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Clouds Thick, Whereabouts Unknown 
-Application of Algebra to Cloud Storage- 

Summary

This project aims on the research of application of algebra to cloud computing. 

First of all, we associate every two bits of a file with a quadratic function, then by 
making use of the mathematical theory “three distinct points on the plane can 
uniquely determine a quadratic function”, we are able to design a distributive storage 
scheme which enable us to divide a particular file into 3n +  other different container 
files separately.  In reverse, if we want to recover the original file, we could finish 
the procedure conveniently by just making use of any three different container files. 

On the other hand, the employment of the technique of permutations could allow us to 
encrypt the container files according to their layers as well as the entries within the 
layers. Therefore the security level of this technique could be greatly improved. 
What's more, we could apply the Ruffini Theorem which could help in deciding the 
greatest value of the period (or order) of permutations. Therefore it would benefit not 
only the process of implementation, but could also maintain a high level of security. 

In practice, we have developed a C program to implement the proposed algorithm. It 
allows the program to generate the container files and recover the original files swiftly, 
and the sizes of the resulted container files are even reaching up to 68% of that of the 
original file after compression. Therefore with no doubt it would benefit on the speed 
of transfer of the container files via internet. In addition, we could associate a pair of 
bits with the other quadratic functions or even non-polynomial functions in order to 
make the encryption more complex and harder to be broken. What’s more, since the 
distributive storage and encryption algorithms are highly parallel, we could develop a 
parallel version of the C program for speedy implementation.  

The cloud computing system, with its original exquisite design as well as simple and 
easy implementation character which shows the practical value of the program, we 
believe that it would be a satisfying and user-friendly technology for the modern 
society. 

Last but not least, on both theoretical and practical level, this newly developed 
program, with its propound sights on modern data storage, should worth more space 
for further advance studies and development in future. 
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Clouds Thick, Whereabouts Unknown 

-Algebra Applications to Cloud Storages- 
 

Chapter 1: Introduction 
The world keeps evolving, so as our life. Alvin Toffler, an America futurist, described 
in his famous book The Third Wave [1], that human progress could be divided into 
three ‘waves’: The Agricultural Revolution constitutes the First wave; the Industrial 
Revolution, the Second Wave and the Third Wave, which is a different world we have 
just entered, comprises the Information Age based on the revolution brought by 
Computer Technology. To review from the past, IBM developed the mainframe 
computer in the 60s of the 20th century; personal computer (PC) become popular in 
the 90s which followed immediately by information explosion brought by internet. 
Nowadays, network servers and users exist everywhere in our world, perform various 
calculation tasks according to different enquires. Now, in the early 21st century, we are 
living in the Third Wave society which represented as the Cloud Computing Era. 
Cloud computing has become increasingly important owing to the continuous 
economic development. Apart from performing calculation and providing storage at 
supercomputer-level at any time, cloud computing require much lesser cost compared 
to the supercomputers. 

 
Cloud computing is characterized by the following 5 basic properties [2] : 

1. Multi-Tenancy (Shared Resources) 

Resources are shared by all the users. 

2. Massive Scalability 

Serve many users at the same time with sufficient bandwidth and data storage. 

3. Elasticity 

The numbers of users could be elastic. After the quitting of one user, the 
resources would be redistributed to the others. 
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4. Pay as You Go 

The users need to pay only for the used resources.  

5. Self-provisioning of Resources 

The users could apply more resources according to their needs. 
 
In this report, we will focus on one part of cloud computing, that is distributive 
storage. We always want resources to be used in a more safe, convenient and 
economic manner, and distributive storage could help us with this: It could divide a 
file into several parts and save them into different storages. We could also collect and 
recombine them into the original file from the storages whenever we need it. 
  
An ideal distributive storage should satisfy the following conditions: 

1. Safety 

Data provides only for the authorized users, and could not be easily stolen during 
the transfer process. 

2. Availability 

Data access limits no time and places. 

3. Reliability 

Minimize the possibilities of the stop of service when the system fails.  

4. Implementation 

The system could run smoothly. 
 
In order to satisfy the above conditions, we have the following proposal: 
 
Assume that there is file. We could divide it into 3n +  container files through a 
specific program and save them into different storages respectively. The divided files 
are different from each other and could be encrypted. If we want to recover the 
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original file, we only need to collect any three different container files, and make use 
of another specific program in the host computer to decrypt and combine them, and 
then we can get the original file. The process is shown by the following diagram: 
 

Storage_k Storage_k+1 Storage_k+r

Original 
file

file
_k+r

file
_k

file
_k+1

 
Figure 1: A computer program divides the original file into 3n + container files. 

 It could be recovered by combing any three different container files.

 

 

To view the distributive storage from the point of technology structuring, our proposal 
meets the standard of Reliability since the number of storage (e.g. 10) far exceeds 3 
which is the number of the container files need. So the system could still function as 
usual even the storage fails. Moreover, because of the fact that any single container 
file only contains incomplete information of the original file, we need not worry about 
information leakage if the storage or the network is intruded. Therefore system 
security is greatly improved. 
 
By practical operation, we could make use of the quadratic functions to produce the 
container files and recover the original file. The advantage is: it is easy to be 
implemented and detect errors during the operation. On the other hand, owing to the 
fact that the recovery process is invariant under permutations, we could further 
encrypt the container files to improve the security. 
 
We will introduce mathematical concepts which are relevant to the design and 
implementation of the systems in chapter 2. In chapter 3, we will introduce how to 
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producing container files and the recovery of the original files and at the same time, 
prove the feasibility of these methods. In chapter 4, we will introduce the multi-layer 
encryption method utilizing the permutation functions to encrypt the container files 
and prove the recovery method is invariant under permutation. Besides, for the 
decimal encryption, we will show how the Ruffini theorem to calculate degree or 
period of a permutation. Chapter 5 is the implementation and its results. Chapter 6, 
the conclusion and prospects will be provided. The last part is the references. 
 
This proposal is originated by the author and her supervisor. No other similar ideas 
were found so far.
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Chapter 2: Mathematical Foundations 

 
This project introduces the division and recovery methods of an original file, the 
encoding and decoding of the container files and the feasibility on practical operation. 
In this chapter, we are going to introduce the relative mathematical concepts. First we 
will introduce some basic properties of polynomial functions which are relate to 
dividing and recovering the original file. Especially, we need the facts 1n �  distinct 
correspondences of a polynomial function of degree n  uniquely determines the 
polynomial function and�calculation of the y-intercept of quadratic Newton 
polynomial.�They are the keys of proposed distributive storage and recovery methods. 
Finally, we also introduce permutations and the Ruffini theorem which is the 
backbone of encryption method employed in this project. 
 
