� � � � �
� � �

�� �� �

2 1 1 1 2 2 1

, 1, , , 1 , 1, 1 , 1, 1 1, ,
1 1 1 1 j=1 1 j=2 1 1

n m m n n m n m n

i j i j i j i j i j i j i j i j m j m j
j i i j i i j

a a a a a a a a a a
� � � � � � �

� � � � � � �
� � � � � � �

� � � � ��� �� �� �� �

1 1 1

, , 1 1, , +1 1, 1 , 1, ,
1 1 1

+
n n n

m j m j m j m j m j m j m n m n
j j j

a a a a a a a a
� � �

� � � � �
� � �

� � �� � �

1

1, 1, , , , 1 1, , +1 1, 1 , 1, ,
1
( ) .

n

m n m j m j m j m j m j m j m j m j m n m n
j

X a a a a a a a a a a
�

� � � � � � �
�

� � � � � ��

Rearranging the terms we obtain that 

1, , , , 1 1, , +1 1, 1 ,

2 2 2 2
1, , , 1 1, , , 1 1, 1 ,

2
1, , , 1 1, 1 ,

1 1( ) ( )
2 2
1 3( ) .
2 2

m j m j m j m j m j m j m j m j

m j m j m j m j m j m j m j m j

m j m j m j m j m j

a a a a a a a a

a a a a a a a a

a a a a a

� � � � �

� � � � � �

� � � �

� � �

� � � � � � �

� � � � �

Remember that 

1, , , 1=1m j m j m ja a a� �� � , 3, -1 or -3, and 1, 1 , =1m j m ja a� �  or -1, we have that  

2
1, , , 1 1, 1 ,

1 3 1 3( ) 1 = 2.
2 2 2 2m j m j m j m j m ja a a a a� � � �� � � � � � � �

1 1 1 1 1

, , 1, , , 1 , 1, 1 , 1, 1
1 1 1 1 j=1 1 j=2 1

n m m n n m n m

m n i j i j i j i j i j i j i j i j
j i i j i i

X a a a a a a a a
� � � � �

� � � � � �
� � � � � �

� � � ��� �� �� ��
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Thus  
1

1, 1, , , , 1 1, , +1 1, 1 , 1, ,
1

1, 1,

( )

1 2 1) 2 1.

