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Abstract 

In this paper, the author deals with the properties of circumscribed ellipses of convex 
quadrilaterals, using tools of parallel projective transformation and analytic geometry. 
And the procedures of research are always from the particular to the general. 
Moreover, for the sake of integrity, the author also studies the cases of the other two 
kinds of conics and concave quadrilaterals. 

The main research conclusions are as follows:  
1. Give a new geometric proof of the existence of circumscribed ellipses of convex 

quadrilaterals. 
2. Figure out the coverage area of the circumscribed conics respectively, which 

equally means to divide the plane where a convex quadrilateral is located into 
three parts: con-elliptic, con-parabolic and con-hyperbolic with the four vertexes 
of the quadrilateral. 

3. Figure out the locus of the center of circumscribed conics, both of convex 
quadrilaterals and concave quadrilaterals. 

4. Figure out the minimal area of circumscribed ellipse of convex quadrilaterals.  

Through the research, the author has insight into the innate connection of conic 
sections as well as a taste of the beauty and harmony of geometry. 

Key words: Convex Quadrilateral, Circumscribed Ellipse, Parallel Projective 
Transformation, Conic Section  
  

E06

Page - 43

app:ds:convex
app:ds:quadrilateral
app:ds:convex
app:ds:quadrilateral


Contents 

Abstract .......................................................................................................................... 1 
1. Introduction ................................................................................................................ 3 
2. The Existence of Circumscribed Ellipses of Convex Quadrilaterals ......................... 3 
3. The Coverage Area of Circumscribed Ellipses .......................................................... 7 

3.1 Parallelogram .................................................................................................... 7 
3.2 Trapezium ......................................................................................................... 8 
3.3 General Convex Quadrilateral ........................................................................ 11 
3.4 Circumscribed Conics of Convex Quadrilaterals ........................................... 14 

4. The Locus of the Center of Circumscribed Conics .................................................. 17 
4.1 Convex Quadrilateral ...................................................................................... 17 
4.2 Concave Quadrilateral .................................................................................... 19 

5. The Minimal Area of Circumscribed Ellipses .......................................................... 20 
5.1 Parallelogram .................................................................................................. 20 

Drawing Method of the Minimal Circumscribed Ellipse of a Parallelogram 22 
5.2 Trapezium ....................................................................................................... 23 

6. Circumscribed Ellipses of Cyclic Quadrilaterals ..................................................... 26 
7. Postscript and Perspective ........................................................................................ 27 
References .................................................................................................................... 28 
 
 

  

E06

Page - 44



Fig. 2 Proof of Lemma 1 

1. Introduction 

In plane geometry, work on four concyclic points is very sufficient, and there is a 
series of well-known nice conclusions, such as the judgment theorem, Ptolemy 
theorem. However, work on circumscribed ellipses of convex quadrilaterals is 
relatively deficient, so this paper hopes to make up for the shortage of this aspect and 
enrich knowledge about circumscribed ellipses of convex quadrilaterals. 

In this paper, circles are defined as a special situation of ellipses, but lines are not. 

2. The Existence of Circumscribed Ellipses of Convex Quadrilaterals 

As we all know, if four points form a concave quadrilateral or any three points of 
them are on a line, there is no ellipse crossing these four points. However, does any 
convex quadrilateral have circumscribed ellipses? The answer should be yes. Next, 
the paper will prove the existence of circumscribed ellipses of convex quadrilaterals. 

Theorem 1 There exists circumscribed ellipses of any convex quadrilateral. 

Proof  To reduce the randomicity of convex 
quadrilaterals, we first fix the three points of 
them, and the forth point can move within the 
area which is enclosed by rays AB, AC and side 
BC, and we define this area as Area M (Fig. 1). 
Since any triangle has circumscribed ellipses, we 
can also describe Theorem 1 as follow: 
All circumscribed ellipses of ABC∆  can cover 
Area M.  

However, there is also much radomicity of 
ABC∆ , so we need to simplify the above proposition further. We draw the following 

lemma to achieve this aim. 

Lemma 1 There exists a parallel projective transformation to make any scalene 
triangle become an isosceles triangle. 

Proof  Let ABC∆  be a scalene triangle and 
A B C′ ′∆  be its projection on Plane Q. BB’, CC’ 

are both perpendicular to Plane Q (Fig. 2).  
∵AB’=AC’ 

∴𝐴𝐴𝐴𝐴����𝑐𝑐𝑐𝑐𝑐𝑐∠𝐵𝐵𝐵𝐵𝐵𝐵′ = 𝐴𝐴𝐴𝐴����𝑐𝑐𝑐𝑐𝑐𝑐∠𝐶𝐶𝐶𝐶𝐶𝐶′ 

So it just needs to meet the following condition 

Fig. 1 Area M of a scalene triangle 
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𝑐𝑐𝑐𝑐𝑐𝑐∠𝐵𝐵𝐵𝐵𝐵𝐵′

𝑐𝑐𝑐𝑐𝑐𝑐∠𝐶𝐶𝐶𝐶𝐶𝐶′
=
𝐴𝐴𝐴𝐴����

𝐴𝐴𝐴𝐴����
 

At the same time, Area M of ABC∆  is projected to be Area M of A B C′ ′∆ , and the 
circumscribed ellipses of ABC∆  are projected to be the circumscribed ellipses of 

A B C′ ′∆ [2] . 

Therefore, we just need to prove that when ABC∆ is an isosceles triangle, all 
circumscribed ellipses of ABC∆  can cover Area M. 

We assume AB AC= . Set up a rectangular 
coordinate system in which A is the origin and B, 
C are symmetric about x axis (Fig. 3). First, we 
check the situation where one of the main 
diameters of the circumscribed ellipses of 

ABC∆  is coincide with x axis.  

 

 
In this case, the equation of the circumscribed 
ellipses is 

𝐴𝐴𝐴𝐴2 + 𝐶𝐶𝐶𝐶2 + 2𝐷𝐷𝐷𝐷 = 0                      (1) 

Let B (𝑥𝑥1,𝑦𝑦1), and C (𝑥𝑥1,−𝑦𝑦1); D (𝑥𝑥2,𝑦𝑦2) is a point in Area M and it is also above 
the x axis. So we have 

𝑥𝑥2 > 𝑥𝑥1 > 0, 𝑦𝑦1 > 0, 𝑦𝑦2 ≥ 0, 2 1

2 1

y y
x x

< . 