2.1 Polynomial Functions of Degree n  
 
We are going to introduce some elementary properties of polynomial functions [3]. 
 

Definition 2.1.1: Let f  be a function from to . A real number 0x  is a zero of f  

if 0( ) 0f x � . 

 
Definition 2.1.2: Let f  be a function from to . If there exist a sequence of 

numbers 0 1, , , na a a� such that for all x" , we have 

 1
1 1 0( ) n n

n nf x a x a x a x a�
�� � � � �� , 

then f is called a polynomial functions and the real numbers 0 1, , , na a a�  are called 

the coefficients of f . If 0na �@ , then we call n the degree of the polynomial 

function f , denoted ( )deg f . So f  is said to be a polynomial function of degree n . 
In particular when 2n � , f  is said to be a quadratic function.  
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Theorem 2.1.3: If 1
1 1 0( ) n n

n nf x a x a x a x a�
�� � � � ��  is a polynomial function 

with coefficients 0 1, , , na a a� such that f has more than n distinct zeros, then for any 

x" , we always have 
 ( ) 0f x �  

and 0 1 0na a a� � � �� . 

Proof Suppose that 1
1 1 0( ) n n

n nf x a x a x a x a�
�� � � � �� such that f has 1n� distinct 

zeros 1 2 1, , , ,n n� � � � �� , then 

 1( ) ( ) ( ).n nf x a x x� �� � ��  

Therefore , we have  

 1 1 1 1( ) ( ) ( ) 0.n n n n nf a� � � � �� � �� � � ��  

Since 0 1, , , na a a� are distinct, we have 1 1 1( ) ( ) 0n n n� � � �� �� � �@� . So 0na � and we 

have all any real number x , we have 

 ( ) 0f x �  
and f can be represented as  

 1
1 1 0.( ) n

nf x a x a x a�
�� � � ��  

Using the same argument above, we have 1 0na � � and inductively, we are able to 

obtain 

2 1 0 0na a a� � � � �� . A 

 
Lemma 2.1.4: A polynomial function of degree n has almost n distinct zero. 
 
Lemma 2.1.5: Assume that functions f and g are polynomial functions of degree n �
and they agree with each other on 1n� distinct points, then f g�  and their 
coefficients are also equal.

Proof  Let 1 0( ) n
nf x a x a x a� � � �� and 1 0( ) n

ng x b x b x b� � � �� . Define 

 1 1 0 0( ) ( ) ( ) ( ) ( ) ( )n
n nF x f x g x a b x a b x a b� � � � � � � � �� . 
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Then the polynomial function F which is of degree n  has 1n� distinct zero and by 
Theorem 2.1.3, we have 
 ( ) 0f x �  

and 

 1 1 0 0 0n na b a b a b� � � � � � �� .A 

 
Lemma 2.1.6: Coefficients of polynomial functions of degree n are unique. 

Proof  Let ( ) ( )g x f x�  in the Lemma 2.1.5 and the result followsA 

 
2.2 Newton polynomials 

Let 0 0 1 1( , ), ( , )x y x y and 2 2( , )x y be three points on the plane 2 such 

that 0 1,x x and 2x are distinct. We are going to construct a quadratic function f passing 

through these points. First, let f be of the following form: 

 0 1 0 2 0 1( ) ( ) ( )( )f x a a x x a x x x x� � � � � �  

where 0 1,a a and 2a  are unknown constant. Since ( )k kf x y� ( 1, 2,3k � ), we have 

 
0 0

1 0 1 1 0

2 0 1 2 0 2 2 0 2 1

( )
( ) ( )
( ) ( ) ( )( )

f x a
f x a a x x
f x a a x x a x x x x

�
� � �
� � � � � �

 

and 

0 0a y� , 1 0
1

1 0

y ya
x x
�

�
�

and 2 0 1 0
2

2 0 2 0 1 0

1 .y y y ya
x x x x x x

� �� �
� �� �� � �� �

 

So we are able to have the Newton polynomial [4] 

 1 0 2 0 1 0
0 0 0 1

1 0 2 0 2 0 1 0

1( ) ( ) ( )( ) (2.2.1)y y y y y yf x y x x x x x x
x x x x x x x x

� �� � �
� � � � � � �� �� � � �� �

�

 

When 0x � , we obtain 

1 0 0 1 2 0 1 0
0 0

1 0 2 0 2 0 1 0

(0) ( ) (2.2.2)y y x x y y y yf y x
x x x x x x x x

� �� � �
� � � �� �� � � �� �

�  

which is the y-intercept of the quadratic function f . 
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2.3 Permutations and Ruffini Theorem 
 

Definition 2.3.1  Let B be a function from {1, 2,3, , }MC to itself. We callB a 

permutation on the set if B is a one to one function.  (i.e. for any 

1 2, {1,2,3, , }j j M" C . If 1 2( ) ( )j jB B� , we always have 1 2j j� .) We also define 

MS is the set of all the permutations on {1, 2, , }M� . 

 
Note that there are !M  permutations on{1, 2,3, , }MC . Suppose that 10M � . There 
are totally 3628800  permutations on the set {1, 2,3, ,10}C . 
 

Theorem 2.3.2 : Let MSB " and {1, 2,3, , }j M" C . Let 

 0 ( )j jB �  

and 

 � �1( ) ( )k kj jB B B� �  

where 0,1, 2,k � � Then there is the smallest number positive number mink such that 

 mink M,  

and  

 min ( )k j jB �  

We call mink is the period of permutation B  at j and it is also denoted by jT . 

Proof: If there is an 7 81, 2, , 1k M" �� such that 

 ( )k j jB � , 

then let mink k� . 

Therefore, assume that for any 1, 2, , 1k M� ��  
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 ( )k j jB �@  

 

If 1 21 1k k M, , , � such that 

 1 2( ) ( )k kj jB B� , 

then 2 1 0( ) ( )k k j j jB B� � � . Since 2 10 2k k M, � , � , 2 1k k� . So 

1 1( ), , ( )Mj jB B ��  are all distinct. Since B is a permutation, we have 

( )M j jB � .  i.e. mink M� .A 

 
Now we are ready to show the Ruffini Theorem [5]. 

Theorem 2.3.2 ( P. Ruffini 1799 ) : Let MSB "  and let TB be the smallest positive 

integer such that for any 1, 2, ,j M� � , 

 ( )T j jB � . 

Then TB is the LCM (The least common multiple) of the period 1 2, , , MT T T� of the 

permutationB  at 1, 2, M�  respectively. Moreover TB is called the degree of the 

permutationB . 
 