n

m n m j m j m j m j m j m j m j m j m n m n
j

m n m n

X a a a a a a a a a a

X n X n

�

� � � � � � �
�

� �

� � � � �

� � � � � � �

�

Equivalently, we have , 1, 2 1.m n m nX X n�� � �   

Similarly, , 1, 2 1i n i nX X n�� � �  holds for all 1i n� �  Adding the 

inequalities we get 

, 1,
1 1

( 2 1)
m m

i n i n
i n i n

X X n�
� � � �

� � �� � , or , , ( )(2 1).m n n nX X m n n� � � �

Proposition 3.2 2
, 2 4 2.n nX n n� � � �

Proof  We have

1 1 1 1 1

, , 1, , , 1 , 1, 1 , 1, 1
1 1 1 1 j=1 1 j=2 1

n n n n n n n n

n n i j i j i j i j i j i j i j i j
j i i j i i

X a a a a a a a a
� � � � �

� � � � � �
� � � � � �

� � � ��� �� �� ��

2 2 2

, 1 1, , 1, 1 , 1, 1 1, 1 , 1, , 1 1, 1 , 1
1 1 1

n n n

i n i n i n i n n j n j n n n n n n n n n n n n
i i j

a a a a a a a a a a a a
� � �

� � � � � � � � � � � � �
� � �

� � � � � �� � �

1, 1 1, 1, , , 1 ,n n n n n n n n n n n na a a a a a� � � � �� � �

1 1 1 1 2

1, 1 1, , , 1, , 1 , , , 1 1, , 1
1 1 1 1 1

n n n n n

n n n j n j i n i n i n i n n j n j n j n j
j i i j j

X a a a a a a a a a a
� � � � �

� � � � � � � �
� � � � �

� � � � � �� � � � �

2 2 2

, 1 1, , 1, 1 , 1, 1 1, 1 , 1, , 1
1 1 1

n n n

i n i n i n i n n j n j n n n n n n n n
i i j

a a a a a a a a a a
� � �

� � � � � � � � � �
� � �

� � � � �� � �

2 2 2 2 2

1, 1 1, , , 1, , 1 , , , 1 1, , 1
1 1 1 1 1

n n n n n

n n n j n j i n i n i n i n n j n j n j n j
j i i j j

X a a a a a a a a a a
� � � � �

� � � � � � � �
� � � � �

� � � � � �� � � � �

2 2 2

, 1 1, , 1, 1 , 1, 1 1, 1 , 1, , 1 1, 1 , 1
1 1 1

n n n

i n i n i n i n n j n j n n n n n n n n n n n n
i i j

a a a a a a a a a a a a
� � �

� � � � � � � � � � � � �
� � �

� � � � � �� � �

1, 1 1, 1, , , 1 ,n n n n n n n n n n n na a a a a a� � � � �� � �

2

1, 1 1, , , , 1 1, , 1 , 1, 1
1
( )

n

n n n j n j n j n j n j n j n j n j
j

X a a a a a a a a
�

� � � � � � � �
�

� � � � ��
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2

, 1, , 1 , , 1 1, , 1, 1 1, 1 , 1, , 1 1, 1 , 1
1

( )
n

i n i n i n i n i n i n i n i n n n n n n n n n n n n n
i

a a a a a a a a a a a a a a
�

� � � � � � � � � � � � �
�

� � � � � � ��

      1, 1 1, 1, , , 1 , .n n n n n n n n n n n na a a a a a� � � � �� � �

Using the similar reasoning as in the proof of the above proposition, we know 

that  

1, , , , 1 1, , 1 , 1, 1 2,n j n j n j n j n j n j n j n ja a a a a a a a� � � � � �� � � � �

, 1, , 1 , , 1 1, , 1, 1 2i n i n i n i n i n i n i n i na a a a a a a a� � � � � �� � � � � , 

1, 1 , 1, , 1 1, 1 , 1 1, 1 1, 1, , , 1 , 2.n n n n n n n n n n n n n n n n n n n n n n n na a a a a a a a a a a a� � � � � � � � � � � �� � � � � � �

Thus , 1, 1 4 6.n n n nX X n� �� � �

Similarly, , 1, 1 4 6i i i iX X i� �� � �  for all .i N ��

Adding the inequalities, we obtain 2
, 2,2 6( 2) 2 2 12.n nX X n n n� � � � � �   

Counting directly, we get that  

2 2 1,1 2 2 1,2 2,1 1,1 2,1 1,1 1,2 1,2 2,2 2,1 2,2= + 2.X a a a a a a a a a a a a� � � � � �

Substituting in the above inequality, we get what we wanted 

2
, 2 4 2.n nX n n� � � �

Combining Proposition 3.1 and 3.2, we obtain one of our main theorem. 

Theorem 3.3 Assume .m n�  For an ordinary minesweeping game of m rows 

and n columns, the summation of numbers , (3 2)( 1).m nA n m� � �

Proof  From Proposition 3.1 and 3.2, we know that  

2
, 2 4 2 ( )(2 1).m nX n n m n n� � � � � � �

Using this inequality and the equality , ,2 m n m nA S X� � , we get that  

2
,2 4 3 3 2 2 4 2 ( )(2 1) 2(3 2)( 1).m nA mn m m n n m n n n m� � � � � � � � � � � � �

Page - 162



8

Thus , (3 2)( 1).m nA n m� � �

Remark It is obvious that the inequality holds when the game is of n columns

and m rows. 

Theorem 3.4 Assume .m n�  For an ordinary minesweeping game of m rows 

and n columns, there exist assignments such that , (3 2)( 1).m nA n m� � �

Proof We need only to give an example with  , (3 2)( 1).m nA n m� � �  Assign a 

mine to a square if and only if it is in an odd row.  Then the summation ,m nA

of the numbers is 

,

6( 2)( 1) 4 2 ( 1) 3( 2) 4, if is even,
2 2

1 16( 2) 4 2 , if is odd.
2 2

m n

m mn n m
A

m mn m

	 � � � � � � � � �

� � � �
 � � � �

�

Thus , (3 2)( 1)m nA n m� � �  in both cases. 

Remark The equality holds when the roles of rows and columns exchange. 