Since the ellipses cross A, B, C, D, we can write down the equations 

�
𝑥𝑥12𝐴𝐴 + 𝑦𝑦12𝐶𝐶 + 2𝑥𝑥1𝐷𝐷 = 0
𝑥𝑥22𝐴𝐴 + 𝑦𝑦22𝐶𝐶 + 2𝑥𝑥2𝐷𝐷 = 0.

 

Then we can get 

⎩
⎪
⎨

⎪
⎧𝐴𝐴 =

2(𝑥𝑥1𝑦𝑦22 − 𝑥𝑥2𝑦𝑦12)
𝑥𝑥22𝑦𝑦12 − 𝑥𝑥12𝑦𝑦22

𝐷𝐷

𝐶𝐶 =
2𝑥𝑥1𝑥𝑥2(𝑥𝑥1 − 𝑥𝑥2)
𝑥𝑥22𝑦𝑦12 − 𝑥𝑥12𝑦𝑦22

𝐷𝐷

 

We might as well assume 0D > , so 0C < . When 
2
2 2
2
1 1

y x
y x

< , 0A < . 

For a general quadratic equation in two variable 

Fig. 3 Set up a rectangular coordinate 
system for an isosceles triangle 
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 𝐴𝐴𝑥𝑥2 + 2𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐶𝐶𝑦𝑦2 + 2𝐷𝐷𝐷𝐷 + 2𝐸𝐸𝐸𝐸 + 𝐹𝐹 = 0, 

we can use the following three discriminants to determine the locus of the equation: 
 𝐼𝐼1 = 𝐴𝐴 + 𝐶𝐶 , 𝐼𝐼2 = 𝐴𝐴𝐴𝐴 − 𝐵𝐵2, 

                                𝐼𝐼3 = �
𝐴𝐴 𝐵𝐵 𝐷𝐷
𝐵𝐵 𝐶𝐶 𝐸𝐸
𝐷𝐷 𝐸𝐸 𝐹𝐹

�.                          (2) 

If and only if 2 0I >  and 3 1 0I I⋅ < , the locus is an ellipse. 
For the equation (1), we can get the three discriminants: 

𝐼𝐼1 = 𝐴𝐴 + 𝐶𝐶 < 0，𝐼𝐼2 = 𝐴𝐴𝐴𝐴 > 0，𝐼𝐼3 = −𝐶𝐶𝐷𝐷2 > 0. 

Therefore, the locus of the equation (1) is an ellipse. 

In conclusion, when 
2
2 2
2
1 1

y x
y x

< , the circumscribed ellipses of ABC∆  whose one of the 

main diameters is coincide with x axis cross D (Fig. 4).  

Next we check the situation where 
2

2 2 2
2

1 1 1

y x y
y x y
< < . We define the range of D that meet 

the inequation as Area N, which is in Area M. In this case, the equation of the 
circumscribed ellipses of ABC∆  is 

                    𝐴𝐴𝑥𝑥2 + 2𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐶𝐶𝑦𝑦2 + 2𝐷𝐷𝐷𝐷 + 2𝐸𝐸𝐸𝐸 = 0.               (3) 

Since Area N is symmetrical with x axis, we just need to discuss the situation where D 
is above x axis. So we have 

𝑥𝑥2 > 𝑥𝑥1 > 0，𝑦𝑦1 > 0，𝑦𝑦2 > 0. 

Since the ellipses cross A, B, C, D, we can write down the equations 

Fig. 4 The circumscribed ellipses of  whose 
one of the main diameters is coincide with x axis can 
cover the shaded part 
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�
𝑥𝑥12𝐴𝐴 + 2𝑥𝑥1𝑦𝑦1𝐵𝐵 + 𝑦𝑦12𝐶𝐶 + 2𝑥𝑥1𝐷𝐷 + 2𝑦𝑦1𝐸𝐸 = 0
𝑥𝑥12𝐴𝐴 − 2𝑥𝑥1𝑦𝑦1𝐵𝐵 + 𝑦𝑦12𝐶𝐶 + 2𝑥𝑥1𝐷𝐷 − 2𝑦𝑦1𝐸𝐸 = 0
𝑥𝑥22𝐴𝐴 + 2𝑥𝑥2𝑦𝑦2𝐵𝐵 + 𝑦𝑦22𝐶𝐶 + 2𝑥𝑥2𝐷𝐷 + 2𝑦𝑦2𝐸𝐸 = 0

. 

Then we can get 

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝐴𝐴 =

2(𝑥𝑥1𝑦𝑦22 − 𝑥𝑥2𝑦𝑦12)𝐷𝐷 + 2𝑦𝑦12𝑦𝑦2
𝑥𝑥2−𝑥𝑥1
𝑥𝑥1

𝐸𝐸

𝑥𝑥22𝑦𝑦12 − 𝑥𝑥12𝑦𝑦22

𝐵𝐵 = −
1
𝑥𝑥1
𝐸𝐸

𝐶𝐶 = −
2𝑥𝑥1(𝑥𝑥2 − 𝑥𝑥1)(𝑥𝑥2𝐷𝐷 + 𝑦𝑦2𝐸𝐸)

𝑥𝑥22𝑦𝑦12 − 𝑥𝑥12𝑦𝑦22

. 

We might as well assume 0D > . From 
2

2 2 2
2

1 1 1

y x y
y x y
< <  we can get 

−
𝑥𝑥1𝑦𝑦22 − 𝑥𝑥2𝑦𝑦12

𝑦𝑦12𝑦𝑦2
𝑥𝑥2−𝑥𝑥1
𝑥𝑥1

> −
𝑥𝑥2
𝑦𝑦2

 , 

so 

−
𝑥𝑥1𝑦𝑦22 − 𝑥𝑥2𝑦𝑦12

𝑦𝑦12𝑦𝑦2
𝑥𝑥2−𝑥𝑥1
𝑥𝑥1

𝐷𝐷 > 𝐸𝐸 > −
𝑥𝑥2
𝑦𝑦2
𝐷𝐷. 

Here, 0A < , 0C < , so 

1 0I A C= + < , 2 2 2
3

1

2 0
A B D

I B C E DE CD AE
x

D E F
= = − − − > . 

Therefore, the locus of equation (3) is an ellipse as long as variable D, E satisfy the 
condition that 2

2 0I AC B= − > . 