Proof: LetT̂ be the LCM of the periods 1 2, , , MT T T� . For any j and a positive integer 

m , we have 

 ( 1) ( 1) ( 1)( ) ( ) ( ( )) ( )j j j j j jmT m T T m T T m Tj j j jB B B B B� � � �� � � . 

So 0 ( )jmT j jB B� � . Since T̂ is the LCM of 1 2, , , MT T T� , we obtain 

 
ˆ ( )T j jB �  

where 1, 2, ,j M� � . So ˆT TB , . 

For any 1, 2, ,j M� � ,we have ( )T j jBB � . Therefore, jT TB, . By long division,  
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 j j jT m T rB � �  

where ,j jm r  are integers such that 0 jm� and 0 j jr T, � . So 

 � �( ) ( ) ) ( ) ( . j j j j j j jm T r r m T rT j j j jBB B B B B�� � �  

Since ( )T j jBB �  and by the definition of period, we get 0jr � . So, for any 

1, 2, ,j M� � , TB is a multiple of jT  and hence TB is a common multiple of 

1 2, , , MT T T� . We finally have T̂ TB, .A 

 

Given MSB " , let 1 1j �  and 

 
11 1{ ( ) | 0,1, , }k
jA j k TB� � � . 

Let 2j M, such that it is the smallest positive integer which is not in 1A and let 

22 2{ ( ) | 0,1, , }k
jA j k TB� � � . 

Now, let 3j M,  such that it is the smallest positive integer which is not in 1A  

and 2A  and let 

33 3{ ( ) | 0,1, , }k
jA j k TB� � � . 

 
Continue this construction inductively. Note that the number of elements in iA  is at 
least one. So we can only have a finite sequence of iA  since {1, 2, , }M�  is a finite 

set. So suppose that we have a finite sequence of sets 1 2, , , rA A A�  and the size of 

the set iA  is � �1,2, ,
ij

T i r� � . Then 
1 2 rj j jM T T T� � � �� and TB  is the LCM of 

1 2
, , ,

rj j jT T T� . So we define the pattern of the permutationB as � �� � � �1 2 rj j jT T T� . 
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Example 2.3.3 : Consider 10S  and without loss of generality, if 

� �� � � �1 2 rj j jT T TB � �  , 
1 2
, , ,

rj j jT T T� is in decreasing order. So the permutations on 

the set {1, 2, ,10}� such that 1 5T +  are listed as below:  

(10) 
(9)(1)  
(8)(2),(8)(1)(1)  
(7)(3),(7)(2)(1),(7)(1)(1)(1)  
(6)(4),(6)(3)(1),(6)(2)(2),(6)(2)(1)(1),(6)(1)(1)(1)(1)  
(5)(5),(5)(4)(1),(5)(3)(2),(5)(3)(1)(1),(5)(2)(2)(1),(5)(2)(1)(1)(1),(5)(1)(1)(1)(1)(1) 
 
It is clear that permutations of the pattern (5)(3)(2) have maximum degree. When 

1 5T � , possible periods are 1, 2,3  and 4 . Their LCM is only 12. Therefore, among 

the permutations 10S , permutations with pattern (5)(3)(2) has over all maximum 

degree which is30 . For example 
 

j  1 2 3 4 5 6 7 8 9 10 
( )jB  2 3 4 5 1 7 8 6 10 9 

 

Then the degree of B  is 30TB �  and the permutationB can be represented by 

(12345)(678)(9 10) . 
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Chapter 3: Applications of Quadratic Functions to Distributive Storages 

In this chapter, we will engage in investigation of how to utilize the fact, “three 
distinct points on the plane can uniquely determine a quadratic function”, to design a 
model of distributive storage. We suppose that a file is a binary string with even 
number of bits. It is because the size of a file is counted by ‘byte’ and 1 byte equals 
to 8  bits. First, we have to find out the way which maps a bit pair in the binary string 
to a quadratic function. Then we could make use of these quadratic functions to 
produce the container files and save them into the different storages respectively. This 
process is called the encoding of the container files. If we need to recover the original 
file, we only need to utilize container files from any 3  different storages, and apply 
Newton polynomials to the y-intercepts of the correspondent quadratic functions, and 
then we could get the correspondent bit pair and recover the original file. 
 
 
3.1 Bit Pairs and Their Correspondent Quadratic Functions 

Let 1m  and 2m  be real numbers with 1 21 m m� � . We call the ordered pair 

1 2( , )m m  a key pair of the encoding method. We also call �� a bit pair if� and �  

take values either 0 or 1. Let�� be a bit pair. We define a quadratic function f�� as  

 1 2( ) ( )( )f x x m x m� �
�� � � �  

where x is in . So we obtain the following table: 
 

Since 1 21, , m m  and 1 2m m  are distinct, We can observe that there is an one to one 

corresponding relation between a bit pair�� and the y-intercept of � �f x�� , (0)f��  

Therefore, for fixed key pair 1 2( , )m m , we can define a look up table with respect to 

� � f�� (x) f�� (0)

0  0  00 ( ) ( 1)( 1)f x x x� � � 00 (0) 1f �

1 0  10 1( ) ( )( 1)f x x m x� � � 10 1(0)f m�

0  1 01 2( ) ( 1)( )f x x x m� � � 01 2(0)f m�

1 1 11 1 2( ) ( )( )f x x m x m� � � 11 1 2(0)f m m�
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the key pair 1 2( , )m m as in Table 1 
Table 1: Look up table 

 
 

where 1 2( ) ( )( )f x x m x m� �
�� � � � . 

Example 3.1.1  Let 1 2m �  and 2 3m � . Then the look up table with respect to the 

key pair (2,3) is 
 
 

and ( ) ( 2 )( 3 )f x x x� �
�� � � � .  

 
3.2  Creating Contianers 
 
Let N be a positive integer. s  is a binary string with length 2N if  

 1 1 2 2 N Ns � � � � � �� �  

Where k� and k� have value either 0 or 1. 

Given a fixed key pair 1 2( , )m m  and M distinct real numbers 1c , 2c ,� , Mc with 

3M � . For any binary string with length 2N , 

 1 1 2 2 N Ns � � � � � �� �  

We define a sequence of container with respect to the binary string s , the key pair 

1 2( , )m m  and the positive integer M  to be a sequence of  N  by 2  matrices 

1 2, , , MC C C� such that 

� � f�� (0)

0 0 1 
1 0 1m  
0 1 2m  

1 1 1 2m m

� � f��(0)

0 0 1 
1 0 2 
0 1 3 
1 1 6 
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� �
� �

� �

1

2

j j

j j
j

j N j

c f c

c f c
C

c f c

� �
� �
� �

� � �
� �
� �
� �� �

� �
 

where 1, 2, ,j M� � and
k kkf f� �� . 

