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Abstract
This paper aims at studying two functional equations, and the asymptotic 

properties of their solutions are also expounded. These two equations can be viewed 
as the generalization of some specific ones. The existence of analytical solutions is 
discussed through transforming the functional equations into operator equations, 
which are then approximated by differential equations. Theorems on the asymptotic 
properties of the solutions are derived from methods of complex analysis. The results 
in this paper may simplify the asymptotic estimation for sequences given by recursion 
formulae, which may also be useful for researches on dynamical systems (especially 
on the embedding flows of discrete dynamical systems). Furthermore, they may also 
reveal the relations between operator equations and dynamical systems in a different 
way. 
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1 Introduction

In mathematical problems functional equations should be dealt with. As an
example, a dynamical system defined by an iteration relation can be identified
as a functional equation: if

zn+1 = G(zn), z0 = a,

then the solution to the functional equation f(z+1) = G(f(z)), f(0) = a is the
embedding flow of the dynamical system {zn}. Generally speaking, it is very
hard to solve most of those functional equations. However, sometimes, revealing
the asymptotic properties of the solutions is more important than finding a
precise expression. For instance, factorial, a function on the set of positive
integers, is widely used in statistics, probability theories and combinatorics.
However, calculating the factorial of large numbers can be very difficult. So
Stirling’s Formula comes into use, as stated in [1], [2] and [3]:

n! ∼
√
2πn

(n
e

)n

This formula makes it much easier to estimate the value of factorial for large
numbers. The analogue of factorial for complex numbers is Euler’s Γ function.
Euler’s Γ function has an asymptotic expression of the similar form to that for
positive integers. This formula turns out to be useful in mathematical physics
and analytical number theories, as stated in [1], [2]. Euler’s Γ function satisfies
the Gamma Equation:

Γ(z + 1) = zΓ(z), z ∈ C

From the instance of factorial and Γ function the importance of asymptotic
properties can be seen when dealing with functional equations.

The aim of this paper is to clarify the asymptotic properties of two func-
tional equations, using some methods of complex analysis. These two functional
equations can be viewed as some kind of generalization of the Gamma Equation.
Numbers of embedding flows take the form of these two functional equations.
Section 2 is the preparation part for the whole research. Some lemmas necessary
for the study are proved, including the asymptotic estimation for some simple
complex functions. The lemmas on the existence of the analytical solutions to
these two functions reveal the connections between this problem and operator
equations. In Subsection 3.1 a functional equation of much simplicity is solved,
and thus its oscillating behaviours emerges, which turns to be important for
further studies. In Subsection 3.2 the functional equation is approximated by a
differential equation. Finally, an example of asymptotic estimation is given in
Section 4. Some discussions about further studies are also made here, suggest-
ing the relation between the study and dynamical systems. The results of the
study can provide a valuable reference for related researches.
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2 Symbols, Hypothesis and Lemmas

2.1 Symbols and Hypotheses

Some hypotheses necessary for the research are listed below.

Two functional equations are studied in this paper:

g(1 + z) = A(z)(g(z))k, g(τ) = a (1)

f(1 + z) = A(z)(f(z))k +B(f(z), z), f(τ) = a (2)

Here τ, a are both complex constants, a �= 0. Equation (2) can be viewed as
the embedding flow of the dynamical system given by the recursion formula
zn+1 = A(n)zkn + B(zn, n). We assume that k > 1, and A(z) satisfies the

following conditions: A′
A (z) = d

dz logA(z) is a meromorphic function with finite
many poles, with its Mittag-Leffler expansion taking the form

A′

A
(z) = Q(z) +

p∑
r=1

gr(z) (3)

where Q(z) is a polynomial with its degree lower than m, and

gr(z) =

pr∑
α=1

c
(r)
α

(z − br)α
(4)

are the principle parts of the Laurent expansion of the function A′
A (z), over all

the poles. Set the collection of the poles of the function A′
A (z) to be {br|r =

1, 2, ...p}, and Reτ > max{Rebr}. Also assume that the function g(z), solving
equation (1), has no zero or singularity in the region x > Reτ , and there exists
a vertical strip L : ρ < x < χ wider than 1, ρ sufficiently large, in which the
function f(z) has no zero or singularity. The function B(ζ, z) is analytical for
each variable, and for every fixed ζ there is no zero or singularity of the function
B(ζ, z). When ζ → 0 the function B keeps bounded, and it too satisfies

B(ζ, z)

A(z)ζk
=

h(z)

ζδ
+ o

{
h(z)

ζδ

}
,Rez > τ, ζ →∞ (5)

where δ is a positive constant, and h(z) is bounded in the region Rez > τ .

