Computationally Determining the Dimensions of the Homology Groups of Directed Graphs

Ariya R. Shajii
Weston High School, MA
Coach: Gabor Lippner
Department of Mathematics, Harvard University, Cambridge MA

September 30, 2012

Abstract

In this paper, we begin by expanding the notion of homology to graphs. We then present a new computational method for computing the dimensions of the homology groups of these graphs. For the first time, we show detailed results for the first homology group H_{1} of random directed graphs.

Contents

1 Introduction 2
2 Application to Directed Graphs 3
2.1 Defining Homologies on Digraphs 3
$2.2 \quad H_{0}$ Space 4
2.3 Cycle-Graphs 5
3 Computationally Determining $\operatorname{dim} H_{n}$ 6
3.1 Required Classes 6
3.2 Forming a Basis for the Vector Spaces 9
3.3 Computing the Vector Spaces 11
3.4 Computing the Kernel Dimension 13
3.5 Determining $\operatorname{dim} H_{n}$ 13
4 Results 14

1 Introduction

In general algebraic topology, homology refers to the association of a sequence of abelian groups with a certain mathematical object.

Given the chain complex

$$
\ldots \xrightarrow{\partial_{n+2}} C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots \xrightarrow{\partial_{1}} C_{0} \xrightarrow{\partial_{0}} 0
$$

with the property that $\partial_{n} \circ \partial_{n-1}=0$ at each level, the homologies are defined by:

$$
H_{n}(C)=\operatorname{ker} \partial_{n} / \operatorname{Im} \partial_{n+1}
$$

Each $\partial_{n}: C_{n} \rightarrow C_{n-1}$ is referred to as a boundary map. See [1] for further details.
In this paper, we will focus on computing $\operatorname{dim} H_{n}$ for a special type of homology on directed graphs. The following lemma will be pivotal in this regard.

Lemma 1.1

$$
\begin{gathered}
\forall n \geq 0, \operatorname{dim} H_{n}(C)=\operatorname{dim} C_{n}-\operatorname{dim} \operatorname{Im} \partial_{n}-\operatorname{dim} \operatorname{Im} \partial_{n-1}= \\
\operatorname{dim} \operatorname{ker} \partial_{n}+\operatorname{dim} \operatorname{ker} \partial_{n+1}-\operatorname{dim} C_{n}
\end{gathered}
$$

Proof. By definition,

$$
\operatorname{dim} H_{n}(C)=\operatorname{dim} \operatorname{ker} \partial_{n}-\operatorname{dim} \operatorname{Im} \partial_{n+1}
$$

By the rank-nullity theorem,

$$
\operatorname{dim} \operatorname{ker} \partial_{n}=\operatorname{dim} C_{n}-\operatorname{dim} \operatorname{Im} \partial_{n}
$$

Moreover, we have the identity

$$
\operatorname{dim} \operatorname{Im} \partial_{n-1}=\operatorname{dim} C_{n-1}-\operatorname{dim} \operatorname{ker} \partial_{n-1}
$$

We can arrive at the original equality through substitution [2].

With this result at hand, we now proceed to applications to directed graphs.

2 Application to Directed Graphs

2.1 Defining Homologies on Digraphs

Grigor'yan et. al. defined a version of homology for directed graphs (see [2]) which we now explain. A directed graph or digraph can be represented as $G=(V, E)$ where $E \subseteq$ $\left\{i j \mid(i, j) \in V^{2}, i \neq j\right\}$ is the set of edges and $0<|V|<\aleph_{0}$ is the set of vertices.

We will define a vertex monomial $v=i_{0} i_{1} \ldots i_{n}$ to be any member of V^{n+1}, and we will define a vertex polynomial to be any linear combination of vertex monomials of the same n, i.e. any member of $\operatorname{span}\left\{V^{n+1}\right\}$.
We can then define two vector spaces V_{n} and $A_{n} \subseteq V_{n}$ as follows:

$$
\begin{gathered}
V_{n}=\operatorname{span}\left\{v \in V^{n+1} \mid v \text { is valid }\right\} \\
A_{n}=\left\{v \in V_{n} \mid v \text { is allowed }\right\}
\end{gathered}
$$

A vertex monomial $v=i_{0} i_{1} \ldots i_{n} \in V^{n+1}$ is valid if for each pair of consecutive vertices $i_{p} i_{p+1}, i_{p} \neq i_{p+1}$ for $0 \leq p \leq n-1$. A vertex polynomial is valid if all of its constituent monomials are valid.

