
Computationally Determining the Dimensions of the

Homology Groups of Directed Graphs

Ariya R. Shajii
Weston High School, MA

Coach: Gabor Lippner
Department of Mathematics, Harvard University, Cambridge MA

September 30, 2012

Abstract

In this paper, we begin by expanding the notion of homology to graphs. We then
present a new computational method for computing the dimensions of the homology
groups of these graphs. For the first time, we show detailed results for the first homol-
ogy group H1 of random directed graphs.

Contents

1 Introduction 2

2 Application to Directed Graphs 3
2.1 Defining Homologies on Digraphs . 3
2.2 H0 Space . 4
2.3 Cycle-Graphs . 5

3 Computationally Determining dimHn 6
3.1 Required Classes . 6
3.2 Forming a Basis for the Vector Spaces . 9
3.3 Computing the Vector Spaces . 11
3.4 Computing the Kernel Dimension . 13
3.5 Determining dimHn . 13

4 Results 14

1

Page - 392

1 Introduction

In general algebraic topology, homology refers to the association of a sequence of abelian
groups with a certain mathematical object.

Given the chain complex

...
∂n+2−−−→ Cn+1

∂n+1−−−→ Cn
∂n−→ Cn−1

∂n−1−−−→ ...
∂1−→ C0

∂0−→ 0

with the property that ∂n ◦ ∂n−1 = 0 at each level, the homologies are defined by:

Hn(C) = ker ∂n / Im ∂n+1.

Each ∂n : Cn → Cn−1 is referred to as a boundary map. See [1] for further details.

In this paper, we will focus on computing dimHn for a special type of homology on directed
graphs. The following lemma will be pivotal in this regard.

Lemma 1.1

∀ n ≥ 0, dimHn(C) = dim Cn − dim Im ∂n − dim Im ∂n−1 =
dim ker ∂n + dim ker ∂n+1 − dim Cn

Proof. By definition,

dimHn(C) = dim ker ∂n − dim Im ∂n+1.

By the rank-nullity theorem,

dim ker ∂n = dim Cn − dim Im ∂n.

Moreover, we have the identity

dim Im ∂n−1 = dim Cn−1 − dim ker ∂n−1.

We can arrive at the original equality through substitution [2].

With this result at hand, we now proceed to applications to directed graphs.

2

Page - 393

2 Application to Directed Graphs

2.1 Defining Homologies on Digraphs

Grigor’yan et. al. defined a version of homology for directed graphs (see [2]) which we
now explain. A directed graph or digraph can be represented as G = (V,E) where E ⊆
{ij | (i, j) ∈ V 2, i �= j} is the set of edges and 0 < |V | < ℵ0 is the set of vertices.

We will define a vertex monomial v = i0i1...in to be any member of V n+1, and we will
define a vertex polynomial to be any linear combination of vertex monomials of the same
n, i.e. any member of span{V n+1}.
We can then define two vector spaces Vn and An ⊆ Vn as follows:

Vn = span{v ∈ V n+1 | v is valid},
An = {v ∈ Vn | v is allowed}.

A vertex monomial v = i0i1...in ∈ V n+1 is valid if for each pair of consecutive vertices
ipip+1, ip �= ip+1 for 0 ≤ p ≤ n − 1. A vertex polynomial is valid if all of its constituent
monomials are valid.

A vertex monomial v = i0i1...in ∈ Vn is allowed if for each concecutive pair of vertices
ipip+1, ipip+1 ∈ E for 0 ≤ p ≤ n − 1. A polynomial is allowed if each of its constituent
monomials are allowed.

The boundary map ∂n : Vn → Vn−1 of the vertex monomial v = i0i1...in ∈ Vn will be
defined as

∂v =

n∑
q=0

(−1)q(i0i1...îq...in),

where îq indicates the exclusion of iq from the expression. For the linear combination
v = c1v1 + c2v2 + ... + cjvj of monomials, the boundary map will simply be

∂v =

j∑
k=1

ck∂vk.

If the boundary map results in a term that is not valid, then that particular term is simply
discarded [2].

