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q-Symmetric Polynomials and nilHecke Algebras

Abstract

Symmetric functions appear in many areas of mathematics and physics, including enumerative combinatorics and
the representation theory of symmetric groups. A q-bialgebra of ”q-symmetric functions” generalizing the symmetric
functions was defined by Ellis and Khovanov as a quotient of the quantum noncommutative symmetric functions. In
the q = −1 (or ”odd”) case of these q-symmetric functions, they and Lauda introduced odd divided difference operators
and an odd nilHecke algebra, used in the categorification of quantum groups. Using diagrammatic techniques, we
study relations for the q-symmetric functions when q is a root of unity other than 1 or −1. We then use q-analogues
of divided difference operators to define a q-nilHecke algebra and describe its properties. In addition, Wang and
Khongsap introduced an odd analogue of Dunkl operators, which have connections to Macdonald polynomials in the
even case. We find a connection between the odd Dunkl operator and the odd nilHecke algebra, and show that a
variant of the odd Dunkl operator can be used in constructing operators that generate the Lie algebra sl2.
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1 Introduction

The set of n! permutations of 1, 2, 3, . . . , n forms a group with multiplication being the composition of elements and the
identity permutation being the multiplicative identity. This group is called the symmetric group, which we will denote
Sn. Symmetric polynomials are polynomials in n independent, commutative variables x1, x2, . . . , xn that are invariant
under the action of any permutation acting on the indices. As n tends to infinity, one obtains the ring of symmetric
functions, Λ, which is a graded C-algebra. The bases of this ring, including the elementary, complete, monomial, and
Schur symmetric polynomials, have been well-studied. Symmetric polynomials arise in various contexts in mathemat-
ics and physics. They are important in enumerative combinatorics, where one may study the important bases through
the tools of Young tableaux and algebraic combinatorics as in [10]. They have a fundamental role in the representation
theory of the symmetric group, which itself plays a role in quantum mechanics of identical particles. The space of
symmetric polynomials in n variables, Λn, may be identified by a Hopf algebra structure with an adjoint bilinear form,
which we will utilize in our work.

The theory of noncommutative symmetric functions, where in general xixj 6= xjxi for 1 ≤ i 6= j ≤ n, has also
been developed and analogues of objects in the commutative case have been found. Here, one requires the notion
of a quasideterminant to generalize the concept of a determinant with noncommutative entries, in order to express
transition matrices between bases of the noncommutative symmetric functions [5]. The quantum case, where xjxi =
qxixj for j > i, has recently been introduced by Ellis and Khovanov. These polynomials are inherently connected, in
the q = −1 case, to superalgebras.

Superalgebras, which arise from supersymmetry in physics, are the direct sum of two spaces K0 and K1, where
KiKj ⊆ Ki+j and indices are read modulo 2. In other words, a superalgebra may be considered as a Z2-graded
algebra, with the same operations as an algebra (the unit and the multiplication). We can also induce a braiding τ by

τ : V ⊗W →W ⊗ V
v ⊗ w 7→ (−1)|v||w|w ⊗ v

for two vector spaces V and W, where |f | is the degree of f . We can also define a multiplication on the tensor product
two superalgebras A and B by:

(w ⊗ x)(y ⊗ z) = (−1)|x||y|wy ⊗ xz

for homogenous elements x and y.
In [3], Ellis and Khovanov introduced the ”odd symmetric polynomials”, which are polynomials in the n variables

x1, . . . , xn such that xixj + xjxi = 0 for i 6= j. These polynomials can be interepreted through a −1-bialgebra structure
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with a similar bilinear form as in the ”even” case, where xixj = xjxi for all indices i, j. The odd symmetric polyno-
mials have several important bases, and have similar combinatorial properties with their even counterparts. We will
highlight one example through the elementary symmetric functions. In the even case,

ek(x1, . . . , xn) =
∑

1≤i1<...<ik≤n

xi1 · · ·xin

and eiej = ejei for all indices i, j. These polynomials come up in Vieta’s formulae, in the coefficients of x in the polyno-
mial (x−x1) . . . (x−xn). In the odd case, these polynomials may be defined in the same way (but with anticommuting
variables) such that the relations become:

eiej = ejei for i+ j even

eiej + (−1)iejei = ej−1ei+1 + (−1)iei+1ej−1 for i+ j odd

Thus, if the ground ring has characteristic 2, then all commutators vanish. Ellis and Khovanov also found various other
properties of the odd symmetric functions, including an odd RSK correspondence which may be used to study odd
analogues of Schur functions and their orthonormality properties with respect to the standard bilinear form.

Further work in this direction by Ellis, Khovanov, and Lauda has led to a categorication of the positive half of the
quantum Lie algebra sl2. Categorification is an idea, originally suggested by Louis Crane and Igor Frenkel, by which
one could replace algebras and representations by graded additive categories and higher categories to obtain quantum
4-manifold invariants from quantum 3-manifold invariants. A classic example is that Khovanov homology, a bigraded
abelian group, categorifies the one-variable Jones polynomial. In a recent work, Khovanov and Lauda, as well as
Rouquier, introduced the so called KLR algebras which categorify the postive half of quantum Kac-Moody algebras
(used to construct quantum 3-manifold invariants). These algebras generalize the nilHecke algebra introduced by
Kostant and Kumar in the 80’s, in the context of geometric representation theory.

The even nilHecke algebra NHn is generated by n commuting variables x1, . . . , xn and n divided difference opera-
tors ∂i, such that ∂i = (xi − xi+1)−1(1− si), where si is the simple transposition in the symmetric group that swaps xi
and xi+1. This algebra is Morita equivalent to the symmetric polynomials in n variables. Ellis, Khovanov, and Lauda
categorified the positive half (much more recently, both halves) of sl2 by introducing an odd analogue of the nilHecke
algebra. Their odd analogue retains many of the properties that one sees in the even case, including a Leibniz rule
for the odd divided difference operator, an interpretation of the odd nilHecke algebra as a matrix algebra over the
odd symmetric polynomials, and the use of a diagrammatic calculus. The odd nilHecke algebra has since found many
other applications in representation theory. It is related to affine Hecke-Clifford superalgebras, and has been used to
construct odd analogues of the cohomology groups of Grassmannians and Springer varieties. In this work, we will
introduce q-analogues of various results in this context. We study relations for the q-symmetric polynomials in the
variables x1, . . . , xn such that xjxi = qxixj for j > i and q is a root of unity inC. We also develop a q-nilHecke algebra
and discuss its properties. It would be interesting to study whether q-nilHecke algebras categorify an interesting Lie
theoretic algebra, and whether they can be used to construct invariants of links or other geometric structures

There are still open questions relating to the even, odd, and general q cases, including an interpretation of power
sums, Grothendieck polynomials, Macdonald polynomials, coinvariant algebras, and so on. Along these lines, Wang
and Khongsap introduced an odd analogue of Dunkl operators, and developed an odd double affine Hecke algebra as
well. In the even case, one may define a reduced root system and a Coxeter group generated by complex reflections
over the hyperplane. The Dunkl operators then may be interepreted as differential-difference operators that generalize
the concept of a partial derivative. The Dunkl operator ηi commutes (ηiηj = ηjηi), and satisfies various other interesting
properties. These operators have a major role in mathematical physics and conformal field theory where they relate
to the study of quantum many-body problems in the Calogero-Moser model. They are used to show the integrability
of the non-periodic Calogero-Moser-Sutherland system, and are related to various other operators and symmetric
polynomials, including the Cherednik operators and Jack polynomials. The Dunkl operators can also be used to define
three operators, which play important roles in physics and harmonic analysis, that generate the Lie algebra sl2. This
result plays a crucial role in Fischer decomposition, which is of importance in representation theory and the Dirichlet
problem. In this work, we find a connection between the odd nilHecke algebra introduced by Ellis, Khovanov, and
Lauda, and the odd Dunkl operator introduced by Wang and Khongsap. We also find three operators, based on a
variant of the odd Dunkl operator, that generate sl2, as in the even case. These results should have an important role
in better understanding the representation theory of odd symmetric functions.
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2 Background

2.1 Dunkl Operators

In the even case, we work over the ring C〈x1, . . . , xn〉, where xixj = xjxi for all 1 ≤ i, j ≤ n. Dunkl [2] introduced the
remarkable operator

ηeven
i =

∂

∂xi
+ α

∑
k 6=i

∂even
i,k (2.1)

where
∂

∂xi
is the partial derivative with respect to xi, α ∈ C, and ∂even

i,k is the even divided difference operator:

∂even
i,k = (xi − xk)−1(1− si,k). (2.2)

Since xi − xk always divides f − si,k(f) for f ∈ C〈x1, . . . , xn〉, ∂i,k sends polynomials to polynomials. As usual, si,k is
the transposition in Sn that swaps xi and xk and satisfies the relations of the symmetric group.