2.2 Lemmas

Some lemmas are proved here.
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Lemma 1 The series written below converges uniformly to a meromorphic
function: ∞∑

l=1

A′

A
(z + l)/kz+l+1 (6)

Proof. Consider a compact subset of C, which does not contain any poles of
the function A′

A (z + l) . In this set it is obvious that∣∣∣∣∣
∞∑
l=1

A′

A
(z + l)/kz+l+1

∣∣∣∣∣ = k−x

∣∣∣∣∣
∞∑
l=1

A′

A
(z + l)/kl+1

∣∣∣∣∣ ,
where z = x+ iy. According to the hypothesis about A(z) in equation (3) , the
following inequality should be true for N sufficiently large:∣∣∣∣∣

∞∑
l=N

A′

A
(z + l)/kl+1

∣∣∣∣∣ � C
∞∑

l=N

∣∣∣∣ (z + l)m

kl+1

∣∣∣∣ � C
∞∑

l=N

lm+1

kl+1
, (7)

where C is a constant. Due to the absolute convergence of the series on the
right side of inequality (7), the series (6) is uniformly convergent. In response
to Weierstrass’s Theorem, as stated in [2] and [3], the series (6) represents
an analytical function in the set considered. The compact subset is in fact
arbitrarily chosen, so it is apparent that the function has no singularities except
the poles in the whole complex plane, and thus is meromorphic. �

Lemma 2 The following asymptotic expressions hold for all x = Rez > 0:

∞∑
l=1

1

kl
log(z + l) =

1

k − 1
log z +O

(
1

x

)

∞∑
l=1

1

kl
(z + l)−s = O

(
1

xs

)

Here s > 1 is a positive number, log z = log |z| + i arg z, arg z ∈ (−π, π], and
kz = ez log k, za = ea log z.

Proof. Use the following expression, as stated in [1], [2] and [3]:

1

zs
=

1

Γ(s)

∫ ∞

0

ts−1e−ztdt, x = Rez > 0.

It is obvious that the integral is uniformly convergent. Fix s = 1, and take inte-
gral along the tangential path connecting 0 and z. Then the following expression
is obtained:

log z =

∫ ∞

0

e−t − e−zt

t
dt,Rez > 0.

3
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Due to the uniform convergence of the integral, the following equality is true:

∞∑
l=1

1

kl
log(z + l)− 1

k − 1
log z =

∫ ∞

0

e−zt

t

(
1

k − 1
− 1

ket − 1

)
dt,Rez > 0. (8)

The uniform convergence of the series can be proved in the same way as in
Lemma 1. When s > 1 the following expression holds:

∞∑
l=1

1

kl
(z + l)−s =

1

Γ(s)

∫ ∞

0

ts−1e−zt

ket − 1
dt,Rez > 0. (9)

For the integral in (8), the function h(t) = 1
t

(
1

k−1 − 1
ket−1

)
has a limit k

(k−1)2

at the point 0, which ensures the convergence of the integral. It is obvious that
|h(t)| is bounded, say, |h(t)| � A, ∀t > 0. So the following estimation holds for
all x = Rez > 0:∣∣∣∣

∫ ∞

0

e−zt

t

(
1

k − 1
− 1

ket − 1

)
dt

∣∣∣∣ � A

∫ ∞

0

e−xtdt =
A

x
.

As for the integral in (9) the following estimation holds:∣∣∣∣ 1

Γ(s)

∫ ∞

0

ts−1e−zt

ket − 1
dt

∣∣∣∣ � 1

Γ(s)

∫ ∞

0

∣∣∣∣ ts−1e−zt

ket − 1

∣∣∣∣ dt
� 1

Γ(s)

1

k − 1

∫ ∞

0

ts−1e−xtdt =
1

k − 1

1

xs
.

And the proof is completed. �

Lemma 3 Define a linear operator

eD :=

∞∑
n=0

1

n!

dn

dzn
.

If G(z) is holomorphic and z + 1 is also in the definition domain of G(z), then
eDG(z) = G(1 + z).

