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Abstract: CG figures and XD figures are newly-developed mathematical conceptions. A CG 
figure consists of two polylines sharing the same end points with corresponding line segments 
perpendicular to each other. Let one polyline be the question, the other the solution of the question. 
If one polyline has only one solution, this figure is also considered an XD figure. There are 
already some conclusions about 2-dimensional XD figures. In this paper, these conclusions are 
extended using methods including vector analysis, contradiction and construction. In addition, the 
properties of 2-dimensional XD figures are compared to those of 3-dimensional XD figures. The 
properties proved are as follows:

(1) For a CG figure(C,C´) in a grid of m×n, if the solution set of C is A, the solution set of 
C´ is B, then the solution set of any element in A is B and vice versa.

(2) In a grid of n×n (with (n+1) × (n+1) grid points), there must exist an XD figure
consisting of t line segments, where n ≥ 2, t = 4,6,8 … 2n� + 4n

(3) In a grid of m×n×p, if (C,C´)is an XD figure, (C´,C1)is a CG figure, then (C1,C´)is not 
necessarily an XD figure.

(4) For a CG figure (C,C´) in a grid of m×n×p, if the solution set of C is A, the solution set 
of C´ is B, then the solution set of any element in A is not necessarily B and vice versa.

(5) No 3-dimensional XD figure exist in infinite grids.

Key words: perpendicular, continuous, close, unique, uniform grid
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*The definition of CG figures is first introduced in the book  
**The definition of XD figures is first publicly introduced in the science camp “Into the wonderful 
land of math” held by the Ministry of Education in 2011 
***The definitions of 3-dimensional CG and XD figures are first introduced in the essay

CG  
 

I The introduction and definition about CG figures and XD figures
CG figures and XD figures are newly-developed mathematical conceptions. A CG figure 

consists of two polylines sharing the same end points with corresponding line segments
perpendicular to each other. We call one polyline question, the other solution. If one polyline has 
only one solution, this figure is considered a special case more narrowly defined as an XD figure. 
For example, figure 1 is an XD figure.
The definitions of CG and XD figures are from 
problems involving perpendicular lines in uniform 
grids. Like Sudoku, XD figures can be used as 
mathematic games for mathematic entertainment. 
Apart from that, a 2-demensional XD figure looks
like a beautiful picture while a 3-demensional one 
a unique architectural design, bringing not only
intellectual challenge but also artistic enjoyment. 
Also, like many other mathematical conceptions, 
XD figures are likely to be useful in other fields.
The definitions for CG and XD figures are as 
follows:

2-dimensional CG figure* For a polyline C A1-A2-…-An in a uniform grid of m×n (m, n∈
N�), if there exists one polyline C´ A1-B2-B3-…-Bn-1-An satisfying the conditions A1B2 A1A2,
B2B3 A2A3, …, Bn-1An An-1An, then polyline C is the question, polyline C´ is the solution, the 
closed figure consisting of the two polylines is a 2-dimensional CG figure(C,C´). (here, 
A1,A2,A3…An,B2,B3…Bn-1are all lattice points andAi-1, Ai, Ai+1(i=2,3…n-1) are not collinear)

2-dimensional XD figure** For a polyline C A1-A2-…-Anin a uniform grid of m×n (m,
n∈ N�), if there exists only one polyline C´ A1-B2-B3-…-Bn-1-An satisfying the conditions
A1B2 A1A2,B2B3 A2A3,…,Bn-1An An-1An, then polyline C is the question, polyline C´ is the 
solution, the closed figure consisting of the two polylines is a 2-dimensional XD figure (C,C´).
(here, A1,A2,A3…An,B2,B3…Bn-1 are all lattice points, Ai-1, Ai, Ai+1(i=2,3,…n-1) are not collinear)

3-dimensional CG figure*** For a polyline C A1-A2-…-Anin a uniform grid of m×n×p
(m,n, p ∈ N�), if there exists one polyline C´ A1-B2-B3-…-Bn-1-An satisfying the conditions
A1B2 A1A2, B2B3 A2A3, …, Bn-1An An-1An, then polyline C is the question, polyline C´ is the 
solution, the closed figure consisting of the two polylines is a 3-dimensional CG figure (C,C´).
(here, A1,A2,A3…An,B2,B3…Bn-1 are lattice points on different planes, Ai-1, Ai, Ai+1(i=1,2,…n-1) 
are not collinear)

3-dimensional XD figure*** For a polyline C A1-A2-…-Anin a uniform grid of m×n×p
(m,n, p ∈ N�), if there exists only one polyline C´ A1-B2-B3-…-Bn-1-An satisfying the conditions
A1B2 A1A2, B2B3 A2A3, …, Bn-1An An-1An, then polyline C is the question, polyline C´ is the 
solution, the closed figure consisting of the two polylines is a 3-dimensional XD
figure(C,C´).(here, A1,A2,A3…An,B2,B3…Bn-1 are lattice points on different planes, Ai-1, Ai,
Ai+1(i=1,2,…n-1) are not collinear)
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* The proof here is not that of the original paper. 

corresponding line segments If there are polyline C: A1-A2-A3-…-An and polyline 

C´:A1-B2-B3-…-Bn-1-An, then A1B2, A1A2; B2B3, A2A3; …; Bn-1An, An-1An are corresponding line 

segments respectively.

(The m,n,p here indicates the numbers of the grids in three directions; limited grids can be 
extended to infinite grids. In this paper, all the CG and XD Figures are in uniform grids. Thus 
in the following text, “grids” implies “uniform grids”; a grid of m×n×p means there are a
total of (m+1) × (n+1) ×(p+1)grid points)

II The known conclusions about 2-dimensional CG and XD figures
Below are conclusions from the recent studies about CG and XD figures:
Conclusion 1: In a grid of m×n, if (C,C´)is an XD figure and(C´,C1) a CG figure, then (C1,C´) is 
an XD figure.
Proof: 
Since (C,C´)is an XD figure, (C´,C1)is a CG figure,
the corresponding line segments of (C, C´) and (C´,C1)are perpendicular to each other,
so the corresponding line segments of (C1, C) are respectively collinear or parallel.
Suppose (C1, C´) is not an XD figure, then there exists a polyline C2 which makes (C1, C2) a CG 
figure.
Then the corresponding line segments of (C1, C2) are perpendicular to each other,
so the corresponding line segments of (C, C2) are perpendicular to each other.
Thus, problem C has at least two solutions, C2, C´, which shows (C,C´) is not an XD figure. This 
contradicts the condition that (C,C´)is an XD figure.
Therefore, the assumption ‘(C1,C´)is not an XD figure’ is not correct.
Thus, (C1,C´)is an XD figure.
This completes the proof.

Conclusion 2: In the infinite grid, no 2-dimensional XD figure consisting of more than 4 line 
segments exist.
Proof*

If there is a 2-dimensional CG figure(C,C´)

C:C1-C2-……-Cn; C1´-C2´-……-Cn´(C1´=C1,Cn´=Cn),

consider polyline C1C2C3C4and C1´C2´C3´C4´.