Last we check the situation where 
2

2 2
2

1 1

x y
x y
= . In this case, 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝐴𝐴 =
2𝑦𝑦12𝑦𝑦2

𝑥𝑥2−𝑥𝑥1
𝑥𝑥1

𝐸𝐸

𝑥𝑥22𝑦𝑦12 − 𝑥𝑥12𝑦𝑦22

𝐵𝐵 = −
1
𝑥𝑥1
𝐸𝐸

𝐶𝐶 = −
2𝑥𝑥1(𝑥𝑥2 − 𝑥𝑥1)(𝑥𝑥2𝐷𝐷 + 𝑦𝑦2𝐸𝐸)

𝑥𝑥22𝑦𝑦12 − 𝑥𝑥12𝑦𝑦22

. 

From 2
2 0I AC B= − >  we can get 0AC > . We might as well assume 0D > , so  

−
𝑥𝑥2
𝑦𝑦2
𝐷𝐷 < 𝐸𝐸 < 0 

and  
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1 0I A C= + < , 2 2 2
3

1

2 0
A B D

I B C E DE CD AE
x

D E F
= = − − − > . 

Therefore, the locus of equation (3) is an ellipse as long as variable D, E satisfy the 
condition that 2

2 0I AC B= − > . 

Now we can prove that all circumscribed ellipses of ABC∆  can cover Area M. In the 
other words, we can prove Theorem 1. 

3. The Coverage Area of Circumscribed Ellipses 
In the second chapter, this paper proves that the necessary and sufficient condition for 
four con-elliptic points is that they can form a convex quadrilateral. Then what about 
five points on the same ellipse? When four of them are fixed, this problem can also be 
equally described as the coverage area of the circumscribed ellipse of a convex 
quadrilateral. 

3.1 Parallelogram  

When studying this problem, we begin with a simple and special one, which is the 
coverage area of the circumscribed ellipse of a parallelogram. Due to the fact that any 
parallelogram can be an oblique section of a column with a square bottom (Since the 
ratio between line segments is certain in a parallel projection, the two diagonals 
bisecting each other can make it), we can go a step further and change it into a more 
simple and special case, which is known as a square, by using the powerful tool of 
parallel projective transformation. 

Set up a rectangular coordinate system in 
which A is the origin and the axes are 
parallel to the sides of the square (Fig. 5). 
Set B  (𝑥𝑥0, 𝑥𝑥0) , and the circumscribed 
ellipses are expressed by 

𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
= 1. 

Set the ellipse crosses the fifth point E 
(𝑥𝑥1,𝑦𝑦1), and we have 

⎩
⎨

⎧𝑥𝑥0
2

𝑎𝑎2
+
𝑦𝑦02

𝑏𝑏2
= 1

𝑥𝑥12

𝑎𝑎2
+
𝑦𝑦12

𝑏𝑏2
= 1.

 

So 

Fig. 5 Set up a rectangular coordinate 
system for a square 
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⎩
⎪
⎨

⎪
⎧𝑎𝑎2 =

𝑥𝑥02𝑦𝑦12 − 𝑥𝑥12𝑦𝑦02

𝑦𝑦12 − 𝑦𝑦02
> 0

𝑏𝑏2 =
𝑥𝑥02𝑦𝑦12 − 𝑥𝑥12𝑦𝑦02

𝑥𝑥02 − 𝑥𝑥12
> 0.

 

From the above inequations, we can get 
(𝑥𝑥12 − 𝑥𝑥02)(𝑦𝑦12 − 𝑦𝑦02) < 0. 

Therefore, the area of Point E, which also means the coverage area of the 
circumscribed ellipses of the square, is shown as the shaded part in Fig. 6. 

Due to the fact that through parallel projective transformation, ellipses are still ellipses 
and squares change into any parallelograms[2], the coverage area of the circumscribed 
ellipses of a parallelogram is shown as the shaded part in Fig. 7.  

3.2 Trapezium 

As the research on parallelograms, we begin with the simpler and more special one, 
which is a isosceles trapezium.  

Let the coordinates of the four vertexes of a isosceles trapezium are 𝑃𝑃1(𝑥𝑥1,𝑦𝑦1), 
𝑃𝑃2(𝑥𝑥2,−𝑦𝑦1), 𝑃𝑃3(−𝑥𝑥2,− 𝑦𝑦1), 𝑃𝑃4(−𝑥𝑥1,𝑦𝑦1) (Fig. 8). We might as well assume𝑥𝑥2 > 𝑥𝑥1 > 0, 
𝑦𝑦1 > 0. And the equations of the four sides are 

𝑃𝑃1𝑃𝑃2: 2𝑦𝑦1𝑥𝑥 + (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦 − (𝑥𝑥1 + 𝑥𝑥2)𝑦𝑦1 = 0 

𝑃𝑃3𝑃𝑃4: 2𝑦𝑦1𝑥𝑥 − (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦 + (𝑥𝑥1 + 𝑥𝑥2)𝑦𝑦1 = 0 

𝑃𝑃1𝑃𝑃4: 𝑦𝑦 − 𝑦𝑦1 = 0 

𝑃𝑃2𝑃𝑃3: 𝑦𝑦 + 𝑦𝑦1 = 0 

Fig. 6 The coverage area of the circumscribed 
ellipses of a square is the shaded part 

Fig. 7 The coverage area of the circumscribed 
ellipses of a parallelogram is the shaded part 

Fig. 8 Set up a rectangular coordinate 
system for an isosceles trapezium 
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From the theorems of analytic geometry, if four points𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3, 𝑃𝑃4 are given, the 
quadratic curve brunches crossing these four points can be expressed by 

[2𝑦𝑦1𝑥𝑥 + (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦 − (𝑥𝑥1 + 𝑥𝑥2)𝑦𝑦1][2𝑦𝑦1𝑥𝑥 − (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦 + (𝑥𝑥1 + 𝑥𝑥2)𝑦𝑦1] + 𝑚𝑚(𝑦𝑦 − 𝑦𝑦1)(𝑦𝑦 + 𝑦𝑦1) = 0 