Proof. As G is analytical, it can be expressed by using Cauchy’s formula, as
stated in [2] and [3]:

1

n!

dn

dzn
G(z) =

1

2πi

∮
L

G(ζ)

(ζ − z)n+1
dζ.

Take summation:

eDG(z) =

∞∑
n=0

1

2πi

∮
L

G(ζ)

(ζ − z)n+1
dζ =

1

2πi

∮
L

dζ

∞∑
n=0

G(ζ)

(ζ − z)n+1

4
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=
1

2πi

∮
L

G(z)

ζ − (z + 1)
dζ = G(z + 1).

The analyticity of G ensures the commutation of taking summation and inte-
gration. The Lemma is proved true. �

In accordance to Lemma 3, equation (2) can be rewritten as (if taking infinite
summation is legal)

eDf(z) = A(z)(f(z))k +B(f(z), z).

This is an operator equation. It is equivalent to

∞∑
n=0

1

n!

dn

dzn
f(z) = A(z)(f(z))k +B(f(z), z).

This suggests the possibility of approximating the solution by a sequence of
differential equations, by cutting off the higher ordered terms:

N∑
n=0

1

n!

dn

dzn
fN = A(z)fk

N +B(fN , z).

This ordinary differential equation is equivalent to the following equation, as
stated in [4]:

d

dz
wN = HN (z,wN ), (10)

where
wN = (w1, w2, ..., wN ), w1(z) = fN (z)

is a N−component (complex) vector, and

HN (z,wN ) =

(
w2, ..., wN , A(z)wk

N +B(wN , z)−
N−1∑
n=0

1

n!
wn

)

is a map: CN → CN .

Lemma 4 Suppose that U(r) is the open disk: |z − τ | < 1/2 + r, where
r > 0 is a real number. Define a norm ‖ · ‖, where

‖wN (z)‖ = sup
z∈U(r)

|wN (z)|.

Also, assume that ΠN ⊂ CN is a region, and z0N ∈ CN a N -complex vector. For
all wN ∈ ΠN , the following vector is in ΠN :

z0N +

∫ z

τ

HN (ζ,wN )dζ;

5
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and
|HN (z,wN )−HN (z, ωN )| � MN |wN − ωN |

holds for all wN , ωN ∈ ΠN . Under these assumptions, if

A) limN→∞{MN} < 2; and

B) the initial condition z0N can be so chosen that the family {fN} is uniformly
bounded in U(r) for N sufficiently large and some r > 0( r does not rely on N),

then there exists a solution to functional equation (2) in the region B =⋃
n Bn, where Bn is the open disk centered at τ + n with a radius 1/2 + r.

Proof. For condition A), rewrite the differential equations (10):

wN = z0N +

∫ z

τ

HN (ζ,wN )dζ.

In the form of operators, it becomes

wN = JNwN .

As the inequality |HN (z,wN ) −HN (z, ωN )| � MN |wN − ωN | is true, the fol-
lowing estimation for the operator JN holds:

‖JNwN − JNωN‖ � |z − τ |MN‖wN − ωN‖.

Consider the open disk Uh:

Uh =

{
z : |z − τ | < h

MN
=

h

2
+ hrN

}
,

where h < 1 is fixed. Due to the condition limN→∞{MN} < 2, the inequality
r = infN>N0{rN} > 0 is true for N0 sufficiently large. Also, the space of
analytical functions on Uh can be proved complete under the norm ‖ · ‖. The
map JN : ΠN → ΠN turns to be a contracting map on a complete normed space
for all z ∈ Uh. In accordance to the theories on differential equations, as stated
in [4], there exists a unique solution to equations (10) in Uh, given any initial
condition z0N ∈ CN . But now h < 1 is arbitrary. Choosing r = infN>N0{rN},
the existence of analytical solutions to the differential equations for in U(r) and
N > N0, or in other words, the existence of the family {fN (z)}, turns to be
obvious.

As for condition B), because of the existence and uniform boundness of the
family {fN (z)} in the disk U(r), one can always extract a uniformly convergent
subsequence from the family, according to Montel’s principle, as stated in [2]
and [6]. The limit function f(z) of this subsequence is analytical in U(r) and,

6
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it solves equation (2), for the limit of the sequence of differential equations is
the operator equation:

∞∑
n=0

1

n!

dn

dzn
f(z) = A(z)(f(z))k +B(f(z), z),

which has been discussed before.