When C1,C2,C3,C4,C1´,C4´are fixed points, if the coordinates of C2´and C3´have only one value,

then (C,C´) may be an XD figure; if not,(C,C´)is not an XD figure.

As demonstrated in figure 2, build a 2-dimensional rectangular coordinate system in the grid 
where the origin is any lattice point. The x-axis and y-axis are the 2 grid lines passing through the 
origin. The unit length is same as the grid size.
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LetC@C����������⃗ =(a@, b@),C�C����������⃗ =(a�, b�),C�C����������⃗ =(a�, b�),C@C�′����������⃗ =(a�, b�)
C@´C�´������������⃗ =(x@, y@),C�´C�´������������⃗ =(x�, y�),C�´C�´������������⃗ =(x�, y�)
Because(C,C´)is a 2-dimensional CG figure, we have:

⎩
⎪
⎨

⎪
⎧

a@x@ + b@y@ = 0
a�x� + b�y� = 0
a�x� + b�y� = 0

x@ + x� + x� = a�
y@ + y� + y� = b�

                              (1)

If(C,C´)is an XD figure, then this set of equations has integer solutions.
Let the solution be x@ = m@, x� = m�, x� = m�, y@ = n@, y� = n�, y� = n�,

then

⎩
⎪
⎨

⎪
⎧

x@ = m@ + (a�b@b� − a�b@b�)k
x� = m� + (a�b@b� − a@b�b�)k
x� = m� + (a@b�b� − a�b@b�)k
y@ = n@ + (a@a�b� − a@a�b�)k
y� = n� + (a@a�b� − a�a�b@)k
y� = n� + (a�a�b@ − a@a�b�)k

must be the solution of Equations 1.

In addition, neither C1C2C3nor C2C3C4 is collinear,
so none of  a@b� − a�b@, a@b� − a�b@, a�b� − a�b� equal to 0.
In addition, a@, b@are not both 0.
which shows (a�b@b� − a�b@b�) = 0, (a@a�b� − a@a�b�) = 0 not to be both correct.
In addition, k may be any integer. Therefore, Equations 1 has innumerable solutions.
Thus, (C,C´)is not a 2-dimensional XD figure.
Therefore, in the infinite grid, no 2-dimensional XD figure consisting of more than 4 line 
segments exist.
This completes the proof.

III The properties of 2-dimensional CG and XD figures
By extending conclusion1 of XD figures, a property of CG figures is found.
Property 1: For a CG figure (C, C´) in a grid of m×n, if the solution set of C is A, the solution set 
of C´ is B, then the solution set of any element in A is B and vice versa.
Proof
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*When the points in the question of an XD figure are distinct, the number of the points in the 
question must range from 3 to(n + 1)�. Therefore, the range of t must be from 4 to 2n� + 4n 

Since the solution set of C is A,
the corresponding line segments between any element from A and C are perpendicular to each 
other.
Thus, the corresponding line segments between any two elements of A are respectively collinear 
or parallel.
In addition, the solution set of C´ is B,
so the corresponding line segments between any element from B and C´ are perpendicular to each 
other.
Thus, the corresponding line segments between any element from B and any element from A are 
perpendicular to each other.
Suppose any element from B has another solution out of A, then this solution is also a solution of 
C.
Then the solution set of C is not A. This contradicts the condition that ‘the solution set of C is A’.
Then the assumption ‘an element from B has a solution addition to A’ is incorrect.
Therefore, the solution set of any element from B is A.
In the same way, the solution set of any element from A is B.
This completes the proof.

Inspired by conclusion 2, the question of the existence of XD figures in limited grids was raised.
In Reference 2, there also was an open problem about whether or not there is an upper limit of grid 
number for grids with XD figures. Here, we give the solution.
Property 2 In a grid of n×n (with (n+1) × (n+1) grid points, n ≥ 2), there must exist an XD 
figure consisting of t line segments (t is the total number of line segments including question and 
solution,t = 4,6,8 … 2n� + 4n*)
Proof
In a grid of n×n, build a 2-dimensional rectangular coordinate system where the origin is defined 
to be the lower corner on the left, the x-direction going to the right, the y-direction going up, and 
the unit length the grid size.

Draw a polyline C A1-A2-A3-…A�
��@-A�

�
in which the coordinate of A1 is (a0 b0). Write the vector 

of each line segment as

Draw another polyline C´ B1-B2-B3-…B�
��@-B�

�
(B1= A1 B�

�
=A�

�
). Write the vector of each line 

segment as

with coordinate of Bi being:

If the following set of equations with x�, y� as unknowns
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⎩
⎪
⎨

⎪
⎧

a�x� + b�y� = 0
∑ a� = ∑ x�
∑ b� = ∑ y�

0 ≤ a� + ∑ x�
�
��@ ≤ n

0 ≤ b� + ∑ y� ≤ n�
��@

(i, j = 1,2 … �
�

− 1)            (1)

has only one integer solution, then (C, C´) is an XD figure.

We also have�
u� = a� + ∑ x�

��@
��@

v� = b� + ∑ y�
��@
��@

(i = 2,3 … �
�

− 1)

Let’s begin with Equations 1, if the above equations are satisfied, these are the following
conclusions:
Lemma 1 When gcd (ai, bi)=1 while |ai|>n/2 or |bi|>n/2, then x� = ±b�,  y� = ∓a� (gcd (a, b)
means the greatest common divisor of a,b.)
Proof:
Since gcd (ai, bi)=1,
from a�x� + b�y� = 0 in Equations 1,

�� = �b�,   y� = −�a�,  (� ∈ ¡).
In addition, 0 ≤ a� + ∑ x�

�
@ ≤ n,  0 ≤ b� + ∑ y�

�
@ ≤ n,

so −n ≤ x� ≤ n,  − n ≤ y� ≤ n.
Adding that |ai|>n/2 or |bi|>n/2,
so s=±1.
Therefore, x� = ±b�, y� = ∓a�

This completes the proof.

Lemma 2 If gcd(ai,bi)=1 while |ai|=n/2 or |bi|=n/2, when(ui, vi)or(ui+1, vi+1)is a fixed point with 
coordinates not equal to 0,n,n/2, then xi,yi have at most one integer solution.

Proof:
Since gcd (ai, bi)=1,
from a�x� + b�y� = 0 in Equations 1,

�� = �b�,   y� = −�a�,  (� ∈ ¡).

