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Abstract:

In this paper, the trilinear coordinate in plane is studied, and is generalized into
the n-dimensional Euclidean space. n-linear coordinate system is established. The
coplanar theorem of n-points and the concurrent theorem of n-hyperplanes are
established in n-linear coordinate space. The author proposed the concepts of
accompanying space, horizontal line in trilinear plane and horizontal plane in its
accompanying space. The author established the parallel theorem and oriented line
theorem in trilinear plane, etc.

Keywords: trilinear coordinate; n-linear coordinate; accompanying space;

oriented line; hyperplane.
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1 Introduction

In plane geometry, we often meet the problem on a line passing through three
points. For example, the problem of Euler line: in AABC, H (orthocenter), G
(centroid), O(circumcenter), are all collinear. I discovered that the value of third-order
determinant is equal to zero consisting of distances duap ,dusc,duca, deas ,dcee,daea,
doas ,doscand doca, from H,GO to three sidelines AB,BC,CA respectively. Let 4, B
and C be three angles of AABC, and let R be radius of circumcircle of AA4ABC.Then

Ay duse ducs| [2RcosAcosB 2Rcos BeosC 2RcosCcos A
2 . . 2 . ) 2 . .

deus  depe  doea| =|=Rsin AsinB = RsinBsinC = RsinCsin 4| =0.
3 3 3

Aoy dope docy RcosC Rcos A RcosB

I forward put question to: Any three points in plane are collinear if and only if
that the value of third-order determinant is equal to ¥
&

zero consisting of distances from the three points to A

three sidelines of an any triangle in plane? F
Theorem 1.1 (Collinear theorem on three
points): Three points D,E,F in plane is collinear if D

and only if that the value of third-order determinant

1s equal to zero consisting of distances from the

three points to three sidelines of an any triangle
Fig 1
dDBC dDCA dDAB

AABC. Namely, |4

EBC dECA dEAB =0.

dFBC dF CA4 dFAB

Proof: As shown in Figure 1, Let XOY be the Descartes coordinate system in plane

with B as the origin, with BC as the X-axis. Let(xD,yD),(xE,yE),(xF,yF) be the
Descartes coordinates of D,E,F. Let S be the area of AABC. S =2R?sin Asin BsinC.
/DBC=a, ZEBC=4, Z/FBC=y.

If any one of a, B, v is not equal to zero, then x, =d,,- cota,y, =d,,-. But

2
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d d d
.DBC = D4B , SO cota = 7dDA{B +cotB, Xp=dpse cota = ,DAB +dDBC cotB.
sina  sin(B-a) dpgesinB sin
. dps
Similarly  x, =d,,.cotf=—"L+d,,.cotB,y; =d .
Sin
- _ A —d
Xp =dppecoty=—"—+dcotB,V, =dpp.
sin B
d.. = 2§ —ad e —cdy,p R 28 —adppc—cdy,p y do = 28 —adyyc—cdyyy )
DA b EC4 b Fe4 b

Three points D, E, F are collinear if and only if the area determined by the three
points is equal to zero.

| X, Yp 1
D, E, Fis collinear o, * x, y, 1=0

Xpo yp o1
Dpan +d cot B d 1
. DBC DBC
sin B
o LIS +d,.,. cot B d 1l=0
. EBC EBC -
2 |sin B
d.
—E 4 d e cOt B d e 1
sin B
l d DAB d DBC 1
o5 — d 1|=10
2 Sin B EAB EBC
FAB dFBC 1
28 —ad,,. —cd
dDAB dDBC - DZC € L
b 28 —ad —cd
= i d i EBC EAB — O
4Ssin B| “* € b
28 —ad ., —cd
dFAB dFBC 4 Fl;: c B
1 dDBC dDCA dDAB
4Rsin Asin BsinC| ¢ Fe £

FBC FC4 dFAB

If a, B, y are all equal to zero, then a, B, y are all equal to zero< D, E, F are all
in sideline BC.
If any two of a, B, y is equal to zero, for example, a=0,=0, then, the value of

third-order determinant is equal to zero< d,,r =0 < y=0< D,EF are all in

sideline BC.

If any one of a, B, vy is equal to zero, for example, a=0, then, the value of
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Yp = Ve _Vp —Vr
Xp—Xp Xp—Xg

third-order determinant is equal to zero < < DEF are all

collinear, and y, =0, Disin BC, and E, F are not in sideline BC.  Q.E.D.

I put question to further: In n-dimensional Euclidean space, any n+1 points are
all in same plane (hyperplane) if and only if that the value of (n+1)th-order
determinant is equal to zero consisting of distances from each of the n+1 points to n+1

hyperplanes of an any n-dimensional simplex respectively?

This paper starts from the research to this question. In two-dimensional
Euclidean space, I take three distances from one point to three sidelines of the triangle
as the point’s coordinate. I discovered this kind of coordinate by myself. However, I
found later that in reference [1] it is called as trilinear coordinate. I studied deeply
trilinear coordinate of two-dimensional Euclidean space, and generalized it into
general Euclidean space. I established the system of n-linear coordinate in
n-1-dimensional Euclidean space, and proposed n-linear coordinate of 0-dimensional,
I-dimensional,2-dimensional,...n-1-dimensional hyperplane, and so on.

0-dimensional hyperplane is a point. 1-dimensional hyperplane is a line. But for
convenient description, they are all called as hyperplane or plane.

In this paper, E” denotes n-dimensional Euclidean space. The concepts on the
linear structure, linear dependence, linear independence, distance, angle, scalar
product, vector product, mixed product, determinant, rank, etc, can be found in
ordinary textbooks of advanced algebra. I directly cite these concepts without
explanation. In this paper, n is a positive integer (1-dimensional Euclidean space is
not discussed in this paper).

2 Establishment of n-linear Coordinate System

Definition 2.1 (The simplex in n-dimensional Euclidean space [2]): Let

P,,P,,.., P,(k < n) be points of linear independence in n-dimensional Euclidean

space, namely, the vectors p, = P, —

1

P,,i =1,2,.., k are linear independent.

The Cartesian coordinate of P, is given as (p 10> Pitses DPino ) The set of points

4
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A

i=0 i=0

k k
Q, = {X | X = Z/l.P Z/il. =1,4 2 0} is a K-dimensional simplex based on the

vertices P,, P,,..., P, . It is expressed as notation Zp(k+1)={PO,Pl,...,P}C}. If
A =0 ,then Q, is a (K-1)-dimensional simplex, and is called the plane (or

hyperplane) corresponding to the vertex P. The K-dimensional simplex has K+1

vertices, K+1 planes, and C;,, edges.

Definition 2.2 (the n-linear coordinate system and the n-linear coordinate
space): Based on any an n-1 dimensional simplex in E",
and based on distances from the point to every hyperplane of
the simplex, we can construct the coordinate system. We call

the E"" asn-linear coordinate space, or n-space in short. We

call the coordinate system as n-linear coordinate system, or

n-coordinate in short.

Definition 2.3  (The absolute coordinate of a point in

n-space): The absolute coordinates are constructed by

distances from one point K to n hyperplanes of F
n-1-dimensional simplex in n-space.K = (dKO,a’Kl,...,dK H) B F/ A
’ ’ ’ 1
. . X
denotes the absolute coordinates. If the point K and the Fig 3

corresponding vertex are in the same flank with the corresponding

hyperplane, then d,; is positive, otherwise d,; is negative.