These Dunkl operators have various properties, the most important of which is that they commute (ηiηj = ηjηi).
They also satisfy the properties that [1]:

ηi(fg) =
∂

∂xi
(f)g + fηi(g) (2.3)

ηixj + xiηj = ηjxi + xjηi (2.4)

In [9], Khongsap and Wang introduced an odd Dunkl operator which anti-commutes. These operators have similar
commutation relations with xi and xj that the even Dunkl operators do. In Section 3, we will develop the connection
between this operator and the odd nilHecke algebra introduced in [4].

Now introduce operators r2, E (the Euler operator) and ∆k (the Dunkl Laplacian):

r2 =
n∑
i=1

x2i (2.5)

E =
n∑
i=1

xi
∂

∂xi
+
µ

2
(2.6)

∆k =
n∑
i=1

η2i (2.7)

where µ is the Dunkl dimension, which is defined by the relation ηi|x|2 = 2µ.
Let [p, q] = pq − qp be the commutator. Heckman showed that r2, E, and ∆k satisfy the defining relations of the Lie

algebra sl2 [6]:

[E, r2] = 2r2 (2.8)
[E,∆k] = −2∆k (2.9)

[r2,∆k] = 4E (2.10)

If one were to replace ∆k with the classical Laplacian (replacing the Dunkl operator with the partial derivative),
these three operators still satisfy the relations for sl2. Combined with the fact that Dunkl operators commute, one can
see that the Dunkl operators represent a meaningful generalization of the partial derivative.

In Section 4, we will focus on finding analagous results in the odd case.

2.2 Introduction to q-Bialgebras

We begin by an introduction to the terminology of bialgebras that will be used later. The notion ofA being anC-algebra
entails that there are two maps: the unit and the multiplication.

η : C→ A

m : A⊗A→ A
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The algebra A also has an identity map 1A : A → A. We denote the degree of an element v by |v|. For homogenous
elements v and w of A, define the braiding:

τA : A⊗A→ A⊗A
v ⊗ w → q|v||w|w ⊗ v

One may define the multiplication map m2 from A⊗4 → A⊗2 as:

m2 = (m⊗m)(1A ⊗ τA ⊗ 1A)

A coalgebra is a structure with the following maps, the counit and comultiplication:

ε : A→ C

∆ : A→ A⊗A

A bialgebra B is equipped with all of the four maps (η,m, ε,∆), with the added compatibility that the comultiplication
is a homomorphism of algebras. This condition implies that:

∆ ◦m = m2 ◦ (∆⊗∆)

and by the definition of m2, we have the following bialgebra axiom:

∆ ◦m = (m⊗m) ◦ (1B ⊗ τB ⊗ 1B) ◦ (∆⊗∆)

3 Odd Dunkl operators and the Odd nilHecke algebra

3.1 Introduction to the Odd nilHecke Algebra

We work over C〈x1, . . . , xn〉/〈xjxi + xixj = 0 for i 6= j〉. We can define linear operators, called the odd divided
difference operators, as below:

Definition 3.1. For i = 1, . . . .n − 1, the i-th odd divided difference operator ∂i is the linear operator C〈x1, . . . , xn〉 →
C〈x1, . . . , xn〉 defined by

∂i(xj) =


1 j = i

1 j = i+ 1

0 j 6= i, i+ 1

(3.1)

∂i(fg) = ∂i(f)g + (−1)|f |si(f)∂i(g). (3.2)

where si(f) is the type A transposition:

si(xj) =


xi+1 j = i

xi j = i+ 1

xj j 6= i, i+ 1

(3.3)

It is shown in [4] that the odd divided difference operators can be used to construct an odd nilHecke algebra, generated
by xi and ∂i for 1 ≤ i ≤ n, subject to the following relations.

∂2i = 0

∂i∂j + ∂j∂i = 0 for |i− j| ≥ 2

∂i∂i+1∂i = ∂i+1∂i∂i+1

xixj + xjxi = 0 for i 6= j

xi∂i + ∂ixi+1 = 1, ∂ixi + xi+1∂i = 1

xi∂j + ∂jxi = 0 for |i− j| ≥ 2
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Some operations on skew polynomials 7

Due to [7], we have the following explicit definition of the odd divided difference operator:

∂i(f) = (x2i+1 − x2i )−1[(xi+1 − xi)f − (−1)|f |si(f)(xi+1 − xi)] (3.4)

Although this formula a priori involves denominators, it does take skew polynomials to skew polynomials. We extend
this definition to non-consecutive indices by allowing i + 1 to equal any index k 6= i, for 1 ≤ k ≤ n, and by replacing
the simple transposition si with si,k, which swaps xi and xk.

∂i,k(f) = (x2k − x2i )−1[(xk − xi)f − (−1)|f |si,k(f)(xk − xi)] (3.5)

This extended odd divided difference operator satisfies the Leibniz rule ∂i,k(fg) = ∂i,k(f)g + (−1)|f |si,k∂i,k(g) [4].

3.2 Some operations on skew polynomials

First, we introduce a common operator in the study of Dunkl operators:

Definition 3.2. Let the −1-shift operator τi send f(x1, x2, . . . , xi, . . . , xn) to f(x1, x2, . . . ,−xi, . . . , xn).

This operator satisfies the below properties, where f is a function in C〈x1, . . . , xn〉:

si,jτi = τjsi,j (3.6)
si,jτj = τisi,j (3.7)
si,jτk = τksi,j if k 6= i, j (3.8)

fxi = (−1)|f |xiτi(f) (3.9)

Remark 3.3. Since skew polynomials are not super-commutative, we cannot say that fg = (−1)|f ||g|gf . But the opera-
tor τi allows us to track the discrepancy from super commutativity, since xif = (−1)|f |τi(f)xi, which is why it becomes
useful in this context.

We now introduce the operator ri,k = ∂i,ksi,k for k 6= i, which will serve as another odd divided difference operator
that we will use to study odd Dunkl operators. For simplicity, let ri = ri,i+1. In the following lemma, we study the
action of the transposition and −1-shift operator on ri,k:

Lemma 3.4. For i = 1 to n, si,k acts on ri,k as follows:

siri,k = ri+1,ksi if k 6= i+ 1 (3.10)
siri = risi (3.11)
siri+1 = ri,i+2si (3.12)
si+1ri = ri,i+2si+1 (3.13)
sirj = rjsi for |i− j| ≥ 2 (3.14)
τirj = rjτi for |i− j| ≥ 2 (3.15)

Proof. Note that

siri,k(f) = si(x
2
k − x2i )−1[(xk − xi)f − (−1)|f |si,k(f)(xk − xi)]si,k

= (x2k − x2i+1)−1[(xk − xi+1)f − (−1)|f |si+1,k(f)(xk − xi+1)]si+1,ksi

= ri+1,ksi(f)

since sisi,k = si+1,ksi. The next four properties can be deduced similarly. The final property follows from τisj = sjτi
and the fact that τi(xj) = xj for i 6= j.