Lemma 2.1

∀ v ∈ Vn, (∂n ◦ ∂n−1)(v) = 0

3

Page - 394

Proof. Since ∂ is a linear map, it suffices to check the statement for vertex monomials. We
have,

(∂n ◦ ∂n−1)(i0...in) =
n∑

k=0

(−1)k∂n−1(i0...îq...in)

=

n∑
k=0

(−1)k(
k−1∑
j=0

(−1)j(i0...îj ...îk...in) +
n∑

j=k+1

(−1)j−1(i0...îk...îj ...in))

=
∑

0≤j<k≤n

(−1)k+j(i0...îj ...îk...in)−
∑

0≤k<j≤n

(−1)j+k(i0...îk...îj ...in)

=
∑

0≤j<k≤n

(−1)k+j(i0...îj ...îk...in)−
∑

0≤j<k≤n

(−1)j+k(i0...îj ...îk...in)

= 0.

We can now define yet another vector space: Ωn = {v ∈ An | ∂v ∈ An−1}.
It is important to note that ∂n would in fact map Ωn directly to Ωn−1 ⊆ An−1 since, if
v ∈ Ωn and ∂nv = w, then w ∈ An−1 and ∂n−1w = (∂n ◦ ∂n−1)(v) = 0 ∈ An−1 → w ∈
Ωn−1.

From this, we arrive at the chain complex

...
∂n+2−−−→ Ωn+1

∂n+1−−−→ Ωn
∂n−→ Ωn−1

∂n−1−−−→ ...
∂1−→ Ω0

∂0−→ 0.

We can now define the the homologies of a directed graph to be

Hn = ker ∂n / Im ∂n−1.

We will now proceed to describe a computational method for calculating the dimensions
of the homology groups of directed graphs.

2.2 H0 Space

Lemma 2.2
For a digraph G = (V,E) with C undirected, connected components,

dimH0 = C.

Proof. By definition we have,

4

Page - 395

0

1 2

3

4

Figure 1: Example cycle-graph (without orientation)

H0 = ker ∂0 = {v ∈ Ω0 | ∂0v = 0}.

The condition ∂0v = 0 implies that ∂0(ij) = j − i = 0 or equivalently, i = j. This signifies
that ∂ = const on any connected component of (V,E), and the dimension of this space of
this space is clearly C [2].

2.3 Cycle-Graphs

We say that a digraph (V,E) is a cycle-graph if it is connected (as undirected) and every
vertex has a degree of 2.

For each cycle-graph, dim H0 = 1 and dim Ω0 = |V | = |E| = dim Ω1. Furthermore, for
such graphs, we note that

dim Ωn = 0 ∀n ≥ 3,

dimHn = 0 ∀n ≥ 2.

If our graph is a triangle or square:

dim Ω2 = 1, dimH1 = 0,

otherwise:

dim Ω2 = 0, dimH1 = 1.

A detailed proof can be found in [2].

5

Page - 396

0 1

2

Figure 2: Digraph with 3 vertices and 3 edges.

3 Computationally Determining dimHn

In order to devise a computational method with which to compute the dimensions of the
homology groups of digraphs, object oriented programming will be utilized in conjunction
with a mathematics package, which will be used to carry out the more intensive tasks. In
this case, Java andMathematica will be used. Other alternatives are Python and MATLAB,
which are currently being considered for future work in this area.

3.1 Required Classes

Firstly, a Digraph class will be created. The actual graph will be represented through
a binary adjacency matrix with 0s along its diagonal. The example shown in Figure 2
corresponds to

G = (V,E) = ({(0), (1), (2)}, {(0)(1), (0)(2), (1)(2)}) =
⎡
⎣ 0 1 1

0 0 1
0 0 0

⎤
⎦

This class will resemble the following:

public class Digraph {

private boolean[][] matrix;

public Digraph(boolean[][] matrix) {

this.matrix = matrix;

}

public VectorSpace vSpace(int n) {

// implementation discussed later

}

public VectorSpace aSpace(int n) {

6

Page - 397

// implementation discussed later

}

public VectorSpace omegaSpace(int n) {

// implementation discussed later

}

...

}

The next component is representing the elements of the various vector spaces associ-
ated with each digraph. The example shown above, for instance, would have an A1 of
< (0)(1), (0)(2), (1)(2) >; i.e. the space would be comprised of all linear combinations of
these three elements. Therefore, we require three specific classes:

• Algebraic abstract base-class or interface, containing a boundary method (in ad-
dition to other possible methods) that must be overridden by all subclasses. The
implementation could potentially look like this:

public interface Algebraic {

public Algebraic boundary();

public Algebraic sum(Algebraic v);

public Algebraic scalarMultiply(double c);

public boolean isValid();

...