In addition, 0 ≤ a� + ∑ x�
�
@ ≤ n,  0 ≤ b� + ∑ y�

�
@ ≤ n, �

u� = a� + ∑ x�
��@
��@

v� = b� + ∑ y�
��@
��@

(i = 2,3 … �
�

− 1),

so 0 ≤ u� + x� ≤ n,  0 ≤ v� + ¢� ≤ n, 0 ≤ u��@ − x� ≤ n,  0 ≤ v��@ − ¢� ≤ n
Adding that |ai|=n/2 or |bi|=n/2, (ui, vi)or(ui+1, vi+1)is a fixed point with coordinates not equal to 
0,n,n/2, we have:
If ai=n/2,

Then, if v� < �
�

, � = 1; if v� > �
�

, � = −1 ; if v��@ < �
�

, � = −1;  if v��@ > �
�

, � = 1;

If ai=-n/2,

Then, if v� < �
�

, � = −1; if v� > �
�

, � = 1 ; if v��@ < �
�

, � = 1;  if v��@ > �
�

, � = −1;

If bi=n/2,

Then, if u� < �
�

, � = 1; if u� > �
�

, � = −1 ; if u��@ < �
�

, � = −1;  if u��@ > �
�

, � = 1;
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If bi=-n/2,

Then, if u� < �
�

, � = −1; if u� > �
�

, � = 1 ; if u��@ < �
�

, � = 1;  if u��@ > �
�

, � = −1;

Thus, when(ui, vi)or(ui+1, vi+1)is a fixed point with coordinates not equal to 0,n,n/2, xi,yi have at 
most one integer solution.
This completes the proof.

Lemma 3 If gcd(ai, bi)=1 while |ai|>n/2 or |bi|>n/2, when(ui, vi)or(ui+1, vi+1)is a fixed point, then 
xi,yi have at most one integer solution.
Proof:
Since gcd (ai, bi)=1,
from a�x� + b�y� = 0 in Equations 1,

�� = �b�,   y� = −�a�,  (� ∈ ¡)

In addition, 0 ≤ a� + ∑ x�
�
@ ≤ n,  0 ≤ b� + ∑ y�

�
@ ≤ n, �

u� = a� + ∑ x�
��@
��@

v� = b� + ∑ y�
��@
��@

(i = 2,3 … �
�

− 1)

so 0 ≤ u� + x� ≤ n,  0 ≤ v� + ¢� ≤ n, 0 ≤ u��@ − x� ≤ n,  0 ≤ v��@ − ¢� ≤ n
Adding that |ai|>n/2 or |bi|>n/2, (ui, vi)or(ui+1, vi+1)is a fixed point, we have
If ai>n/2,

Then, if v� < �
�

, � = 1; if v� > �
�

, � = −1 ; if v��@ < �
�

, � = −1;  if v��@ > �
�

, � = 1 (if v� = �
�

,

there’s no solution to the set);
If ai<-n/2,

Then, if v� < �
�

, � = −1; if v� > �
�

, � = 1 ; if v��@ < �
�

, � = 1;  if v��@ > �
�

, � = −1 (if v� = �
�

,

there’s no solution to the set);
If bi>n/2,

Then, if u� < �
�

, � = 1; if u� > �
�

, � = −1 ; if u��@ < �
�

, � = −1;  if u��@ > �
�

, � = 1 (if u� = �
�

,

there’s no solution to the set);
If bi<-n/2,

Then, if u� < �
�

, � = −1; if u� > �
�

, � = 1 ; if u��@ < �
�

, � = 1;  if u��@ > �
�

, � = −1 (if u� = �
�

,

there’s no solution to the set).
Thus, when (ui, vi)or(ui+1, vi+1)is a fixed point, xi,yi have at most one integer solution.
This completes the proof.

Lemma 4 When gcd(ai,bi)=1, gcd (ai+1, bi+1)=1, if |ai|>n/2,|ai+1|>n/2, yi=±a�,then yi+1=∓a��@; if 
|bi|>n/2, |bi+1|>n/2, xi=±b�,then xi+1=∓b��@.
As the conditions |ai|>n/2,|ai+1|>n/2, yi=±a� and |bi|>n/2, |bi+1|>n/2, xi=±b� are not essentially 
different, here we assume the first one to be correct.
Since gcd (ai, bi)=1, |ai|>n/2
from Lemma 1,x� = ±b�,   y� = ∓a�

In addition, gcd (ai+1, bi+1)=1, |ai+1|>n/2
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From Lemma 1, x��@ = ±b��@,  y��@ = ∓a�

Adding that |ai|>n/2,|ai+1|>n/2
|yi|>n/2,|yi+1|>n/2
In addition, 0 ≤ a� + ∑ x�

�
@ ≤ n,  0 ≤ b� + ∑ y�

�
@ ≤ n

so − n ≤ y� + y� + 1 ≤ n,
Thus, if yi=±a�,then yi+1=∓a��@

This completes the proof.

Here we discuss the case by constructing specific line segments as problems and proving their 
solutions to be unique under the following situations respectively:
A ¥ ∈ [¦, §¨§ + ©¨]
1 When n≡1 (mod 4), let n=4p+1(p≥1) .
i)If t=2n� + 4n, construct one polyline as follows (see Figure 3 as an example)
let a0=0,b0=0

a� = a�
′ =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

2p + 1                                                                                                     i = 1
2p + 1                                          i − 1 ≡ (−1)«e, i ≤ 16p� + 12p + 1 
−2p − 1                                    i − 1 ≡ −(−1)«e, i ≤ 16p� + 12p + 1
1                                            i − 1 ≡ 0 or 4p + 2, i ∈ [2,8p� + 8p + 2]

2                                                                                           i = 8p� + 8p + 3
1                   i − 1 ≡ 0 or 4p + 2, i ∈ [8p� + 8p + 2,16p� + 12p + 1]
1                                                                                       i = 16p� + 12p + 2
2p + 1              i ≡ −(−1)«e, i ∈ [16p� + 12p + 3,16p� + 16p + 2]
−2p − 1               i ≡ (−1)«e, i ∈ [16p� + 12p + 3,16p� + 16p + 2]
2p                                                                                 i = 16p� + 16p + 3

(mod 8p + 4)

 b� = b�
′ =

⎩
⎪⎪
⎨

⎪⎪
⎧

0                                                                                                                  i = 1
1                                      i − 1 ≢ 0, i − 1 ≢ 4p + 2, i ≤ 16p� + 12p + 1
−4p − 1                            i − 1 ≡ 0 or 4p + 2, i ∈ [2,16p� + 12p + 1]
−4p + 1                                                                         i = 16p� + 12p + 2
1                                                     i ∈ [16p� + 12p + 3,16p� + 16p + 2]
0                                                                                        i = 16p� + 16p + 3

(mod 8p

+ 4)
(e ∈ [1,4p + 1])
Obviously, for i ≠ 1, i ≠ 16p� + 16p + 3, we have gcd(a�

′, b�
′)=1.

Substitute a�, b�into Equations 1, we have x1=0,u2=0, so x2>0.
In addition, ai(i − 1 ≢ 0, i − 1 ≢ 4p + 2(mod 8p + 4), i ≤ 8p� + 4p + 1)>n/2.
According to lemma 1,y2 has a definite value.
According to lemma 4,y3,y4,…y4p+2each has a definite value, so x3,x4,…x4p+2each has a definite 
value as well.
From these conditions we can figure out u4p+3=4p+1.
In addition, bi(i − 1 ≡ 0 or 4p + 2(mod 8p + 4), i ≤ 8p� + 4p + 1)=-4p-1.
Therefore, x4p+3=-4p-1, u4p+4=0.
In the same way, we can deduce that xi,yi(i ∈ [2,8p� + 4p + 1])each has a fixed value.
Therefore, we can figure out v� − v®¯���¯�� = 4p + 1 
which leads to v� = 4p + 1, v®¯���¯�� = 0.
Therefore, according to lemma 3,xi,yi(i ∈ [2,16p� + 16p + 2])each has a fixed value .
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Therefore, 

⎩
⎪⎪
⎨

⎪⎪
⎧

x� = b�
y� = −a�
x@ = 0

y@ = 2p
x@�¯��@�¯�� = 0

y@�¯��@�¯�� = 2p + 1

(i ∈ [2,16p� + 16p + 2])is the only solution to Equations 1.