Recall the following relationship between ∂i,j and sk,` for i 6= j and k 6= `, from Lemma 2.19 (1) of [4]:

∂i,jsk,` = sk,`∂sk,`(i,j) (3.16)

where sk,`(i, j) is the result of applying sk,` to the pair (i, j).

O11

Page - 550



Some operations on skew polynomials 8

Remark 3.5. The result from Lemma 2.19 in [4] includes a sign, but this is because their si,j is the odd transposition,
(−1)|f |seven

i,j . Since the odd divided difference operator reduces the degree by 1, we obtain the correct expression above
in terms of the even transposition sk,`.

We now show that the properties of the ri,k are similar to those of the odd divided difference operator ∂i,k:

Lemma 3.6. For i = 1 to n, we have

r2i = 0 (3.17)
rirj + rjri = 0 (3.18)
riri+1ri = ri+1riri+1 (3.19)

ri,k(fg) = ri,k(f)si,k(g) + (−1)|f |fri,k(g) (3.20)
rixi+1 + xi+1ri = si (3.21)
rixi + xiri = si (3.22)
rjxi + xjri = 0 (3.23)

Proof. Since siri = risi and ri = ∂isi, it follows that si∂i = ∂isi. Then, since ∂2i = 0,

r2i = ∂isi∂isi = ∂i∂isisi = 0

We also have from 3.14 that sirj = rjsi for |i− j| ≥ 2, so si∂j = ∂jsi. Thus, ri and rj anti-commute since

rirj = ∂isi∂jsj = ∂i∂jsisj = −∂j∂isisj = −∂jsj∂isi = rjri

because ∂i∂j + ∂j∂i = 0. The operators ri also braid, which we show by inductively reducing to i = 1, and then using
3.16 and si∂i = ∂isi repeatedly:

r1r2r1 = s1∂12∂2s1∂1 = s1s2∂1,3s1∂1,3∂1 = s1s2s1∂2,3∂1,3∂1,2

r2r1r2 = s2∂2s1∂1s2∂2 = s2s1∂1,3s2∂1,3∂2 = s2s1s2∂1,2∂1,3∂2,3

Therefore, r1r2r1 = r2r1r2 since the si braid, and since ∂2,3∂1,3∂1,2 = ∂1,2∂1,3∂2,3 by symmetry. Next we find a Leibniz
rule for ri,k using the Leibniz rule for ∂i,k.

∂i,ksi,k(f, g) = ∂i,ksi,k(f)si,k(g) + (−1)|f |f∂i,ksi,k(g) = ri,k(f)si,k(g) + (−1)|f |fri,k(g)

Note that ri(xi) = ri(xi+1) = 1 and ri(xj) = 0 for j 6= i, i+ 1. Equations 3.21 through 3.23 then follow from the Leibniz
rule 3.20.

We also desire an explicit definition of the ri,k analogous to that of the odd divided difference operator of [4]. To
find such an expression, we utilize a preparatory lemma:

Lemma 3.7. For i = 1 to n, si,kxiτi(f)− si,kxkτk(f) = (−1)|f |si,k(f)(xi − xk) for f ∈ C〈x1, . . . , xn〉.

Proof. It suffices to prove the result for a monomial xλ = xλ1
1 . . . xλii . . . xλkk . . . xλnn , where i < k. We will proceed by

direct computation:

si,kxiτi(x
λ) = (−1)λixksi,k(xλ1

1 . . . xλii . . . xλkk . . . xλnn ) = (−1)λ1+...+λixλ1
1 . . . xλi+1

k . . . xλki . . . xλnn

si,kxkτk(xλ) = (−1)λkxisi,k(xλ1
1 . . . xλii . . . xλkk . . . xλnn ) = (−1)λ1+...+λk−1xλ1

1 . . . xλik . . . xλk+1
i . . . xλnn

si,k(xλ1
1 . . . xλii . . . xλkk . . . xλnn )xi = (−1)λk+1+...+λnxλ1

1 . . . xλik . . . x
λk+1

i . . . xλnn

si,k(xλ1
1 . . . xλii . . . xλkk . . . xλnn )xk = (−1)λi+1+...+λnxλ1

1 . . . x
λi+1

k . . . xλki . . . xλnn

Since |f | = λ1 + . . .+ λn, the desired result follows.

We can now express ri,k explicitly as

Lemma 3.8. ri,k = (x2i − x2k)−1[(xi − xk)si,k − xiτi + xkτk]
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Proof. Follows from Lemma 3.7 and the formula of [7].

We will now connect the above results to the odd Dunkl operator introduced by Khongsap and Wang in [9].

Definition 3.9. Define an operator δi by δi = (2xi)
−1(1− τi)

The above super-derivative can also be defined inductively, by imposing that δi(xj) = 1 if i = j and 0 otherwise.
We then extend the action to monomials as follows:

δi(xa1xa2 . . . xa`) =
∑̀
k=1

(−1)k−1xa1 . . . δi(xak)xak+1
. . . xa` (3.24)

The operator δi is a priori from Laurent skew polynomials to Laurent skew polynomials, but it is easy to check that it
preserves the subalgebra of skew polynomials. Khongsap and Wang found an odd analogue of the Dunkl operator:

ηodd
i = tδi + u

∑
k 6=i

(x2i − x2k)−1[(xi − xk)si,k − xiτi + xkτk] = tδi + u
∑
k 6=i

ri,k (3.25)

where t, u ∈ C. Their operator anti-commutes; ηiηj + ηjηi = 0 for i 6= j.
By Lemma 3.8, this odd Dunkl operator may be expressed as:

ηodd
i = tδi + u

∑
k 6=i

∂i,ksi,k (3.26)

By analogy with the commutative case, discussed in section 1, the operator ri,k plays the same role in the odd theory
that the even divided difference operator plays in the even theory.

4 Properties of Another Odd Dunkl Operator

In this section, we will show that a close variant of the odd Dunkl operator introduced by Khongsap and Wang can
be used in the construction of three operators that satisfy the defining relations of the Lie algebra sl2. First, we will
consider a different operator pi, which in some ways is more natural than δi:

Definition 4.1. The operator pi acts on monomials as follows:

pi(x
λ1
1 . . . xλii . . . xλnn ) = λi(−1)λ1+...+λi−1xλ1

1 . . . xλi−1i . . . xλnn (4.1)

Now consider a modified version of ηi:

Definition 4.2. Let
Di = tpi + u

∑
k 6=i

ri,k (4.2)

Note that this operator substitutes pi for δi in the odd Dunkl operator of Wang and Khongsap. Similar to the even
case, define the Euler, r2, and odd Dunkl Laplacian operators as below:

r2 = (2t)−1
n∑
i=1

x2i (4.3)

E =
n∑
i=1

xipi +
n

2
+
u

t

∑
k 6=i

si,k (4.4)

∆ = −(2t)−1
n∑
i=1

D2
i (4.5)

As usual, let [p, q] = pq − qp be the commutator. Note that in Heckman’s paper, t = 1 [6]. We will consider t to be a
fixed constant in C.
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Remark 4.3. The commutator in the setting of superalgebras is usually defined as [a, b] = ab − (−1)|a||b|ba, where |a|
and |b| are the degrees of a and b, respectively. However, since all of the operators we will be considering have even
degree, there is no need to distinguish between commutators and super-commutators.

To demonstrate the relationship between these operators and sl2 we will require a series of lemmas regarding the
action of portions of the Euler operator E. We first investigate the action of the second term of the Euler operator:

Lemma 4.4. The operator
n∑
i=1

xipi acts by multiplication by |f | on the space of homogenous functions f .