2-dimensional simplex in E* is shown in Fig 2 and Fig 3 as a triangle in plane.

In Fig 2,d,,=2, d,,=3, d,.=1, K=(2,3,1). In Fig 3,d,,=-1, d.=3, dy.-=2,K
=(-1,3,2). Such as d,, in Fig 3, K and 4 are in the different flank of sideline BC,
so dy, isnegative.

Definition 2.4 (The reduced coordinate in n-space): There is a point K in

n-space. If d,  :d, .:d = x,:X,..:x, , then the reduced coordinate of K

K.,n—-1
point 18 (xo B S )

5
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If the ratio of d ,,dy ,,...,d,,, is determinate, then the location of point K is

determinate.
Let 2-dimensional simplex in E* be an example shown in Fig 2, and Fig 3.

Because d,, :dy;:dy. =x:y:z, then dy, =xk ,d, =yk ,dy. =zk , k#0 .
Suppose the areas of AABC,ABKC,ACKA,ANAKB are S , S, , S, ., S,

respectively .Let a, b, ¢ be the lengths of the three sidelines. The calculated area is

oriented . If the height is negative, then area value is also negative.)

1 1 1
g:%gc.dngaw,s5:%a4.¢G=E@w,sf%%g.dm=5a%.
1
—axkS S 1
S=S,+8,+8,, §=— 0 _ 2 . N
S +S5,+8;, 1 ax+by+cz 2

—axk + lbyk + lczk
2 2 2

2xS 258 228

Therefore d,, =————.d,, = odyy =———— .
ax+by+cz ax+by +cz ax+by+cz

In the expression of d,,,d,, and d,,, the numerator, denominator are

homogeneous of x, y, z. Therefore they are not affected by proportional increase or
decrease of x, y, z. To draw the parallel line of BC the distance of which to BC is

dy, (the distance is oriented, so it is only), and to draw the parallel line of 4B the
distance of which to 4B is d,,., the intersecting point of two parallel lines is K.
Therefore, the unique point K can be located by the reduced coordinate (x, y,z) . If

ax+by+cz=0, it is assumed that K represents the point infinitely far. The

two-dimensional simplex in ordinary plane is the triangle. The three-dimensional
simplex in ordinary space is the tetrahedron.
To n-dimensional simplex in E” (n+1 vertices, nt1 hyperplanes):

de,=xk,i=0l,..,n),k+0.

no

degidgyinidg, =Xxg:x0..0%

The volume of a simplex is equal to the sum of n+1 volumes consisting of K to

n+1 hyperplanes.

6
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n n 1
V= V: = (_Fixik)
i=0 i=0 N
I F.xkV 1 |4
A nx;
="V~ ——Fdy,, dg,=—"— (i=0,,..,n).
PN NI ATS > Fx,
i=0 i=0 N i=0

(This paragraph describes the computational method of V , F, (i =0,l,...,n) .This

paragraph is a summary of related content on the reference 2.we list the results only)

V' is volume of the simplex. F; is area of n-l1-dimensional hyperplane

corresponding to vertex P. To the determinate simplex, V ,F, (i =0,l,...,n) are all

constant.
1

By Bartos formula, V' = l[(n - 1)!(111 F, j sine, jnl .

n i=1

a, 1s n-dimensional angle of n vectors P P(i=0,1,..k-1Lk+1,..n) with P,

as the origin.

N | =

1 cos(0,1) ... cos(0,k-1) cos(0,k+1) ... cos(0,n)
cos(1,0) 1 e cos(lLk=1) cos(Lk+1) .. cos(l,n)
sina, =|cos(k—1,0) cos(k—L1) .. 1 cos(k—1,k+1) .. cos(k—1,n) ’
cos(k+1,0) cos(k+11) .. cos(k+1,k—1) 1 ... cos(k+1,n)
cos(7,0) cos(ml) .. cos(nk-1) cos(mk+1) .. 1
1
1 cos(L,2) ... cos(l.m)|2
. cos(2,1) 1 .. cos(2,n)|
sing,, =
cos(n,]) cos(n,2) ... 1

(i,]) represents the two-edges angle of P P, P P, with P, as the origin.

PiP;  p =P —P,(i#k). Wecanprove 0<sina, <I.

)l )

cos(i, j) =

There is a circumscribed hypersphere to every n-dimensional simplex .Its radius

R, ton-dimensional simplex ' ~ ={p, p, .. ,p,} in E" satisfies

p(n+l)

7
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R? = ~ Dy, By B p; represents the distance between vertices P, P;.

" 2D(R,,P,...P,)

ol 0 Py P Pon

1 0 Py Po - P plzo 0 plz2 p12n

1 50 Lo pnl - :
D(P()s Pls~-" R,): pIZO 2 p12 plzn DO(PO’Pl ""3Pn) - ,0220 p221 O p22n

l p20 p21 O pZn

2 2 2

pnO pnl an 0
L po Py P o O

The area of n-1-dimensional hyperplane corresponding to the vertex angle «,

1s F,(0<k<n),then

F _(QR)" , F :w.(ogkﬁn)) . (The sine theorem in E")
sing, (n-1)! " (n—1)!

In the expression of d,, (i=0,L..,n), the numerator, denominator are

homogeneous of x; (i =0,1,...,n) .Therefore (xo,xl,...,xnfl) can locate K point only.

If z F.x; =0, we assume that K represents the point infinitely far.
i=0

In this paper, if there is no special explanation we adopt the reduced coordinate
as the n-linear coordinate.

In trilinear coordinate of EZ, for any k#0:

(x,0,0) = (1,0,0),(0,,0) = (0,1,0),(0,0,2) = (0,0,1),, (kox, ky, kz) = (x, y, z).

The n-linear coordinate can be reduced by a common factor. For example,
K=(2,4,8) can be reduced as K=(1,2,4).
Based on AABC, the followings are the trilinear coordinates of some special

points.

Vertices: A4 =(d ,5.,0,0)=(1,0,0), B =(0,1,0),C =(0,0,1).

Centroid: G:(§,§,§j=(1 ! lj:( ! ! ! j

T N . s .
a b ¢ a b c sin4 sinB sinC

1 1 1
Orthocenter: H = (2R cos Bcos C,2R cos Acos C,2R cos A cos B) = , , .
cosA cosB cosC

Circumcenter: O = (R cos A, Rcos B, R cos C) = (cos A,cos B, cos C).

Incenter: [ = (r, r, r) = (l,l,l).
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midpoint of BC: A =(0,d,,,..,d,,,; )= (0, Rsin 4sin C, Rsin Asin B) = Q,l ,.1 .
sinB sinC

Definition 2.5 (Accompanying space): the accompanying space is a Cartesian

coordinate space corresponding to n-space. The point (x,,x,,...,x, ;) of n-linear

coordinate space corresponds with the point (x,,x,,...,x, ;) of Cartesian coordinate

space. The former is n-linear coordinate, the latter is Cartesian coordinate.

The n-space is n-1-dimesional Euclidean space, but the accompanying space is
n-dimensional Euclidean space. Through this correspondence, we can study problems
of n-1-dimensional space in n-dimensional space. Similarly, we can study problems of
n-dimensional space in n-1-dimensional space.

