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Abstract 

Flattening polyhedra is defined as an origami which flattens 3D polyhedra to 2D flat 

sheet without tearing. It has wide-ranging applications in real-life from flattening of 

shopping bags to astronomy, robotics-making to biomedical appliances involving trestles 

and stents. The most notable advantage of flattening polyhedron is reducing the space 

taken up by the original 3D structure and this has attracted considerable attention. 

Demaine and Hayes from \Origamit" group in MIT have first shown that all polyhedra 

have flattened states. However, flattening of polyhedra remains as an open problem in 

terms of method to find the flattened state of all polyhedra and its continuous folding 

motion. This report presents an original and novel method for flattening convex 

prismatoids. A MATLAB program has been written to implement the algorithm 

automatically, allowing users to specify a target prismatoid and generate a crease pattern 

that folds into it. 
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1 Introduction 

Flattening polyhedron has wide-ranging applications in real-life from flattening of 

shopping bags to astronomy, robotics-making to biomedical appliances involving trestles 

and stents. The most notable advantage of flattening polyhedron is reducing the space 

taken up by the original 3D structure and this has attracted considerable attention. By 

allowing all faces to lie on a single plane, the volume of polyhedron can effectively be 

reduced to zero. Demaine and Hayes have first shown that all polyhedra have flattened 

states [1]. However, flattening of polyhedral remains as an open problem in terms of 

method to find the flattened state of all polyhedral and its continuous folding motion. 

While Demaine and O'Rourke have proposed the idea of disk-packing from 2D 

fold-and-cut problem, the disk-packing method is limited to polyhedral which are 

homeomorphic to a disk or a sphere [2]. In particular, Bern and Hayes have proven that 

flattened states exist for an orientable piecewise-linear(PL) 2-manifold [3]. However, 

disk-packing method requires that the polyhedra are extended to 4D in the folding 

process [2]. The most recent result by J. Itoh, C. Nara and C. Vîlcu [4] has proven that 

every convex polyhedron possesses infinitely many continuous flat folding processes. In 

this report, we have proposed a method to flatten all convex prismatoids. Our proposed 

method can also be used to flatten convex polyhedral as all convex polyhedra can be 

sliced into several sections of convex prismatoids. 

Section 2 is on notations and definitions that will be used throughout this paper. 

Section 3 describes the algorithm for drawing net from projection and height of convex 

prismatoid, and also introduces general algorithm for flattening. Section 4 presents the 

algorithm in detail. Limitation to the algorithm is discussed in section 4 and methods to 

overcome the limitation have also been derived. Section 5 illustrates the capabilities of 

our algorithm via several convex polyhedral test examples. Section 6 discusses about 

applications of flattening polyhedron. Finally, section 7 is on the conclusion and future 

work. 

 

2 Definitions 

Definition 1 (Convex Prismatoid). (Fig. 1) A convex prismatoid P is a convex polyhedron 

in 3D Euclidean Space whose vertices lie among two parallel planes. The planes will be 

termed the roof plane R and base plane B, and the distance between them will be 

denoted as h. By convention, we assume that B is the xy-plane, and R is the plane 

defined by z = h. We denote the lateral face as Fn. The Fn lateral face is the n-th lateral 

face in the counterclockwise direction. 

 

Definition 2 (Projection). A projection is an "aerial view" of the convex prismatoid, 

drawn on base plane. Formally, it is the image of the points of the prismatoid under the 

map )0,,(),,( yxzyx  . 

 

We denote rn as -- the edge of lateral face Fn which lies in R. If that edge is merely a 
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point, we treat it as segment rn with length 0. Then Fn is a triangular lateral face whose 

apex lies in R. 
We denote bn as -- the edge of lateral face Fn which lies in B. If that edge is merely 

a point, we treat it as segment bn with length 0. Then Fn is a triangular lateral face whose 

apex lies in B. 
For edges that neither lie in R nor B, and is shared by lateral faces Fn and Fn+1, is 

denoted by sn.  

The height of lateral face Fn is denoted by tn. The projection of tn, which is also the 

projected distance between rn and bn, is denoted by ln. 

When a vertex on R is surrounded by (m+1) faces: R, Fn, Fn+1...Fn+m-1, we denote this 

vertex as pn,n+m-1. Similarly, when a vertex on B is surrounded by (m+1) faces: B, Fn, 

Fn+1...Fn+m-1, we denote this vertex as qn,n+m-1. 