Proof. It suffices to show the result for a monomial xλ = xλ1
1 . . . xλii . . . xλnn . Note that

xipi(x
λ) = λixi(−1)λ1+...+λi−1xλ1

1 . . . xλi−1i . . . xλnn = λix
λ

By summing over all indices i, we obtain that

n∑
i=1

xipi(x
λ) = (λ1 + λ2 + . . .+ λn)xλ

which implies the desired result.

The above lemma holds true in the even case as well, where pi is replaced by the partial derivative with respect to
xi. We now prove some properties about the action of the third term of the Euler operator on r2 and ∆:

Lemma 4.5.

∑
k 6=i

si,k,∆

 = 0

Proof. We will first show that

sj,kpi =


pisj,k if i 6= j 6= k

pjsj,k if i = k

pksj,k if i = j

(4.6)

Indeed, these relations can be verified by checking if they are true for xai x
b
jx
c
k, a, b, c ∈ Z+, and then extending by

linearity. We prove that sj,kpi = pjsj,k if i = k, and the other two cases are similar. Without loss of generality, let j < k.

sj,kpk(xajx
b
k) = b(−1)asj,k(xajx

b−1
k ) = b(−1)axakx

b−1
j = b(−1)abxb−1j xak

pjsj,k(xajx
b
k) = (−1)abpj(x

b
jx
a
k) = b(−1)abxb−1j xak

As a result of (4.6), we therefore have the action of the transposition on pi. We will next need its action on r`,m. By the
work in the previous section, we find that

sj,kr`,m = rsj,k(`,m)si,j (4.7)

where sj,k(`,m) is the result of applying the transposition sj,k to the pair (`,m). Combining 4.6 and 4.7, we find that

sj,kDi = Dsj,k(i)sj,k (4.8)

where sj,k(i) is the result of applying the transposition sj,k to i. By an easy induction, we now have that

sj,k∆ = ∆sj,k

Using the above equation multiple times proves the desired result.

We have a similar result for the action of the third term of the Euler operator and r2:

Lemma 4.6.

∑
k 6=i

si,k, r
2

 = 0
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Proof. Follows from the observation that

sj,kxi =


xisj,k if i 6= j 6= k

xjsj,k if i = k

xksj,k if i = j

so that sj,kr2 = r2sj,k

We are now ready to obtain two commutativity relations between the Euler, r2, and odd Dunkl Laplacian operators:

Theorem 4.7. The odd Euler operator and r2 satisfy the following commutation relations:

[E, r2] = 2r2 (4.9)
[E,∆] = −2∆ (4.10)

Proof. Since r2 has degree 2 and ∆ has degree −2, the theorem follows from lemmas 4.4, 4.5, and 4.6.

We also need to investigate what the third commutativity relation [r2,∆] turns out to be. We will prove one lemma
before doing so.

Lemma 4.8. For i = 1 to n, the equation xiDi +Dixi = 2txipi + t+ u
∑
k 6=i

si,k holds.

Proof. Recall that
Di = tpi + u

∑
k 6=i

(x2i − x2k)−1[(xi − xk)si,k − xiτi + xkτk]

Therefore, since pixi = xipi + 1,

Dixi = txipi + t+ u
∑
k 6=i

(x2i − x2k)−1(xixk − x2k)si,k +
∑
k 6=i

(x2i − x2k)[x2i τi − xixkτk]

xiDi = txipi + u
∑
k 6=i

(x2i − x2k)−1(x2i − xixk)si,k +
∑
k 6=i

(x2i − x2k)−1[−x2i τi + xixkτk]

Adding, we obtain the desired result.

We now have the tools to find the third relation between r2, E, and ∆:

Theorem 4.9. [r2,∆] = E

Proof. We will first find [r2, Di]. The derivative pi, much like the partial derivative in the even case, satisfies the prop-
erties:

pixj = −xjpi for i 6= j (4.11)
pixi = xipi + 1 (4.12)

Now, suppose that i 6= j. Then,

Dix
2
j = tpix

2
j + ux2j

∑
k 6=i6=j

ri,k + x2k(x2i − x2k)−1[−xiτi + xkτk] + x2i (x
2
i − x2k)−1[(xi − xk)si,k]

= tx2jpi + ux2j
∑
k 6=i

ri,k + (xi − xj)si,j

Now, we will find Dix
2
i :

Dix
2
i = tpix

2
i +

∑
k 6=i

x2k(x2i − x2k)−1(xi − xk)si,k + x2i
∑
k 6=i

(x2i − x2k)−1[−xiτi + xkτk]

tx2i pi + 2txi + x2i
∑
k 6=i

ri,k −
∑
k 6=i

(xi − xk)si,k
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Therefore,

[
n∑
i=1

x2i , Di

]
= −2txi. This implies that

r2Di −Dir
2 = −xi (4.13)

Now,

[r2,∆] = −(2t)−1
n∑
i=1

[r2, D2
j ] = −(2t)−1

n∑
i=1

(r2D2
j −D2

j r
2)

= −(2t)−1
n∑
i=1

[(Djr
2Dj − xjDj)− (Djr

2Dj +Djxj)]

= (2t)−1
n∑
i=1

(xiDi +Dixi)

where we have used 4.13. Now, by Lemma 4.8,

[r2,∆] =
n∑
i=1

xipi +
n

2
+
u

t

∑
k 6=i

si,k = E

as desired.

To summarize, we have found operators E,r2, and ∆, similar to their even counterparts, which satisfy the defining
relations of the Lie algebra sl2:

[E, r2] = 2r2

[E,∆] = −2∆

[r2,∆] = E

Remark 4.10. If one uses the odd Dunkl operator ηi as found in [9] instead of the Di introduced here, the r2, E, and ∆
operators then seem to generate an abelian Lie algebra rather than sl2.

Remark 4.11. Although our results hold true for all t and u in C, one typically sets t = 1 and u = α−1, since without
loss of generality one of t and u may equal 1.

5 Relations in the q-Analogue of Symmetric Polynomials

5.1 Introduction to the q-Analogue of Noncommutative Symmetic Functions

Let NΛq be a free, associative, Z-graded C-algebra with generators hm for m ≥ 0. We define h0 = 1 and hm = 0 for
m < 0, and let q ∈ C. The homogenous part of NΛq of degree ` has a basis {hα}α�k, where

hα = hα1 · · ·hαz for a composition α = (α1, . . . , αz) of `.

Define a multiplication for homogenous x and y on NΛq⊗2 as follows, where deg(x) denotes the degree of x:

(w ⊗ x)(y ⊗ z) = qdeg(x)deg(y)(wy ⊗ xz)

We can make NΛq into a q-bialgebra by letting the comultiplication on generators be:

∆(hn) =
n∑
k=0

hk ⊗ hn−k

and by letting the counit be ε(x) = 0 if x is homogenous and deg(x)> 0.
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We can impose, through the braiding structure, that:

∆(hahb) =
a∑
j=0

b∑
k=0

(hj ⊗ ha−j)(hk ⊗ hb−k) =
a∑
j=0

b∑
k=0

qk(a−j)(hjhk ⊗ ha−jhb−k)

For any partitions λ and µ of n, consider the set of double cosets of subroups Sλ and Sµ of Sn: Sλ\Sn/Sµ. For every
C in this set, let wC be the minimal length representative of C and let `(wC) be the length of this minimal length
representative. We will now attribute a bilinear form to NΛq :

(hλ, hµ) =
∑

C∈Sλ\Sn/Sµ

q`(wC),

The bilinear form admits a diagrammatic description. Let hn be an orange platform with n non-intersecting strands
coming out of it. When computing (hλ, hµ), with `(λ) = z and `(µ) = y, draw z orange platforms at the top of the
diagram, representing λ1, λ2,· · · ,λz . Draw y orange platforms at the bottom of the diagram, representative of µ1, µ2,· · · ,
µy . We require that |λ| = |µ|, so that the top platforms and bottom platforms have the same number of strands.

Consider the example (h121, h22). In the following diagram, snippets of the strands from each platform are shown.