Now f(z) is analytical in an open disk whose radius is strictly larger than
1/2, therefore the analytical continuation f(1 + z) = A(z)(f(z))k + B(f(z), z)
in the region B =

⋃
n Bn is well defined. The solution in B does exist. Thus

the proof is completed. �

Lemma 3 and 4 suggest that the research on functional equation can be
carried through the methods of operator equations, and can thus be transformed
into the problem of differential equations.

Lemma 5 Suppose that G(z) is analytical in a strip wider than 1, and
G(z ± iu)/eu tends to 0 when u→∞. Then there exists an analytical function
S(z) in the region Rez > τ which satisfies the following functional equation:

S(z)− S(z − 1) = G(z).

Proof. According to Abel-Plana’s formula, as stated in [1], for all Rez > τ
the following expression holds:

1

2
{G(z) +G(z − 1)}

=

∫ z

z−1

G(ζ)dζ−i
∫ ∞

0

G(z + iu)−G(z − 1 + iu)−G(z − iu) +G(z − 1− iu)

e2πu − 1
du,

where the integrals are taken along straight ways connecting the beginning and
the ending point. It is apparent that the function S(z) defined by the follow-
ing expression is analytical, due to the uniform convergence of the improper
integrals:

S(z) =
1

2
{G(z) +G(τ)}

+

∫ z

τ

G(ζ)dζ − i

∫ ∞

0

G(z + iu)−G(τ + iu)−G(z − iu) +G(τ − iu)

e2πu − 1
du.

Replace z by z − 1:

S(z)− S(z − 1) =
1

2
{G(z)−G(z − 1)}

+

∫ z

z−1

G(ζ)dζ−i
∫ ∞

0

G(z + iu)−G(z − 1 + iu)−G(z − iu) +G(z − 1− iu)

e2πu − 1
du.

7
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A functional equation which is equivalent to S(z)−S(z−1) = G(z) is obtained:

S(z)− S(z − 1) =
1

2
{G(z)−G(z − 1)}+ 1

2
{G(z) +G(z − 1)}.

Therefore the proof is completed. �

3 Asymptotic Properties of the Analytical So-
lutions

3.1 The Equation Without the Remainder Term

Theorem 3.1 There is an analytical g(z) that solves functional equa-
tion(including the initial condition)(1), the asymptotic expression of which takes
the following form:

g(z + 1) = exp (C1 + Ckz +Q1(z))P (z)

{
1 +O

(
1

x

)}
,

where z = x+ iy is in the region Rez > τ , Q1(z) is a polynomial, and

C1 = −
∞∑
l=1

logA(τ)

kl
+Q1(τ),

C =
log a

kτ
+

1

kτ

∞∑
l=0

logA(l + τ)

kl
,

P (z) =
∏
r

(z − br)
c
(r)
1

1−k
.

The value of logarithmic function is taken a particular branch.

Proof. Take logarithm on both sides of the equation and differentiate it,
then multiply both sides of the equation by1/kz+1:

g′

g
(1 + z)/k1+z =

A′

A
(z)/k1+z +

g′

g
(z)/kz. (11)

Take summation of (11):

g′

g
(1 + n+ z)/k1+n+z =

n∑
l=1

A′

A
(z + l)/kz+l+1 +

g′

g
(1 + z)/k1+z.

8
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In response to Lemma 1, the series listed below is uniform convergent and thus
represents a meromorphic function:

∞∑
l=1

A′

A
(z + l)/kz+l+1.

So the function g(z) defined by the following expansion is a solution to functional
equation (1):

g′

g
(1 + z) = C ′kz −

∞∑
l=1

A′

A
(z + l)/kl+1, C ′ = const.

As stated in [3], this is the most simple solution to (1). Taking integral along
the tangential path connecting 0 and z, we get

log g(1 + z) =
1

log k
C ′kz −

∞∑
l=1

logA(z + l)

kl+1
, (12)

where the value of logarithmic function is taken to balance the equation. Con-
sidering the initial condition, the constant C ′ in (11) should be determined by
the following expression:

C ′ =
log a

kτ
log k +

log k

kτ

∞∑
l=0

logA(l + τ)

kl
= C log k.