After rearranging the above equation, we have the general quadratic equation 
4𝑦𝑦12𝑥𝑥2 + [𝑚𝑚− (𝑥𝑥1 − 𝑥𝑥2)2]𝑦𝑦2 + 2(𝑥𝑥22 − 𝑥𝑥12)𝑦𝑦1𝑦𝑦 − [𝑚𝑚 + (𝑥𝑥1 + 𝑥𝑥2)2]𝑦𝑦12 = 0.     (4) 

Then plug the fifth point ( )5 5 5,P x y  into equation (4), and we can get 

𝑚𝑚 =
4𝑦𝑦12𝑥𝑥52 − (𝑥𝑥1 − 𝑥𝑥2)2𝑦𝑦52 + 2(𝑥𝑥22 − 𝑥𝑥12)𝑦𝑦1𝑦𝑦5 − (𝑥𝑥1 + 𝑥𝑥2)2𝑦𝑦12

𝑦𝑦12 − 𝑦𝑦52
 

        (5) 
Plug equation (5) into equation (4) and rearrange it, and then we have the general 
quadratic equation  

4𝑦𝑦1𝑥𝑥2 +
4𝑦𝑦1𝑥𝑥52 + 2(𝑥𝑥22 − 𝑥𝑥12)𝑦𝑦5 − 2(𝑥𝑥22 + 𝑥𝑥12)𝑦𝑦1

𝑦𝑦12 − 𝑦𝑦52
𝑦𝑦2 + 2(𝑥𝑥22 − 𝑥𝑥12)𝑦𝑦     

−
4𝑦𝑦12𝑥𝑥52 + 2(𝑥𝑥22 − 𝑥𝑥12)𝑦𝑦1𝑦𝑦5 − 2(𝑥𝑥22 + 𝑥𝑥12)𝑦𝑦52

𝑦𝑦12 − 𝑦𝑦52
𝑦𝑦1 = 0 

Since the locus of the above equation is an ellipse, we have an inequation for it by 
using the discriminant (2) 

𝐼𝐼2 = 𝐴𝐴𝐴𝐴 = 4𝑦𝑦1 ∙
4𝑦𝑦1𝑥𝑥52 + 2(𝑥𝑥22 − 𝑥𝑥12)𝑦𝑦5 − 2(𝑥𝑥22 + 𝑥𝑥12)𝑦𝑦1

𝑦𝑦12 − 𝑦𝑦52
> 0. 

Then, we get the result that when 1 5 1y y y− < < , 

𝑦𝑦5 >
2𝑦𝑦1

𝑥𝑥22 − 𝑥𝑥12
𝑥𝑥52 +

𝑥𝑥22 + 𝑥𝑥12

𝑥𝑥22 − 𝑥𝑥12
𝑦𝑦1 ; 

when 5 1y y< −  or 5 1y y> , 

𝑦𝑦5 <
2𝑦𝑦1

𝑥𝑥22 − 𝑥𝑥12
𝑥𝑥52 +

𝑥𝑥22 + 𝑥𝑥12

𝑥𝑥22 − 𝑥𝑥12
𝑦𝑦1 . 

And  

𝑦𝑦 =
2𝑦𝑦1

𝑥𝑥22 − 𝑥𝑥12
𝑥𝑥2 +

𝑥𝑥22 + 𝑥𝑥12

𝑥𝑥22 − 𝑥𝑥12
𝑦𝑦1 

is the parabola crossing the four vertexes 𝑃𝑃1(𝑥𝑥1,𝑦𝑦1) , 𝑃𝑃2(𝑥𝑥2,−𝑦𝑦1) , 𝑃𝑃3(−𝑥𝑥2,− 𝑦𝑦1) , 
𝑃𝑃4(−𝑥𝑥1,𝑦𝑦1). Therefore, the coverage area is shown as the light grey part in Fig. 9. 
Besides, it is worth noting that the area enclosed by the parabola and Side 𝑃𝑃1𝑃𝑃2 or 
Side 𝑃𝑃3𝑃𝑃4 cannot be covered.  

Next, we check 𝐼𝐼1 and 𝐼𝐼3 of the equation. 
As  

𝐴𝐴 = 4𝑦𝑦1 > 0, 𝐼𝐼2 = 𝐴𝐴𝐴𝐴 − 𝐵𝐵2 = 𝐴𝐴𝐴𝐴 > 0, 
we have 

𝐶𝐶 > 0, so 𝐼𝐼1 = 𝐴𝐴 + 𝐶𝐶 > 0. 
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To make 𝐼𝐼1𝐼𝐼3 < 0，which is namely 

𝐼𝐼3 = �
𝐴𝐴 𝐵𝐵 𝐷𝐷
𝐵𝐵 𝐶𝐶 𝐸𝐸
𝐷𝐷 𝐸𝐸 𝐹𝐹

� = 𝐴𝐴(𝐶𝐶𝐶𝐶 − 𝐸𝐸2) < 0. 

We need to prove that 

𝐶𝐶𝐶𝐶 − 𝐸𝐸2 < 0. 

When 1 5 1y y y− < < , from 

𝑦𝑦5 >
2𝑦𝑦1

𝑥𝑥22 − 𝑥𝑥12
𝑥𝑥52 +

𝑥𝑥22 + 𝑥𝑥12

𝑥𝑥22 − 𝑥𝑥12
𝑦𝑦1 , 

𝑥𝑥2 > 𝑥𝑥1 > 0, 𝑦𝑦1 > 0 

we have 

𝐹𝐹 = −2𝑦𝑦1
2𝑦𝑦12𝑥𝑥52 + (𝑥𝑥22 − 𝑥𝑥12)𝑦𝑦1𝑦𝑦5 − (𝑥𝑥22 + 𝑥𝑥12)𝑦𝑦52

𝑦𝑦12 − 𝑦𝑦52

< −2𝑦𝑦1
4𝑦𝑦12𝑥𝑥52 + (𝑥𝑥22 + 𝑥𝑥12)(𝑦𝑦12 − 𝑦𝑦52)

𝑦𝑦12 − 𝑦𝑦52
< 0. 