Definition 2.6  (The corresponding relation between n-space and accompanying

space): In n-space, the points (kx,,kx,,....kx, ) for all k#0 are same point. In

accompanying space, for all k, (kx,,kx,,...,kx, ;) represents a line passing through

5
the origin, namely, a oriented vector. We denote it with the notation L, .Similarly,

every oriented vector L, of the accompanying space corresponds a point K of

n-space. We can establish a one-one map between all points in n-space and all

N
oriented vector in accompanying space, f:K <> L, .

The many problems are convenient for treatment when points of n-space are
transformed into oriented vectors of the accompanying space. Once the simplex of n-

space is determinate, then the accompanying space corresponding with it is only.

-

Definition 2.7 (n-dimensional parallelotope[2]): Let p,, p, ... , P,

from the origin O be linear independent vectors in n-dimensional Euclidean space.

The set g — {} X = ; tp0<t <1i=12,. k< n} are called as n-dimensional
i=1
parallelotope with the origin O as vertex and with p,, p, ..., p, asedges.
. . - .
If the Cartesian coordinate of p, is (xl.’l, Xips o ,xi,n) for i=12,..,n,

then the volume of n-dimensional parallelotope can be expressed by determinant
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Xy X, e X

NG

x2 n . d g bd .
"|. The mixed product of p,,p,,..., p, satisties

xn,l xn’z xn,n
X X X1
>z - > o Yo e Xy,
(DX pyX.Xp, ) p, =
xn’l xn’z xm

Therefore the volume can be represent by the mixed product of vectors.
3 The coplanar theorem and n-linear coordinate of hyperplane
Theorem 3.1 (The coplanar theorem of n+1 points): In n+l-space
(n-dimensional Euclidean space), any n+1 points are all in same hyperplane if and
only if that the value of (n+1)th-order determinant consisting of distances between
n+1 points and every hyperplane of an any n-dimensional simplex is equal to zero,
namely, that the value of (n+Il)th-order determinant consisting of n+l

n+1-coordinates is equal to zero.

Proof: Let the n-dimensional simplex in n-dimensional Euclidean space be

z p(n+1)= {PO,Pl,...,Pn}. Let the area of the hyperplane corresponding to P, be
F.. Let the volume of the simplex be V. Let the n+1-coordinate of ith point in n+1

points relative to the simplexbe D, =(d,,.d,,,....d;,),i =0,1,2...,n. Then
1< ,
—Y Fd,  =V,i=0l.nF >0V >0.
nis

This is really linear equation DS=V.

do,o do,1 dO,n F, nV

d d . d F V
p=| o 11 Ln S= 1 V= n

d,, d,, .. d, F, nV

If all points D, =(d,,,d, ,...,d,,),i =0,1,2...,n are same hyperplane, then

n-1
D,=> 4D, AgsA . 4, areallnotequal to zero.

i=0

10
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Det(D) =0 < rank(D) < (n+1) ,namely, n+1 row vectors in matrix D is linear

1oeees Ay

dependent[3] <> n+1 points are all same hyperplane [3]< p = S AD. sy, Ay A

i=0

are all not equal to zero. Det(D) represents the determinant of matrix D, rank(D)
represents rank of matrix D. Q.E.D.
Theorem 3.2 (The coplanar theorem of n+1 points): In n+1-space (n-dimensional

Euclidean space), any n+1 points D ,D,,...D  are all in same hyperplane if and

- - -

only if that the corresponding oriented vectors L, ,L, ,..L, In accompanying

space (n+1-dimensional Euclidean space) are all in same hyperplane.

= b, | b,

Namely, the mixed product ( L_;O X L; w L. j,; =0.

Specially if n=2,then this theorem is really collinear theorem of three points.

Three points D,E,F in trilinear coordinate plane is collinear if and only if the oriented

=

vectors L, ,L.,L. in accompanying space corresponding to D,E,F in trilinear

coordinate plane are all same plane.

Proof: according to theorem 3.1

D,,D,,..D, are all same hyperplane

dyy dy, o dy, lydyy lody, - lyd,,

dy dyy .. d,| Lhd, Ldy, .. hd,|
= =0 =0

d, d, . d,, ld,, Ld, . lLd,

1, #0,D,=(ld,, Ld, .. 1d,)=(x0s X %, h(=0l...m).

>%iin

In n+1-dimensional accompanying space, the value of mixed product on
- - -

Ly, Ly ,...L, is the value of determinant consisting of these vectors. It represents

- -

the volume of ntl-dimensional parallelotope. L, , L, ,..L, are all same

1

-

hyperplane if and only if the mixed product on L, ,L, ,..L, is equal to zero.

Namely,

11
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lydoo lody, . lOdO,n Xo0 Xopr - Xou
- - - - _ lldl,O lldl,l vee lldl,n B xl,o xl’l vee xl’n _0
Ly xLy %Ly |-Lp = =0.
lndn.O lndn,l lndn,n xn,O xn,l xn,n

If n+1 points are all same hyperplane, then the mixed product on n+1 oriented

- - -

vectors L, ,L, ,...L, in accompanying space is equal to zero. Vice versa, if the

—

- -
mixed product on n+l oriented vectors L, ,L, ,..L, In accompanying space is

equal to zero, then n+1 points are all same hyperplane.

xo,o xo’l xovn

Xig X e X - - - 7 =
D,,D,,..D, arecoplane _, "l—0e|LyxL, x.L, |-L, =0

xn,O xn,l xn,n

Q.E.D.

The theorem 3.2 is same as theorem 3.1 really. The theorem 3.1 deals with the
problems from n-dimensional space. If n=2, theorem 3.1 deals with the problems
from two-dimensional plane. The theorem 3.2 deals with the problems from
n+1-dimensional accompanying space. If n=2, theorem 3.2 deals with the problems
from three-dimensional space. The theorem 3.2 connects the points of n-dimensional
space with the oriented vectors of n+Il-dimensional accompanying space. The
theorem 3.2 produces more associations between two spaces, provides us with wider
eyeshot. The determinant consisting of oriented vectors represents the volume of
n-dimensional parallelotope consisting of lines passing through origin. Because the
n-linear coordinate is flexible, the volume can not be deduced by n-linear coordinate.
Though we can not deduce the volume, the value of determinant is equal to zero
represents that the volume is zero, namely, all points are same hyperplane. It
represents the relation between point, line, plane when volume is equal to zero.

In Fig 1 (trilinear coordinate space), let trilinear coordinate (x, y, z) bea

moving point in line DE. If the trilinear coordinates of D, E are

D=(xp,, vp. zp)sE=(xz, vy z), then the line equation passing through D, E in

trilinear coordinate form is

12
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x y z
Xp Yp Zp|=0-

Xp Vg Zg

Yp Zp

Ye Zg

After reduction,

In n-space, there are n-1 known points. In n-1 points, the n-linear coordinate

of ith point is X, :(xl.’o, X, g5 xi’n_l) (i=0,1,..n=2). n-1 points are all same

n-2-dimensional hyperplane. In this n-2-dimensional hyperplane there is a moving

point (xo, X e xn_l). the hyperplane equation passing through n-1 known points

in n-linear coordinate form is

X, X e X,
X X X &
0.0 or o et g After reduction, ZA,-X,- =0. 4, is algebra
i=0
X0 Xuog o Xpanan

Xo,0 Xo,1 X0,i-1 X0,i+1 X0,n-1
X X X X X
i 0,1 1,1 1Li-1 Li+l 1,n—-1
Ai - (_ 1)
Xu20 KXuo21 o X Xpoimr o Xy2,1

Xo,i®1 Xoi@2 - Xoi@m-1)

4 _( l)i(n—i) Xi i1 Xoa o Xliem-1)
=(-

Xpsier  Xpzi@2 - KXn2iem-1)

The second subscript of elements in determinant includes addition by module n.