Therefore, this polyline C here is the question of an XD figure.

ii) If �
�

∈ [8p� + 4p + 3,16p� + 16p + 2]

let a0 =0,b0 =0

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

a�
� = a�′

b�
� = b�′

a�
��@
� = ² a′

@�¯��@�¯��

�
��@

b�
��@
� = ² b′

@�¯��@�¯��

�
��@

a�
�

� = 2p

b�
�

� = 0

           (i ∈ �1,
t
2

− 2�)

If b�
��@″ ≠ 0, let a� = a�

�, b� = b�
�(i ∈ �0, �

�
�)

If b�
��@
� = 0, let a0=0,b0=0

Figure 3
An XD figure consisting of 198 line segments in the grid of 9*9 

(the blue line is the question, the red one the solution) 
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⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

a� = a�′
b� = b�

′

a�¯ = −1
b�¯ = −4p + 1

a� = a���
′

#� = #���
′

a�
��@ = ² a′

@�¯��@�¯��

�
��@

b�
��@ = ² b′

@�¯��@�¯��

�
��@

a�
�

= 2p

b�
�

= 0

      (i ∈ [1,4p − 1], j ∈ �4p + 1,
t
2

− 2�)

In the same way as with t=2n� + 4n, we can deduce that xi,yi(i ∈ [2,8p� + 4p + 1])each has a

fixed value. From that, we figure out xi,yi(i ∈ �1, �
�

− 2�)each has a fixed value. Obviously, 

x�
�

= 0. Therefore, in Equations 1 there remain 3 equations with 3 unknowns. Their coefficients 

are not equal to 0, which means Equations 1 has at most one integer solution.

In addition, 

⎩
⎪⎪
⎨

⎪⎪
⎧

x� = b�
y� = −a�
x@ = 0

y@ = 2p
x�

�
= 0

y�
�

= 2p + 1

(i = 2,3, … �
�

− 1)is a solution of Equations 1.

Therefore, Equations 1 has only one integer solution.
Therefore, this polyline C here is the question of an XD figure.

iii)If  �
�

∈ [6,8p� + 4p + 2], let a�
�=0,b�

�=0

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

a�
� = 4p + 1

b�
� = 1

a�
� = −4p − 1

b�
� = 1

a�
� = a�′

b�
� = b�′

a�
��@
� = ² a′

@�¯��@�¯��

�
��@

b�
��@
� = ² b′

@�¯��@�¯��

�
��@

a�
�

� = 2p

b�
�

� = 0

     (i ∈ {1,2} ∪ �5,
t
2

− 2�)

If b�
��@
� ≠ 0,
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let a� = a�
�, b� = b�

�(i ∈ �0, �
�
�)

If b�
��@
� = 0,

let a0=0,b0=0

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

a� = 4p + 1
b� = 1

a� = −4p − 1
b� = 1
a� = a�′
b� = b�

′

a�¯ = −1
b�¯ = −4p + 1

a� = a���
′

#� = #���
′

a�
��@ = ² a′

@�¯��@�¯��

�
��@

b�
��@ = ² b′

@�¯��@�¯��

�
��@

a�
�

= 2p

b�
�

= 0

(i ∈ {1,2} ∪ [5,4p − 1], j ∈ �4p + 1,
t
2

− 2�)

In the same way as mentioned above, we can prove that Equations 1 has at most one integer 
solution.

In additon,

⎩
⎪⎪
⎨

⎪⎪
⎧

x� = b�
y� = −a�
x@ = 0

y@ = 2p
x�

�
= 0

y�
�

= 2p + 1

<i = 2,3, … �
�

− 1> is a solution of Equations 1.

Therefore, this polyline C here is the question of an XD figure

iv)If t=10,
let a0=0,b0=0

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

a@ = 2p + 1
b@ = 0

a� = −2p − 1
b� = 1

a� = 4p + 1
b� = 1

a� = −2p
b� = 4p − 1

a� = 2p
b� = 0

Substitute these into Equations 1, then the set has only one solution.Therefore, this polyline C here 
is the question of an XD figure.
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v)If t=8
let a0=0,b0=0

⎩
⎪
⎪
⎨

⎪
⎪
⎧

a@ = 1
b@ = 0

a� = −1
b� = 4p + 1
a� = 4p + 1

b� = −1
a� = −4p

b� = 0

Substitute these into Equations 1, then the set has only one solution.
Therefore, this polyline C here is the question of an XD figure.
Therefore, for t=8,10…2n� + 4n,p≥1,in the grid of (4p+1)×(4p+1), XD figures consisting of t line 
segments exist.

2 If n≡3 (mod 4),n>3
Let n=4p+3(p≥1) .
i)If t=2n� + 4n, construct line segments as follows (see Figure 4 as an example)
let a0=0,b0=0
a� = a�

′,   b� = b�
′

a�
′ =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

2p + 2                                                                                                              i = 1
2p + 2                                                      i − 1 ≡ (−1)«e, i ≤ 8p� + 16p + 7 
−2p − 2                                               i − 1 ≡ −(−1)«e, i ≤ 8p� + 16p + 7
1                                                   i − 1 ≡ 0 or 4p + 4, i ∈ [2, 8p� + 16p + 7]
−1                                                                                             i = 8p� + 16p + 8
2p + 2                         i ≡ −(−1)«e, i ∈ [8p� + 16p + 9,8p� + 24p + 15]
−2p − 2                         i ≡ (−1)«e, i ∈ [8p� + 16p + 9,8p� + 24p + 15]
1                                                        i = 8p� + 20p + 12 or 8p� + 24p + 16
2p + 2            i + 1 ≡ −(−1)«e, i ∈ [8p� + 24p + 17,16p� + 32p + 14]
−2p − 2            i + 1 ≡ (−1)«e, i ∈ [8p� + 24p + 17,16p� + 32p + 14]
1                  i + 1 ≡ 0 or 4p + 4, i ∈ [8p� + 24p + 17,16p� + 32p + 14]
2p + 4                                                                               i = 16p� + 32p + 15

(mod 8p + 8)

b�
′ =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

0                                                                                                                            i = 1
1                                              i − 1 ≢ 0, i − 1 ≢ 4p + 4, i ≤ 8p� + 16p + 7