When 5 1y y< −  or 5 1y y> , from 

𝑦𝑦5 <
2𝑦𝑦1

𝑥𝑥22 − 𝑥𝑥12
𝑥𝑥52 +

𝑥𝑥22 + 𝑥𝑥12

𝑥𝑥22 − 𝑥𝑥12
𝑦𝑦1 , 

𝑥𝑥2 > 𝑥𝑥1 > 0, 𝑦𝑦1 > 0 

we have 

𝐹𝐹 = −2𝑦𝑦1
2𝑦𝑦12𝑥𝑥52 + (𝑥𝑥22 − 𝑥𝑥12)𝑦𝑦1𝑦𝑦5 − (𝑥𝑥22 + 𝑥𝑥12)𝑦𝑦52

𝑦𝑦12 − 𝑦𝑦52

< −2𝑦𝑦1
4𝑦𝑦12𝑥𝑥52 + (𝑥𝑥22 + 𝑥𝑥12)(𝑦𝑦12 − 𝑦𝑦52)

𝑦𝑦12 − 𝑦𝑦52
< 0. 

Hence, when 5P  is in the light grey part shown in Fig. 9, we always have 0F < . 

Then we get 2 0CF E− < , so 𝐼𝐼3 = �
𝐴𝐴 𝐵𝐵 𝐷𝐷
𝐵𝐵 𝐶𝐶 𝐸𝐸
𝐷𝐷 𝐸𝐸 𝐹𝐹

� = 𝐴𝐴(𝐶𝐶𝐶𝐶 − 𝐸𝐸2) < 0. 

Now we can prove that the coverage area of the circumscribed ellipses of the isosceles 
trapezium is the light grey part in Fig. 9. 
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Due to the fact that parallelism does not change through parallel projective 
transformation[2], the coverage area of circumscribed ellipses of trapezium is shown as 
the light grey part in Fig. 10.  

3.3 General Convex Quadrilateral 

From the discussion about the coverage area of the circumscribed ellipses of the two 
kinds of special convex quadrilaterals above, we found that when a pair of opposite 
sides are parallel, the boundary of the coverage area takes place on the parallel lines 
where the two sides are located; on the other hand, when the two opposite sides are 
not parallel, the boundary is the parabola crossing its four vertexes. In this case, the 
parallel lines can be regarded as a degenerated form of a parabola. Therefore, we 
guess that for a general convex quadrilateral whose opposite side are both not parallel, 
the boundaries of its coverage area are two parabolas crossing its four vertexes. Next, 
we will prove the guess. 

Let the coordinates of the four vertexes of a general convex quadrilateral are ( )1 1 1,P x y , 

( )2 2 ,0P x , ( )3 0,0P , ( )4 4 4,P x y  (Fig. 11). ( 1 4y y≠ , 4 1

4 1 2

y y
x x x

≠
−

) 

Using the same procedure as in Chapter 3.2, we first 

list the equations of the four sides 

𝑃𝑃1𝑃𝑃2: 𝑦𝑦1𝑥𝑥 + (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦 − 𝑥𝑥2𝑦𝑦1 = 0, 

𝑃𝑃3𝑃𝑃4: 𝑦𝑦4𝑥𝑥 − 𝑥𝑥4𝑦𝑦 = 0, 

𝑃𝑃1𝑃𝑃4: (𝑦𝑦1 − 𝑦𝑦4)𝑥𝑥 − (𝑥𝑥1 − 𝑥𝑥4)𝑦𝑦 − 𝑥𝑥4𝑦𝑦1 + 𝑦𝑦4𝑥𝑥1 = 0, 

𝑃𝑃2𝑃𝑃3: 𝑦𝑦 = 0. 

Fig. 9 The coverage area of the circumscribed 
ellipses of an isosceles trapezium is the light 
grey part 

Fig. 10 The coverage area of the circumscribed 
ellipses of a trapezium is the light grey part 

Fig. 11 Set up a rectangular 
coordinate system for a general 
convex quadrilateral 
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Then, the quadratic curve brunches crossing these four points can be expressed by 

[𝑦𝑦1𝑥𝑥 + (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦 − 𝑥𝑥2𝑦𝑦1](𝑦𝑦4𝑥𝑥 − 𝑥𝑥4𝑦𝑦) + 𝑚𝑚𝑚𝑚[(𝑦𝑦1 − 𝑦𝑦4)𝑥𝑥 − (𝑥𝑥1 − 𝑥𝑥4)𝑦𝑦 − 𝑥𝑥4𝑦𝑦1 + 𝑦𝑦4𝑥𝑥1] = 0 

After rearranging the above equation, we have the general quadratic equation 

𝑦𝑦1𝑦𝑦4𝑥𝑥2 + [−𝑥𝑥4𝑦𝑦1 − 𝑦𝑦4𝑥𝑥1 + 𝑦𝑦4𝑥𝑥2 + 𝑚𝑚(𝑦𝑦1 − 𝑦𝑦4)]𝑥𝑥𝑥𝑥 + [𝑥𝑥4(𝑥𝑥1 − 𝑥𝑥2) −𝑚𝑚(𝑥𝑥1 − 𝑥𝑥4)]𝑦𝑦2 

−𝑥𝑥2𝑦𝑦1𝑦𝑦4𝑥𝑥 + [𝑥𝑥2𝑥𝑥4𝑦𝑦1 + 𝑚𝑚(−𝑥𝑥4𝑦𝑦1 + 𝑦𝑦4𝑥𝑥1)]𝑦𝑦 = 0.                                  (6) 

Then plug the fifth point ( )5 5 5,P x y  into equation (6), and we can get 

𝑚𝑚 = −
�𝑦𝑦1𝑥𝑥5 + (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦5 − 𝑥𝑥2𝑦𝑦1��𝑦𝑦4𝑥𝑥5 − 𝑥𝑥4𝑦𝑦5�
𝑦𝑦5[�𝑦𝑦1 − 𝑦𝑦4�𝑥𝑥5 − (𝑥𝑥1 − 𝑥𝑥4)𝑦𝑦5 − 𝑥𝑥4𝑦𝑦1 + 𝑦𝑦4𝑥𝑥1]

 

  (7) 
Since the locus of the equation (6) is an ellipse, we have an inequation for it by using 
the discriminant (2) 