Remark If we use the notations ,i ja ’s to express the assignments, the example 

in the proof of Proposition 3.4 is of the case , ( 1) .ii ja � �

3.2 The assignments for ordinary minesweeping games whose summations 

of numbers achieving the upper bound 

 In the following discussions, we still use the notation 

,

1, if the square of ith row and jth column is assigned a mine,
=

1, otherwise.i ja 	
���

Moreover, two situations are said to be equivalent if one of them can be 

obtained from the other through the following operations: 

(1) rotation; 
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(2) flip; 

(3) multiplying all the entries ,i ja  with -1.

3.2.1 One of the entries m and n is equal to 2.  

 Suppose n=2. Under this assumption, the situations are not unique. For 

example, the maximum can be reached if we let ,1 ,2 1i ia a � � ( {1,2, , })i m. � , }), . 

Besides, there are also other situations in which the maximum can be reached 

for a given m. As an example, consider 3, 2m n� � . The equality holds if we 

let 1,1 1,2 3,1 2,1 2,2 3,2 1a a a a a a� � � � � � � � � . 

3.2.2  3m n� �

In this case, the maximum can only be reached by letting , ( 1)i
i ja � � . Next, 

we give an inductive proof on this statement. First, assume that m n� . For 

3n � , we can show the fact holds by enumeration. Suppose the fact holds for 

n k� . From the previous proof of inequality , 1, 1 4 6n n n nX X n� �� � � , we know 

that the equality holds if the equations  

, 1, 1

, 1, 1

1, 1 1, , 1 ,

1, 1,2... 1
1, 1,2... 1

0

i n i n

n j n j

n n n n n n n n

a a i n
a a j n

a a a a

� �

� �

� � � �

	 � � � �

 � � � ��

 � � � ��

,

hold. As a result, the statement holds for 1n k� � .

Next we inductively show that the statement holds for 1m n� � . Assume 

1m n� � . From the previous proof of inequality , 1, 2 1m n m nX X n�� � � , we 

know that the equality holds if the equations  

, 1, 1

1, ,

1, 1,2... 1
1

m j m j

m n m n

a a j n
a a

� �

�

� � � �	
� � ��
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hold, which means , ( 1)i
i ja � � .

 Suppose the statement holds for m k� . From the previous proof of 

inequality , 1, 2 1m n m nX X n�� � � , we know that the equality holds if the 

equations 

, 1, 1

1, ,

1, 1,2... 1
1

m j m j

m n m n

a a j n
a a

� �

�

� � � �	
� � ��

hold, which means , ( 1)i
i ja � � . 

Hence, the statement holds.  

3.2.3 1 4n m� � �

 Using the similar methods as above, we know the maximum can be 

reached if and only if , ( 1) j
i ja � �  holds.  

3.3 The upper bound of summation of numbers for cyclic case 

Replacing the m n�  rectangle of an ordinary minesweeping game by an 

m n�  torus, we get a cyclic one. In this case the board is cyclic. Thus it does

not have boundaries. In this case, it is easy to compute the total number of 

pairs of squares, 8 4 .
2
mnS mn� �   

There are two subcases to be considered. 

3.3.1 mn  is even 

Theorem 3.5  Suppose that mn  is even. For a cyclic minesweeping game of 

m rows and n columns, the summation of number , 3 .m nA mn�

Proof We still use the notations , , ,, ,m n m n m nA B X  as in the above subsections. 

Then we have  
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, , 1, , , 1 , 1, 1 , 1 1,
1 1

( ).
n m

m n i j i j i j i j i j i j i j i j
j i

X a a a a a a a a� � � � � �
� �

� � � ���

Where 1, 1, , 1 ,1, .m j j i n ia a a a� �� �  Using the inequality   

, 1, , , 1 , 1, 1 , 1 1, 2i j i j i j i j i j i j i j i ja a a a a a a a� � � � � �� � � � � , 

we obtain , 2m nX mn� � . This means that , 3m nA mn� . 

Example If 2 | m , let , ( 1) .ii ja � �  Then , 3 .m nA mn�  Similarly, if 2 | n , let 

, ( 1) .j
i ja � �  Then , 3 .m nA mn�

3.3.2 mn  is odd  

In this case, we still have , 3 .m nA mn� But, till now, we have not found an 

assignment whose summation ,m nA  reaching the upper bound 3 .mn  The 

maximum of ,m nA  we obtained is 3 4 5.mn n� �  We conjecture that this is the 

maximum of ,m nA  in this case. This assertion has not been proved now. 