Example 3.2.1:  Let 1 2( , ) (2,3)m m � , 5M �  and jc j� ( 1, 2,3, 4,5)j � . If a binary 

string s is 1 1 2 2 3 3 4 4 00101101� � � � � � � � � , then the j th container of s , jC , is a 

4 2  matrix as below: 

 

� �
� �
� �
� �

� �
� �� �
� �� �
� �� �

21

2

3

4

1
2 1
2 3
1 3

j

j

j

j

j

j j
j j j

j f c

j

j j

f c
C

j f c

j f c

j
j j j

� �
� ��� �
� �� � � �� �� �� � � �� � � �
� �� � � �� �� � � �

� �

 

where 1, 2,3, 4,5j � . So we have 
 

1 2 3 4 5

1 2 3 4 5
1 0 2 0 3 2 4 6 5 12
1 2

0 1 4 9 16

, , ,  , 
2 0 3 0 4 2

0 1
5 6

1 2 3 40 3 85

C C C C C

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �� � � � �
� � � � � � � � � �
� � � � � � � � � ��� � � � � � � � � �  

Note that there is a -1 in the second container 

2

2
2

2

1

1

0
2 0

C

� �
� �
� ��
� �
� ��� � . 

To eliminlate negative number from containers, we can redefine 

 

� �
� �
� �
� �

� �
� �� �
� �� �
� �� �

21

2

3

4

1 1
2 1 1
2 3 1
1 3 1

j

j

j

j

j

j f c
j j

j f c j j jC
j j jj f c
j j jj f c

� �
� �� �� �
� �� � � � �� �� �� � � �� � � � �
� �� � � � �� �� � � �

� �

. 
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Basically, it does not change anything of the recovery method introduced in next 
section. 
 
3.3 Recovery Method 

Let 1 2( , )m m  be a key pair and let 
1j

C ,
2j

C  and 
3j

C  be three different containers of 

a binary string s . We shall apply the recovery method defined as below to recover 

the binary s � from�the containers 1j
C ,

2j
C  and 

3j
C . 

So given three distinct containers of a binary string s � namely
1j

C ,
2j

C  and 
3j

C such 

that 

� �
� �

� �

� �
� �

� �

� �
� �

� �

31 2 31 2

1 1 2 2 3 3

1 2 3

1 1 2 2 3 3

11 1

2 2 2,  , 

j jj j j j

j j j j j j
j j j

j N j j N j j N j

c f cc f c c f c

c f c c f c c f c
C C C

c f c c f c c f c

� �� � � �
� �� � � �
� �� � � �
� �� � � �� � �
� �� � � �
� �� � � �
� �� � � �� � � � � �

� � � � � �
 

Let  

 
1 2 3

[ , , ]j j jK C C C� . 

Then the matrix K  is said to be a collector matrix and the k th row of K  is denoted 

by kK . Therefore, 

 
1 1 2 2 3 3

[ , ( ), , ( ), , ( )]j j j j j jk k k kK c f c c f c c f c� . 

Recovery method is defined by the following steps  

 

Step 01 Read the key pair 1 2( , )m m  and input the collector matrix K . 

Step 02 Let 1k �  and set a binary string 1 2 3 4 2 1 2R N Ns s s s s s s�� �  to be an zero 

string i.e. 1 2 3 2 0Ns s s s� � � � �� . 
 
Step 03 Read  

1 1 2 2 3 3
[ , ( ), , ( ), , ( )]j j j j j jk k k kK c f c c f c c f c� . 
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Step 04 From kK , we are able to read three distinct points 

� �� � � �� �1 1 2 2
, , , kjkj j jc f c c f c   � �� �3 3

,j jkc f c  

and then apply formula 2.2.2 

� � � � � �

� � � � � � � �

2

2

3 2

2

3 3

1

1 1

1

1 1

1

1 1 2 1

(0) ( )

1        ( )( )

k j k j
k k j j

j j

k j k j k j k j
j j

j j j j j j

f c f c
f f c c

c c

f c f c f c f c
c c

c c c c c c

�
� �

�

� �� �
� �� �

� � �� �� �  

to find the y-intercept of a function kf  which passes through these points.  

Step 05 According to the look up table for the key pair 1 2( , )m m , find the 

corresponding bit pair �� by using the y-intercept obtained in Step 04. 

Step 06 Let 2 1ks �� �  and 2ks �� . 

Step 07 If k N� , then output the binary string Rs  and end. Otherwise, let 

1k k� � and go to Step 03. 
 

Example 3.3.1 Following previous example 3.2.1, the key pair is (2,3) and jc j� , 

1, 2,3, 4,5j � . Now let 1 1j � , 2 3j �  and 3 4j � . Then 

1 2 31 3 4

0 4

, , 

0 0

1 3 4 9
1 0 3 2 4 6
1 2 3 0 4 2
1 3 4 3

j j jC C C C C C

� � � � � �
� � � � � �
� � � � � �� � � � � �
� � � � � �
� � � � � �
� � � � � �  

 and their collector matrix  

 

1 0 3 4 4 9
1 0 3 2 4 6
1 2 3 0 4 2
1 0 3 0 4 3

K

� �
� �
� ��
� �
� �
� �

. 

  

Let 1 2 3 4 5 6 7 8 00000000Rs s s s s s s s s� �  and read the first row 
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 � �1 1 0 3 4 4 9K �
.
 

We obtain three distinct points � �� � � � � �� � � �1 1 1 3 1 3, 1,0 , , 3, 4c f c c f c� �  and 

� �� � � �4 1 4, 4,9c f c � . Apply the formula 2.1.1, the y-intercept of 1f  is 

1
4 1 9 4(0) 3

3 1 4 3 4 1 3 1
1

f � �� � � �� �� � � �� �
� . 

According to the look up table for (2,3) , 
 
 
 
 
 
 

 where ( ) ( 2 )( 3 )f x x x� �� � � , We have 00�� �  and hence 

0 0
1( ) ( 2 )( 3 )f x x x� � � . Therefore, let 1 0s � 2 0s �  and set 1k k� � . Repeat 

above steps until 4k � . Hence, we have 3 1s � and 4 0s � , 5 1s �  and 6 1s �  and 

7 0s �  and 8 1s � . Finally, it output 

00101101Rs �  

 which is exactly the original binary string s . 
 