Every strand must start at one platform at the top and end on another platform at the bottom. No strands that
have originated from one platform may intersect. The strands themselves have no critical points with respect to the
height function, no two strands ever intersect more than once, and there are no triple-intersections where three strands
are concurrent. Diagrams are considered up to isotopy. Without any restrictions, there would be n! such diagrams if
|λ| = n, since there would be no limitations on the ordering of the strands. However, due to the above rules, there are
only 4 possible diagrams in the computation of (h121, h22), shown below.

Define
(hλ, hµ) =

∑
all diagrams D representing (hλ,hµ)

q number of of crossings inD. (5.1)

In the above example, (h121, h22) = 1 + 2q2 + q3.
We can extend the bilinear form to NΛq⊗2 by stating tht any diagram in which strands from distinct tensor factors

intersect contributes 0 to the bilinear form:

(w ⊗ x, y ⊗ z) = (w, y)(x, z).

Let I be the radical of the bilinear form in NΛq . In [3], the authors proved the following statements for any q.

1. Adjointness of multiplication and comultiplication for all x,y1, y2 in NΛq :

(y1 ⊗ y2,∆(x)) = (y1y2, x) (5.2)

2. I is a q-bialgebra ideal in NΛq :

INΛq = NΛqI = I (5.3)
∆(I) ⊂ I ⊗NΛq +NΛq ⊗ I (5.4)
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5.2 The Elementary Symmetric Functions

Define elements ek ∈ NΛq by ek = 0 for k < 0, e0 = 1, and

k∑
i=0

(−1)iq(
i
2)eihk−i = 0 for k ≥ 1. (5.5)

Or, equivalently,
en = q−(n2)

∑
α�n

(−1)`(α)−nhα. (5.6)

Lemma 5.1.

1. The coproduct of an elementary function is given by ∆(en) =
n∑
k=0

ek ⊗ en−k.

2. If λ � n, then (hλ, en) =

{
1 if λ = (1, . . . , 1)

0 otherwise.

Proof. We begin by demonstrating (2), from which (1) will follow. To show (2), it suffices to show that

(hmx, en) =

{
(x, en−1) if m = 1
0 otherwise

We will utilize a strong induction on n in order to find (hmx, ekhn−k). The base cases n = 0, 1 are easy to show. There
are two cases to consider by the inductive hypothesis applied to k < n. Either there is a strand connecting hm and ek,
or there is not. Just as we used an orange platform to denote hn, we will use a blue platform to denote ek. The rules of
the diagrammatic notation are the same for the blue platforms as they are for the orange platforms.

k

m

n− k −m

k n− k

m

∗ ∗ ∗ ∗ ∗
x

If there is not a strand connecting hm and ek, the configuration contributes qkm(x, ekhn−k−m) .

k − 1

m − 1

n − k −m + 1

k n− k

m

∗ ∗ ∗ ∗ ∗
x
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If a stand connects hm and ek, this configuration contributes q(k−1)(m−1)(x, ek−1hn−k−m+1). We have thus shown that
(hmx, ekhn−k) = qkm(x, ekhn−k−m) + q(k−1)(m−1)(x, ek−1hn−k−m+1). Now we are equipped to consider (hmx, ek).

(−1)n+1q(
n
2)(hmx, en) =

n−1∑
k=0

(−1)kq(
k
2)(hmx, ekhn−k)

=
n−1∑
k=0

(−1)kq(
k
2)+km(x, ekhn−k−m) +

n−1∑
k=0

(−1)kq(
k
2)+(m−1)(k−1)(x, ek−1hn−k−m+1)

=
n−1∑
k=0

(−1)kq(
k
2)+km(x, ekhn−k−m) +

n−2∑
k=0

(−1)k+1q(
k+1
2 )+(m−1)(k)(x, ekhn−k−m)

= (−1)n−1q(
n−1
2 )+nm(x, en−1h1−m)

Corresponding terms from the two sums cancel in pairs, since q(
k
2)+km = q(

k+1
2 )+k(m−1), leaving only the k = n − 1

term in the first sum. The second statement of the lemma thus follows.
We will now use (2) to prove (1). This follows from the adjointness previously mentioned.

(∆(ek), hλ ⊗ hµ) = (ek, hλhµ) =

{
1 λ = (1`), µ = (1p), `+ p = k,

0 otherwise.

We now calculate the sign incurred when strands connect two blue (ek) platforms.

(−1)n+1q(
n
2)(en, en) =

n−1∑
k=0

(−1)kq(
k
2)(en, ekhn−k)

= (−1)n−1q(
n−1
2 )(en, en−1h1)

= (−1)n−1q(
n−1
2 )(∆(en), en−1 ⊗ h1)

= (−1)n−1q(
n−1
2 )

n∑
k=0

(ek ⊗ en−k, en−1 ⊗ h1)

= (−1)n−1q(
n−1
2 )(en−1, en−1)

One may solve this recursion to find that (en, en) = q−(n2).Here, the second equality follows from noting that at most
one strand can connect hn−k and en (so that k = n− 1), the third equality follows from adjointness, and the fourth and
fifth equalities follow from the diagrammatic considerations of the previous lemma.

To summarize the diagrammatics of the bilinear form thus developed:

• For each crossing, there is a factor of q in the bilinear form.

• If two blue platforms are connected by n strands, there is a factor of q−(n2)

• At most one strand can connect a blue platform to an orange one.

6 More on the q-Analogue of Noncommutative Symmetric Functions

Define Symq ∼= NΛq/R, where R is the radical of the bilinear form (.,.).

Lemma 6.1. hn1 is in the center of NΛq if qn = 1.

Proof. First, suppose q is a primitive nth root of unity. Construct all ordered k + 1-tuples of nonnegative integers that
sum to n− k. Let Rn−kk+1 be the set of all such k+ 1-tuples. For any tuple (a1, a2, · · · , ak+1), let |(a1, a2, · · · , ak+1)| be the
sum of the entries of the tuple.
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For these tuples, (a1, a2, · · · , ak+1), define the map f as follows:

f(a1, a2, · · · , ak+1) = (ka1, (k − 1)a2, (k − 2)a3, · · · , ak, 0)

Define
P (n, k) =

∑
Rn−k
k+1

q|f(a1,a2,··· ,ak+1)|

Example 6.2.
P (7, 2) = 1 + q + 2q2 + 2q3 + 3q4 + 3q5 + 3q6 + 2q7 + 2q8 + q9 + q10

m

. . . x . . .

Consider the above diagram, representative of (hn1hm, ekx). In the diagram, n = 7 and m = 3. The three strands
from e3 ”split” the seven h1’s into groups of 1, 2, 1, and 0. This is a 3+1-tuple that sums to 7−3 = n−k = 4. Numbering
the h1’s from left to right, note that the first h1 contributes qk intersections, the third and fourth h1’s contribute qk−1

intersections, and so on. In general, the diagrams in which no strand connects hm and ek contribute P (n, k)(hn−k1 hm, x)
to (hn1hm, ekx).

m− 1

. . . x . . .

If a strand connects ek to hm, then it intersects the other n− (k− 1) strands connecting some h1 to x, contributing a
factor of qn−k+1.The other intersections contribute P (n, k − 1). Putting this case and the previous case together,

(hn1hm, ekx) = P (n, k)(hn−k1 hm, x) + qn−k+1P (n, k − 1)(hn−k+1
1 hm−1, x) (6.1)

m

. . . x . . .

m − 1

. . . x . . .