A vertex monomial $v=i_{0} i_{1} \ldots i_{n} \in V_{n}$ is allowed if for each concecutive pair of vertices $i_{p} i_{p+1}, i_{p} i_{p+1} \in E$ for $0 \leq p \leq n-1$. A polynomial is allowed if each of its constituent monomials are allowed.

The boundary map $\partial_{n}: V_{n} \rightarrow V_{n-1}$ of the vertex monomial $v=i_{0} i_{1} \ldots i_{n} \in V_{n}$ will be defined as

$$
\partial v=\sum_{q=0}^{n}(-1)^{q}\left(i_{0} i_{1} \ldots \hat{i_{q}} \ldots i_{n}\right)
$$

where $\hat{i_{q}}$ indicates the exclusion of i_{q} from the expression. For the linear combination $v=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{j} v_{j}$ of monomials, the boundary map will simply be

$$
\partial v=\sum_{k=1}^{j} c_{k} \partial v_{k}
$$

If the boundary map results in a term that is not valid, then that particular term is simply discarded [2].

Lemma 2.1

$$
\forall v \in V_{n},\left(\partial_{n} \circ \partial_{n-1}\right)(v)=0
$$

Proof. Since ∂ is a linear map, it suffices to check the statement for vertex monomials. We have,

$$
\begin{aligned}
\left(\partial_{n} \circ \partial_{n-1}\right)\left(i_{0} \ldots i_{n}\right) & =\sum_{k=0}^{n}(-1)^{k} \partial_{n-1}\left(i_{0} \ldots \hat{i_{q}} \ldots i_{n}\right) \\
& =\sum_{k=0}^{n}(-1)^{k}\left(\sum_{j=0}^{k-1}(-1)^{j}\left(i_{0} \ldots \hat{i_{j}} \ldots \hat{i_{k}} \ldots i_{n}\right)+\sum_{j=k+1}^{n}(-1)^{j-1}\left(i_{0} \ldots \hat{i_{k}} \ldots \hat{i_{j}} \ldots i_{n}\right)\right) \\
& =\sum_{0 \leq j<k \leq n}(-1)^{k+j}\left(i_{0} \ldots \hat{i_{j}} \ldots \hat{i_{k}} \ldots i_{n}\right)-\sum_{0 \leq k<j \leq n}(-1)^{j+k}\left(i_{0} \ldots \hat{i_{k}} \ldots \hat{i_{j}} \ldots i_{n}\right) \\
& =\sum_{0 \leq j<k \leq n}(-1)^{k+j}\left(i_{0} \ldots \hat{j_{j}} \ldots \hat{i_{k}} \ldots i_{n}\right)-\sum_{0 \leq j<k \leq n}^{j+1}(-1)^{j+k}\left(i_{0} \ldots \hat{i_{j}} \ldots \hat{i_{k}} \ldots i_{n}\right) \\
& =0 .
\end{aligned}
$$

We can now define yet another vector space: $\Omega_{n}=\left\{v \in A_{n} \mid \partial v \in A_{n-1}\right\}$.
It is important to note that ∂_{n} would in fact map Ω_{n} directly to $\Omega_{n-1} \subseteq A_{n-1}$ since, if $v \in \Omega_{n}$ and $\partial_{n} v=w$, then $w \in A_{n-1}$ and $\partial_{n-1} w=\left(\partial_{n} \circ \partial_{n-1}\right)(v)=0 \in A_{n-1} \rightarrow w \in$ Ω_{n-1}.

From this, we arrive at the chain complex

$$
\ldots \xrightarrow{\partial_{n+2}} \Omega_{n+1} \xrightarrow{\partial_{n+1}} \Omega_{n} \xrightarrow{\partial_{n}} \Omega_{n-1} \xrightarrow{\partial_{n-1}} \ldots \xrightarrow{\partial_{1}} \Omega_{0} \xrightarrow{\partial_{0}} 0 .
$$

We can now define the the homologies of a directed graph to be

$$
H_{n}=\operatorname{ker} \partial_{n} / \operatorname{Im} \partial_{n-1}
$$

We will now proceed to describe a computational method for calculating the dimensions of the homology groups of directed graphs.