−4p − 3                                       i − 1 ≡ 0 or 4p + 4, i ∈ [2, 8p� + 16p + 7]
−4p − 2                                                                                      i = 8p� + 16p + 8
1                                                                  i ∈ [8p� + 16p + 9,8p� + 20p + 11]
−4p − 3                                                                                    i = 8p� + 20p + 12
1                                                               i ∈ [8p� + 20p + 13,8p� + 24p + 15]
−4p − 2                                                                                   i = 8p� + 24p + 16
1            i + 1 ≢ 0, i + 1 ≢ 4p + 4, i ∈ [8p� + 24p + 17,16p� + 32p + 14]
−4p − 3        i + 1 ≡ 0 or 4p + 4, i ∈ [8p� + 24p + 17,16p� + 32p + 14]
0                                                                                               i = 16p� + 32p + 15

(mod 8p + 8)

(e ∈ [1,4p + 3])
In the same way as in 1), substitute ai,bi into Equations 1. We can prove that it has only one integer 
solution, which is 
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⎩
⎪⎪
⎨

⎪⎪
⎧

x� = −b�
y� = a�
x@ = 0

y@ = 2p − 1
x�

�
= 0

y�
�

= 2p + 2

(i = 2,3, …
t
2

− 1)

Therefore, this polyline C here is the question of an XD figure.

ii) if �
�

∈ [8p� + 12p + 8,16p� + 32p + 15]

let a0 =0,b0 =0

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

a�
� = a�′

b�
� = b�′

a�
��@
� = ² a′

@�¯����¯�@�

�
��@

b�
��@
� = ² b′

@�¯����¯�@�

�
��@

a�
�

� = 2p + 4

b�
�

� = 0

  (i ∈ �1,
t
2

− 2�)

If b�
��@″ ≠ 0,

let a� = a�
�, b� = b�

�(i ∈ �0, �
�
�)

If b�
��@
� = 0,

let a0=0,b0=0

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

a� = a�′
b� = b�

′

a�¯�� = −1
b�¯�� = −4p − 1

a� = a���
′

#� = #���
′

a�
��@ = ² a′

@�¯����¯�@�

�
��@

b�
��@ = ² b′

@�¯����¯�@�

�
��@

a�
�

= 2p + 4

b�
�

= 0

   (i ∈ [1,4p + 1], j ∈ �4p + 3,
t
2

− 2�)

In the same way as in 1), we can prove that Equations 1 has only one integer solution.
Therefore, this polyline C here is the question of an XD figure.

iii) If �
�

∈ [6,8p� + 12p + 7]
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let a�
�=0,b�

�=0

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

a�
� = 4p + 3

b�
� = 1

a�
� = −4p − 3

b�
� = 1

a�
� = a�′

b�
� = b�′

a�
��@
� = ² a′

@�¯����¯�@�

�
��@

b�
��@
� = ² b′

@�¯����¯�@�

�
��@

a�
�

� = 2p + 4

b�
�

� = 0

   (i ∈ {1,2} ∪ �5,
t
2

− 2�)

If b�
��@
� ≠ 0,

let a� = a�
�, b� = b�

�(i ∈ �0, �
�
�)

If b�
��@
� = 0,

let a0=0,b0=0

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

a� = 4p + 3
b� = 1

a� = −4p − 3
b� = 1
a� = a�′
b� = b�

′

a�¯�� = −1
b�¯�� = −4p − 1

a� = a���
′

#� = #���
′

a�
��@ = ² a′

@�¯����¯�@�

�
��@

b�
��@ = ² b′

@�¯����¯�@�

�
��@

a�
�

= 2p + 4

b�
�

= 0

   (i ∈ {1,2} ∪ [5,4p + 1], j ∈ �4p + 1,
t
2

− 2�)

In the same way as in 1), we can prove that Equations 1 has only one integer solution.
Therefore, this polyline C here is the question of an XD figure.

iv )If t=10,
let a0=0,b0=0,
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

a@ = 2p + 2
b@ = 0

a� = −2p − 2
b� = 1

a� = 4p + 3
b� = 1

a� = −4p − 3
b� = 1

a� = 2p + 2
b� = 0

Substitute these into Equations 1. The set has only one solution.
Therefore, this polyline C here is the question of an XD figure.

v) If t=8,let a0=0,b0=0,

⎩
⎪
⎪
⎨

⎪
⎪
⎧

a@ = 1
b@ = 0

a� = −1
b� = 4p + 3
a� = 4p + 3

b� = −1
a� = 0

b� = −4p − 2

Substitute these into Equations 1. Then the set has only one integer solution, which indicates that 
this polyline C here is the question of an XD figure.
Therefore, for t=8,10…2n� + 4n,p≥1,in the grid of (4p+3)×(4p+3), XD figures consisting of t line 
segments exist.

3) When n≡2 (mod 4) n>6,
Let n=4p+2(p≥2).
i)If t=2n� + 4n, construct line segments as follows (see Figure 5 as an example)

Figure 5
An XD figures consisting of 240 line segments in the grid of 10x10

(the blue line is the question, the red one the solution) 
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let a0=2p+1,b0=2p+1,
      a� = a�

′,b� = b�
′,

a�
′ =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

0                                                                                                                                              i = 1
1                                                                                         i ≡ 1 or 2(mod 4), i ∈ [2,4p + 2]
−1                                                                                     i ≡ 0 or 3(mod 4), i ∈ [2,4p + 2]

−2p − 2                                                                           i ≡ 1(mod 2), i ∈ [4p + 3,8p + 4]
2p + 2                                                                              i ≡ 0(mod 2), i ∈ [4p + 3,8p + 4]
−1                                                                       i ≡ 1 or 2(mod 4), i ∈ [8p + 5,12p + 6]
1                                                                          i ≡ 0 or 3(mod 4), i ∈ [8p + 5,12p + 6]
−1                                                                                                                             i = 12p + 7
2p + 2                         i + 2 ≡ −(−1)«e(mod 4p + 3), i ∈ [12p + 8,8p� + 14p + 3]
−2p − 2                         i + 2 ≡ (−1)«e(mod 4p + 3), i ∈ [12p + 8,8p� + 14p + 3]
−1                                            i + 2 ≡ 0(mod 4p + 3) , i ∈ [12p + 8,8p� + 14p + 3]

4p + 1                                                                                                          i = 8p� + 14p + 4
−2p − 2          i + 2 ≡ −(−1)«e(mod 4p + 3), i ∈ [8p� + 14p + 5,16p� + 20p + 3]
2p + 2                 i + 2 ≡ (−1)«e(mod 4p + 3), i ∈ [8p� + 14p + 5,16p� + 20p + 3]
−1                                   i + 2 ≡ 0(mod 4p + 3) , i ∈ [8p� + 14p + 5,16p� + 20p + 3]
2p − 1                                                                                                         i = 16p� + 20p + 4
−4p − 3                                       i ≡ 1(mod 2), i ∈ [16p� + 20p + 5,16p� + 22p + 1]
4p + 3                                          i ≡ 0(mod 2), i ∈ [16p� + 20p + 5,16p� + 22p + 1]

2p + 2                                                                                                          i = 16p� + 22p + 2
−2p − 2                                                                                                      i = 16p� + 22p + 3