Similarly, the above two diagrams show that

(hmh
n
1 , ekx) = qmkP (n, k)(hmh

n−k
1 , x) + q(m−1)(k−1)P (n, k − 1)(hm−1h

n−k+1
1 , x) (6.2)

Now, consider the case when k = n + 1. In this case, there is only one diagram for the bilinear form, and it can be
shown that {

(hn1hm, en+1x) = (hm−1, x)

(hmh
n
1 , en+1x) = qn(m−1)(hm−1, x)
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which are equal since qn = 1. Now, if k ≤ n, we claim that P (n, k) = 0 for all n 6= k. This follows from the fact that
qn = 1, that qn−`) 6= 1 for ` ∈ (1, 2, 3, · · · , n− 1), and the fact that

P (n, k) =

(
n

k

)
q

The above statement follows from a bijection establishing P (n, k) as the Gaussian binomial coefficient
(
n

k

)
q

. It is

known that the coefficient of qj in
(
n

k

)
q

is the number of partitions of j into k or fewer parts, with each part less than

or equal to k. P (n, k) yields the same result since f takes every k + 1-tuple to a k + 1-tuple with last term 0. Each term
must be less than or equal to n− k since we have imposed that the sum of all the terms is n− k.

We substitute P (n, k) = 0 in (6.1) and (6.2) to find that both products (hn1hm, ekx) and (hmh
n
1 , ekx) are 0 unless n = k

or n = k − 1 (already addressed). If n = k, then{
(hn1hm, enx) = (hm, x) + qP (n, n− 1)(h1hm−1, x)

(hmh
n
1 , enx) = qnm(hm, x) + q(m−1)(n−1)P (n, n− 1)(hm−1h1, x)

Since qmn = 1 and P (n, n− 1) = 0, the above two expressions are equal. We therefore have the desired result when q is
a primitive root of unity. By using some basic number theory and the recursive property of the Gaussian polynomials:(

n

k

)
q

= qk
(
n− 1

k

)
q

+

(
n− 1

k − 1

)
q

one may extend the result to any root of unity.
Other relations remain difficult to find. To illustrate the complexity of relations for q2 6= 1, consider the following

relation obtained computationally, for q3 = 1:

v1 = h11211 + h12111 + h21111

v2 = h1122 − 2h1221 + 3h2112 + h2211

v3 = 2h1131 − 2h114 + 2h1311 − 2h141 + 3h222 + 2h1113 − 2h411

v1 + q2v2 + qv3 = 0

7 Development of the q-nilHecke Algebra

We work in the Z-graded, q-braided setting throughout. LetC be a commutative ring and let q ∈ C× be a unit. If V,W
are graded C-modules and v ∈ V , w ∈W are homogeneous, the braiding is the ”q-twist”:

τq :V ⊗W →W ⊗ V
v ⊗ w 7→ q|v||w|w ⊗ v,

(7.1)

where | · | is the degree function. By q-algebra we mean an algebra object in the category of graded k-modules equipped
with this braided monoidal structure; likewise for q-bialgebras, q-Hopf algebras, and so forth.

Definition 7.1. The q-algebra Polqn is defined to be

Polqn = k〈x1, . . . , xn〉/(xjxi − qxixj if i < j), (7.2)

where |xi| = 1 for i = 1, . . . , n.

Note that Polqn ∼= ⊗ni=1Polq1. There are two interesting subalgebras of Polqn that can be thought of q-analogues of the
symmetric polynomials. Define the k-th elementary q-symmetric polynomial to be

ek(x1, . . . , xn) =
∑

1≤i1<...<ik≤n

xi1 · · ·xin
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and define the k-th twisted elementary q-symmetric polynomial to be

ẽk(x1, . . . , xn) =
∑

1≤i1<...<ik≤n

x̃i1 · · · x̃in ,

where x̃j = qj−1xj .

Definition 7.2. The q-algebra of q-symmetric polynomials in n variables, denoted Λqn, is the subalgebra of Polqn generated
by e1, . . . , en. Likewise for the twisted q-symmetric polynomials, Λ̃qn, and ẽ1, . . . , ẽn.

The type A braid group on n strands acts on Polqn by setting

si(xj) =


qxi+1 j = i

q−1xi j = i+ 1

qxj j > i+ 1

q−1xj j < i

(7.3)

and extending multiplicatively.

Definition 7.3. For i = 1, . . . .n − 1, the i-th q-divided difference operator ∂i is the linear operator C〈x1, . . . , xn〉 →
C〈x1, . . . , xn〉 defined by

∂i(xj) =


q j = i

−1 j = i+ 1

0 j 6= i, i+ 1

(7.4)

∂i(fg) = ∂i(f)g + si(f)∂i(g). (7.5)

Lemma 7.4. For every i and every j < k,
∂i(xkxj − qxjxk) = 0. (7.6)

Thus ∂i descends to an operator Polqn → Polqn.

Proof. Since ∂i(xj) = 0 for j > i+ 1, one may reduce the lemma to having to prove:

∂1(x2x1 − qx1x2) = 0

∂1(x3x1 − qx1x3) = 0

∂1(x3x2 − qx2x3) = 0

The above statements are straightforward to check using the Leibniz Rule.

Lemma 7.5.

∂i(x
k
i ) =

k−1∑
j=0

qjk−2j−j
2+kxjix

k−1−j
i+1 (7.7)

∂i(x
k
i+1) = −

k−1∑
j=0

q−jxjix
k−1−j
i+1 (7.8)

Proof. We induct on k. The base cases follow from the definition of the ∂i.

By Lemma 7.5,
di(x

nk
i + xnki+1) 6= 0 if qn = 1. (7.9)

Lemma 7.6. For every i = 1, . . . , n− 1 and every k,

∂i(ẽk) = 0. (7.10)

Hence Λ̃qn ⊆
n−1⋂
i=1

ker(∂i).
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Proof. We can express ẽk as

ek =
∑
|J|=k
i,i+1/∈J

x̃J +
∑
|J|=k−1
i,i+1/∈J

qf(J,i,k)x̃J(xi + qxi+1) +
∑
|J|=k−2
i,i+1/∈J

qg(J,i,k)x̃Jxixi+1, (7.11)

for certain Z-valued functions f, g. The result then follows from the easy calculation

∂i(xi + qxi+1) = ∂i(xixi+1) = 0 (7.12)

and the Leibniz rule.

Lemma 7.7. The following relations hold among the operators ∂i and xi (left multiplication by xi):

∂2i = 0 (7.13)
∂j∂i − q∂i∂j = 0 for j > i+ 1 (7.14)

xjxi = qxixj for i < j (7.15)
∂ixj − qxj∂i = 0 for j > i+ 1 (7.16)
q∂ixj − xj∂i = 0 for j < i (7.17)

∂ixi − qxi+1∂i = q (7.18)
xi∂i − q∂ixi+1 = q. (7.19)

Proof. To show that ∂2i = 0, note that we can reduce to i = 1 and proceed by induction. Since ∂i(1) = 0, the base case
follows. Suppose that ∂2i (f) = 0. Then, note that

∂21(x1f) = ∂1(qf + qx2∂1(f)) = q∂1(f)− q∂1(f) + x1∂
2
1(f) = 0

∂21(x2f) = ∂1(−f + q−1x1∂1(f)) = −∂1(f) + ∂1(f) + x2∂
2
1(f) = 0

∂21(x3f) = ∂1(qx3∂1(f)) = q2x3∂
2
1(f) = 0

which completes the proof of the first statement in the lemma.
Statement 7.16 follows by definition. Statements 7.19, and 7.19 follow from a suitable application of the Leibniz

Rule.
∂i(xif) = qf + qxi+1∂i(f) ∂i(xi+1f) = −f + q−1xi∂i(f)

Statements 7.17 and 7.18 also follow from a suitable application of the Leibniz Rule.