Theorem 3.3.2: Let a key pair be 1 2( , )m m  and let 1 2, , , Mc c c� be M distinct real 

numbers with 3M � . For binary string s  of the form 1 1 2 2 N Ns � � � � � �� �  

and 1, 2, ,j M� � , we define 

� � (0)f

0 0 1 
1 0 2  
0 1 3 
1 1 6  
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� �
� �

� �

1

2

j

j

j

N

j
j

j j

c f c

c f c
C

c f c

� �
� �
� �

� � �
� �
� �
� �� �

� �
 

 where 1 2( ) ( )( )k k
kf x x m x m� �� � �  ( 1, 2, ,k N� � ). Then for any three distinct jC  , 

we can apply the recovery method to them in order to recover the original binary 

string 1 1 2 2 N Ns � � � � � �� � . 

 

Proof: Let 
1 2 3
, ,j j jC C C be three distinct containers and 1, 2, ,k N� � . Then the 

k th their collector matrix K is 

1 1 2 2 3 3
[ , ( ), , ( ), , ( )]j j j j j jk k k kK c f c c f c c f c� . 

where 1 2( ) ( )( )k k
kf x x m x m� �� � � . First, we obtain the y-intercept of the quadratic 

function which passes the following distinct points,  

� �� � � �� �1 1 2 2
, , , kjkj j jc f c c f c  and  � �� �3 3

,j jkc f c , 

by Newton polynomial. According to lemma 2.1.5 such quadratic function is kf  

and their y-intercepts are uniquely determined. Since  

00 (0) 1f �  10 1(0)f m�  01 2(0)f m�  00 1 2(0)f m m�  

And 1 2 1 21, , ,m m m m  are distinct ( 1 2 1 21 m m m m� � � ). After having (0)kf , we are able 

to find k k� �  from the look up table.A 
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Chapter 4: Permutation Encryption 
 
We will discuss the methods to encrypt the container files and therefore improve the 
security of storage method. We will mainly apply properties of permutations which 
we introduced in chapter 2 and the Ruffini theorem for calculating the degree of a 
permutation. Knowing that the recovery method is permutation invariance, we learn 
that recovering every pair of bits is independent on the order of three distinct 
containers. Hence, we will introduce the multi-layer encryption in section 4.1. In 
section 4.2, we will talk about a second as well as a classical encryption method 
called decimal encryption. Basically, we just rearrange the numbers 1 to 9  by a 
permutation. Since a permutation is invertible, the inverse of the permutation can be 
used for decryption. Moreover, the Ruffini theorem can give us the pattern of a 
permutation which allows better encryption.   
 
4.1 Permutation Invariance and Multi-layer Encryption 

In section 2.2, Given three points 0 0 1 1( , ), ( , )x y x y  and 2 2( , )x y on the plane 2 such 

that 0 1,x x  and 2x  are distinct, then the Newton polynomial which passes through 

these three points is 

1 0 2 0 1 0
0 0 0 1

1 0 2 0 2 0 1 0

1( ) ( ) ( )( )y y y y y yf x y x x x x x x
x x x x x x x x

� �� � �
� � � � � � �� �� � � �� � .

 

In fact, from the lemma 2.1.5, the Newton polynomial is the same regardless the order 
of these three points. Hence, we have the following theorem. 
 

Theorem 4.1.1: Let 1 2( , )m m  be a key pair and let 1 2, , , Mc c c� be M distinct 

real numbers with 3M � . Given N  permutations on the set {1, 2, , }M� , namely, 

1 2, , , NB B B� , for a binary string 1 1 2 2 N Ns � � � � � �� �  and 1, 2, ,j M� � , we define 

 

� �
� �

� �

1 1

2 2

( ) 1 ( )

( ) 2 ( )
( )

( ) ( )N N

j j

j j
j

j N j

c f c

c f c
C

c f c

B B

B B
B

B B

� �
� �
� �
� ��
� �
� �
� �� �

� �
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where 1 2( ) ( )( )k k
kf x x m x m� �� � �  ( 1, 2, ,k N� � ). Then for three distinct ( )jCB , we 

are able to use the recovery method in section 3.3 to recover the original binary string 

1 1 2 2 N Ns � � � � � �� �  

Proof One should refer to the above discussion and theorem 3.3.2 and we are done

A 
In fact, since the length of the given binary string N is different from time to time. It is 

not practical if 1, , NB B� have no relation among them. Therefore, we propose that we 

just fix a permutationB and let k
kB B�  where 1, 2, ,k N� � . According to section 

2.3, we have the sequence 1 2, ,B B �  is periodical and its period can be determined 

by Ruffini Theorem. To raise the security level, the period is bigger and better. 
If 7 2 5N � � � , then B  has maximum degree 10 5 2�   and its pattern is (5)(2). If 

10 2 3 5N � � � � , thenB  has maximum degree 30 5 3 2�    and therefore, its 
pattern is (5)(3)(2). 
 

Example 4.1.2 Let 10N � . The number of all the permutation of the pattern (5)(3)(2) 

is 120960 and we list some of them below: 
(0, 8, 6, 7, 2)(1, 4, 9)(3, 5) 
(2, 4, 7, 6, 9)(0, 8, 5)(1, 3) 
(0, 3, 7, 9, 2)(4, 5, 8)(1, 6) 
(1, 6, 9, 4, 5)(0, 2, 8)(3, 7) 
(0, 1, 8, 9, 4)(2, 5, 6)(3, 7) 
(0, 2, 8, 4, 9)(1, 6, 5)(3, 7) 
(0, 8, 9, 5, 4)(1, 6, 7)(2, 3) 
(0, 2, 7, 8, 9)(1, 4, 3)(5, 6) 
(0, 9, 5, 4, 7)(1, 8, 3)(2, 6) 
(0, 2, 9, 5, 3)(1, 8, 4)(6, 7) 
(1, 9, 6, 7, 3)(4, 5, 8)(0, 2) 
(1, 6, 3, 7, 4)(0, 8, 2)(5, 9) 
(0, 5, 1, 9, 8)(2, 3, 7)(4, 6) 
(0, 9, 4, 2, 8)(1, 7, 5)(3, 6) 
(0, 3, 9, 4, 1)(2, 5, 8)(6, 7) 

(0, 4, 2, 7, 5)(3, 8, 6)(1, 9) 
(0, 1, 2, 8, 6)(4, 9, 5)(3, 7) 
(0, 5, 3, 2, 7)(6, 9, 8)(1, 4) 
(1, 9, 6, 5, 3)(2, 4, 8)(0, 7) 
(0, 4, 6, 5, 7)(2, 8, 3)(1, 9) 
(0, 7, 4, 1, 2)(3, 9, 5)(6, 8) 
(1, 2, 6, 8, 3)(0, 9, 4)(5, 7) 
(2, 4, 3, 6, 5)(0, 1, 7)(8, 9) 
(0, 3, 4, 6, 8)(2, 7, 5)(1, 9) 
(1, 3, 9, 2, 5)(6, 7, 8)(0, 4) 
(0, 6, 8, 4, 2)(1, 3, 9)(5, 7) 
(0, 1, 5, 2, 9)(3, 7, 8)(4, 6) 
(1, 9, 6, 8, 4)(0, 3, 2)(5, 7) 
(1, 6, 3, 8, 9)(0, 2, 5)(4, 7) 
(0, 6, 2, 9, 4)(3, 5, 8)(1, 7) 