$2.2 \quad H_{0}$ Space

Lemma 2.2

For a digraph $G=(V, E)$ with C undirected, connected components,

$$
\operatorname{dim} H_{0}=C
$$

Proof. By definition we have,

Figure 1: Example cycle-graph (without orientation)

$$
H_{0}=\operatorname{ker} \partial_{0}=\left\{v \in \Omega_{0} \mid \partial_{0} v=0\right\} .
$$

The condition $\partial_{0} v=0$ implies that $\partial_{0}(i j)=j-i=0$ or equivalently, $i=j$. This signifies that $\partial=$ const on any connected component of (V, E), and the dimension of this space of this space is clearly C [2].

2.3 Cycle-Graphs

We say that a digraph (V, E) is a cycle-graph if it is connected (as undirected) and every vertex has a degree of 2 .

For each cycle-graph, $\operatorname{dim} H_{0}=1$ and $\operatorname{dim} \Omega_{0}=|V|=|E|=\operatorname{dim} \Omega_{1}$. Furthermore, for such graphs, we note that

$$
\begin{aligned}
\operatorname{dim} \Omega_{n} & =0 \quad \forall n \geq 3, \\
\operatorname{dim} H_{n} & =0 \quad \forall n \geq 2 .
\end{aligned}
$$

If our graph is a triangle or square:

$$
\operatorname{dim} \Omega_{2}=1, \operatorname{dim} H_{1}=0,
$$

otherwise:

$$
\operatorname{dim} \Omega_{2}=0, \operatorname{dim} H_{1}=1 .
$$

A detailed proof can be found in [2].

Figure 2: Digraph with 3 vertices and 3 edges.

3 Computationally Determining $\operatorname{dim} H_{n}$

In order to devise a computational method with which to compute the dimensions of the homology groups of digraphs, object oriented programming will be utilized in conjunction with a mathematics package, which will be used to carry out the more intensive tasks. In this case, Java and Mathematica will be used. Other alternatives are Python and MATLAB, which are currently being considered for future work in this area.

3.1 Required Classes

Firstly, a Digraph class will be created. The actual graph will be represented through a binary adjacency matrix with 0 s along its diagonal. The example shown in Figure 2 corresponds to

$$
G=(V, E)=(\{(0),(1),(2)\},\{(0)(1),(0)(2),(1)(2)\})=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

This class will resemble the following:

```
public class Digraph {
    private boolean[][] matrix;
    public Digraph(boolean[] [] matrix) {
        this.matrix = matrix;
    }
    public VectorSpace vSpace(int n) {
        // implementation discussed later
    }
    public VectorSpace aSpace(int n) {
```

```
    // implementation discussed later
}
public VectorSpace omegaSpace(int n) {
    // implementation discussed later
}
```


\}

The next component is representing the elements of the various vector spaces associated with each digraph. The example shown above, for instance, would have an A_{1} of $<(0)(1),(0)(2),(1)(2)>$; i.e. the space would be comprised of all linear combinations of these three elements. Therefore, we require three specific classes:

- Algebraic abstract base-class or interface, containing a boundary method (in addition to other possible methods) that must be overridden by all subclasses. The implementation could potentially look like this:

```
public interface Algebraic {
    public Algebraic boundary();
    public Algebraic sum(Algebraic v);
    public Algebraic scalarMultiply(double c);
    public boolean isValid();
}
```

- VertexMonomial class (extending/implementing Algebraic) containing a real coefficient and a list of vertices. For example, $3(0)(1)$ would be represented by a single 3 and by a list containing 0,1 in that order.

```
public class VertexMonomial implements Algebraic {
    private double coefficient;
    private int[] vertexList;
    public VertexMonomial(double coefficient, int[] vertexList) {
                        this.coefficient = coefficient;
        this.vertexList = vertexList;
    }
    public VertexMonomial(int[] vertexList) { this(1, vertexList); }
```


\}

- VertexPolynomial class (extending/implementing Algebraic) containing a set of VertexMonomial instances, the sum of which results in the polynomial that this class represents. For example, $2(0)(1)-3(1)(2)$ would be represented by a set of two monomials: $2(0)(1)$ and $3(1)(2)$.

```
public class VertexPolynomial implements Algebraic {
    private VertexMonomial[] monomialList;
    public VertexPolynomial(VertexMonomial[] monomialList) {
                        this.monomialList = monomialList;
    }
}
```

Of course, the base-class is not an absolute necessity, but is beneficial as it serves as a connection between its subclasses, which are directly related to one another.