}

• VertexMonomial class (extending/implementing Algebraic) containing a real coef-
ficient and a list of vertices. For example, 3(0)(1) would be represented by a single 3
and by a list containing 0, 1 in that order.

public class VertexMonomial implements Algebraic {

private double coefficient;

private int[] vertexList;

public VertexMonomial(double coefficient, int[] vertexList) {

this.coefficient = coefficient;

this.vertexList = vertexList;

}

public VertexMonomial(int[] vertexList) { this(1, vertexList); }

...

7

Page - 398

}

• VertexPolynomial class (extending/implementing Algebraic) containing a set of
VertexMonomial instances, the sum of which results in the polynomial that this
class represents. For example, 2(0)(1)− 3(1)(2) would be represented by a set of two
monomials: 2(0)(1) and 3(1)(2).

public class VertexPolynomial implements Algebraic {

private VertexMonomial[] monomialList;

public VertexPolynomial(VertexMonomial[] monomialList) {

this.monomialList = monomialList;

}

...

}

Of course, the base-class is not an absolute necessity, but is beneficial as it serves as a
connection between its subclasses, which are directly related to one another.

Next, we will create a VectorSpace class, which will be used to represent Vn, An and
Ωn. This class will hold a set of Algebraic objects representing the basis for a specific
vector space. One significant feature that must be implemented is the ability to reduce
an arbitrary set of such objects to a genuine basis such that each element is linearly
independent of the others. This will allow us to determine the dimension of our vector
space. For example, if we wished to compute ∂X where X =< (0)(1), (1)(0) >, by simply
looping through the generators, taking the boundary of each, and adding each result to a
new set of generators, we would obtain {(1)− (0), (0)− (1)}. Hence, this must be reduced
to obtain the basis < (1) − (0) >=< (0) − (1) >, with which we can deduce that the
dimension of this particular vector space is in fact 1.

public class VectorSpace {

private Algebraic[] basis;

public VectorSpace(Algebraic[] listOfTerms) {

basis = reduceToBasis(listOfTerms);

}

private static Algebraic[] reduceToBasis(Algebraic[] listOfTerms) {

// implementation discussed later

}

public boolean contains(Algebraic v) {

// implementation discussed later

8

Page - 399

}

public int dim() { return basis.length; }

...

}

3.2 Forming a Basis for the Vector Spaces

To determine if u ∈ span{v1, v2, ..., vn}, we must determine if there exists coefficients c1...cn
such that

∑n
i=1 civi = u. To do this computationally we shall

1. Ensure that each monomial appearing in u appears somewhere in v1...vn. If one is
found that does not, u /∈ span{v1, v2, ..., vn}.

2. List each unique monomial of v1...vn (ignoring their coefficients). For example, <
3(0)− 2(1), (0) + 4(2) > would produce the list consisting of 1(0), 1(1) and 1(2). We
will denote the members of this list by m1,m2, ...,mj .

3. From the expression c1v1+ c2v2+ ...+ cnvn = u, we can form a system of linear equa-
tions by equating the coefficient of each mi with that of the corresponding monomial
in u: (ki,1c1+ki,2c2+...+ki,ncn)mi = rimi → ki,1c1+ki,2c2+...+ki,ncn = ri, 1 ≤ i ≤ j,
where each ka,b will be known from the rearrangement of the terms of c1v1+ ...+cnvn.

4. At this point, we will have

⎡
⎢⎢⎢⎣

k1,1 k1,2 ... k1,n
k2,1 k2,2 ... k2,n
...

...
. . .

...
kj,1 kj,2 ... kj,n

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

c1
c2
...
cn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

r1
r2
...
rj

⎤
⎥⎥⎥⎦ (3.1)

where each k and r will be known from v1...vn and u, respectively. To check if there
extists c1...cn such that the above holds, we will use the mathematically oriented
program mentioned eariler. Mathematica offers a LinearSolve function which can
be utilized.

With this method, we are able to reduce an arbitrary list of Algebraic instances to a basis
by looping through the list and, for each element, determining whether it can be expressed
as a linear combination of the other elements (i.e. determining if a solution to 3.1 exists).
Furthermore, we can check if a term is in a certain vector space in general.