4p + 3                                              i ≡ 0(mod 2), i ∈ [16p� + 22p + 4,16p� + 24p + 3]
−4p − 3                                           i ≡ 1(mod 2), i ∈ [16p� + 22p + 4,16p� + 24p + 3]
4p + 2                                                                                                            i = 16p� + 24p + 4

−4p − 2                                                                                                           i = 16p� + 24p + 5
4p + 2                                                                                                           i = 16p� + 24p + 6

−2p − 2                                                                                                           i = 16p� + 24p + 7
−2p                                                                                                                i = 16p� + 24p + 8

b�
′ =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

1                                                                                                                                              i = 1
−2p − 1                                                                                             i ≡ 0(mod 2), i ≤ 4p 

2p + 2                                                                                      i ≡ 1(mod 2), i ∈ [3,4p + 1]
−4p − 2                                                                                                                 i = 4p + 2

1                                                                                                                 i ∈ [4p + 3,8p + 4]
−2p − 2                                                                                                                 i = 8p + 5

2p + 2                                                                          i ≡ 0(mod 2), i ∈ [8p + 6,12p + 6]
−2p − 3                                                                        i ≡ 1(mod 2), i ∈ [8p + 6,12p + 6]
−2p − 2                                                                                                                     i = 12p + 7
1                                                i + 2 ≢ 0(mod 4p + 3), i ∈ [12p + 8,16p� + 20p + 3]
−4p − 2                                 i + 2 ≡ 0(mod 4p + 3) , i ∈ [12p + 8,16p� + 20p + 3]
1 − 4p                                                                                                       i = 16p� + 20p + 4
1                                                                                i ∈ [16p� + 20p + 5,16p� + 24p + 3]
−4p − 1                                                                                                      i = 16p� + 24p + 4
1                                                                                                                  i = 16p� + 24p + 5
2p − 1                                                                                                      i = 16p� + 24p + 6

−2p − 1                                                                                                     i = 16p� + 24p + 7
0                                                                                                              i = 16p� + 24p + 8

(e ∈ [1,2p + 1])
Substitute at/2,bt/2,at/2-1,bt/2-1,at/2-2,bt/2-2 into Equations 1. xt/2,yt/2,xt/2-1,yt/2-1,xt/2-2,yt/2-2 each has at most 
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one value.
In addition, when i=4p+1,4p+2…t/2-1,gcd(ai,bi)=1 while ai>n/2 or bi>n/2,
so according to lemma 3, B4p+1,B4p+2……Bt/2 are all fixed points.
Also, xi=bi,yi=-ai(i=4p+1,4p+2…t/2-1) is a solution of Equations 1.
Therefore, xi=bi,yi=-ai(i=4p+1,4p+2…t-1) is the only solution of Equations 1.
Moreover, B4p+1and (a4p,b4p)meet the precondition of lemma 2,
so it can be figured out that x4p=b4p,y4p=-a4p.
In addition, (ai,bi) (i=3,5…4p-1) all meet the precondition of lemma 3.
In the same way, we can prove that for(ai,bi) (i=2,4.6…4p), the coordinates of Bi+1are

�
<2p + 2, �

�
> (i ≡ 2)

<2p, �
�
> (i ≡ 0)

(mod 4), which all meet the precondition of lemma 2.

Therefore, Equations 1 has at most one integer solution.

In addition, 

⎩
⎪
⎨

⎪
⎧ x� = b�

′

y� = −a�
′

x�
�

= 0

y�
�

= 2p + 2

(i = 1,2, … �
�

− 1) is a solution to Equations 1.

Therefore, this polyline C here is the question of an XD figure

ii) If 6<t<2n� + 4n,
let a0=n/2,b0=n/2,

⎩
⎪⎪
⎨

⎪⎪
⎧a@ = ∑ a′

������@��
�

@
a� = a′���������

�

b@ = ∑ b′
������@��

�
@

b� = b′���������
�

     (i=2,3.…t/2) 

In the same way as with t=2n� + 4n, this polyline C here is the question of an XD figure.
Therefore, for t=8,10…2n� + 4n,p≥2,in the grid of (4p+2)×(4p+2), XD figures consisting of t line 
segments exist.

4) When n≡0 (mod 4) n>4, let n=4p (p≥2).
i) If t=2n� + 4n, construct line segments as follows (see Figure 6 as an example)
let a0=2p,b0=2p; a� = a�

′,b� = b�
′,
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a�′ =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

−2p                                                                                                                                         i = 1
2p − 1                                                                                                                                  i = 2

1                                                                                                i ≡ 0 or 3(mod 4), i ≤ 4p + 1 
−1                                                                                    i ≡ 1  or 2(mod 4), i ∈ [3,4p + 1]
1                                                                                                                                    i = 4p + 2
−2p − 1                                                                          i ≡ 1(mod 2), i ∈ [4p + 3,8p + 2]
2p + 1                                                                            i ≡ 0(mod 2), i ∈ [4p + 3,8p + 2]
1                                                                           i ≡ 1 or 2(mod 4), i ∈ [8p + 3,12p + 2]
−1                                                                         i ≡ 0 or 3(mod 4), i ∈ [8p + 3,12p + 2]
1                                                                                                                                i = 12p + 3
2p + 1                                    i ≡ (−1)«e(mod 4p + 1), i ∈ [12p + 4,8p� + 10p + 1]
−2p − 1                              i ≡ −(−1)«e(mod 4p + 1), i ∈ [12p + 4,8p� + 10p + 1]

1                                                            i ≡ 0(mod 4p + 1) , i ∈ [12p + 4,8p� + 10p + 1]
−2p − 1                                                                                                        i = 8p� + 10p + 2
2p                                                                                                                   i = 8p� + 10p + 3
−2p − 1           i + 1 ≡ −(−1)«e(mod 4p + 1), i ∈ [8p� + 10p + 4,16p� + 4p − 2]
2p + 1                 i + 1 ≡ (−1)«e(mod 4p + 1), i ∈ [8p� + 10p + 4,16p� + 4p − 2]
−1                                   i + 1 ≡ 0(mod 4p + 1), i ∈ [8p� + 10p + 4,16p� + 4p − 2]
4p − 1                                                                                                         i = 16p� + 4p − 1
4p                                                              i ≡ 1(mod 2), i ∈ [16p� + 4p, 16p� + 8p − 2]
−4p                                                           i ≡ 0(mod 2), i ∈ [16p� + 4p, 16p� + 8p − 2]
−2p − 2                                                                                                    i = 16p� + 8p − 1
−2p + 2                                                                                                           i = 16p� + 8p

b�′ =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

2p                                                                                                                                         i = 1
−4p                                                                                                                                        i = 2
2p + 1                                                                                        i ≡ 1(mod 2), i ∈ [3,4p + 1]
−2p                                                                                            i ≡ 0(mod 2), i ∈ [3,4p + 1]
−4p                                                                                                                              i = 4p + 2
1                                                                                                                    i ∈ [4p + 3,8p + 2]
−2p − 1                                                                                                                      i = 8p + 3
2p + 1                                                                            i ≡ 0(mod 2), i ∈ [8p + 4,12p + 2]
−2p − 2                                                                          i ≡ 1(mod 2), i ∈ [8p + 4,12p + 2]
−2p − 1                                                                                                                   i = 12p + 3
1                                                           i ≢ 0(mod 4p + 1), i ∈ [12p + 4,8p� + 10p + 1]
−4p                                                      i ≡ 0(mod 4p + 1) , i ∈ [12p + 4,8p� + 10p + 1]
−2p                                                                                                                i = 8p� + 10p + 2
−2p + 1                                                                                                       i = 8p� + 10p + 3
1                                       i + 1 ≢ 0(mod 4p + 1), i ∈ [8p� + 10p + 4,16p� + 4p − 2]
−4p                                i + 1 ≡ 0(mod 4p + 1), i ∈ [8p� + 10p + 4,16p� + 4p − 2]