𝐼𝐼2 = 𝑦𝑦1𝑦𝑦4[𝑥𝑥4(𝑥𝑥1 − 𝑥𝑥2) −𝑚𝑚(𝑥𝑥1 − 𝑥𝑥4)] −
1
4

[−𝑥𝑥4𝑦𝑦1 − 𝑦𝑦4𝑥𝑥1 + 𝑦𝑦4𝑥𝑥2 + 𝑚𝑚(𝑦𝑦1 − 𝑦𝑦4)]2 > 0 

Namely, we have 

(𝑦𝑦1 − 𝑦𝑦4)2𝑚𝑚2 + [2(−𝑥𝑥4𝑦𝑦1 − 𝑦𝑦4𝑥𝑥1 + 𝑦𝑦4𝑥𝑥2)(𝑦𝑦1 − 𝑦𝑦4) + 4𝑦𝑦1𝑦𝑦4(𝑥𝑥1 − 𝑥𝑥4)] 
                +(−𝑥𝑥4𝑦𝑦1 − 𝑦𝑦4𝑥𝑥1 + 𝑦𝑦4𝑥𝑥2)2 − 4𝑦𝑦1𝑦𝑦4𝑥𝑥4(𝑥𝑥1 − 𝑥𝑥2) < 0             (8) 

Since 𝑦𝑦1 ≠ 𝑦𝑦4, inequation (8) is a quadratic one of m. If the inequation has no solution, 
there exists no circumscribed ellipse of the convex quadrilateral. However, in Chapter 
2 we have proved that there exists circumscribed ellipse of any convex quadrilateral, 
from which we can release the controversial result. Therefore, inequation (8) must 
have solution. 

As the coefficient of the quadratic term (𝑦𝑦1 − 𝑦𝑦4)2 > 0, we can assume the solution of 
inequation (8) is 𝑘𝑘1 < 𝑚𝑚 < 𝑘𝑘2.  

When 𝑚𝑚 = 𝑘𝑘1, 𝑘𝑘2, the left side of inequation (8) equals zero, which namely means 
𝐼𝐼2 = 0. 

Since 
𝑦𝑦4
𝑥𝑥4

≠
𝑦𝑦1

𝑥𝑥1 − 𝑥𝑥2
, 

the constant term 
(−𝑥𝑥4𝑦𝑦1 − 𝑦𝑦4𝑥𝑥1 + 𝑦𝑦4𝑥𝑥2)2 − 4𝑦𝑦1𝑦𝑦4𝑥𝑥4(𝑥𝑥1 − 𝑥𝑥2) ≠ 0. 

Hence, 1 2, 0k k ≠ . 
Plug equation (7) into 𝑘𝑘1 < 𝑚𝑚 < 𝑘𝑘2, we have 
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𝑘𝑘1 < −
[𝑦𝑦1𝑥𝑥5 + (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦5 − 𝑥𝑥2𝑦𝑦1][𝑦𝑦4𝑥𝑥5 − 𝑥𝑥4𝑦𝑦5]

𝑦𝑦5[(𝑦𝑦1 − 𝑦𝑦4)𝑥𝑥5 − (𝑥𝑥1 − 𝑥𝑥4)𝑦𝑦5 − 𝑥𝑥4𝑦𝑦1 + 𝑦𝑦4𝑥𝑥1] < 𝑘𝑘2. 

When 

𝑦𝑦5[(𝑦𝑦1 − 𝑦𝑦4)𝑥𝑥5 − (𝑥𝑥1 − 𝑥𝑥4)𝑦𝑦5 − 𝑥𝑥4𝑦𝑦1 + 𝑦𝑦4𝑥𝑥1] > 0, 

which means 5P is above 1 4PP or below 2 3P P ,  
we have 

[𝑦𝑦1𝑥𝑥5 + (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦5 − 𝑥𝑥2𝑦𝑦1][𝑦𝑦4𝑥𝑥5 − 𝑥𝑥4𝑦𝑦5] +  𝑘𝑘1𝑦𝑦5[(𝑦𝑦1 − 𝑦𝑦4)𝑥𝑥5 − (𝑥𝑥1 − 𝑥𝑥4)𝑦𝑦5 − 𝑥𝑥4𝑦𝑦1 
+𝑦𝑦4𝑥𝑥1] < 0                                                          (9) 

[𝑦𝑦1𝑥𝑥5 + (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦5 − 𝑥𝑥2𝑦𝑦1][𝑦𝑦4𝑥𝑥5 − 𝑥𝑥4𝑦𝑦5] +  𝑘𝑘2𝑦𝑦5[(𝑦𝑦1 − 𝑦𝑦4)𝑥𝑥5 − (𝑥𝑥1 − 𝑥𝑥4)𝑦𝑦5 − 𝑥𝑥4𝑦𝑦1 
+𝑦𝑦4𝑥𝑥1] > 0                                                         (10) 

Since

1 5 2 1 5 2 1 4 5 4 5 5 1 4 5 1 4 5 4 1 4 1[ ( ) ]( ) [( ) ( ) ]=0y x x x y x y y x x y my y y x x x y x y y x+ − − − + − − − − +
is the quadratic curve crossing 𝑃𝑃1 , 𝑃𝑃2 , 𝑃𝑃3 , 𝑃𝑃4 . And when 𝑚𝑚 = 𝑘𝑘1, 𝑘𝑘2 , 𝐼𝐼2 = 0. 
Hence, the left side of inequation (9), (10) represent the two parabolas crossing 𝑃𝑃1, 
𝑃𝑃2, 𝑃𝑃3, 𝑃𝑃4. In the other words, 𝑃𝑃5 is in the parabola whose equation is 

1 5 2 1 5 2 1 4 5 4 5 1 5 1 4 5 1 4 5 4 1 4 1[ ( ) ]( ) [( ) ( ) ]=0y x x x y x y y x x y k y y y x x x y x y y x+ − − − + − − − − + ; 
and 𝑃𝑃5 is also out of the parabola whose equation is 

1 5 2 1 5 2 1 4 5 4 5 2 5 1 4 5 1 4 5 4 1 4 1[ ( ) ]( ) [( ) ( ) ]=0y x x x y x y y x x y k y y y x x x y x y y x+ − − − + − − − − + . 

It is worth mentioning that since 𝐼𝐼2 = 0 is a quadratic equation of m, it has only two 
roots, which means there are only two parabolas crossing the four vertexes of the 
convex quadrilateral. 