 

Lateral face Fn is either triangular or quadrilateral. On any quadrilateral lateral face 

Fn, we denote the angles in clockwise direction as 1n , 2n , 3n  and 4n , with angles 

1n  and 2n  adjacent to R; angles 3n  and 4n , adjacent to B. 1n  and 4n  are 

supplementary angles; 2n  and 3n  are supplementary angles. 

Triangular lateral face Fn, is merely a quadrilateral lateral face Fn whose 0nr  or 

0nb . Again, we denote the angles in clockwise direction as 1n , 2n , 3n  and 4n .  

For Fn whose 0nr , we denote its apex angle adjacent to R as 0n . 

180210  nnn  . For Fn whose 0nb , we denote its apex angle adjacent to B as 

5n . 180435  nnn  .  

 

For vertex pn,n+m-1, its corresponding angle on R is denoted by 1, knn . Similarly, for 

vertex qn,n+m-1, its corresponding angle on B is denoted by 1, knn . 

The dihedral angle between planes of Fn and Fn+1 on R is n . The dihedral angle 

between planes of Fn and Fn+1 on B is n . R and B are parallel, so nn   . 
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Fig 1: Notations on convex prismatoid 

 

Definition 3 (Net). The net N of a convex prismatoid is obtained by removing the face on 

the roof plane, and unfolding each lateral face Fn onto the base plane, pivoting along an 

axis parallel to the edge of Fn that lies on the base plane, bn. 

 

3 Method Overview 
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3.1 Obtaining Net from Projection and Height 
Lemma 1 Given the projection and height of any convex prismatoid, the length of all 

edges of lateral faces can be determined. Thus, the net is obtained. 

 

Proof: For any prismatoid, R is parallel to B. Upon projection, any segment that is 

parallel to either plane retains its length. 

      For segment that is parallel to neither planes, such as segment ab (shown in Fig. 

2). Let the segment ''ba  be the projection of segment ab . Since projection and height 

of any prismatoid are given, the length of ab  can be obtained by: 

  22

'' hbaab  . 

  

(a) Visualization of the triangle    (b) Projection of segment ab  for Lemma 1 

Fig 2: Visuals for Lemma 1 

 

3.2 Proposed Algorithm 
      Our main approach is to tuck lateral faces F into spaces between roof plane R and 

base plane B. The resultant 2D flattened layout will thus be the same as the projection of 

the 3D polyhedron. 

      Upon tucking lateral faces F into spaces between R and B, a "five valley line" 

crease pattern will emerge on each F. One "middle valley line" is parallel to R and B, 

another four valley lines extend from four vertices of lateral face F. (Fig. 3) 

 

a' b' 
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(a) (b)  

(c) (d)  

 

Fig 3: Side view of the emergence of "Middle Valley Line" 

 

Algorithm for drawing crease pattern on any prismatoid (when projection and height of 

a prismatoid are given) 

1. Draw net by applying Lemma 1. 

2. Check conditions by applying Proposition 7 and Theorem 8, slice the convex 

prismatoid horizontally if limitation exists. 

3. Draw "middle valley line" for each lateral face by applying Proposition 2. 

4. Draw another four valley lines on each lateral face by applying Theorem 4 and 

Corollary 5. Thus form a "five valley line" crease pattern. 

5. According to Proposition 6, erase the unnecessary crease patterns. 

6. Add mountain lines accordingly. 

Middle Valley Line 
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Fig 4: Resultant crease pattern 

(red lines, blue lines, grey lines represent mountain, valley and projection respectively) 

 

4 Main result 

4.1 Algorithm for drawing of middle valley lines 
Proposition 2 Let x1 denotes the distance from roof segment r to the "middle valley line"; 

x2 denotes the distance from base segment b to the "middle valley line".  

2
1

lt
x


  and 

2
2

lt
x


 . 

 

Proof: Since the layout of resultant pattern upon flattening is the same as the layout of 

projection of the prismatoid, the "middle valley line" on each lateral face F is parallel to 

R and B. 
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      The "middle valley line" divides F into two portions which overlap in the 

flattened state(shown in Fig. 5b). The heights of these two portions are x1 and x2 

respectively.  