9

Page - 400

<<interface>>
Algebraic

+ boundary() : Algebraic
+ add(v : Algebraic) : Algebraic)
+ scalarMultiply(c : double) : Algebraic
+ listMonomials() : VertexMonomial[]
+ isValid() : boolean

VertexMonomial

- coefficient : double
- vertexList : int[]

+ boundary() : Algebraic
+ add(v : Algebraic) : Algebraic
+ scalarMultiply(c : double) : Algebraic
+ listMonomials() : VertexMonomial[]
+ isValid(): boolean

VertexPolynomial

- monomialList : VertexMonomial[]

+ boundary() : Algebraic
+ add(v : Algebraic) : Algebraic
+ scalarMultiply(c : double) : Algebraic
+ listMonomials() : VertexMonomial[]
+ isValid(): boolean

VectorSpace

- basis : Algebraic[]

- reduceToBasis(listOfTerms: Alge-
braic[]) : Algebraic[]
+ contains(v : Algebraic) : boolean
+ dim() : int

Digraph

- matrix : boolean[][]

+ isAllowed(v : Algebraic) : boolean
+ isOmega(v : Algebraic) : boolean
+ vSpace(n : int) : VectorSpace
+ aSpace(n : int) : VectorSpace
+ omegaSpace(n: int) : VectorSpace

Figure 3: Possible class diagram in Java showing what is required for digraph computations.

10

Page - 401

3.3 Computing the Vector Spaces

In order to actually compute the several chains of vector spaces associated with each
digraph G = (V,E), we will start with Vn ⊂ V n+1. To compute this space, we will list all
combinations of n + 1 items from V . We will subsequently filter out any elements from
this list that are invalid to arrive at a basis of Vn. From here, it will not be difficult to
compute a basis of An by looping through the monomial basis of Vn and selecting only the
terms that are allowed. In other words, for each member v = i0i1...in of the list, checking
that ipip+1 ∈ E for 0 ≤ p ≤ n− 1.

We present an example by computing V2, A2 and Ω2 for the following graph (depicted in
Figure 4):

G = (V,E) = ({0, 1, 2, 3}, {(0)(1), (0)(2), (1)(3), (2)(4)}) =

⎡
⎢⎢⎣

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ .

This will illustrate how the Ωn spaces are not trivial to compute, unlike the Vn and An

spaces.

V2 is fairly trivial to determine:

V2 =< (0)(1)(0), (0)(1)(2), ..., (3)(2)(3) > .

From V2, we can determine A2 by filtering out all non-allowed terms from the V2 basis.
Recall that abc is allowed only if ab, bc ∈ E. We have,

A2 =< (0)(1)(3), (0)(2)(3) >= span{S}.
Now to compute Ω2, we start by checking if any single member of S is a member of
Ω2:

∂[(0)(1)(3)] = (1)(3)− (0)(3) + (0)(1) /∈ A1 → (0)(1)(3) /∈ Ω2,
∂[(0)(2)(3)] = (2)(3)− (0)(3) + (0)(2) /∈ A1 → (0)(2)(3) /∈ Ω2.

Since no individual member of S is a member of Ω2, the next step is to determine all sets
of coefficients c1, c2 such that,

∂[c1(0)(1)(3) + c2(0)(2)(3)] = c1∂[(0)(1)(3)] + c2∂[(0)(2)(3)] ∈ A1

↓
c1(1)(3)− c1(0)(3) + c1(0)(1) + c2(2)(3)− c2(0)(3) + c2(0)(2) ∈ A1.

Since we want all non-allowed terms (in this case (0)(3)) to vanish, this translates into:

−c1(0)(3)− c2(0)(3) = 0
↓

11

Page - 402

[
c1
c2

] [−1 −1]
= 0.

So we have reduced the problem to finding the nullspace of
[−1 −1]

which is
[
c −c]

where c is a free real variable. With this, we can deduce that

Ω2 =< (0)(1)(3)− (0)(2)(3) > .

This example pertains to a graph with |V | = |E| = 4. Evidently, as these values increase it
becomes nearly impossible to determine the Ωn spaces by hand due to the large nullspace
calculation towards the end of the process.

Hence, the greatest challenge evidently lies in computing the Ωn spaces. This will be done
generally as follows:

1. Create an empty set to hold the basis of Ωn.

2. Form a set S from the basis of An by the process described above. Loop through this
set; for each v for which ∂v ∈ An−1, remove v from S and add it to the basis of Ωn.

3. Let T = {∂v |v ∈ S}. List the unique, non-allowedmonomials that appear somewhere
within the elements of T : m1,m2, ...,mj .

4. We wish to find sets of coefficients c1...cp such that c1t1 + c2t2 + ... + cptp ∈ An−1,
where T = {t1, t2, ..., tp}. In other words, we require coefficients that would make each
non-allowed mi vanish. By rearranging the terms of this expression and discarding
any allowed monomials, we would obtain an expression of the form

m1(k1,1c1 + ...+ k1,pcp) +m2(k2,1c1 + ...+ k2,pcp) + ...+mj(kj,1c1 + ...+ kj,pcp).