Next, we will create a VectorSpace class, which will be used to represent V_{n}, A_{n} and Ω_{n}. This class will hold a set of Algebraic objects representing the basis for a specific vector space. One significant feature that must be implemented is the ability to reduce an arbitrary set of such objects to a genuine basis such that each element is linearly independent of the others. This will allow us to determine the dimension of our vector space. For example, if we wished to compute ∂X where $X=<(0)(1),(1)(0)>$, by simply looping through the generators, taking the boundary of each, and adding each result to a new set of generators, we would obtain $\{(1)-(0),(0)-(1)\}$. Hence, this must be reduced to obtain the basis $<(1)-(0)>=<(0)-(1)>$, with which we can deduce that the dimension of this particular vector space is in fact 1 .

```
public class VectorSpace {
    private Algebraic[] basis;
    public VectorSpace(Algebraic[] listOfTerms) {
                basis = reduceToBasis(listOfTerms);
    }
    private static Algebraic[] reduceToBasis(Algebraic[] listOfTerms) {
            // implementation discussed later
    }
    public boolean contains(Algebraic v) {
        // implementation discussed later
```

```
    }
    public int dim() { return basis.length; }
}
```


3.2 Forming a Basis for the Vector Spaces

To determine if $u \in \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, we must determine if there exists coefficients $c_{1} \ldots c_{n}$ such that $\sum_{i=1}^{n} c_{i} v_{i}=u$. To do this computationally we shall

1. Ensure that each monomial appearing in u appears somewhere in $v_{1} \ldots v_{n}$. If one is found that does not, $u \notin \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
2. List each unique monomial of $v_{1} \ldots v_{n}$ (ignoring their coefficients). For example, $<$ $3(0)-2(1),(0)+4(2)>$ would produce the list consisting of $1(0), 1(1)$ and $1(2)$. We will denote the members of this list by $m_{1}, m_{2}, \ldots, m_{j}$.
3. From the expression $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}=u$, we can form a system of linear equations by equating the coefficient of each m_{i} with that of the corresponding monomial in $u:\left(k_{i, 1} c_{1}+k_{i, 2} c_{2}+\ldots+k_{i, n} c_{n}\right) m_{i}=r_{i} m_{i} \rightarrow k_{i, 1} c_{1}+k_{i, 2} c_{2}+\ldots+k_{i, n} c_{n}=r_{i}, 1 \leq i \leq j$, where each $k_{a, b}$ will be known from the rearrangement of the terms of $c_{1} v_{1}+\ldots+c_{n} v_{n}$.
4. At this point, we will have

$$
\left[\begin{array}{cccc}
k_{1,1} & k_{1,2} & \ldots & k_{1, n} \tag{3.1}\\
k_{2,1} & k_{2,2} & \ldots & k_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
k_{j, 1} & k_{j, 2} & \ldots & k_{j, n}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{j}
\end{array}\right]
$$

where each k and r will be known from $v_{1} \ldots v_{n}$ and u, respectively. To check if there extists $c_{1} \ldots c_{n}$ such that the above holds, we will use the mathematically oriented program mentioned eariler. Mathematica offers a LinearSolve function which can be utilized.

With this method, we are able to reduce an arbitrary list of Algebraic instances to a basis by looping through the list and, for each element, determining whether it can be expressed as a linear combination of the other elements (i.e. determining if a solution to 3.1 exists). Furthermore, we can check if a term is in a certain vector space in general.

Figure 3: Possible class diagram in Java showing what is required for digraph computations.

3.3 Computing the Vector Spaces

In order to actually compute the several chains of vector spaces associated with each digraph $G=(V, E)$, we will start with $V_{n} \subset V^{n+1}$. To compute this space, we will list all combinations of $n+1$ items from V. We will subsequently filter out any elements from this list that are invalid to arrive at a basis of V_{n}. From here, it will not be difficult to compute a basis of A_{n} by looping through the monomial basis of V_{n} and selecting only the terms that are allowed. In other words, for each member $v=i_{0} i_{1} \ldots i_{n}$ of the list, checking that $i_{p} i_{p+1} \in E$ for $0 \leq p \leq n-1$.