If (k+j)<m-1),then r@®j=k+;.1f (k+j)>n-1),then r@ ; is equal to remainder
of (k+j) divided by n.

Definition 3.1 (The n-linear coordinate of hyperplane): In n-space

(n-1-dimensional Euclidean space), there are n-1 known points, D, D,,...,D, , .Their
n-linear coordinates is D, = (x,.,o, Xifs e 5X ), for i=0,...,n-2.

> Vin—-1

We call D,,D,,..,D, , as n-linear coordinate of O-dimensional hyperplane

passing through one point, namely, the n-linear coordinate of point. All are n-1. The

13

Page - 315



S16

- - -
vectors L, , L, ,...L,  are oriented vectors of corresponding accompanying space.

We call (4,, 4, A, ,) as n-linear coordinate of 1-dimensional hyperplane

passing through two points p,, D, , namely, the n-linear coordinate of line.

Xi(n- Xi(n-
Ak _ (_ 1)k(n—k) i,(n=2)®k (n-1)®k ,(k = (),1,.“,” _1)_

x./‘,(an)@k xj,(n—l)@k

All are C2.The oriented vector is (4,, 4,, .. ,A,,) corresponding to the

hyperplane passing through the origin in accompanying space.

We call (4,,4,,.,4,,) as n-linear coordinate of 2-dimensianl hyperplane

passing through three points D, D;, D, , namely, n-linear coordinate of plane.

Xin-yer  Xigm-2ek  Xi-1@k

_ k(n—k) _
4, = (_ 1) Xim-ner  Xjm-2er  Xjm-Dek|> (k=0,1,.,n-1).
Xon=3)@k  Xmn-2)0k  Xm,(n-D)ok

All are C),. The oriented vector is(4,,4,,.,4,,) corresponding to the

hyperplane passing through the origin in accompanying space.

We call the vector product of all n-1 points D xD, x..x D, , =(4,,4,,...4,,) as

n-linear coordinate of n-2 dimensional hyperplane passing through n-1 points. All

is one. the vector product LZXLZ _._xL; =(4,.4,,...4,,) 1s oriented vector

corresponding to the hyperplane through the origin in accompanying space.

X010k Yook - Xom-Dak
X X X
k(n—k)| X110k 1,20k 1L(n-1)®k _ _
A, = (_ 1) (n=k) (1) , (k=0,1,.,n-1).
Xtk Xn2pek - Xu2m-nek)

If a point D is located in the hyperplane passing through the n-1 points, then
(DyxD;x...D, ,)-D=0.
If there is not an explanation, in this paper the n-linear coordinate of hyperplane

is n-linear coordinate of n-2 dimensional hyperplane passing through n-1 points in

14
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n-space.
In accompanying space, n-coordinate of hyperplane passing through the origin is

normal vector of this hyperplane. Let m be a hyperplane of n-space. Let «, be

hyperplane passing through the origin of accompanying space corresponding to m.

Then m=a,=[4,4,,....4,,]- We adopt the round brackets for n-coordinate of point,

the square brackets for n-coordinate of hyperplane.
In the 2-dimensional plane (the trilinear coordinate plane), let X, Y be two points

of a line m, X = (xl,yl,zl),Y = (xz,yz,zz). XxY is the trilinear coordinate of this

line connecting X, Y. In 3-dimensional accompanying space, the vector product is

LXXLY:{ ]

It presents normal vector of plane determined by two oriented vectors.

Yo 2

Y2 Zy

AT T P SR

X, W

5 3

Z; X,

i 4

Yo 2

ST T PSR

X, V)

3 b

Z, X

Therefore m=«,, = { } , XxY=m.

In n-space (n-1 dimensional Euclidean space), let n-coordinate of n-1

hyperplanes be [/, = [xi,o I SN J,i = 0,1,..., » — 2 .Then the intersecting point of

n-1 hyperplanes is (xo,xl ,...,xH), such that

*0,0 Xo,1 X0,n-1 X0
X X X, _ X Y X X
Lo Ll Ln-l ' 1=0,namely, 20 Tt _ _ Tl
0 Al Anfl
Xp20 Xno2) Xp 201 N Xnoi
Xo,i@1 Xojo2 -+ Xo@n
o x X, . Xy, .
Al. — (_ 1)l(n—z) 1,i®1 1,i®2 1,i®n-1 , (l — 0,1,...1’1 _ 1 )_
Yoot Xnzi@2 - Xp2ien-

(xo,xl,...)cm1 ) = (AO,AI,...AH).

In two-dimensional plane, let trilinear coordinates of two lines be

I, =la, b, ¢]l,l,=la,, b,, c,] respectively.
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: . . L. ) ax+by+cz=0
Then the intersecting point of two lines is the solution of ,
a,x+b,y+c,z=0

namely,
x  _y oz ( ) (B alla afja b
b - - ) x’ ya zZ)= b ] B b .
G ¢ q a | h G| € Gy Ay, by
b, «¢, C, a, a, b,

Definition 3.2  (The n-coordinate of intersecting point of n-1 hyperplanes): In
n-space(n-1-dimensiona), let n-coordinates of n-1 hyperplanes (n-2-dimension) be

, =[xl.,o,xl.’l,...,xl.’H],i=0,1,...,n—2 .Then n-coordinate of intersecting point of

hyperplanes is (4,4, ,..., 4, ).

Xo,i@1 Xoj@2 - Xoi@ni
X X, X, .
Ai — (_ l)l(ﬂ—l) Li®1 1,i®2 1,i®n-1 , (l — 0’1’.”’” _ 1) .
Xpgier  Xp2i@2 0 Ky ieni

In trilinear coordinate plane (two-dimensional plane), the trilinear coordinate of

b

In accompanying space, it is really trilinear coordinate of intersecting line L,

intersecting point of lines /,m is X =/xm.

V4

Yo 2

L K%M N

Xy o

b 3

If l=[xnylazl],m=[x2,y2,22],then X:{

Z;, X

by «,, «.

m?o

- - - -

Because L, €a«,,a,, so L, L L, , L, LL, .

m?

- -
L,, a,xa,=L,, Ixm=X.

-> o

So L, xL,
In two-dimensional plane, the vector product by two trilinear coordinates on two
points is trilinear coordinate of line connecting two points. The vector product by two

trilinear coordinates on two lines is trilinear coordinate of intersecting point by two

lines.
4  The notations and relationship in n-linear coordinate system

For convenient description, the upper letters such as M represent a point. The
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lower letters such as m represent a line. The greek letters without subscript such as o
represent the hyperplane. Two upper letters such as AD represent a line connecting

two points. Several upper letters such as ABD represent the hyperplane connecting

several points. The upper letters with arrow such as L,, represent oriented vector in

accompanying space. The greek letters with subscript such as ¢, represent the

hyperplane passing through the origin in accompanying space. The n-coordinate of
point and oriented vector in accompanying space are denoted by round brackets. The
n-coordinate of hyperplane is denoted by square brackets.