−1                                                                                    i ∈ [16p� + 4p − 1,16p� + 8p − 1]
0                                                                                                                               i = 16p� + 8p

(e ∈ [1,2p])
In the same way as in 3), we can prove that

⎩
⎪
⎨

⎪
⎧

x� = b�′
y� = −a�′

x�
�

= 0

y�
�

= −2p − 2

(i = 1,2 …
t
2

− 1)

is the only integer solution for Equations 1.
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Therefore, this polyline C here is the question of an XD figure.

ii)If 6<t<2n� + 4n,
let a0=n/2,b0=n/2

⎩
⎪⎪
⎨

⎪⎪
⎧a@ = ∑ a′

������@��
�

@
a� = a′���������

�

b@ = ∑ b′
������@��

�
@

b� = b′���������
�

(i=2,3.…t/2) 

In the same way as with t=2n� + 4n, this polyline C here is the question of an XD figure.
Therefore, for t=8,10…2n� + 4n,p≥2,in the grid of 4p×4p, XD figures consisting of t line 
segments exist.

5)When n=2
i)If t=16, construct line segments as follows (see Figure 7as an example)
let a0=1,b0=1,the line segments of polyline C be (1,-1) (-1,2) (1,-1) (-2,1) (1,-2) (1,2) (-2,-1)
(0,-1).(a� = a�

′ , b� = b�′)
Substitute these into Equations 1, We can then figure out that C is the question of an XD figure.

Figure 6
An XD figure consisting of 160 line segments in the grid of 8*8 

(the blue line is the question, the red one the solution) 

Figure 7 

An XD figure consisting of 16 line segments in the grid of 2*2

(the blue line is the question, the red one the solution) 
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ii)If t ∈ [8,14],in the same way as in 3),let a0=1,b0=1

⎩
⎪
⎪
⎨

⎪
⎪
⎧a@ = ² a′

¸��
�

@

b@ = ² b′
¸��

�

@
a� = a′

��®��
�

b� = b′
��®��

�

(i = 2,3 …
t
2

)

Similar to t=16, this polyline C here is the question of an XD figure.
Therefore, for t=8,10…16, in the grid of 2×2, XD figures consisting of t line segments exist.

6)When n=3
i)If t=30, construct line segments as follows (see Figure 8 as an example)
let a0=0, b0=0 and the line segments of polyline C be represented by vectors (1,0) (2,1) (-2,1) (1,-2)
(-2,1) (2,1) (-2,1) (1,-2) (2,1) (-2,1) (1,-2) (-2,1) (3,-2) (-1,3) (1,0).(a� = a�

′ , b� = b�′)

ii)If  t = 14,16,20,22,26,28 ,in the same way as in 2),
let a0=0,b0=0,

⎩
⎪⎪
⎨

⎪⎪
⎧

a� = a�′
b� = b�

′

a�
��@ = ² a′

�¸

�
��@

b�
��@ = ² b′

�¸

�
��@

(i = 1,2 …
t
2

− 2 or 
t
2

)

iii)If  t = 12, let a0=0, b0=0 and the line segments of polyline C be represented by vectors (1,0)
(2,1) (-3,1) (3,-2)(-1,3)(1,0).
iv)If  t = 10, let a0=0, b0=0 and the line segments of polyline C be represented by vectors
(1,0)( 2,1) (-3,1) (2,1)(1,0).
v)If  t = 8, let a0=0, b0=0 and the line segments of polyline C be represented by vectors (1,0) (-1,3)
(3,-1)(0,-2).
vi)If t=18, let a0=0, b0=0 and the line segments of polyline C be represented by vectors (1,0) (2,1) 
(-2,1) (1,-2) (-2,1) (2,1) (1,-2) (-1,3) (1,0)
vii)If t=24, let a0=0, b0=0 and the line segments of polyline C be represented by vectors (1,0) (2,1) 

Figure 8 

An XD figure consisting of 30 line segments in the grid of 3*3

(the blue line is the question, the red one the solution) 
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(-2,1) (1,-2) (-2,1) (2,1) (-2,1) (3,-1) (-2,1) (1,-2) (0,2) (1,0)
Substitute these into Equations 1. We can figure out the C here are all questions of XD figures.
Therefore, for t=8,10…30, in the grid of 3×3, XD figures consisting of t line segments exist.

7) When n=4
i)If t=48, construct line segments as follows (see Figure 9 as an example)
let a0=2,b0=2,the line segments of polyline C represented by vector be respectively

a� =

⎩
⎪⎪
⎨

⎪⎪
⎧

1        i = 1,2,3,5,12,13,14
−1                       i = 4,10,11
−3            i = 6,8,15,17,19
3               i = 7,9,16,18,20
4                              i = 22

−4                        i = 21,23
−2                              i = 24

          b� =

⎩
⎪⎪
⎨

⎪⎪
⎧

0                                                                   i = 1
3                                                    i = 2,4,11,13
−2                                                    i = 3,19,24
−4                                                        i = 5,12
1               i = 6,7,8,9,15,16,17,18,21,22,23
−3                                                       i = 10,14
−1                                                             i = 20

Substitute these into Equations 1. We can then figure out that C is the question of an XD figure.

ii)If t ∈ [8,48], in the same way as in 4),
let a0=2,b0=2,

⎩
⎪
⎪
⎨

⎪
⎪
⎧a@ = ² a′

����
�

@

b@ = ² b′
����

�

@
a� = a′

������
�

b� = b′
������

�

 (i = 2,3 …
t
2

)

In the same way as with t=48, we can prove that this polyline C here is the question of an XD
figure.
Therefore, for t=8,10…48, in the grid of 3×3, XD figures consisting of t line segments exist.