We present an example by computing V_{2}, A_{2} and Ω_{2} for the following graph (depicted in Figure 4):

$$
G=(V, E)=(\{0,1,2,3\},\{(0)(1),(0)(2),(1)(3),(2)(4)\})=\left[\begin{array}{cccc}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This will illustrate how the Ω_{n} spaces are not trivial to compute, unlike the V_{n} and A_{n} spaces.
V_{2} is fairly trivial to determine:

$$
V_{2}=<(0)(1)(0),(0)(1)(2), \ldots,(3)(2)(3)>
$$

From V_{2}, we can determine A_{2} by filtering out all non-allowed terms from the V_{2} basis. Recall that $a b c$ is allowed only if $a b, b c \in E$. We have,

$$
A_{2}=<(0)(1)(3),(0)(2)(3)>=\operatorname{span}\{S\}
$$

Now to compute Ω_{2}, we start by checking if any single member of S is a member of Ω_{2} :

$$
\begin{aligned}
& \partial[(0)(1)(3)]=(1)(3)-(0)(3)+(0)(1) \notin A_{1} \rightarrow(0)(1)(3) \notin \Omega_{2} \\
& \partial[(0)(2)(3)]=(2)(3)-(0)(3)+(0)(2) \notin A_{1} \rightarrow(0)(2)(3) \notin \Omega_{2}
\end{aligned}
$$

Since no individual member of S is a member of Ω_{2}, the next step is to determine all sets of coefficients c_{1}, c_{2} such that,

$$
\begin{gathered}
\partial\left[c_{1}(0)(1)(3)+c_{2}(0)(2)(3)\right]=c_{1} \partial[(0)(1)(3)]+c_{2} \partial[(0)(2)(3)] \in A_{1} \\
\downarrow \\
c_{1}(1)(3)-c_{1}(0)(3)+c_{1}(0)(1)+c_{2}(2)(3)-c_{2}(0)(3)+c_{2}(0)(2) \in A_{1} .
\end{gathered}
$$

Since we want all non-allowed terms (in this case (0)(3)) to vanish, this translates into:

$$
\begin{gathered}
-c_{1}(0)(3)-c_{2}(0)(3)=0 \\
\downarrow
\end{gathered}
$$

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]\left[\begin{array}{ll}
-1 & -1
\end{array}\right]=0
$$

So we have reduced the problem to finding the nullspace of $\left[\begin{array}{ll}-1 & -1\end{array}\right]$ which is $\left[\begin{array}{cc}c & -c\end{array}\right]$ where c is a free real variable. With this, we can deduce that

$$
\Omega_{2}=<(0)(1)(3)-(0)(2)(3)>
$$

This example pertains to a graph with $|V|=|E|=4$. Evidently, as these values increase it becomes nearly impossible to determine the Ω_{n} spaces by hand due to the large nullspace calculation towards the end of the process.

Hence, the greatest challenge evidently lies in computing the Ω_{n} spaces. This will be done generally as follows:

1. Create an empty set to hold the basis of Ω_{n}.
2. Form a set S from the basis of A_{n} by the process described above. Loop through this set; for each v for which $\partial v \in A_{n-1}$, remove v from S and add it to the basis of Ω_{n}.
3. Let $T=\{\partial v \mid v \in S\}$. List the unique, non-allowed monomials that appear somewhere within the elements of $T: m_{1}, m_{2}, \ldots, m_{j}$.
4. We wish to find sets of coefficients $c_{1} \ldots c_{p}$ such that $c_{1} t_{1}+c_{2} t_{2}+\ldots+c_{p} t_{p} \in A_{n-1}$, where $T=\left\{t_{1}, t_{2}, \ldots, t_{p}\right\}$. In other words, we require coefficients that would make each non-allowed m_{i} vanish. By rearranging the terms of this expression and discarding any allowed monomials, we would obtain an expression of the form

$$
m_{1}\left(k_{1,1} c_{1}+\ldots+k_{1, p} c_{p}\right)+m_{2}\left(k_{2,1} c_{1}+\ldots+k_{2, p} c_{p}\right)+\ldots+m_{j}\left(k_{j, 1} c_{1}+\ldots+k_{j, p} c_{p}\right)
$$

Since we want each m_{i} to vanish, we have

$$
\left[\begin{array}{cccc}
k_{1,1} & k_{1,2} & \ldots & k_{1, p} \tag{3.2}\\
k_{2,1} & k_{2,2} & \ldots & k_{2, p} \\
\vdots & \vdots & \ddots & \vdots \\
k_{j, 1} & k_{j, 2} & \ldots & k_{j, p}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{p}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

5. For each set of coefficients $c_{1} \ldots c_{n}$ for which 3.2 holds, add $c_{1} s_{1}+c_{2} s_{2}+\ldots+c_{p} s_{p}$ (where each s_{i} is a member of S and $\partial s_{i}=t_{i}$) to the basis of Ω_{n} created in step 1. To obtain these solutions, we take the nullspace of the k-matrix of 3.2 . Consequently, Mathematica's NullSpace function can be utilized.