      From txx  21  and lxx  12 , we obtain 
2

1

lt
x


  and 

2
2

lt
x


 . 

 

    

(a) lateral face F before flattening   

              

(b) flattened state of F 

 

Fig 5: Overlap of two portions(with height x1 and x2) of lateral face F upon folding 
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      We denote the dihedral angle between each lateral face and base plane as  (Fig. 

6). Then, cos tl .                                             

And, 
 

2

cos1
1




t
x ,                                                   

 
2

cos1
2




t
x .                        

 

                                 

 

Fig 6: Notation of dihedral angle   

 

Algorithm Step 3 (Drawing of "middle valley line" if no limitation exists) (Fig. 7) 

a. Start with the net. Grey lines represent projection of prismatoid and are for 

construction. b is a base edge, and r was a roof edge before the lateral face was 

"unfolded" into the net. That roof edge was projected onto r'. 

b. Reflect r' about the axis (parallel to r') along b onto a new segment r". 

c. Construct the line (shown in blue) of points equidistant from r and r", make sure that 

it is parallel to r and b. 

d. The grey lines constructed in step (b) can now be omitted. 

 

     (a)     (b)  

r" 

r' 

r r 

r' 

b 

O06

Page - 501



      (c)   (d)  

 

Fig 7: Algorithm Step 3 (Drawing of "middle valley line") 

 

4.2 Algorithm for drawing another four valley lines 
 
Lemma 3 (Fig. 8a)For a vertex qn,n+m-1 on base plane surrounded by (m+1) faces (1 B and 

m lateral faces), upon flattening, there are (m+1) mountain folds and (m-1) valley folds 

extending from qn,n+m-1. In addition, the (m-1) valley folds are drawn on any (m-1) lateral 

faces of the m lateral faces. 

      This holds for any vertex pn,n+m-1 on roof plane as well. 

 

Proof: A vertex qn,n+m-1 on base plane is surrounded by (m+1) faces (1 B and m lateral 

faces). The m lateral faces are: Fn, Fn+1, Fn+2, ..., Fn+m-1. The (m+1) mountain folds are: bn, 

bn+m-1 and sn, sn+1, ..., sn+m-2. This implies that Fn+1, Fn+2, ..., Fn+m-2 are triangular lateral 

faces whose apex lie on B. 

      Similarly, a vertex pn,n+m-1 on roof plane is surrounded by (m+1) faces (1 R and m 

lateral faces). The m lateral faces are: Fn, Fn+1, Fn+2, ..., Fn+m-1. The (m+1) mountain folds 

are: rn, rn+m-1 and sn, sn+1, ..., sn+m-2. This implies that Fn+1, Fn+2, ..., Fn+m-2 are triangular 

lateral faces whose apex lie on R. 

 

      In addition, Maekawa's Theorem states that the number of mountain folds in a 

flat-folded vertex figure differs from the number of valley folds by exactly two folds(Fig. 

8b). Thus, there is one valley fold extending from vertex qn,n+m-1 for every two adjacent 

lateral faces: Fn and Fn+1; Fn+1 and Fn+2;...; Fn+m-2 and Fn+m-1. The total number of valley 

folds extending from qn,n+m-1 is hence (m-1). 

 

r" 

r 
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(a) Number of valley lines differs mountain lines by two 

 
 

(b) After unfolding the lateral faces surrounding vertex qn,n+m-1 

 

Fig 8: Unfolded lateral faces surrounding vertex qn,n+m-1 

 

      This holds for vertex pn,n+m-1 as well. 

      For the convenience of visualization, we draw the same valley fold on both 

adjacent lateral faces. A "five valley line" crease pattern is formed. In the end, we will 
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keep only two valley folds(one extending from p and the other one from q) for every two 

adjacent lateral faces, and erase the rest. 

 

      The two valley folds(one extending from p and the other one from q) contribute 

an "excess flap" (Fig. 9) for two adjacent lateral faces, say Fn and Fn+1. We denote this 

"excess flap" as En. The vertex angles of En are Rn  and Bn , adjacent to R and B 

respectively. 

(a)  

(b)  

Fig 9: (a) (b) Excess Flap 

 

Theorem 4 (Fig. 10a)At any vertex qn,n+m-1, the "excess flaps" are En, En+1, ..., En+m-2. The 

corresponding vertex angles are Bn ,  1nB , ..., )2( mnB . And, 

2

2

1

1,4)1(532 














mn

ni

mnnmninmn

ni

Bi



 . 