∂i(xjf) = qxj∂i(f) if j > i+ 1 ∂i(xjf) = q−1xj∂i(f) if j < i

Statement 7.15 follows from an inductive argument. We can reduce to i = 1 and j = 3. Suppose that ∂j∂i = q∂i∂j if
j > i+ 1. Then,

∂3∂1(x1f)− q∂1∂3(x1f) = (q∂3(f) + x2∂3∂1(f))− q(∂3(f) + x2∂1∂3(f)) = 0

∂3∂1(x2f)− q∂1∂3(x2f) = (−∂3(f) + q−2x1∂3∂1(f))− q(−q−1∂3(f) + q−2x1∂1∂3(f)) = 0

∂3∂1(x3f)− q∂1∂3(x3f) = (q2∂1(f) + q2x4∂3∂1(f))− q(q∂1(f) + q2x4∂1∂3(f)) = 0

∂3∂1(x4f)− q∂1∂3(x4f) = (−q∂1(f) + x3∂3∂1(f))− q(−∂1(f) + x3∂1∂3(f)) = 0

∂3∂1(x5f)− q∂1∂3(x5f) = q2x5∂3∂1(f)− q(q2x5∂1∂3(f)) = 0

thereby completing the induction.

Lemma 7.8. ∂i∂i+1∂i∂i+1∂i∂i+1 + ∂i+1∂i∂i+1∂i∂i+1∂i = 0

Proof. We utilize an inductive argument; reduce to i = 1 and assume that the braid relation holds true for some function
f . Then, we check that the braid relation is true for x1f , x2f , x3f , and x4f (since the behavior of xjf for j ≥ 4 is the
same).

For brevity, we will show the argument for x2f only:
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∂1∂2(x2f) = q∂1(f) + q2x3∂1∂2(f)

∂212(x2f) = q∂2∂1(f)− q2∂1∂2(f) + qx2∂212(f)

∂1212(x2f) = q∂121(f)− q∂212(f) + x1∂1212(f)

∂21212(x2f) = q∂2121(f) + q−1x2∂21212(f)

∂121212(x2f) = q∂12121(f) + ∂21212(f) + x2∂121212(f)

∂2∂1(x2f) = −∂2(f) + q−2x1∂2∂1(f)

∂121(x2f) = −∂1∂2(f) + q−1∂2∂1(f) + q−1∂121(f)

∂2121(x2f) = −∂212(f) + ∂121(f) + x3∂2121(f)

∂12121(x2f) = −∂1212(f) + qx3∂12121(f)

∂212121(x2f) = −q∂12121(f)− ∂21212(f) + x2∂121212(f)

and the braid relation for x2f follows from the inductive hypothesis.

Remark 7.9. In this paper, we have discussed elementary symmetric functions in two contexts, but we can relate the
two. Note that NΛq is graded Hopf dual to a subalgebra QΛq of q-power series. It follows that Symq is a subalgebra
of q-power series as well, so we can interpret elementary functions as q-power series. The map g from q-power series
to q-polynomials in finitely many variables (say n) is given by setting xj = 0 for j > n. The elementary functions from
the previous section are the images of the elementary functions in this section through the map g .
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Dunkl operators have been an important tool in problems of 

non-commutative harmonic analysis, representation theory, algebraic and 

symplectic geometry, and combinatorics. They give rise to Cherednik 

algebras, an important feature of which is the existence of an action of 

the group SL(2), including in particular a Fourier transform. The corresponding 

action of the Lie algebra sl(2) is inner. Recently, a super version of the 

theory of symmetric polynomials, divided difference operators, etc has been  

developed. An "odd" version of Dunkl operators has been proposed, but it 

doesn't lead to an sl(2) triple as in the classical case. 

  In this project, the author constructs an sl(2) triple by suitably modifying 

the definition of Dunkl operators. This is potentially an important development, 

opening the way to an appropriate version of super Cherednik algebras and 

of super orthogonal polynomials, and possibly of quantization in the 

super geometry setting. Going into those topics would probably 

raise the project to the level of a PhD Thesis, and for a high school student 

the level this paper is very competitive. In this project, the 

author has displayed his abilities to become a strong and original 

research mathematician. 

 

At the same time, we want to stress that the presentation of this paper (as distinct from the paper itself) 

should be reworked completely to satisfy the requirements of the competition. In the present form, a lot of 

topics are mentioned which are not directly relevant to the subject matter, and it is rather unlikely that the 

author would stand any questioning on those irrelevant topics (indeed, with the scope that wide, it could 

happen only on a PhD Thesis defense). Hence it would be wise to scale down _most_ of the presentation, 

mention motivation 

and potential applications only in one section, and even then only the most relevant.  
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Report on
“q-Symmetric polynomials and nilHecke algebras”

by Ritesh Ragavender

Given a positive integer n, consider the polynomial ring Rn = C[x1, . . . , xn]
in n variables x1, . . . , xn over the complex number field C. The symmetric group
Sn acts on Rn by permuting the variables xi. The fixed-point ring Λn := RSn

n

consists of symmetric polynomials. By taking the inverse limit of Λn via the
maps Λn � Λn−1, xn 7→ 0, we obtain the ring Λ of symmetric functions which
admits several interesting bases with important applications in enumerative
combinatorics. The theory of symmetric functions plays a fundamental role in
several areas of mathematics and physics, including particularly the represen-
tation theory of symmetric groups and general linear groups; see [7].

For each 1 ≤ i < n, the (even) divided difference operator ∂i : Rn → Rn is
defined by

∂i(f) =
f − si(f)

xi − xi+1

,

where f ∈ Rn, and si(f) is obtained from f by swapping xi and xi+1. The
operators ∂i together with the operators of multiplication by xi generate the
nilHecke ring NHn which is isomorphic to the matrix algebra of size n! × n!
with coefficients in the ring Λn of symmetric polynomials. It turns out that
the ring NHn plays a central role in the theory of categorification of quantum
groups.

On the other hand, Dunkl [1] introduced the operators ηi : Rn → Rn (1 ≤
i ≤ n) by setting

ηi =
∂

∂xi
+ α

∑
k 6=i

∂i,k,

where α ∈ C, ∂
∂xi

is the partial derivative with respect to xi, and ∂i,k denotes the
(even) divided difference operator (1−si,k)/(xi−xk). Here si,k acts a polynomial
in Rn by swapping xi and xk. The operators ηi have various properties, e.g.,
they commute with each other (ηiηj = ηjηi) and satisfy

ηi(fg) =
∂

∂xi
(f)g + fηi(g) and ηixj + xiηj = ηjxi + xjηi

for 1 ≤ i, j ≤ n, where f, g ∈ Rn. The Dunkl operators have been widely
studied in the literature. For example, by setting operators

r2 =
n∑
i=1

x2i , E =
n∑
i=1

xi
∂

∂xi
+
µ

2
, and ∆ =

n∑
i=1

η2i ,

Heckman [5] showed that r2, E, and ∆ satisfy the defining relations of the Lie
algebra sl2.

1
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A noncommutative theory of symmetric functions has been developed by
Gelfand–Krob–Lascoux–Leclerc–Retakh–Thibon [4], based on the notion of quasi-
determinant. The noncommutative analogs of symmetric polynomials have been
also studied. In the noncommutative case, the variables xi in general do not
commute.

Recently, Ellis and Khovanov [2] studied a q-analogue of the standard bi-
linear form on the commutative ring of symmetric functions via introducing
the notion of a q-Hopf algebra. The q = −1 case leads to a Z-graded Hopf
superalgebra, called the algebra of odd symmetric functions. They then de-
scribed counterparts of elementary and complete symmetric functions, power
sums, Schur functions, and combinatorial interpretations of associated change
of basis relations. In [3], by further introducing the odd divided difference opera-
tors, Ellis, Khovanov, and Lauda defined an odd version of the nilHecke algebra,
called the odd nilHecke algebra, and developed an odd analogue of the thick
diagrammatic calculus for nilHecke algebras. They obtained a Morita equiva-
lence between odd nilHecke algebras and the rings of odd symmetric functions
in finitely many variables. Moreover, like the even counterparts, they proved
that odd nilHecke algebras categorify the positive half of quantum sl2.