8) When n=6
i) If t=96, construct line segments as follows (see Figure 10 as an example)
let a0=3,b0=3,the line segments of polyline C represented by vector be respectively

Figure 9 

An XD figure consisting of 48 line segments in the grid of 4*4

(the blue line is the question, the red one the solution) 
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a� =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

2                                                                                         i = 1
1                                                              i = 2,3,6,7,16,17,41
−1                                          i = 4,5,14,15,18,19,20,34,48
−4                       i = 8,10,12,22,24,26,28,30,32,35,37,39
4                    i = 9,11,13,21,23,25,29,31,33,36,38,40,47
5                                                                                      i = 27

−6                                                                         i = 42,44,46
6                                                                              i = 43,45

b� =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

0                                                                                             i = 1,48
4                                                                          i = 2,4,6,15,17,19
−3                                                                                     i = 3,5,47

−6                                                                                                 i = 7
−4                                                                                        i = 14,20
−5                                                                                   i = 16,18,41
1               i ∈ [8,13]�� [21,26]��[28,33]��[35,40]��[42,46]
−6                                                                                     i = 27,34

Substitute these into Equations 1. We can figure out that C is the question of an XD figure.

In the same way as in 4),

let a0=3,b0=3,

⎩
⎪⎪
⎨

⎪⎪
⎧a@ = ∑ a′�¸��

�
@

b@ = ∑ b′�¸��
�

@
a� = a′

���®��
�

b� = b′
���®��

�

(i = 2,3 … �
�
)

Similar to t=48, we can prove that this polyline C here is the question of an XD figure.
Therefore, for t=8,10…48, in the grid of 3×3, XD figures consisting of t line segments exist.
In summary, in the grid of n×n, XD figures consisting of t line segments exist.
(n ≥ 2, t = 8,10,12 … 2n� + 4n)

B. t=6,

Figure 10   
An XD figure consisting of 96 line segments in the grid of 6*6 

(the blue line is the question, the red one the solution) 
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*The property 3 and 5 here and the proof of property 3 are from the third part of the first 
chapter of the book which was written by the author of this paper. 

let

⎩
⎪
⎪
⎨

⎪
⎪
⎧

a� = 0
a@ = 1

a� = n − 1
a� = 0
b� = 0
b@ = 0
b� = 1

b� = −1

Substitute these intoEquations 1,it can be figured out that Equations 1 has only one solution.
Therefore, this polyline C here is the question of an XD figure.

C.t=4
Any two adjacent sides of a rectangle is the question of an XD figure. Therefore, such XD figures 
exist in any grid.
Therefore, in summary, an XD figure consisting of t line segments exists in a grid of n×n.

(n ≥ 2, t = 4,6,8 … 2n� + 4n)
This completes the proof.

IV The properties of 3-dimensional CG and XD figures*

Compared with 2-dimensional XD figures, 3-dimensional XD figures do not process conclusion 1
and property 1
Property 3 In a grid of m×n×p, if (C,C´)is an XD figure, (C´,C1)is a CG figure, then (C1,C´)is not 
necessarily an XD figure.
Proof

In figure 11, let the question be the red line C, the solution the green line C´. In the grid of 
2×2×2, (C, C´) is an XD figure. Let the solution of the green line C´ be the purple line C1 in the 
figure, then (C´, C1) is a CG figure. However, except for C´, C1 also has C (the blue line in the 
figure)as a solution. Therefore, (C1, C´) is not an XD figure.

C 

C  C  

C1 C1 

C  

Figure 11 

Figure 12 

C 

C  C  

1
C1 
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Meanwhile, in figure 12, let the question be the red line C, the solution the green line C´. In the 
grid of 2×2×2, (C,C´) is an XD figure. Let the solution of the green line C´ be the purple line C1, 

then, (C´,C1) is a CG figure. In addition, C1 has only one solution which is C´. Therefore, (C1,C´)
is an XD figure.
In summary, in a grid of m×n×p, if (C,C´)is an XD figure, (C´,C1)is a CG figure, then (C1,C´)is 
not necessarily an XD figure.
This completes the proof.

For 2-dimensional XD figures, conclusion 1 is a special case of property 1. Therefore, since
3-dimensional CG figures do not follow conclusion 1, they do not follow property 1 either. Thus, 
we have the following conclusion:
Property 4 In a grid of m×n×p, there is a CG figure (C,C´), if the solution set of C is A, the 
solution set of C´ is B, then the solution set of any element from A is not necessarily B and vice 
versa.

As for conclusion 2 of 2-dimensional XD figures, in infinite grids, no 3-dimensional XD figure 
exist no matter how many line segments they consist of.
Property 5 No 3-dimensional XD figure exist in an infinite grid.
Proof
If a 3-dimensional CG figure exists in an infinite grid, let it be CG figure(C,C´)

C: C1-C2-……-Cn

C´: C1´-C2´-……-Cn´(C1´=C1,Cn´=Cn).

Consider polyline C1C2C3and C1´C2´C3´,

When C1, C2, C3, C1´, C3´are fixed points, if the coordinates of C2´ have only one value, then

(C,C´) might be an XD figure; if not (C,C´) is not an XD figure.

Build a 3-dimensional rectangular coordinate system in the grid where the origin is any lattice 
point. The x-axis, y-axis, z-axis are respectively the three grid lines passing the origin. The unit 
length is same as the grid. 
LetC@C����������⃗ =(a@, b@, c@),C�C����������⃗ =(a�, b�, c�),C@C�′����������⃗ =(a�, b�, c�)
C@´C�´������������⃗ =(x@, y@, z@),C�´C�´������������⃗ =(x�, y�, z�)
Because(C,C´)is a 3-dimensional CG figure, we get

⎩
⎪
⎨

⎪
⎧

a@x@ + b@y@ + c@z@ = 0
a�x� + b�y� + c�z� = 0

x@ + x� = a�
y@ + y� = b�
z@ + z� = c�

             (1)

If(C,C´)is an XD figure, then Equations 1 has one integer solution.
Let that solution be x@ = m@, x� = m�, y@ = n@, y� = n�, z@ = p@, z� = p�.

If k is an integer, then,

⎩
⎪
⎨

⎪
⎧

x@ = m@ − (b@c� − b�c@)k
x� = m� + (b@c� − b�c@)k
y@ = n@ + (a@c� − a�c@)k
y� = n� − (a@c� − a�c@)k
z@ = p@ − (a@b� − a�b@)k
z� = p� + (a@b� − a�b@)k

must be the solution of Equations 1.

Page - 241



A study on the properties of CG and XD figures  26/26 

 

If  a@c� − a�c@ = 0, a@b� − a�b@ = 0, b@c� − b�c@ = 0

Then cos<C@C����������⃗ ,C�C����������⃗ > = LºL��»º»��MºM�

¼Lº��»º
��Mº�¼L���»�

��M��

= ±¼Lº�L���»º
�»�

��Mº�M����Lº�»�
���»º

�M����Lº
�M��

Lº�L���»º
�»�

��Mº�M����Lº�»�
���»º

�M����Lº
�M��

=±1
which shows C1C2C3 to be collinear. This does not match the definition of XD figures.
Thus, a@c� − a�c@ = 0, a@b� − a�b@ = 0, b@c� − b�c@ = 0 are not all correct.
In addition, k can be any integer, so the set of equations has innumerable solutions,
so (C,C´)is not an XD figure
Therefore, no 3-dimensional XD figure exist in an infinite grid.
This completes the proof.
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