      Similarly, at any vertex pn,n+m-1, the "excess flaps" are En, En+1, ..., En+m-2. The 

corresponding vertex angles are Rn , )1( nR , ..., )2( mnR . And, 
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2

2

1

1,1)1(022 














mn

ni

mnnmninmn

ni

Ri



 . 

 

Proof: (Fig. 10b)According to Kawasaki's Theorem, the crease pattern may be folded flat 

if and only if the alternating sum and difference of the angles adds up to zero. 

      In our case, the alternating sum and difference of the angles 

     1,4)1()2(15)1(3 ......   mnnmnmnBnBnBnBnn   













2

1,4)1(

2

1

53 2
mn

ni

Bimnnmn

mn

ni

in   

0 , which agrees with Kawasaki's Theorem. 

 

 

(a) 3D notation  
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(b) After unfolding the lateral faces surrounding vertex qn,n+m-1 

 

Fig 10: Proof of Proposition 4 

 

Corollary 5 As shown in Fig. 11, when 31m , vertex qn,n+1 is surrounded by three 

faces, the sole "excess flap" is En. Its corresponding angle 
2

1,4)1(3  


nnnn

Bn


 . 

      In particular (Fig. 12), this is still valid for vertex qn,n+m-1 which is surrounded by 

more than three faces. This time, we deal with the planes of every two consecutive lateral 

face: Fn, Fn+1;Fn+1, Fn+2; ...;Fn+m-2, Fn+m-1.  

     Calculation of the corresponding angle of "excess flap" En is again: 

2

1,4)1(3  


nnnn

Bn


 , where 1, nn  is the dihedral angle between the planes of lateral 

faces Fn and Fn+1. 
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Fig 11: Three lateral faces surrounding a vertex ( 31m ) 

 

Flip 

 

Flip 
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Fig 12: When qn,n+m-1 is surrounded by more than three faces 

 

 

Proof: See projection of prismatoid in Fig. 13, vertex qn,n+m-1 is surrounded by 2 

quadrilateral lateral faces Fn and Fn+m-1, (m-2) triangular lateral faces Fn+1, Fn+2,..., Fn+m-2. 

Since R and B are parallel, we translate R to B and form a concave m-gon. The sum of 

the interior angles in this concave m-gon is: 

       1802180360)3(180 1,2

3

1









 





 mm mnnmn

mn

ni

in 

   1802360)2( 1,

2

 





 mm mnn

mn

ni

i   

  1,

2

1802 





 mnn

mn

ni

i m   . 

      From Definition 2, the angle of triangular lateral face Fn adjacent to B is 

calculated by: 180435  nnn  . Thus, 180543  nnn  . 

      From Corollary 5, when dealing with planes of every two consecutive lateral faces: 

2

4)1(3

)1(

nnn

nBn









 . 

Thus, the sum of corresponding angles of all "excess flap" surrounding qn,n+m-1 is: 

2

21

1

4

2

32 






















mn

ni

i

mn

ni

i

mn

ni

imn

ni

Bi



 . 

Substitute   1,

2

1802 





 mnn

mn

ni

i m  
 and 180543  nnn   into the above 

result: 
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  

2

1802180)2( 1,

2

1

54)1(32 















mnn

mn

ni

imnnmn

ni

Bi

mm 





 

2

1,

2

1

54)1(32 















mnn

mn

ni

imnnmn

ni

Bi



  

      This result is consistent with Theorem 4: 

2

2

1

1,4)1(532 














mn

ni

mnnmninmn

ni

Bi



 . 

 

Fig 13: Proof of Corollary 5 

 

4.3 Conditions and Limitations 
Proposition 6 Length of middle valley line: 

   
   )1(43

)1(43

sinsin2

sin1cos










nBnBnn

nBnBnnnn

nn

t
bd




.  

Proof: In General Algorithm step 1, we have obtained middle valley line on all lateral 

faces. Translate middle valley line to the lower edge of lateral face, zybd  . 

Segments y and z are shown in Fig.14. 