(1, 4, 2, 3, 5)(7, 8, 9)(0, 6) 
(1, 7, 3, 4, 9)(0, 2, 8)(5, 6) 
(0, 8, 2, 1, 3)(6, 7, 9)(4, 5) 
(0, 3, 1, 2, 4)(7, 8, 9)(5, 6) 
(2, 3, 8, 6, 7)(1, 9, 5)(0, 4) 
(2, 9, 4, 8, 5)(0, 3, 1)(6, 7) 
(0, 9, 1, 6, 4)(2, 5, 8)(3, 7) 
(2, 3, 7, 9, 5)(0, 6, 1)(4, 8) 
(1, 2, 5, 8, 4)(0, 9, 7)(3, 6) 
(0, 5, 6, 7, 2)(1, 3, 9)(4, 8) 
(0, 3, 8, 1, 5)(4, 7, 9)(2, 6) 
(0, 5, 8, 1, 4)(3, 7, 9)(2, 6) 
(0, 1, 8, 2, 6)(4, 7, 5)(3, 9) 
(3, 6, 7, 5, 4)(0, 1, 9)(2, 8) 
(0, 7, 5, 3, 8)(2, 4, 6)(1, 9) 
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(1, 7, 5, 6, 8)(2, 3, 9)(0, 4) 
(0, 7, 6, 3, 5)(2, 4, 8)(1, 9) 
(1, 8, 2, 3, 6)(0, 7, 4)(5, 9) 
(1, 3, 7, 9, 5)(2, 8, 4)(0, 6) 
(4, 6, 7, 5, 9)(2, 8, 3)(0, 1) 
(0, 6, 8, 5, 9)(1, 2, 4)(3, 7) 
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Example 4.1.3 Let (124)(35)B � . So  
 

2

3

4

(124)(35)
(142)(3)(5)
(1)(2)(4)(35)
(124)(3)(5)

B
B
B
B

�
�
�
�

. 

 
Then applying the multi-layer encryption with respect to B  to the containers in 
example 3.2.1 
 

1 2 3 4 5

1 2 3 4 5
1 0 2 0 3 2 4 6 5 12
1 2

0 1 4 9 16

, , ,  , 
2 0 3 0 4 2

0 1
5 6

1 2 3 40 3 85

C C C C C

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �� � � � �
� � � � � � � � � �
� � � � � � � � � ��� � � � � � � � � � ,  

we have  

1 2 3 4 5

2 1 4 9 5 16 1 0 3 4
4 6 1 0 3 2 2 0 5 12
1 2 2 0 5 6 4 2 3

' , ' , ' , '  , '

1
0

2 3 504 3 1 0 8

C C C C C

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �� � � � �
� � � � � � � � � �
� � � � � � � � � ��� � � � � � � � � �  

 
4.2 Decimal Encryption  
 
It has been a long time since adopting the re-arrangement of the alphabets and letters 
as an encoding method. For example, the typewriter code [6], the typist does not need 
to enter the alphabet directly, he types the respective upper-left button instead. 
Therefore the sentence   

“I love you” 
becomes  

“8 o9f3 697” 
We could revert the codes by typing the right-bottom buttons of “8 o9f3 697”. Let 

(03579)(146)(28)B � . Applying the decimal encryption to the containers in example 
3.2.1 
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1 2 3 4 5

1 2 3 4 5
1 0 2 0 3 2 4 6 5 12
1 2

0 1 4 9 16

, , ,  , 
2 0 3 0 4 2

0 1
5 6

1 2 3 40 3 85

C C C C C

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �� � � � �
� � � � � � � � � �
� � � � � � � � � ��� � � � � � � � � � , 

We obtain 

' ' ' ' '
1 2 3 4 5

4 3 8 4 5 6 6 0 7
4 3 8 3 5 8 6 1 7 48
4 8 8 3 5 3 6 8 7 1
4 3 8 5

41

, , ,  

24 7

, 

3 6 5

C C C C C

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �� � � � �
� � � � � � � � � �
� � � � � � � � � ��� � � � � � � � � �  

Clearly, applying 1 (09753)(641)(28)B � �  to the encrypted containers, we can have 

the original containers back. 
 
Futhermore, if we consider 

 3

4

2 (05937)(164)(2)(8)
(07395)(1)(4)(6)(28)
(09753)(146)(2)(

(03579)(146)(28)

8)

B
B
B
B

�
�
�

�

,

 

we can use 2 3 4, , ,B B B B  to the first, second third and fourth layers of the original 

containers respectively for decimal encryption to obtain   
 

1 2 3 4 5

4 3 8 4 5 6 6 0 7
6 5 2 5 7 2 1 4 9 62
1 8 8 7 9 7 4 8 0 6
4 9 2 0

41

" , " , " , "  , "

4 9 0 86 3

C C C C C

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �� � � � �
� � � � � � � � � �
� � � � � � � � � ��� � � � � � � � � �  

 
If we want to decrypt the decimal encrypted containers above, it can be done by 

applying 1 2 3 4, , ,B B B B� � � � to the corresponding layers. 

 

Definition 4.2.1 We call the permutation B  on the set{0,1, ,9}� a decimal 

encryption permutation. Suppose that a decimal representation of a number is 

1 2 Ra a a� , where for all ra "{0,1, ,9}� and 1 0a �@ . Then define 
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 1 2 1 2( ) ( ) ( ) ( )R RT a a a a a aB B B B�� � . 

 
4.3 Mixed Encryption Method 
 
Example 4.3.1 Follow example 4.1.3.  After multi-layer encryption, the resulted 
containers are  

1 2 3 4 5

2 1 4 9 5 16 1 0 3 4
4 6 1 0 3 2 2 0 5 12
1 2 2 0 5 6 4 2 3

' , ' , ' , '  , '

1
0

2 3 504 3 1 0 8

C C C C C

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �� � � � �
� � � � � � � � � �
� � � � � � � � � ��� � � � � � � � � �

 

Let 

3

4

2 (05937)(164)(2)(8)
(07395)(1)(4)(6)(28)
(09753)(146)(2)(

(03579)(146)(28)

8)

B
B
B
B

�
�
�

�

.