For the meromorphic function
∑∞

l=1
A′
A (z+ l)/kl+1, we divide it into two parts,

the polynomial part
∑∞

l=1 Q(z + l)/kl+1 and the main part
∑∞

l=1

∑p
r=1 gr(z +

l)/kl+1, in response to equation (3). For the polynomial part, the series written
below is still a polynomial (the convergence of its coefficients is obvious):

∞∑
l=1

1

kl
(z + l)m =

∞∑
l=1

1

kl

⎧⎨
⎩

m∑
j=1

Cm
j zj lm−j

⎫⎬
⎭

(m is an integer). By taking summation and integral we obtain the polynomial
Q1(z). As for the main part, we see that after integration this part becomes

∞∑
l=1

{
1

kl

pr∑
r=1

∫ z+l

τ

gr(z)dz

}
.

In response to Lemma 2,

∞∑
l=1

{
1

kl

pr∑
r=1

∫ z+l

τ

gr(z)dz

}
=

∞∑
l=1

{
1

kl

p∑
α=2

c
(r)
α

(α− 1)(z − br)α−1

}
+

∑
r

c
(r)
1 log(z − br)

k − 1
+ C1 +R1(z),

9
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where C1 = −∑∞
l=1

logA(τ)
kl +Q1(τ) and |R1(z)| �

∑
r

A
|x−br| .

To sum up, we obtain the following expression:

log g(1 + z) = C1 + Ckz +Q1(z)−
∑
r

c
(r)
1 log(z − br)

k − 1
+O

(
1

x

)
. (13)

For sufficiently large Rez = x the inequality |R1(z)| � 1 holds. Taking exponent
on both sides of (12), we complete the proof. �

Corollary 3.2 If both ReC and ImC are not 0, then the function g(z)
has different asymptotic values for different y = Imz as x = Rez →∞.

Proof. Suppose that C = reiψ, θ = y log k, then the real part of the function
Ckz is determined by the following expression:

Re{Ckz} = rkx cos(θ + ψ). (14)

This function is apparently periodic for the variable y. After taking exponent
on both sides of (13), we see that the modulus of the function g(z) is

|g(z)| = exp {rkx cos(θ + ψ) + ReC1 +ReQ1(z)} |P (z)|
{
1 +O

(
1

x

)}
.

For x sufficiently large, this function is oscillatory in the region Rez > τ : when
cos(θ+ψ) > 0, |g(z)| diverges to∞, and when cos(θ+ψ) < 0, |g(z)| tends to 0.
For cos(θ + ψ) = 0 the property of |g(z)| depends on the polynomial Q1(z). �

3.2 The Equation with the Remainder Term

The asymptotic properties of the functional equation (2) are studied here.
But the theorem given in this section is not the eventual form, for it calls for
much more effort.

Under the conditions of Lemma 3 and 4, we assume that the analytical
solutions to (2) exists. We first derive some propositions necessary for the
asymptotic formula.

Proposition I There exists a non-bounded sequence in the region x > Reτ
along which f(z) tends to ∞.

10
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Proof. Dividing (2) by (1), one can rewrite the functional equation to be in
the following form:

f(1 + z)

g(1 + z)
=

(
f(z)

g(z)

)k {
1 +

B(f(z), z)

A(z)(f(z))k

}
. (15)

So
|f(z)|k
|f(1 + z)| =

∣∣∣∣ A(z)(f(z))k

A(z)(f(z))k +B(f(z), z)

∣∣∣∣ |g(z)|k
|g(1 + z)| . (16)

According to equality (5), the factor

|A(z)(f(z))k|
|A(z)(f(z))k +B(f(z), z)|

in (16) is bounded, in other words, not exceeding a constant M > 0. So the
following inequality is true:

|f(z)|k
|f(1 + z)| � M

1

|A(z)| .

Suppose that g0(z) is a solution to the following functional equation, with some
particular initial condition:

g0(1 + z) =
1

M
A(z)(g0(z))

k.

The inequality combined with this functional equation imply |f(z)| � |g0(z)|.
But in response to Theorem 3.1 and Corollary 3.2, there are strips in which
|g0(z)| tends to ∞. So |f(z)| tends to ∞ in these strips, too. �

Proposition II requires some added assumptions: a) the solution to equation
(2) does exist on some right half plane; b) Abel-Plana’s formula is available.