Using the same argument, when 
𝑦𝑦5[(𝑦𝑦1 − 𝑦𝑦4)𝑥𝑥5 − (𝑥𝑥1 − 𝑥𝑥4)𝑦𝑦5 − 𝑥𝑥4𝑦𝑦1 + 𝑦𝑦4𝑥𝑥1] < 0, 

which means 5P is between 1 4PP and 2 3P P ,  
we have 

[𝑦𝑦1𝑥𝑥5 + (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦5 − 𝑥𝑥2𝑦𝑦1][𝑦𝑦4𝑥𝑥5 − 𝑥𝑥4𝑦𝑦5] +  𝑘𝑘1𝑦𝑦5[(𝑦𝑦1 − 𝑦𝑦4)𝑥𝑥5 − (𝑥𝑥1 − 𝑥𝑥4)𝑦𝑦5 − 𝑥𝑥4𝑦𝑦1 
+𝑦𝑦4𝑥𝑥1] > 0                                                         

[𝑦𝑦1𝑥𝑥5 + (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦5 − 𝑥𝑥2𝑦𝑦1][𝑦𝑦4𝑥𝑥5 − 𝑥𝑥4𝑦𝑦5] +  𝑘𝑘1𝑦𝑦5[(𝑦𝑦1 − 𝑦𝑦4)𝑥𝑥5 − (𝑥𝑥1 − 𝑥𝑥4)𝑦𝑦5 − 𝑥𝑥4𝑦𝑦1 
+𝑦𝑦4𝑥𝑥1] < 0                                                   

So 𝑃𝑃5 is out of the parabola whose equation is 

1 5 2 1 5 2 1 4 5 4 5 1 5 1 4 5 1 4 5 4 1 4 1[ ( ) ]( ) [( ) ( ) ]=0y x x x y x y y x x y k y y y x x x y x y y x+ − − − + − − − − + ; 
and 𝑃𝑃5 is also in the parabola whose equation is 

1 5 2 1 5 2 1 4 5 4 5 2 5 1 4 5 1 4 5 4 1 4 1[ ( ) ]( ) [( ) ( ) ]=0y x x x y x y y x x y k y y y x x x y x y y x+ − − − + − − − − + . 
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In conclusion, the coverage area of circumscribed ellipses of general convex 
quadrilateral is shown as the light grey part in Fig. 12. Like the case of trapezium, 
the area enclosed by two parabolas and four sides cannot be covered.  

3.4 Circumscribed Conics of Convex Quadrilaterals 

Through the studies in the three chapters above, we conclude that the boundaries of 
the coverage area of circumscribed ellipses are another conic, which is parabola. So 
what about the third conic, which is hyperbola? Next, we will generalize the 
conclusion about the coverage area of circumscribed ellipses to the coverage area of 
circumscribed conics. 

As mentioned above, for a general quadratic equation in two variables, we can use 
discriminants (2) to determine its locus. When 𝐼𝐼2 > 0, the graph of the quadratic 
curve is elliptic; and it needs to satisfy 𝐼𝐼1𝐼𝐼3 < 0 to become a real ellipse. When 
𝐼𝐼2 = 0, the graph is parabolic; and moreover, when 𝐼𝐼3 ≠ 0, it is a parabola; when 
I3 = 0, it degenerates into two parallel lines. When I2 < 0, the graph is hyperbolic; 
and moreover, when I3 ≠ 0, it is a hyperbola; when 𝐼𝐼3 = 0, it degenerates into two 
intersecting lines. 

In Chapter 3.3, we conclude that the light grey part in Fig. 12 is the coverage area of 
the circumscribed ellipses, where 𝐼𝐼2 > 0 . Therefore, the area which cannot be 
covered by the circumscribed ellipse (except the boundary region) can be covered by 
the circumscribed hyperbolas (including the degenerated condition, namely two 
intersecting lines), where 𝐼𝐼2 < 0 (as shown the shaded part in Fig. 13). Besibes, the 
boundary of this two coverage areas is the parabola crossing the four vertexes, where 
𝐼𝐼2 = 0. 

So far, the plane where a convex quadrilateral is located can be divided into three 

Fig. 12 The coverage area of the circumscribed ellipses 
of a general convex quadrilateral is the light grey part 
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parts: one part con-elliptic with its four vertexes (Fig. 12); another part con-parabolic 
with the vertexes (namely two parabolas crossing the four vertexes of the convex 
quadrilateral); and the third part, which is con-hyperbolic with the vertexes (Fig. 13).  

Normally, the circumscribed hyperbolas should be classified into three categories:  
 “2+2” hyperbola Two vertexes are on one branch of the hyperbola, while the 

other two are on the other branch (Fig. 14). 
 “3+1” hyperbola Three vertexes are on one branch of the hyperbola, while the 

forth is on the other branch 
 “4+0” hyperbola All of four vertexes are on one branch of the hyperbola    

(Fig. 15).  

 

 

 

Fig. 13 The coverage area of the circumscribed hyperbolas of a 
general convex quadrilateral is the shaded part 

Fig. 14 “2+2” hyperbola, which means two vertexes are on one branch while the other two are on the 
other branch 
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However, not all of these three kinds can be circumscribed hyperbolas of a convex 
quadrilateral. Through some studies, we put forward the following proposition. 

Proposition 1 There exists no “3+1” hyperbola which is circumscribed about a 
convex quadrilateral. 

Proof  Suppose the vertex of 𝑃𝑃1 is on the left branch of the hyperbola, and the other 
three vertexes 𝑃𝑃2, 𝑃𝑃3, 𝑃𝑃4 are on the right branch. According to the definition of 
convex quadrilaterals, we can infer that 𝑃𝑃4 must be located in the area enclosed by 
rays formed by any two of the sides of ∆𝑃𝑃1𝑃𝑃2𝑃𝑃3 and its third side (the light grey part 
in Fig. 16).  

Due to the fact that each line has and only 
has two intersections with the hyperbola, 
and the slope of 𝑃𝑃2𝑃𝑃3 is greater than the 
asymptote while that of 𝑃𝑃1𝑃𝑃3 is smaller 
than it, we can infer that the right branch 
must be out of the light grey area which is 
to the right of 𝑃𝑃2𝑃𝑃3 (as shown in Fig. 16). 
And the rest can be proved in the same 
way. 

Therefore, the right branch must be outside of the light grey area, and therefore the 
proposition holds true. 

In conclusion, the circumscribed hyperbolas only can be classified into two categories: 
“2+2” hyperbolas (Fig. 14) & “4+0” hyperbolas (Fig. 15). 

Furthermore, we have discussed the coverage area of these two kinds of hyperbolas 
by using limit thought, and the results are shown in Fig. 17. The “2+2” hyperbolas 
cover the light grey area, while the “4+0” hyperbolas cover the dark grey area.  