Figure 4: Digraph with 4 vertices and 4 edges.

3.4 Computing the Kernel Dimension

To compute the dimension of the kernel of a vector space X (with basis S) with respect to the boundary map, we first let $T=\{\partial v \mid v \in S\}$. Next, we follow a very similar process to the one outlined in 3.3 , with the only difference that this time we want all of the monomials to vanish. Hence we have the following:

$$
\left.\operatorname{dim} \operatorname{ker} X\right|_{\partial}=\operatorname{dim} \operatorname{ker}\left[\begin{array}{cccc}
k_{1,1} & k_{1,2} & \ldots & k_{1, p} \tag{3.3}\\
k_{2,1} & k_{2,2} & \ldots & k_{2, p} \\
\vdots & \vdots & \ddots & \vdots \\
k_{j, 1} & k_{j, 2} & \ldots & k_{j, p}
\end{array}\right]
$$

By the rank-nullity theorem, we have

$$
\left.\operatorname{dim} \operatorname{ker} X\right|_{\partial}=|S|-\operatorname{rank}\left[\begin{array}{cccc}
k_{1,1} & k_{1,2} & \ldots & k_{1, p} \tag{3.4}\\
k_{2,1} & k_{2,2} & \ldots & k_{2, p} \\
\vdots & \vdots & \ddots & \vdots \\
k_{j, 1} & k_{j, 2} & \ldots & k_{j, p}
\end{array}\right]
$$

Again, Mathematica can be used for such a computation; specifically, the MatrixRank function that is offered.

3.5 Determining $\operatorname{dim} H_{n}$

At this stage, we are able to use Lemma 1.1 in order to compute $\operatorname{dim} H_{n}$. After computing Ω_{n} and Ω_{n+1} through the methods outlined above, we utilize the equaility

$$
\operatorname{dim} H_{n}=\operatorname{dim} \operatorname{ker} \partial_{n}+\operatorname{dim} \operatorname{ker} \partial_{n+1}-\operatorname{dim} \Omega_{n}
$$

4 Results

The method described in the previous section was employed to calculate dim H_{1} for a collection of random digraphs with a given number of nodes as a function of the edge probability. The figures below show $\operatorname{dim} H_{1}$ of the random graph $G(n, p)$ as a function of the edge probabality p for a specific number of nodes n. Each figure displays the results of 10 independent trials in addition to their average (exhibited by the red line) so as to obtain a statistically meaningful curve.

Each trial consisted of iterating upwards from $p=0$ with step-size $\Delta p=0.025$ and calculating $\operatorname{dim} H_{1}(G(n, p))$ for fixed n in each iteration. If the homology dimension was determined to be 0 for five consecutive iterations after some initial non-zero value, the trial auto-terminated with the assumption that no further non-zero homology dimensions would be encountered.

In these figures we note that $\operatorname{dim} H_{1}$ starts at 0 , increases to some maximum value, and subsequently begins declining. The strings of 0s towards the start and end of the curve can be explained intuitively, but the center of the curve remains to be a phenomenon that can not yet be explained. The peak of the curve moves closer to $p=0$ as n increases. Furthermore, the actual value of the peak seems to grow steadily with n.

Some of these results for higher n can be very CPU-intensive to compute. In particular, the total runtime proves to increase drastically as we try to compute the dimensions of the higher homology groups, H_{2}, H_{3}, etc.

Future work consists of fully understanding the center regions of the figures above as well as computing the dimensions of these higher homology groups via the methods discussed in this paper.

References

[1] Hatcher, Allen. Algebraic Topology. New York: Cambridge UP, 2001. Print.
[2] Alexander Grigor'yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau. Homologies of Digraphs. Tech. N.p., n.d. Web. http://arxiv.org/pdf/1207.2834.pdf.