Definition 4.1 (The n-coordinate of hyperplane passing through the origin in
accompanying space): The oriented vector of a hyperplane in accompanying space is
its normal vector. The map one by one between line passing through the origin and
hyperplane passing through the origin in accompany space can be established

—

g:am<—>L; , L, 1s perpendicular to ¢, . If L_}; = (do,dl,...,dn_l) ,then

m

am=[d0,d1,...,dn71]. [do,dl,...,dnfl] represent n-coordinate of «, . The equation

n

; d.x, =0 expresses the hyperplane «, inaccompanying space.

ML

7

I
(=]

Let X be a point in n-space. Let a be a hyperplane in n-space. It is evident that

Xe a s true if and only if the scalar product L; ~LZ =0.And L_; 1 L_; .

Definition 4.2 (The accompanying relation, the accompanying point, the
accompanying hyperplane): Let the hyperplane « in n-space be corresponding to

a, passing through the origin in accompanying space. Let the normal vector of «,,

- -

be L, . Let L, in accompanying space be corresponding to point M in n-space.

—

M=LM=(d0,d,,...,dn), and a=a,=[d,,d,,...,d,]. M is called as accompanying

point of .« is called as accompanying hyperplane of M. M and « become
accompanying relation.

For example, in two-dimensional plane, the trilinear coordinate of vertex 4 is
A=(1,0,0), and the trilinear coordinate of sideline BC is a=[1,0,0]. We call 4 as the

accompanying point of a, call a as the accompanying line of 4, 4 and a become

17
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-

accompanying relation. In accompanying space, L, is OX axis, a, is OYZ

a

plane. AB=[0,0,1], AC=[0,1,0] are given. Because c, b intersect in A, so
A=bxc=[0,0,1]1%[0,1,0]=(1,0,0).

Theorem 4.1  (The concurrent theorem of n hyperplanes): In n-space
(n-1-dimensional Euclidean space), n hyperplanes are concurrent if and only if the
mixed product of n-coordinates of n hyperplanes is equal to zero. In other words, the
value of determinant consisting of n n-coordinates is equal to zero. (In
two-dimensional plane: The three lines are concurrent, if and only if the value of

determinant consisting of trilnear coordinates of three lines is equal to zero).

Proof: In n-space, that n points Xo X ...,Xp-1 are coplanar is equivalent with that

- - -

n oriented vectors in accompanying space Ly ,L, ....,L,  are coplanar. Let the

1

hyperplane determined by the n oriented vectors in accompanying space be ¢, .Its

normal vector is L; . The hyperplane « in n-space corresponding to L; 1s

hyperplane determined by X X ...,Xy-1 in n-space .Its accompanying point is K.

Ly Ly ...Ly €a, Ly Ly oLy LLg.
- - -
on LaxO Ly €Ea, Ly €a, ,a,,...,a,

In n-space ,n points Xp. Xi+ ...Xp.1 are coplanar in a < the accompanying
hyperplanes of n points Xo. Xj. ...Xp. are concurrent in K.

In n hyperplanes of n-space, the n-coordinate of ith hyperplane is
L=gslyssliny)s ((=0Ln—1).

The intersecting point is (x,,x,,..., x, ), then

lo,o 10,1 ZO,n—l X9 lo,o l(),l lO,n—l

/ / e X i / /

1,0 11 Ln-1 ' |_0.Onlyif | 11 bt g,
ln—l,O ln—l,l ln—l,n—l Xt lnfl,O ln—l,l ln—l,n—l

the solution (x,,x,,...,x, ;) isnon-zero. Q.E.D.

n-1
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5 The applications of trilinear coordinate in plane geometry

In this section,the triangle denotes with AABC. and three angles denote with
A,B,C. The corresponding sidelines denote with a,b,c. R is radius of circumcircle of
AABC. r is radius of inscribed circle. GO,H,I are centroid,circumcenter,orthocenter,
incenter respectively.

Example 1. In A4BC, O is circumcenter, G is centroid, H is orthocenter. Find
the trilinear coordinate of line connecting O,H. Prove that O ,G H are collinear (Euler
line theorem).

Proof: Constructs trilinear coordinate system based on AABC. The trilinear

coordinates of points O, G H are respectively

0:(cosA, cos B, cosC), G= ! , ! , ! yH = ! , ! , ! .
sind sinB sinC cosA cosB cosC

Let m be trilinear coordinate of line connecting O,H, then

cosB cosC||cosC cosA||cosA cosB
1 1 1 1 1 1

|cosB cosC||cosC cosA||cosA cosB|

m=0xH=

cos’ B—cos*C cos?’C—cos* A cos* A—cos’ B
b b
cosBcosC cosCcos 4 cos Acos B

_| sin Acos Asin(C — B) sin Bcos Bsin(A4 —C) sin Ccos Csin(B — A)
cos AcosBcosC ~ cosAcosBcosC ~ cos Acos BcosC

= [sin 2Asin(C — B), sin2Bsin(4—-C), sin2Csin(B - A)] .

S5\ o cos A cos B cos C 1 1
L,xL.|-L, = 1 1 1 = > cos 4 -
( ¢ Gj d sin 4 sin B sin C (sin Bcos C cos Bsin C)

1 1 1

lcos 4 cos B cos C|
sinCcos B—cosCsin B sin(C — B)

=3 cos 4 =2 cos A4
( sin Bsin C cos Bcos C ) (sinBsin CcosBcosC

— <! sin2B —sin 2C ):Z( 1 1 )=0
2 sin BsinC cos Bcos C sinCcosC sinBcosB

Therefore G O, H are collinear.  Q.E.D.

Example 2. Prove Menelaus’ theorem. As shown In Fig 4, D, E ,F are collinear
¢ BF-AE-CD _

if and only 1 =1.
FA-EC-DB

Proof: Constructs trilinear coordinate system based on AABC. The trilinear
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coordinates of points D,EF are respectively A
F=(BFsinB, FAsind, 0) , E=(ECsinC, 0, AEsinA) , al
D=0, —CDsinC, DBsinB). b
B > =P
SN - BFsinB  FAsinA4 0 Fie 4
(LDxLE)LF T|ECsinC 0 AEsinA '€
0 —CDsinC DBsinB

=BF - AE -CDsin Asin BsinC — DB - EC - FAsin Asin Bsin C .

D, E, F are collinear
BF-AE-CD | GED.

< sin Asin BsinC(BF - AE-CD —DB-EC-FA)=0 & ————— =
FA-EC-DB

Example 3. Prove Ceva’s theorem. As shown In Fig 5, in
AABC, K,P,Q are respectively points on sidelines BC,CA
and AB or on their extend line. AK,BP, CQ are concurrent if

and only if 8K CP AQ _, (angle form: SinaSinySind _,
KC P4 0B SinBSin6Sinw

Proof: Constructs trilinear coordinate system based on

AABC.