 

Apply the decimal encryption to 'iC s, we have a sequence of fixed encrypted 
containers  

1 2 3 4 5

8 4 6 0 7 41 4 3 5 6
1 4 6 5 7 2 2 5 9 62
1 8 8 7 0 6 4 8 9 7
2 4 6 0 0 9 4 3

" , " , " , "  , "

9 8

C C C C C

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �� � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � �� � � � . 

 
4.4 Quadratic Encrypted Distributive Storage and Decrypted Recovery 
   Algorithms 

Let’s fix a key pair 1 2( , ) (2,3)m m � , the number of the storages M and a permutation 

numB  on the set{0,1, ,9}� for decimal encryption. 

Encrypted Distributive Storage Algorithm 

Step 01 Read 1 1 2 2 N Ns � � � � � �� �  and let 1k �  

Step 02 Generate a permutationB � on the set{1, 2, , }M� for multi-layer encryption. 

Step 03 Let ( ) ( 2 )( 3 ) 1k kf x x x� �� � � �    

% To eliminate the only negative value -1. 

Step 04 j=1         
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%Steps 04-07 performing mixed encrypted distributive storage. 

Step 05 ( ,1) ( ), ( ,2) ( ( ))k k
j jC k j C k f jB B� �        

%Multi-layer encryption 

Step 06 � � � �( ,1) ( ,1) , ( , 2) ( ( ))k k
num num

k
j j jC k T C k C k T f j

B B
B� �     

% decimal encryption 

Step 07 If j M� , then go to Step 08 Otherwise, go to Step 05  

Step 08 If k N� , then go to Step 09 Otherwise, go to Step 03  

Step 09 j=1  

Step 10 Store jC to the j th storage  

Step 11 If j M� , then quit Otherwise, go to Step 09. 

 
Decrypted Recovery Algorithms 

 

Step 01 Read three different containers
1j

C , 
2j

C  and 
3j

C of a binary string s  such 

that 
� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

3 321 1 2

3 32 21 1
1 2 3

2 2 31 1 3

1,1 1, 21,1 1, 2 1,1 1, 2

2,1 2, 22,1 2, 2 2,1 2, 2

( ,1) ( , 2) ( ,1) ( , 2)( ,1) ( , )

 ,

2

,  

j jj j j j

j jj j j j
j j j

j j j jj j

c cc c c c

c cc c c c
C C C

c c c cN NcNc N NN

� �� � � �
� �� � � �
� �� � � �� � � � �� � � �
� �� � � �
� �� � � �� �� � � �

� � � �� �
 

 
Step 02 Let 

� � � � � � � � � � � �
� � � � � � � � � � � �

21 1 2 3 3

2 2 31 1 3

1 1 2 2 3 3

1,1 1, 2 1,1 1, 2 1,1 1, 2

2,1 2, 2 2,1 2, 2 2,1 2, 2

( ,1) ( , 2) ( ,1) ( , 2) ( ,1) ( , 2)

j j j j j j

j j j j j j

j j j j j j

c c c c c c

c c c c c c
K

c c c cN N N N N Nc c

� �
� �
� �

� � �
� �
� �
� �

� � � � � �

.

 

% The matrix K is collector matrix. It’s k th row is denoted by kK . Therefore, 
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% 
1 1 2 2 3 3
( ,1) ( , 2) ( ,1) ( , 2) ( ,1) ( , 2[ , , , , , ])j j j j j jkK c c c c c ck k k k k k�  

Step 03 Let 1k � and set a binary string 1 2 3 4 2 1 2R N Ns s s s s s s�� �  to be an zero 

string. 
 
Step 04 Read the k th row of the collector matrix K  

1 1 2 2 3 3
( ,1) ( , 2) ( ,1) ( , 2) ( ,1) ( , 2[ , , , , , ])j j j j j jkK c c c c c ck k k k k k�  

Step 05 

� � � � � � � � � � � �1 1 2 2 3 3
( ,1) ( , 2) ( ,1)[ , , , ,( , 2) ( ,1) ( , 2 ]),k k k k k k

num num num num num num
j j j j j jkK T c T c T c T ck k k k k kT c T c

B B B B B B� � � � � ��

% Decimal decryption for kK . 

Step 06 From kK , we have three distinct points 

� � � �1 1 2 2
, ,( ,1) ( , 2) ( ,1), ( , 2)j j j jc c c ck k k k  and � �3 3

,( ,1) ( , 2)j j kc ck . Then apply formula 

2.2.  

2

2

3 2 2

3 2 3

1

1 1

1

1 1 1

1 1 1

( , 2) ( , 2)
( , 2) ( ,1)

( ,1) ( ,1)

( , 2) ( , 2) ( , 2) ( , 2) ( ,1) ( ,1)
( ,1) ( ,1) ( ,1) ( ,1) (

(0)

        
,1) ( ,1)

j j
k j j

j j

j j j j j j

j j j j j j

k k
k k

k k

k k k k k k
k k k

c c
f c c

c c

c c c c c
k k

c
c c c c c kc

�
� �

�

� �� �
� �� �

� � �� �� �

 

To obtain the y-intercept of the quadratic polynomial passes through these points. 
 
Step 07 According to the look up table of the key pair (2,3) . We are able to find the 

bit pair ��  corresponding to the y-intercept from step 04. 

Step 08 Let 2 1ks �� �  and 2ks �� . 

Step 09 If k N� , then out the binary string Rs  and quit. Otherwise, let 1k k� �  

go to step 04. 
 
Note that the look up table of (2,3)  is  

� � f��(0)

0 0 2 
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where ( ) ( 2 )( 3 ) 1f x x x� �
�� � � � � .  

 

1 0 3 
0 1 4 
1 1 7 
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Chapter 5: Implementation and Results of the Algorithms 
 
5.1 Purpose and Methods of the Performance Tests 
  
We wrote a “C program” named “cloud.exe” according to the quadratic distributive 
storage and decoding recovery calculation which are introduced in the last chapter. 
We will test the performance of the program with different types and sizes of files 
according to its running time and compression ratio.  
   
We have two groups of files. The first group are randomly generated text files with 
sizes of 2, 4, 6, 8, 10 MB (megabyte). The second group is consisted of office files, 
images and pdf. First, we use cloud.exe to run on the two groups of files in the same 
computer, encode them with different encryption options and try to recover them with 
any 3 different container files, record its performance. The process would produce 
container files which are 8 times larger in size of the original file on regular base. 
Then we will compare the results after the compression of the files.  
 