The present paper is mainly based on [2, 3], and it deals with odd Dunkl
operators, q-symmetric polynomials and q-nilHecke algebras. The author estab-
lishes a connection between odd Dunkl operators and odd nilHecke algebras, and
introduces a variant of odd Dunkl operators which is used to construct operators
that generate the Lie algebra sl2. Using diagrammatic techniques, the author
gives certain relations for q-symmetric polynomials. The author also defines
q-analogues of divided difference operators and describes their properties.

In the following we are going to give a detailed explanation of the
main contents and results of the present paper.

Sections 1 and 2 are introduction and background, respectively.
In Sections 3 and 4, the author works over the quotient ring R′n of the free

algebra C〈x1, . . . , xn〉 by the ideal generated by xixj + xjxi for 1 ≤ i < j ≤
n. Subsection 3.1 recalls from [3] the definition of the odd divided difference
operator ∂i : R′n → R′n for 1 ≤ i < n. It is defined by

∂i(xj) =

{
1, if j = i, or j + 1;

0, otherwise,

∂i(fg) = ∂i(f)g + (−1)deg(f)si(f)∂i(g),

where f, g ∈ R′n, f is homogeneous with degree deg(f), and si(f) is obtained
from f by swapping xi and xi+1. As in the even case, one can define the odd
divided difference operator ∂i,k for i 6= k in terms of the transposition si,k. Thus,
∂i is understood as ∂i,i+1. In [2], the odd nilHecke algebra is defined to be the
subalgebra generated by ∂i (1 ≤ i < n) and the operators of multiplication by
xj (1 ≤ j ≤ n). In Subsection 3.2, the author defines the −1-shift operator

τi : R′n −→ R′n, f(x1, . . . , xi, . . . , xn) 7−→ f(x1, . . . ,−xi, . . . , xn)

2
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and set for k 6= i,
ri,k = ∂i,ksi,k.

In particular, set ri = ri,i+1 for 1 ≤ i < n. Then the author shows in Lemma
3.6 that the operators ri,k satisfy relations similar to those for the odd divided
difference operators ∂i,k. With the help of the formulas in Lemmas 3.7 and 3.8,
the author finally shows that the odd Dunkl operators ηoddi defined by Khongsap
and Wang [6] can be expressed as

ηoddi = tδi + u
∑
k 6=i

ri,k,

where t, u ∈ C and δi = (2xi)
−1(1− τi).

In Section 4, the author defines operators pi : R′n → R′n (1 ≤ i ≤ n) by
setting

pi(x
a1
1 · · · x

ai
i · · · xann ) = ai(−1)a1+···+ai−1xa11 · · · x

ai−1
i · · · xann ,

and then put

Di = tpi + u
∑
k 6=i

ri,k.

Clearly, the Di are a modification of the odd Dunkl operators ηoddi . Similar
to the even case, the author defines r2, the Euler operator E and odd Dunkl
Laplacian operator ∆:

r2 =
1

2t

n∑
i=1

x2i ,

E =
n∑
i=1

xipi +
n

2
+
u

2

∑
k 6=i

si,k,

∆ = − 1

2t

n∑
i=1

D2
i .

The rest of this section is devoted to proving the relations

[E, r2] = 2r2, [E,∆]− 2∆, and [r2,∆] = E;

see Theorems 4.7 and 4.9. In other words, the three operators r2, E and ∆ give
a realization of the Lie algebra sl2 as in the even case [5]. It is also indicated
in Remark 4.10 that if one uses the odd Dunkl operators ηoddi instead of Di

to define the Dunkl Laplacian, then the three operators obtained generate an
abelian Lie algebra rather than sl2.

The final three sections, Sections 5, 6, and 7, deal with q-analogue of sym-
metric polynomials, as well as q-nilHecke algebras. Subsection 5.1 begins with
the definition of a q-bialgebra NΛq introduced in [2]. Let q be a nonzero complex

3
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number and let NΛq be the free associative Z-graded C-algebra with generators
hm for m ≥ 1, where deg hm = m (For convenience, set h0 = 1 and hm = 0 for
h < 0). Define a comultiplication ∆ on NΛq by setting

∆(hm) =
m∑
i=0

hi ⊗ hm−i

and a counit ε by setting ε(x) = 0 for all homogeneous x with deg(x) > 0. Then
NΛq becomes a q-bialgebra with the multiplication on (NΛq)⊗2 given by

(w ⊗ x)(y ⊗ z) = qdeg(x) deg(y)(wx⊗ xz)

for homogeneous elements w, x, y, z ∈ NΛq. In [2, (2.1)], Ellis and Khovanov
defined a bilinear form (−,−) : NΛq ×NΛq → C which satisfies

(x1 ⊗ x2,∆(y)) = (x1x2, y).

Moreover, the radical I of the bilinear form is a q-bialgebra ideal of NΛq, i.e.,

INΛq = NΛqI = I and ∆(I) ⊂ I ⊗NΛq +NΛq ⊗ I.

In Subsection 5.2, the author defines elementary symmetric functions em in NΛq

by setting e0 = 1 and

m∑
i=0

(−1)iq

(
i
2

)
eihm−i for m ≥ 1.

Lemma 5.1 states that

(1) ∆(em) =
∑m

i=0 ei ⊗ em−i,

(2) If λ = (λ1, . . . , λt) is a composition of m, then

(hλ, em) =

{
1, if λ = (1, . . . , 1;

0, otherwise,

where hλ = hλ1 · · ·hλt .

The lemma is a q-analogue of [2, Proposition 2.5], as well as its proof.
The entire Section 6 presents a proof of the fact that if qn = 1, then hn1 lies

in the center of NΛq (Lemma 6.1).
Section 7 deals with the q-algebra

Polqn = C〈x1, . . . , xn〉/(xjxi − qxixj : i < j),

where q ∈ C and all xi have degree 1. The author defines q-analogues of ele-
mentary symmetric polynomials: the k-th elementary q-symmetric polynomial

ek(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1 · · · xik (1 ≤ k ≤ n)

4
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and the k-th twisted elementary q-symmetric polynomial

ẽk(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

x̃i1 · · · x̃ik ,

where x̃i = qi−1xi. The ẽk are q-analogue of odd elementary symmetric poly-
nomials defined in [3, (2.21)]. The subalgebra generated by e1, . . . , en (resp.

ẽ1, . . . , ẽn) is denoted by Λq
n (resp. Λ̃q

n). The author defines the Sn-action on
Polqn by

si(xj) =


qxi+1, if j = i;

q−1xi, if j = i+ 1;

qxj, if j > i+ 1;

q−1xj, if j < i.

Further, define the q-divided difference operator ∂i (1 ≤ i < n) on Polqn by

∂i(xj) =


q, if j = i;

−1, if j = i+ 1;

0, otherwise,

∂i(fg) = ∂i(f)g + si(f)g.

Lemma 7.1 shows that ∂i(ẽk) = 0 for all i, k. This implies that

Λ̃q
n ⊂

n−1⋂
i=1

Ker(∂i).

In Lemmas 7.7 and 7.8, the author obtains relations among the operators ∂i and
xj (as left multiplication by xj) which are q-analogues of those in [3, Proposition
2.1].

In conclusion, the results obtained in the present paper are interesting
and seem to be new, but they are not surprising because most of them are
analogues of results in the literature. For examples, the results in Section 4 are
the odd counterparts of those obtained in [5]. Lemma 5.1 is a q-analogue of
[2, Proposition 2.5]; Lemma 7.4, Lemma 7.5 and Lemma 7.7 are, respectively,
q-analogues of (2.5), (2.6), Proposition 2.1 in [3].

The main new idea in the present paper may be the introduction of the
operator Di in (4.2) obtained from the odd Dunkl operator ηoddi in (3.25) by
substituting pi for δi. With this modification, the author is able to generalize
the result in [5] to the odd case. Many other proofs are modifications of certain
proofs given in [2, 3].
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