1 angle form

Fig 5
K =(0, Sing, Sina),A= (1,0,0) .
AK=A%K=(1,0,0)x(0, sing, sina)=[0, sina, -—sinpf].
similarly BP=[sinw, 0, —sinA], CQ=[siny, —sind, 0].
The mixed product of AK, BP, CQ is
0 sing  —sinf
(AK x BP)-CO=lsin@ 0  —sinA|=sin@sin@sin f—sinasinysini.
siny —siné 0
sinasinysin A
Then AK, BP, CQ are concurrent <> (AK x BP)-CQO =0 < — - 4 — =
sin fsin@sin @

2 side form

K=(0, KCsinC, BKsinB)
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AK = Ax K =(1,0,0) x (0, KCsinC, BKsin B)Z[O, —BKsinB, KCsin C].

Similarly BP=[P4sind4, 0, —CPsinC], CO=[4Qsind4, —OBsinB, 0].

The mixed product of AK. BP. CQ is

0 —-BKsinB KCsinC
(4K x BP)-CQ = | PAsin 4 0 ~CPsinC
AQsin A —QBsin B 0
=sin Asin Bsin C(4Q0- BK - CP— PA-QB-KC). "(
[
| \\.
AK, BP, CQ are concurrent < 4Q-BK-CP =1.Q.E.D. III N,
AP-BQ-CK '||
N
Example 4. Prove Desargues’ theorem. As shown In |'|
\
Fig 6,there are three projecting lines from K, 4 and D, B ||'|| ;\f}
and E, C and F. Lines BC and EF are intersecting on O. A",f,-»"'“ g\"'._"*-x
Lines AC and DF are intersecting on N. Lines AB and DE P __\;;_5;'-/#"’:”::&:\&\
P Y
are intersecting on M. Prove that points M,N,O are K= —{:“-— T £
collinear. N

Fig 6
Proof: Constructs trilinear coordinate system based on AABC. Suppose s

the trilinear coordinate of K is (x,, y,, z,)-

Because D is on 4K, then D=(x, y,, z,).

Similarly E=(x,, y, z,),F=(x,, y,, z). 4B=[0, 0, 1].
DE=DxE=(x, y,, z)x(x, v, z,)=Dz, —yz,, X2, —x2,, x3—x.9,].
AB and DFE are intersecting on M.

M=ABxDE=[0, 0, 1x[y,z, —yz,, x,z, —xz,, xv—x.3,]

=(xz =520, vz =22 0)=((x %), (v, =») 0).
Similarly N =((x, —x), 0, —(z,-2)), 0=(0, (y,-»), —(z, —=z)).
(Lonis ) £, =

(xx,—x) ==y 0

(x; —x) 0 —(z; —2)|=(x, =), =Wz, —2) = (x, =)y, =¥z, —2)=0-
0 i—y) —(z,-2)
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Therefore M, N, O are collinecar. Q.E.D.
Example 5. Construct trilinear coordinate system based on AABC. K is a point

in trilinear coordinate plane. Suppose the trilinear coordinate of K is (xk - ), then

K is on circumcircle of AABC if and only if . b + S -0,

A
Xy Ve Zi mﬂhﬁ
//_‘T&Rt><
/ \
A

Here x,,y,,z, are notequal to zero (If K is one of 4,B,C, /

f

X,,V,,z, areequalto zero).

Proof: necessity

Y
As shown in Fig 7, /KBC=«. BK =2Rsin(4+ ). B
x, =BKsina =2Rsin(A+a)sina .
v, =—AKsina = -2Rsin(B-a)sina .
z, =BKsin(B-a)=2Rsin(4+a)sin(B-«a).

K= (2R sind+a)sin, —2RsinasinB-q), 2RsifB—a)sin(A+ a))

1 1 1
_[sin(B—a)’ sin( 4+ a)’ sinaJ'

Then i+i+i=sinAsin(B—0{)—sinBsin(A+0{)+sinCsin05
Xe Vi Zk
:%(COS(A—BHZ)—cos(A+B—a)—cos(A—B+a)+cos(A+B+a)+cos(C—a)—cos(C+a))=0-

Sufficiency
The distances between K and three sidelines:

ZKBC=a ,d;,- =KBsina ,dy,; = KBsin(B—-a).
28 —ad,p —cdy 4R’ sin Asin Bsin C —2R - KB(sin Asin & +sin C'sin(B —ax))

b 2Rsin B
The area of triangle is S = 2R’ sin Asin BsinC.

d

Kca =

a b ¢
Because — +—+—=0, then
X Ve %

2Rsind | 2RsinC | 4R*sin* B 0
KBsina KBsin(B—«) 4R* sin Asin BsinC —2R- KB(sin Asin ¢ +sin C'sin(B —a))
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After reduction, KB = 2Rsin(4 + «) . Therefore K is on circumcircle of AA4BC.

Q.E.D.
Example 6. Prove Pascal’s theorem. The three intersecting
points from three-pair(opposite) sidelines of hexagon inscribed in F

a circle are collinear.

Proof: As shown in Fig 8, Constructs trilinear coordinate
system based on AABC.
F:(xF, Vs zF),Bz(O, 1, O). B
FB=FxB=[-z., 0, x;]. Fig 8
Similarly EC = ExC =[y,, -x,, 0].
Suppose P is intersecting point of FB, EC, then
P=FBxEC =[-z,, 0, x,|x[y;, —x;, 0]

YE Zp
z(xExF’ XrpYVE> ZExE)= 1, > :
Xg Xp

Similarly, Suppose Q is intersecting point of CD, AF, ¢ :(xD, 1, ZFJ. Suppose
Yp YF

R is intersecting point of AE,BD, g - [’CD e 1}.

Zp ZEg

1 Ye Er a b < a b ¢ b c

N X Xp Xp Yp Zp Xp Yp Zp Yp Zp
@wﬂuz% | Ze|_FoeZpla b c)_xpypzpia b e b el
Yp YF abc |xp; yp zg abc |xp yp zZp Yy Zp

Yo Ve o a b c a,b ¢ b ¢

Zp  Zg Xp Yr  Zp Xp Yr Zp JVr Zr

According to example 5, because D, E, F are all on circumcircle of AABC, so

a, b, e g a b e g a b g .Then[l, RS 1]’

Xp Vb Zp Xg VE Zg Xp Yr Zp Xg YE Zg

( P11 ],[ 1 L, IJ are all on plane ax + by + cz = 0 of accompanying
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0 <
Theref AN .
erefore (LPXLQ)'LR:() b <|_y F e
Ye  ZE "-.“&:%_“ ——
0 i c .\\\H\._ a-'-':}‘-'i‘&-\--__
v, z, | M\‘H_\H:':f ._I.H..“Hq_% ~E
P, O, R are collinear. Q.E.D. ! h H?‘*:-M
Example 7. As shown in Fig 9, the triangle N S ‘*\},
\LL——/¢
consisting of three tangent lines on three points B \'-'.:x__%___* %
A,B,C of circumcircle of AABC is ADEF. Prove that '
AD,BE,CF are concurrent. We call this point as tripod
center W. The trilinear coordinate of W is .'ﬂ
W=L, =(sind, sinB, sinC)Z(a, b, c). Fig9

Proof: Because AF=BF, so the ratio of distances from F to AC,CB,
sin ZCAF :sin ZCBF =sin B :sin 4 . All points on line CF can be expressed as

F, = (sin A,sin B, z) . Similarly, all points on line 4D can be expressed as
D, = (x, sin B,sin C ) All points on line BE can be expressed as E, = (sin A,y,sinC )

A4=(1, 0, 0),B=(0, 1, 0),Cc=(0, 0, 1).