 
 
5.2 Review of the Result of Performance Tests 
 
We could see from the data that the relation of the running time and the size of the 
original file represent a linear growth. Different encryption method would have 
different influence on the running time. Basically, multi-layer encryption uses less 
resource and therefore has almost no influence on the running time as we expected. 
Although decimal encryption and decryption is the principal part of the calculation, it 
has small influence on the average size of the container files after compression. 
 
Let’s look at the compression ratio of the original file and the container files. In the 
first text files group, the size of the compressed container files randomly produced 
takes 60% of the size of the original file. In the second group, the result shows that the 
compression ratio has direct relation with the format of the original file. We could 
learn that image formats such as BMP, JPG would produce bigger container files, and 
DOC, TIF vice versa. The phenomenon may owe to the format of the original file: 
most of the images are compressed before division while text files may contain many 
markups to express its contents. 
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In the next section, we will present the trial results with tables and line charts. 
 
5.3 The trial results 
 
For the convenience of the discussion, in this chapter, a quadratic storage method is 
called a type 0 storage. Type 1, type 2and type 3 refer to a type 0 storage plus 
multi-layer encryption, decimal encryption or mix encryption respectively.  

 
5.3.1 Speed Tests 
 

a) Producing Containers 
 

The following table shows the time needed for producing compressed containers 
of the first group for all types: 
 

Size of the txt file 

(MB) 

Type 0 

(sec)

Type 1 

 (sec) 

Type 2 

 (sec) 

Type 3 

 (sec) 

2 9.136 8.623 29.997 29.369 

4 16.153 15.903 58.931 58.392 

6 23.996 22.549 88.308 87.362 

8 37.062 33.596 118.25 117.533 

10 42.381 33.872 147.051 147.145 
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Figure 2: The container producing time needed for the first group and all types 
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b) Recovery the Original File 
 
The following table shows the time needed for recovering original files from their 
containers in a) for all type of storages : 

 
Size of the txt file 

(MB) 

Type 0 

 (sec) 

Type 1 

 (sec) 

Type 2 

 (sec) 

Type 3 

 (sec) 

2 0.535 0.588 9.097 8.891 

4 1.099 1.151 17.466 17.555 

6 1.553 1.7 26.23 26.362 

8 2.13 2.264 34.957 35.037 

10 2.618 2.829 43.71 43.708 

 
 
 

 
Figure 3: The time needed for recovering the original files  

from the container files for all type of storages.
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5.3.2 Container Size Tests 
 
a) The following table shows that average sizes of the compressed container 

files of the first group for all type of storages after produced : 
 

Encryption options 2MB 4MB 6MB 8MB 10MB 

Type 0 1,286 2,572 3,857 5,142 6,428 

Type 1 1,282 2,564 3,844 5,125 6,407 

Type 2 1,388 2,794 4,165 5,552 6,937 

Type 3 1,368 2,731 4,094 5,458 6,821 

 
 
 

Figure 4: The average sizes of the container files of the first group after compression.
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b) The following table shows the ratio of the compressed container files 

compare to the first group original files after all type of storage.      

 
Encryption options 2MB 4MB 6MB 8MB 10MB 

Type 0 62.80% 62.79% 62.78% 62.77% 62.77% 

Type 1 62.60% 62.59% 62.57% 62.57% 62.56% 

Type 2 67.76% 68.22% 67.79% 67.78% 67.74% 

Type 3 66.78% 66.68% 66.64% 66.63% 66.62% 

 
 

 
Figure 5: The ratio of the size of the compressed container files compare 

 to the first group original files for all type of storages.
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5.3. The Performance of Type 3 Storage for Various Common File Formats 

The results are summarized in the table below: 
 
Common 

Format  

Size of the 

original 

files

(KB) 

Time for 

producing 

containers

(sec)

Time for 

recovery

(sec)

Average 

size of 

containers 

(KB)  

Average size of 

containers 

With

compression 

 (KB) 

Ratio of size of 

compressed 

container and 

the size of 

original file  

(%) 

bmp 788.8 11.306 3.601 6310.8 1301.4 164.98% 

jpg 841.5 11.931 3.723 6731.7 1070.0 127.15% 

png 852.7 12.379 3.816 6821.9 1969.5 230.96% 

tif 817.4 11.540 3.616 6539.2 2113.1 258.52% 

doc 986.5 14.049 4.310 7892.0 806.3 81.74% 

xls 1006.0 14.309 4.332 8048.0 513.8 51.07% 

ppt 826.0 11.866 3.714 6688.0 779.9 93.29% 

pdf 879.8 12.574 3.948 7,038.7 785.2 89.25% 
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Chapter 6: Conclusion and Prospects 

6.1 Conclusion 
�
This project studies the application of algebra to cloud computing, precisely, 
distributive storage.  
 
On theory, first, we associate the bit pairs of a file with quadratic functions, then we 
use the fact “three distinct points on the plane can uniquely determine a quadratic 
function” to design distributive storage which enable us to divide the file into 3n +   
other different container files. In reverse, we could recover the original file by making 
use of any three different container files. Second, by applying permutation to design 
the multi-layer encryption and decimal encryption method of container files, the 
security of distributive storage could be improved greatly. Third, the application of the 
Ruffini theorem in deciding the largest degree of permutation could provide 
convenience in programming and practical operation, and maintain a high level of 
security at the same time. 
 
In practice, we use a “C program” to develop the distributive storage system which 
allows swift generation of container files and recovery of original file. Moreover, the 
compressed container files take only 68% of the size of the original file, which 
benefits the transfer process on internet.  
 
Effectively combing practice and theory, the application of algebra in cloud 
computing provides us a better storage method of data. 

6.1 Prospects 
 

In Chapter 2, we relate the quadratic function 1 2( ) ( )( )f x x m x m� �
�� � � �  to the byte 

pair�� . In fact, f�� could be chosen different kind of function other  quadratic 

polynomial as long as we could find that 0x  could satisfy the condition that 00 0( )f x , 

01 0( )f x , 10 0( )f x  and 11 0( )f x  are different. As a result, the relative container files 
could be more complex and diversified. In addition, Let 0 0x �  and  let byte pair 

��  correspond to (sin )f x��  where [0, / 2]x 	" . Therefore, we can also obtain the 
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similar distributive storage and encryption methods. However, (sin )f x�� is not a 

polynomial function. 
 
In practice, both the distributive storage and encryption and decryption method are 
highly parallel. We could make use of the MPI protocol [7] to develop a cloud 
program which support parallel operation in order to increase the operation speed and 
reduce the running time. Generally, a double blade server in a computing cloud 
contains 25 CPUs, therefore shorten the operation time by 25 times. 
 
Finally, we hope that there will be further development of this project both on theory 
design and practical operation.  
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