      By applying trigonometry identity to right-angled triangles with catheti y and x2, 

catheti z and x2: 

 )1(4

2

tan 


nBn

n
n

x
y


 and                                                   
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 Bnn

n
n

x
z

 


3

2

tan
.                                                       

      Substitute 
 

2

1cos
2




t
x  (Eq 4.5 from Proposition 2) into y and z, 

nnnn zybd   

  
   Bnn

n

nBn

n
n

xx
b

 





 3

2

)1(4

2

tantan
 

  
 
 

 
 Bnn

nn

nBn

nn
n

tt
b



















 3)1(4 tan2

1cos

tan2

1cos
 

  
   

   )1(43

)1(43

s i ns i n2

s i n1c o s










nBnBnn

nBnBnnnn

n

t
b




 

 

Fig 14: Notations on lateral face 

 

      In fact, for each F, there are three possible "five valley line" crease patterns, as 

shown in Fig. 15.     

      In the first pattern shown in Fig. 15a, the two end points of middle valley line are 

intersection point of two valley lines extending from pi,j and qi,j and intersection point of 

two valley lines extending from pj,k and qj,k. Length of middle valley line is positive. 

      In the second pattern shown in Fig. 15b, four valley lines extending from pi,j, qi,j, 

pj,k and qj,k intersect simultaneously. Length of middle valley line is zero. 

      In the third pattern shown in Fig. 15c, the two valley lines extending from pi,j and 

qi,j intersect before intersecting with the middle valley line. Length of middle valley line is 
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negative(shown in dashed line). In this case, limitation exists. 

 

(a)  

(b)  

(c)  

 

Fig 15: (a) (b) (c)Three possible valley line patterns on quadrilateral lateral face 

 

      This problem can be solved using "horizontal slicing". By adding mountain lines 

parallel to R and B, we "slice" P into two prismatoids P' and (P-P' ), where P' has the 

largest possible height without running into limitation (Fig. 16). Upon slicing, roof plane 

of P' is R' , which is also base plane of (P-P' ). 

 

Theorem 7 If h' represents height of P' , then 
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   
   




























n

nBnBnnn

nBnBnnn

t

b

hh
)1(43

)1(43

sin1cos

sinsin2

max'




 

Proof: For each F'n of P' , 
   

   
0

sinsin2

sin1cos'
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Fig 16: Horizontal slicing 

 

      Below shows a crease pattern of a cupola with limitation (Fig. 17). 
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Figure 17: Crease pattern of a cupola with limitation 

 

However, when lateral face F is a triangular lateral face, "horizontal slicing" cannot be 

applied any longer. The limitation exists when angle of "excess flap" 1  overlaps with 

2 . And 021   . 

Upon "horizontal slicing", 1  and 2  will remain unchanged, thus cannot solve the 

limitation. 

We propose a rough idea of "sink fold" to solve the limitation on triangular lateral faces. 

Since 021    must be fulfilled, for the ease of calculation, we "sink fold" the excess 

part if 
2

0  . Below shows an example of a prismatoid where limitations exist on three 

of the triangular lateral faces (Fig. 18). 
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     (a)  

(b)       (c)  

 

Figure 18: (a) "Sink fold" on triangular lateral faces 

(b) (c) Enlarged details 

 

4.4 Mountain lines 
      Mountain lines appear naturally when we fold along the valley line patterns. 

When drawing, connect end points of two middle valley lines on every two adjacent 

lateral faces. 
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4.5 MATLAB Algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Implementation and Results 

A MATLAB program has been written to implement our proposed algorithm for 

flattening convex prismatoids. Users input projection and height of their target 

prismatoid. The net and crease pattern are automatically generated by the program and 

may be printed out to be folded. Examples 1-5 are specifically chosen for their varied 

structures to illustrate the correctness and capabilities of our proposed algorithm. 

Projection of each example is drawn. The net and crease pattern for flattening is 

Algorithm  Crease Pattern of P  

 1:  input matrices of R and B, input h  

 2:  if no limitation   

 3:   Draw N   

 4:   Draw C   

 5:  else if limitation exists   

 6:   Calculate h'  

 7:   Input matrices of R'  and B 

 8:   Draw N'      

 9:   Draw C'    

10:   P=P-P'    

11:   repeat from 1 

12:  end 

Start 

Input matrices of  

R and B, input h 

Check 

limitation 

Draw N and C 

End 

Input matrices of 

R' and B, input h' 

Draw N' and C' P=P-P' 
Repeat 

No 

Yes 
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obtained by the program. The 3D structure as well as the flattened state of the convex 

prismatoid is then shown. 