Since we want each mi to vanish, we have

⎡
⎢⎢⎢⎣

k1,1 k1,2 ... k1,p
k2,1 k2,2 ... k2,p
...

...
. . .

...
kj,1 kj,2 ... kj,p

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

c1
c2
...
cp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎦ . (3.2)

5. For each set of coefficients c1...cn for which 3.2 holds, add c1s1 + c2s2 + ... + cpsp
(where each si is a member of S and ∂si = ti) to the basis of Ωn created in step 1. To
obtain these solutions, we take the nullspace of the k-matrix of 3.2. Consequently,
Mathematica’s NullSpace function can be utilized.

12

Page - 403

0 1

2 3

Figure 4: Digraph with 4 vertices and 4 edges.

3.4 Computing the Kernel Dimension

To compute the dimension of the kernel of a vector space X (with basis S) with respect to
the boundary map, we first let T = {∂v | v ∈ S}. Next, we follow a very similar process to
the one outlined in 3.3, with the only difference that this time we want all of the monomials
to vanish. Hence we have the following:

dim kerX|∂ = dim ker

⎡
⎢⎢⎢⎣

k1,1 k1,2 ... k1,p
k2,1 k2,2 ... k2,p
...

...
. . .

...
kj,1 kj,2 ... kj,p

⎤
⎥⎥⎥⎦ . (3.3)

By the rank-nullity theorem, we have

dim kerX|∂ = |S| − rank

⎡
⎢⎢⎢⎣

k1,1 k1,2 ... k1,p
k2,1 k2,2 ... k2,p
...

...
. . .

...
kj,1 kj,2 ... kj,p

⎤
⎥⎥⎥⎦ . (3.4)

Again, Mathematica can be used for such a computation; specifically, the MatrixRank

function that is offered.

3.5 Determining dimHn

At this stage, we are able to use Lemma 1.1 in order to compute dimHn. After computing
Ωn and Ωn+1 through the methods outlined above, we utilize the equaility

dimHn = dim ker ∂n + dim ker ∂n+1 − dim Ωn.

13

Page - 404

4 Results

The method described in the previous section was employed to calculate dim H1 for a
collection of random digraphs with a given number of nodes as a function of the edge
probability. The figures below show dimH1 of the random graph G(n, p) as a function of
the edge probabality p for a specific number of nodes n. Each figure displays the results
of 10 independent trials in addition to their average (exhibited by the red line) so as to
obtain a statistically meaningful curve.

Each trial consisted of iterating upwards from p = 0 with step-size Δp = 0.025 and cal-
culating dim H1(G(n, p)) for fixed n in each iteration. If the homology dimension was
determined to be 0 for five consecutive iterations after some initial non-zero value, the trial
auto-terminated with the assumption that no further non-zero homology dimensions would
be encountered.

n = 20

0 0.1 0.2 0.3 0.4

0

20

40

60

p

d
im

H
1

14

Page - 405

n = 30

0 0.1 0.2 0.3 0.4

0

20

40

60

p

d
im

H
1

n = 40

0 0.1 0.2 0.3 0.4

0

20

40

60

p

d
im

H
1

15

Page - 406

n = 50

0 0.1 0.2 0.3 0.4

0

20

40

60

p

d
im

H
1

In these figures we note that dim H1 starts at 0, increases to some maximum value, and
subsequently begins declining. The strings of 0s towards the start and end of the curve
can be explained intuitively, but the center of the curve remains to be a phenomenon that
can not yet be explained. The peak of the curve moves closer to p = 0 as n increases.
Furthermore, the actual value of the peak seems to grow steadily with n.

Some of these results for higher n can be very CPU-intensive to compute. In particular,
the total runtime proves to increase drastically as we try to compute the dimensions of the
higher homology groups, H2, H3, etc.

Future work consists of fully understanding the center regions of the figures above as well
as computing the dimensions of these higher homology groups via the methods discussed
in this paper.

16

Page - 407

References

[1] Hatcher, Allen. Algebraic Topology. New York: Cambridge UP, 2001. Print.

[2] Alexander Grigor’yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau. Homologies of
Digraphs. Tech. N.p., n.d. Web. <http://arxiv.org/pdf/1207.2834.pdf>.

17

Page - 408

	封面
	目录
	papers