Proposition II Suppose that

ϕ(z) = log
f(z)

g(z)
, F (z) = log

{
1 +

B(f(z), z)

A(z)(f(z))k

}
.

Then the function ϕ(z) can be expressed as the following, if z is in a vertical
strip which contains no zero or singularity of f(z):

ϕ(z) =
1

2

(
−F (z)

k
+ kz−τF (τ)

)
+ kzI1 − i

I2
k
− kz

k1+τ
iI3, (17)

here

I1 =

∫ z

τ

F (ζ)

kζ
dζ,

11
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I2 =

∫ ∞

0

k−iuF (z + iu)− kiuF (z − iu)

e2πu − 1
du,

I3 =

∫ ∞

0

kiuF (τ − iu)− k−iuF (τ + iu)

e2πu − 1
du,

where the definition of logarithm is taken to balance these equations.

Proof. First assume that z ∈ L : ρ < x < χ. By taking logarithm on both
sides of equation (15), we obtain the following:

ϕ(z + 1) = kϕ(z) + F (z). (18)

The given initial condition is thus transformed into ϕ(τ) = 0. By dividing both
sides of (18) by the function k1+z, the following equation is obtained:

ϕ(z + 1)

k1+z
=

ϕ(z)

kz
+

F (z)

k1+z
.

Suppose that S(z) = ϕ(1 + z)/k1+z and G(z) = F (z)/k1+z. Using Lemma
5, one immediately gets (17). Due to Proposition I, for z ∈ L and u ∈ R the
function |f(z ± iu)| for the variable u grows no faster than eA|u|

m

(A = const.),
and thus the improper integrals here are all uniformly convergent ones.

If z /∈ L, then we can use analytical continuation for the function ϕ(z)
defined in (17). Through the continuation we see that the expression (17) still
holds if z is in a vertical strip which contains no zero or singularity of f(z). �

We see that the function ϕ(z) defined in (17) does solve the functional equa-
tion. It is obvious that two of the terms in (17) are constants:

F (τ),

∫ ∞

0

kiuF (τ − iu)− k−iuF (τ + iu)

e2πu − 1
du.

Now we will provide a theorem about the asymptotic properties of f(z) here.

Theorem 3.3 There exist a f(z) that solves (2), for which the asymptotic
expression written below holds, if the integral I2 defined in Proposition II could
be proved O(1):

f(1 + z) = exp (C1 + Ckz +Q1(z))P (z) exp{w(z) +O(1)}
{
1 +O

(
1

x

)}
,

here w(z) is a particular solution to the following differential equation :

d

dz
w(z) = w(z) log k +

(
1 +

log k

2k
− 1

2k

d

dz

)
log

{
1 +

B(g(z)ew(z), z)

A(z)gk(z)ekw(z)

}
.
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Proof. We have

ϕ(z) = Akz + kz
∫ z

τ

F (ζ)

kζ
dζ − F (z)

2k
− i

I2
k
, (19)

where the constants before kz have already been emitted into one constant
A. Divide equation (19) by kz on both sides and differentiate the resulting
expression. Take a small circle L surrounding the point z, and assume that
R(z) = i

kz I2. Using Cauchy’s theorem we obtain

R′(z) =
1

2πi

∮
L

R(ζ)

(ζ − z)2
dζ.

According to Cauchy’s inequality for the derivatives of analytical functions, we
see that

|R′(z)| � maxR(z)|z∈L
rL

= O

(
1

kz

)
.

Thus

ϕ′(z) = ϕ(z) log k + F (z)− 1

2k
F ′(z) +

1

2k log k
F (z) +O(1). (20)

Equation (20) suggests that ϕ(z) holds the same asymptotic property as the
following ordinary differential equation does:

d

dz
w(z) = w(z) log k +

(
1 +

log k

2k
− 1

2k

d

dz

)
log

{
1 +

B(g(z)ew(z), z)

A(z)gk(z)ekw(z)

}
,

where w(z) is a particular solution to the differential equation. The initial
condition for the differential equation can always be chosen to satisfy w(z) −
ϕ(z) = O(1). So we can obtain such a result:

ϕ(z) = log
f(z)

g(z)
= w(z) +O(1). (21)

Taking exponent on both sides of equation (21) and using the result in Theorem
3.1, the asymptotic formula for f(z) is obtained. Thus the proof of Theorem
3.3 is completed. �

4 Further Discussion and Prospects

This section is to give some further discussion on the results of this paper.
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4.1 An Example of Asymptotic Estimating

The results of Theorem 3.1, 3.2 and 3.3 are useful when asymptotic estimation
is needed. Here is an example.