3.4 The assignments for cyclic minesweeping games whose summations of 

numbers achieving the upper bound  

As in section 3.2, we still use the notations 

,

1, if the square of ith row and jth column is assigned a mine,
=

1, otherwise.i ja 	
���

  

Moreover, two situations are said to be equivalent if one of them can be 

obtained from the other through the following operations: 

(1) rotation; 

(2) flip; 
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(3)multiplying all the entries ,i ja  with -1.

Since the summations of numbers of equivalent situations are equal, we do not 

distinguish equivalent assignments.  

We only discuss the cases with 2 | mn  and m n� . 

3.4.1 Both m and n are even and m n/

Theorem 3.6  In the case 2 | , 2 |m n and m n/ , the summation of numbers 

of cyclic minesweeping game of size m n�  achieves the upper bound 3mn  if 

and only if , ( 1)i
i ja � �  or , ( 1) .j

i ja � �

Proof Computing directly, we get that , 3m nA mn�  in both cases. To prove 

that these cases are the only cases such that , 3m nA mn� , we first give another 

proof of the inequality , 2m nX mn� � . 

As above, we know that 

, , 1, , , 1 , 1, 1 , 1 1,
1 1

2 2 ( )
n m

m n i j i j i j i j i j i j i j i j
j i

X a a a a a a a a� � � � � �
� �

� � � ��� . 

Using the conventions 1, 1, , 1 ,1,m j j i n ia a a a� �� � , we can get 

, , 1, , , 1 , 1, 1 , 1 1,
1 1

2 = (2 2 2 2 )
n m

m n i j i j i j i j i j i j i j i j
j i

X a a a a a a a a� � � � � �
� �

� � ���

, 1, , +1 1, +1 , , 1 +1, +1, 1 , 1, 1 , 1 1,
1 1

= ( + + )
n m

i j i j i j i j i j i j i j i j i j i j i j i j
j i

a a a a a a a a a a a a� � � � � � � �
� �

� � ���

, 1, 1 , 1 1,
1 1

+ ( ).
n m

i j i j i j i j
j i

a a a a� � � �
� �

���

Thus ,2 2 2 4 .m nX mn mn mn� � � � �

Here we use inequalities 

, 1 , , + 1 1 , + 1 , , 1 + 1 , + 1 , 1 , 1 , 1+ + 2i j i j i j i j i j i j i j i j i j i ja a a a a a a a a a a a� � � � � � � �� � � � � and 
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, 1, 1 , 1 1, 2i j i j i j i ja a a a� � � �� � � . 

In the first inequality, the “=” holds only if, for every i  and j ,

, 1, , +1 1, +1+ + + 0i j i j i j i ja a a a� � � .                                (*) 

In the second inequality, the “=” holds only if  

1,1 1,2 2,1 2,2 =1a a a a� � � � �  or 1,1 2,1 1,2 2,2 =1.a a a a� � � � �

Repeatedly use the equation (*), we get that  

, ,( 1) ( 1)i j
i j i ja a� � � �  or , ( 1) j

i ja � � . 

3.4.2 m is even and m n�

In this case, the summation of numbers of cyclic minesweeping game of 

size m m�  achieves the upper bound 23m  if and only if , ( 1) .j
i ja � �

3.4.3 m is even and n is odd 

    In this case, the summation of numbers of cyclic minesweeping game of 

size m n�  achieves the upper bound 3mn  if and only if , ( 1)i
i ja � � . 

3.4.4 m is odd and n is even

    In this case, the summation of numbers of cyclic minesweeping game of 

size m n�  achieves the upper bound 3mn  if and only if , ( 1) j
i ja � � . 

4. Future works 

For cyclic minesweeping in an m n�  rectangle ( mn  is odd), the problem 

that how the maximum can be achieved is unsolved in this paper and left as a 

future work.  
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5. Concluding Remarks 

In this paper, we obtain that the maximum of the summations of numbers 

of ordinary minesweeping games of size m n�  is (3 2)( 1)n m� �  when m n� .

Moreover, for the case of cyclic games, the maximum of the summations is 

3mn  when mn  is even. Recently, a new version of minesweeping game, i.e., 

three-dimensional minesweeping, has been developed. The methods in this 

paper can be generalized in the analysis of three-dimensional minesweeping 

and the similar results can be obtained. This is also the topic of our future 

work.  
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