0 0 0 1 1 0
AD, = AxD=|| . . R . R ) =[O, —sinC, sinB].
smB sinC| [sinC x| |x sinB
0 1 1 0 0 0
CF,=CxF=|]| . , . , . . :[—sinB, sin A4, O].
smB z[ |z sind|l [sind sinB

W = AD, xCF,= [O,— sin C, sin B] X [— sinB, sin 4, 0] = (sin A, sinB, sin C) .
Similarly, 4D, xBE, = (sin4, sinB, sinC)=W.So AD, CF, BE are concurrent

in W. Q.E.D.

Definition 5.1  (The tripod center): We call W=L,, =(sin 4,sin B,sin C)=(a,b,c)

as the tripod center in the trilinear coordinate plane.

Definition 5.2 (The horizontal line and horizontal plane): All points of

accompanying line w of the tripod center W are on infinity far. Because «, is
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perpendicular to L, in accompanying space, the plane expressed by «, is

ax+by +cz =0 .All points (x,y,z) of «, are satistied by ax+by+cz=0 .The

2xs

distance from K to BC is d,, = .When ax+by+cz=0,d,, 1s not

ax+by +cz

significant. So all oriented vectors on «, have not corresponding points in trilinear

plane. We assume every point of w is on infinity far in trilinear plane. So the line

expressed by w is a line in infinity far, we call visually w as horizontal line, call «

as horizontal plane.

Constructs trilinear coordinate system based on regular AABC. a=b=c,
—2a+ b+ c=0.Then point K=(—2,1,1) is on infinity far.

Let m=[x,, vy zyl» n=[xy, »y., z,] belines on trilinear plane. Let «,,,a, be

m?

corresponding planes passing through the origin in accompanying space. The

intersecting line L_; of «, and o, passing through the origin is exist certainly.

The point K is the intersecting point of m, » in trilinear plane correspondingly. If m, n

are parallel, they have not the intersecting point in trilinear plane. But in

accompanying space, «, and «, all are passing through the origin, the intersecting

line passing through the origin is exist certainly .We assume that the intersecting point

is on infinity far when m ,n are parallel, namely, the intersecting point is on w. So, if

R
the intersecting line L, of «,, «, ison «,,thenm, n are parallel.

n

Theorem 5.1  (the theorem of parallel lines): m, n are lines in trilinear plane. m,
n are parallel if and only if the mixed product of m, n, w is zero.

Proof: Suppose mxn =K. If m, n are parallel, then the intersecting point is on

infinity far, The mixed product (mxn)-w=0, and L,-L =0.Then L, e, ,Kew.

If the intersecting point of m, n is on infinity far, then m,n are parallel. If m, n are
parallel, namely, the accompanying points M,N,W are collinear, then the mixed
product of m,n,w is zero, namely, (m xn)-w=0. Q.E.D.

Definition 5.3  (The oriented line): If m, n are parallel, the angles between m, n
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and sideline BC respectively are same in trilinear plane. The intersecting lines

between «, ,a, and horizontal plane « 6 are same in accompanying space. If the
line m in trilinear plane is corresponding with the plane «, passing through the
origin in accompanying space, the intersecting line of «, and «, isline w,, we
call w_ asthe oriented line of m. w, =mxw.

w, 1s a line passing through the origin in accompanying space, and itison «,, .
Therefore w, have not corresponding point in trilinear plane (on infinity far), the
line direction of m in trilinear plane is dependent with w, .

Theorem 5.2  (oriented line theorem): Given w, = [x,,¥,,z, ], then the slope

X, sin B

that m respect to sideline BC of AABC is (tangent of angle).

Z, +x,cos B
Proof: As shown in Fig 10, m is a line in trilinear plane. Draws BK parallel to m.
If K= (x, y,z), / KBD=« ,then the slope of m respect to sideline BC is the slope of

line BK respect to sideline BC. The trilinear

coordinate of BK is E

BK = BxK =(0,1,0)x(x, y,z) = [2,0,-x].

According to theorem 5.1, (mxw)-BK =0 ,and B

MmXwW=w,.

Namely, [x09yO’ZO]'[Zooa_x]:0, X,z—xz,=0. Fig 10

z, z sin(B-a)

=sin Bcota —cos B.

X, X sinx

X, sin B

Q.ED.

tang = ———.
z, +x,cosB

According to symmetry, the slopes of m respect to sideline CA, sideline AB of

AABC respectively are
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sinC z, sin 4
tanﬂz—yo , tany=—2"" .
X, +y,cosC Y, +2z,c084

Theorem 5.3  (Theorem of the angle between line and line): If w = [x1 Y, ,zl],
w, = [x2 - ], the tangent of angle between m and » is

X,Z, —X,z,)sin B
1“2 21

X, x, +2,z, +(x,z, + x,z,)cos B .
Specially m, n are parallel < x,z, —x,z, =0,
m, n are perpendicular < x,x, +z,z, +(x,z, + x,z,)cos B=0.
Proof: Let a be angle between m and sideline BC. Let £ be angle between »

and sideline BC. The angle between mandnis a— /.

x,sin B X, sin B
So tang=—"'"—"—, tan f=— 31— —
z, +x,cosB zZ, +x,cos B
tano —tan f (x,z, —x,z,)sin B

Then tan(a — ﬂ) =

l+tan B-tanax  x,x, + 2,2, +(x,z, + X,2,)cos B
Therefore m, n are parallel < x,z, —x,z, =0.

m, n are perpendicular < x,x, +z,z, +(x,z, + x,z,)cos B=0.
Q.E.D.
According to symmetry , we can derive easily,

(y,x, = y,x,)sinC _ (z,y, —z,),)sin 4 _
My, X%, +(yx, +y,x)cosC z,z, + y,¥, +(2,¥, + 2,¥,)cos 4

tan(a — f) =

m, n are parallel < y,x, —y,x, =0.
m,n are perpendicular< y,y, + x,x, +(y,x, + y,x;)cosC = 0.
m, n are parallel< z,y, —z,y, =0.

m, n are perpendicular < z,z, +y,y, +(z,y, +z,y,)cos 4=0.

Example 8. (Rumania Olympic test question in 2005) Let R be radius of
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circumcircle of AABC, O is center. Let r be radius of inscribed circle of AABC, I is

center, and /#0. G is centriod. Prove: /G _/ BC if and only if b=c or b+c=3a.

Proof: Constructs trilinear coordinate system based on AABC, centriod,

G= (1 ljlj , incenter, /=(1,1,1 ) ,tripod center, W =(a, b, ¢), sideline BC,

B

a b c
BC=[1,0,0].
1 1|1 11 1
G=IxG=||1 1|jt 1fjt 1f|={t-L 1 1 1 1}
E N e N - ¢c b a ¢ b a
clle alla b
Oriented lines:
0 0o |0 1 1 0 [0 b]
w = ) ) =, -
Be b ¢ |c a |la b
L S S | R S | B L T btc cta
We=la ¢ b a |b a ¢ by lc b a c|l|=|2- ’2_b’
b c c a a b a
IGLBC& x,x, + 2,2, + (x,z, + x,z,)cos B=0 (reduced after substitution)
<:>22+x2cosB=O<:>(2—a+b)+(2—b+c)cosB=O
c a
2 2 2 2 2 2
al2c—a b):a re b (after substitution cosB:u)
b+c—2a 2a 2ac

b= +2ac’ —=2ab* +3a’c—3a*b+cb* —bc* =0

S b-c)b+c-3a)a+b+c)=0=b=c or b+c=3a.Q.E.D.