Consider a sequence {bn}, which is given by recursion formula:

b1 = 1, bn+1 = e
1

n+1n2b2n.

Rewrite it as a functional equation:

g(1) = 1, g(z + 1) = e
1

z+1 z2g(z).

Using Theorem 3.1, one can immediately obtain

bn+1 = g(n+ 1) =
1

n2
exp{C2n}

{
1 +O

(
1

n

)}
,

where

C =
1

2

∞∑
l=1

(
log l

2l
− 1

(l + 2)2l

)
.

The sequence {bn} grows extremely fast.

4.2 About Solving the Functional Equation

As stated in Theorem 3.3, the differential equation for w(z) can be used as an
approximation only if the error term, say, the integral I2, is proved to be O(1).
But how can this error term be calculated precisely enough, before finding the
solution to functional equation (2)? This needs more thoroughly studies on the
iteration sequence, under the conception of dynamical systems. Take polynomial
as a special case, say, assume functional equation (2) to be

f(1 + z) = P (f(z)) = an(f(z))
n + an−1(f(z))

n−1 + ...+ a1f(z) + a0. (22)

As claimed in Corollary 3.2, the solution to this functional equation is oscillatory
if the all the coefficients except an vanish. Then a question naturally emerges:
what if we are trying to study the general form of functional equation (22)? Does
the property of oscillation remain, or transform into some behaviours harder to
figure out? Proposition I in 3.2 suggests that the oscillatory property is general
and essential for these functional equations. Also, as stated in [5], the Julia set
of a polynomial J(P ) �= C. Intuitively speaking, this might be the analogue of
the ”oscillation” to the general form (22). If all the properties of the solution
to (21) are figured out, then the dynamical systems generated by the iteration
of P (z) can be just identified as the values of one single function f on different
sequences.
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The conditions in Lemma 4 imply the existence of analytical solutions to
(2)(in an unbounded region). The idea of transforming the functional equa-
tion into operator equations might be not unworthy of some more thorough
researches. The analogue of the linear operator eD is

E(D) =
∞∑

n=0

An(z)
dn

dzn
.

Here {An(z)} is a family of analytical functions. The discussions about the
”ordinary differential equation of infinite order” can be generalized as

E(D)f(z) = f(ϕ(z)),

where ϕ(z) is analytical. Suppose that E(D)f(z) = f(ϕ(z)). Use Cauchy’s
formula:

E(D)f(z) =
∞∑

n=0

1

2πi

∮
L

G(ζ)An(z)

(ζ − z)n+1
dζ =

1

2πi

∮
L

f(ζ)

ζ − ϕ(z)
dζ.

The functions An(z) can be so chosen to make the equality hold, or, in other
words, just determined by comparing the series to the expansion of (ζ−ϕ(z))−1.
Thus the functional equation containing the term f ◦ϕ can be transformed into
an operator equation, or an ”differential equation of infinite order”. Then it
is possible that the operator equation can be approximated by a sequence of
differential equations, which means to ignore the differentiation terms with high
orders, as claimed in Section 2.2. The problem of convergence emerges here,
and thus waiting for more profound and thorough studies.

Further more, the singularities of f(z) may be worthy of more consideration.
Generally speaking, the point∞ is the limit of the singularities of f(z). Actually,
if A(z) has singularities, then so does f(z): if z0 is a singularity of A(z), then
generally it is the singularity of f(1+z). Then z0−1 is the singularity of f(z)...
Generally speaking, f(z) has infinite many singularities, and ∞ is a limit point
of them. As stated in Proposition I in 3.2, the point ∞ behaves just like an
essential singularity, though it is not isolated. So there will be a question: is
there any analogue of Julia’s theorem on asymptotic values, as stated in [6],
for this condition? Intuitively speaking, the solution to this problem may not
be similar to that for meromorphic functions. For meromorphic functions the
problem of asymptotic values is related to Picard’s Theorem, as stated in [6].
If the asymptotic property of the generalized equation (2) is clarified, then one
might be able to find out the error term I2 more precisely. Also, this will be
useful for the studied on chaotic dynamical systems.
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