       

Example 1 (Fig. 19) is a rotationally symmetric frustum. Its layout of roof plane and 

layout of base plane are similar. 

(a) (b)  

 

(c)  (d)  

 

Fig 19: Example 1 (a) The projection (b) The expanded view with crease pattern  

(b)The convex prismatoid (d) The flattened product 
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Example 2 (Fig. 20) is an oblique prism whose roof plane and base plane have the same 

layout. 

(a)          (b)  

 

(c)  (d)  

 

Fig 20: Example 2 (a) The projection (b) The expanded view with crease pattern  

(c) The convex prismatoid (d) The flattened product 
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Example 3 (Fig. 21) is a cupola, whose base plane has twice vertices as many as its roof 

plane, and both planes are joined by alternating triangles and rectangles. 

(a)        (b)  

 

(c)   (d)  

 

Fig 21: Example 3 (a) The projection (b) The expanded view with crease pattern  

(c) The convex prismatoid (d) The flattened product 
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Example 4 (Fig. 22) is an antiprism which has only triangular lateral faces. 

(a)       (b)  

 

(c)  (d)  

 

Fig 22: Example 4 (a) The projection (b) The expanded view with crease pattern  

(c) The convex prismatoid (d) The flattened product 
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Example 5 (Fig. 23) is a convex prismatoid without any limitation. 

(a)         (b)  

 

(c)    (d)  

 

Fig 23: Example 5 (a) The projection (b) The expanded view with crease pattern  

(c)The convex prismatoid (d) The flattened product 

 

6 Applications 

      Flattening of polyhedra has many applications in real life. In astronomy, scientists 

send space telescopes into outer space for observation of distant planets, galaxies, and 

other outer space objects. If one applies the method of flattening of polyhedron into rigid 

folding, it may help to reduce the space that the equipment takes up. These equipments 

can be restored to three-dimensional shape when there is a need to use them [5]. Our 

work is also applicable to robotics-making. Recently, George M. Whitesides' lab at 

Harvard has manufactured air-powered origami robotic actuators out of paper and elastic 

[6]. In the process of restoring the shape of flattened polyhedron, they make use of the 

force generated by air and lifted a weight which is over 100 times the weight of the 

actuator itself. Our work is also useful in biomedical appliances. Medical specialists may 

need trestles to temporarily hold a natural conduit open so that they can complete the 
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operations successfully. In addition, our method can be applied to stents which are 

inserted into patients' bodies. The stents are flattened outside and expanded inside the 

organs to prevent or counteract a localized flow constriction. 

 

7 Conclusion and Future Work 

We have derived an original and novel algorithm for flattening convex prismatoids. This 

algorithm has been implemented by a MATLAB program that allows users to specify the 

projection and height of their target prismatoid and generate the crease pattern 

automatically. 

Since any convex polyhedron can be divided into convex prismatoids by horizontal 

slicing, there exists possibility of applying our work to flattening all convex polyhedra. In 

future work, we will also look at convex polyhedra and more complex shapes that are able 

to be flattened.  
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Report on the project “A General Algorithm of Flattening Convex Prismatoids” 
by Li Chenglei, Zhou Jingqi (NUS High School) 
 
 
In this project, an algorithm for construction of a flattenings of convex prismatoids is 
developed and implemented in Matlab. This is an interesting problem with a number 
of potential real world applications.  
 
The committee ranked this project highly because developing such an algorithm 
requires substantial creativity and mathematical skill. The mathematics involved is 
elementary, but coming up with ideas which produce a flattening of any prismatoid is 
far from obvious. Quite complicated geometric considerations are necessary as a 
background. The committee feels that the merit of the discovery of such an algorithm 
is comparable to that of proving an interesting mathematical theorem. 
 
The project presentation was very well delivered. It showed that the students’ 
understanding of the material is quite deep. Interesting examples were given, 
including a demonstration of the Matlab implementation of the algorithm that has 
been developed.  
 
It has to be said that the project report is not well written. The exposition sometimes 
is imprecise and some issues remain unclear. Moreover, the English of the report 
should be improved. 
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