Remark: The author does many exercises of geometrical question in process of
studied trilinear coordinate system. Because the limitation of space, there are no its
lists. Here are only a few famous questions in mathematical history and Olympic
question. The common method (geometrical) for Euler line question is: Connects AH.
Draws OD perpendicular to BC. It is proved by proving AAGH resemble with
ADGO. The common method for Menelaus theorem is: Draws parallel line with
DEF passing through A4. It is proved by resembling ratio. The common method for
Desargues theorem is that Menelaus’ theorem and Ceva theorem are applied in many

times. It is very complicated, and it lacks of aesthetic feeling. These methods break
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the balance and symmetry of 4,B,C,a,b,c. The advantage of triline coordinate system
in plane is that we not need auxiliary lines nearly to solve geometrical problem. In

form, the expressions of 4, B, C, a, b, ¢ are balanced, symmetrical, beautiful.

The trilinear coordinate system provides us new viewpoint to deal with
geometrical problems from trilinear coordinate ,accompanying space. Puts planar
problems into space. Solves planar problems in space. The trilinear coordinate system
provides us new viewpoint to view the relationship between point. Line, plane. If we
are experienced in applied this kind of method, many problems can be solved for very
brief and convenience.

6 The applications of n-linear coordinate system
in multi-variables regression analysis

In statistics, the multi-regression analysis is often made with the help of
computer. For example, The synthetic makings of students in middle school are
related with mark of moral education ,physical education , and all courses. Its

regression expression is

n-2
X, , =a,Xx,+a,x, +..+a, ,x, ,,0r X, = Zapxp. (x,, is mark of synthetic
p=0
makings, x,,X,,.., X, , are mark of moral education, physical education, and all
courses.)

In multi-regression analysis, the least square method is common method.

Here takes method of n-linear coordinate system.

There are m sampled students in the class. There are n examining indexes to
every student. The value of full mark is 100, m>n. In multi-regression analysis, m
students are considered as m points in n-space, every mark is considered as one of
n-linear coordinates.

At first, students are divided into some groups. There are n students in every

. . . n . . n,l
group. According to combinatorics, all are C] groups. Every student is in C)_,

groups. Let k=C].

29

Page - 331



S16

n-1
To jth group, A4, ,x,+4;,x,+...+4;,,x,,+4,,,x,,=0,0r ZAj’pxp =0.

p=0
Xo 1@ Xoooi -+ Xom-n@i
A, =17 e e el |01 k— 1= 0, n—1).
Xoogei  Xn220i 0 Kno2,(n-D)@i)
A;4,4;,554;,,,4;,, aren-linear coordinates of n-1-dimensional hyperplane.

k-1

2 A

The mean values b, = /= P i=01,..,n—1.

n—1
byXy +byx, +..4b, X, ,+b,x,  =0,0r Db x, =0.
p=0

Let aA=—£L,i=QLwn—2.

n=2
then x,, =a,x,+ax, +..+a,,x, ,,0r X, , = Zapxp.
p=0

Herek = C,,. If k is very great, the computational load of 4, is very great for

1

j=0,l,..,k—-1i=0,,...,n—1.So the computational method must be modified.

If m is divided exactly by n, then let x =". If m is not divided exactly by n,

n

then let = [ﬂ} +1. The last group have not n students (suppose q students in last
n

group, q is equal to remainder of m divided by n, q<n). All are k groups. Every
student is only in one group. To frontal k-1 groups, n-linear coordinate of n-1
dimensional hyperplane is computed. To last group, n-linear coordinate of
g-1-dimensional hyperplane is computed. In grouping, k groups can be arranged at
random. can be also arranged according to level principle.

7  The further problems to study and conjecture

To the system of n-linear coordinate, the study starts justly .There are much work

to do.
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The followings are some problems in the system of n-linear coordinate that is
considered as further studies by the author.
One. Applies n-linear coordinate system into computational geometry. There are
many relative problems on point, line and plane, such as, how to ascertain two line
segments are intersecting? how to ascertain a point is in a line? how to ascertain a
line is in polygon? and so on.
Conjecture: After applying n-linear coordinate system, the arithmetic method in
computational geometry can be reduced.
Two. Applies n-linear coordinate system into linear programming. The restrict
domain of some linear programming problems is a simplex. After applying n-linear
coordinate system, can the arithmetic efficiency of linear programming be improved?
Conjecture: After applying n-linear coordinate system, the arithmetic efficiency of

linear programming can be improved.

Three In figure 1, in absolute trilinear coordinate. the length of DE satisfies

cos A cos B 2, cos C

DE * = (x1_x2)2+ (yi=>2) (21_22)2

sin Bsin C sin Asin C sin Bsin A

_ cos A .
_ZsinBsinC % xZ)

In reduced trilinear coordinate, the length of DE satisfies

b o N c X Y1 Y, oz,
DE > =ksin 24( 72 2N s ksin 2B(] P2 Ui aksin 20 P2 T2y
¢ X Vi Y, zZ, b z, X,
X, Vs Y, z, zZ, X,
b And f_ 28°
. z X = . B . ’
= kY sin24( yz )’ (ax, + by, +cz,)* (ax, + by, + cz,)” sin Asin BsinC
1 1
Cc
Xy, Va2

Whether applying absolute or reduced trilinear coordinate, the expressions of
length are all complicated. And here is in trilinear case. In general n-space, the
expressions is very more complicated.

Definition 7.1 metric, metric space[4]: (X, d) is a metric space. X is a set, d is a metric
on X. d is a function to definite in X*xX. And satisfy following four axioms to all x, y,

zEeX.
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d is a real number, finite and non-negative.
d(x,y)=0. If and only if x=y.

d(x,y)=d(yx)

d(x,y) = d(x,2)+d(zy)

®» ®@ ©® ©

According to this definition, studies a kind of metric, under which the
expressions of length in n-space is simple, symmetrical,easily to compute.
Four. In n-space, how to compute the angle of two hyperplanes the dimensions of
which are different?
Five. The oriented line theorem in trilinear plane can be generalized into n-space?
Definition 7.2 Inner product, inner product space[4]: The real vector space X in which
inner product is defined is called as inner product space. The inner product is a map
from XxX to scalar domain K of X. To all pair x. y in X, a scalar is corresponding

with it, denoted by < x, y >. Satisfies
O<x+y,z>=<x+z>+<y+z>
@<ax,y>=a<x,y>
@<x,y>=<y,x>

@< x,x>>0,<x,x>=0<=x=0

According to this definition, studies a kind of inner product, under which the
expressions of slope in n-space is simple, symmetrical, easily to compute.

The length and angle are two main foundation stones in the Euclidean space. The
simple, symmetrical expressions and computational methods on length and angle can

make n-linear coordinate system to play a powerful role in geometry.
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