Fig. 15 “4+0” hyperbola, which means all of four vertexes 
are on one branch  

Fig. 16 There exists no “3+1” hyperbola which is 
circumscribed about a convex quadrilateral 
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4. The Locus of the Center of Circumscribed Conics 

4.1 Convex Quadrilateral 

For a parallelogram, the center of its circumscribed conics is necessarily the center of 
the parallelogram. For an isosceles trapezium, since conics and isosceles trapeziums 
are both mirror-symmetrical graphs, the center of its circumscribed conics must locate 
at the line which crosses the midpoints of its bases. Due to the fact that through 
parallel projective projection, the ratio of segments and parallelism do not change, the 
center of circumscribed conics of a trapezium must locate at the line which crosses 
the midpoints of its bases. Then, what is the locus of the center of circumscribed 
conics of a general convex quadrilateral? To answer this question, we put forward the 
following theorem through a series of research. 

Theorem 2 The locus of the center of circumscribed conics of a convex quadrilateral 
is its nine-point curve, which is a hyperbola. Moreover, the locus of the center of 
circumscribed ellipses is a branch of it, and the locus of the center of circumscribed 
hyperbolas is the other branch (Fig. 18). 

Below, we will simply introduce the nine-point curve. 

For a quadrilateral, the intersection of the diagonals, two intersections of the opposite 
sides, four midpoints of the sides and two midpoints of diagonals are necessarily on a 
conic, which is called the nine-point curve of it. The nine-point curve is always a 
centered conic. Whether it is a hyperbola or an ellipse depends on whether the 
quadrilateral is convex or concave. Moreover, the center of the nine-point curve is the 
barycenter of the quadrilateral. 

Fig. 17 The “2+2” hyperbolas cover the light grey area, while the “4+0” hyperbolas 
cover the dark grey area 
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The following situations are two special cases of nine-point curve: 
 When the quadrilateral has a circumscribed circle, its nine-point curve is a 

rectangular hyperbola. 
 When the four vertexes of the quadrilateral form an orthocentric system, its 

nine-point curve is a circle, which is known as the nine-point circle.  

To prove the theorem, we can use equation (6) to express the circumscribed conics of 
the quadrilateral, and figure out the equation of the center of the conics. The equation 
is quadratic, and the nine special points which the nine-point curve crosses satisfy the 
equation. Since the nine point can and only can determine one quadratic curve, the 
locus of the center of circumscribed conics is the nine-point curve. 

Besides, we can draw the following corollary from Theorem 2. 

Corollary 1 The axes of symmetry of a general convex quadrilateral’s two 
circumscribed parabolas of are parallel to the asymptotic lines of its nine-point curve 
respectively (Fig. 19).  

Fig. 18 The locus of the center of circumscribed conics of a convex 
quadrilateral is its nine-point curve, which is a hyperbola 

Fig. 19 Corollary 1 
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Proof  A parabola is a non-centered conic, and it can also be regarded as the critical 
situation of an ellipse or a hyperbola. Hence, if we also regard it as a centered conic, 
we can have the following definition: 

Definition 1 The center of a parabola is the point at infinity which is determined by 
its axis of symmetry. 

From Theorem 2, we know that the locus of the center of a general convex 
quadrilateral is its nine-point curve. Therefore, the centers of the two circumscribed 
parabolas are necessarily on the nine-point curve. On the other hand, since the 
nine-point curve of a convex quadrilateral is a hyperbola, it is infinitely near its 
asymptotic lines at infinity. Therefore, the asymptotic lines cross the centers of the 
two circumscribed parabolas. 

In conclusion, the axes of symmetry of the two circumscribed parabolas of a general 
convex quadrilateral are parallel to the asymptotic lines of its nine-point curve 
respectively. 

4.2 Concave Quadrilateral 

As mentioned in Chapter 4.2, a concave quadrilateral also has a nine-point curve, 
which is an ellipse. Taking a step further, we generalized Theorem 2 to concave 
quadrilaterals. 

Theorem 3 The locus of the center of circumscribed conic of a concave quadrilateral 
is its nine-point curve, which is an ellipse (Fig. 20). 

It is worth mentioning that the circumscribed conics of a concave quadrilateral can 
only be “3+1” hyperbolas, while the circumscribed conics of a convex quadrilateral 
only cannot be “3+1” hyperbolas, which is proved in Chapter 3.4.  

Fig. 20 The center O of the circumscribed conics of a concave quadrilateral 
is on its nine-point curve, which is an ellipse 
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5. The Minimal Area of Circumscribed Ellipses 

Since ellipses are widely used in architecture, engineering and medicine, the 
conclusions in this section may have potential applications in real life. 

5.1 Parallelogram  

It is well known that among the inscribed parallelograms of an ellipse, the area of the 
parallelogram is maximal when its diagonals are the conjugate diameters of the ellipse. 
In that way, among the circumscribed ellipses of a parallelogram, is the area of the 
ellipse minimal when its conjugate diameters are the diagonals of the parallelogram? 
The answer should be yes. Next, the paper will prove the theorem. 

Theorem 4 When the conjugate diameters of the circumscribed ellipse are the 
diagonals of the parallelogram, the area of the circumscribed ellipse is minimal. 

Proof  As mentioned in Chapter 3.1, any parallelogram can be an oblique section of 
a column with a square bottom. Let θ is the dihedral angle between the oblique 
section and the bottom and θ is unique. Suppose E is a circumscribed ellipse of the 
parallelogram, so its projection on the oblique section E’ is a circumscribed ellipse of 
the square, which is the bottom. According to the fundamental theorem in projective 
geometry, we know that 𝑆𝑆𝐸𝐸′ = 𝑆𝑆𝐸𝐸 ∙ cos𝜃𝜃. Therefore, when and only when 𝑆𝑆𝐸𝐸′ is 
minimal, 𝑆𝑆𝐸𝐸 is minimal. 

Thus we drew the following lemma. 

Lemma 2 Among the circumscribed ellipses of a square, the area of the 
circumscribed circle is the minimum. 

Proof  Since squares and ellipses are both central symmetry, the center of its 
circumscribed conics is necessarily the center of the parallelogram.  

Suppose a square ABCD, and its center is O. Set 
up a rectangular coordinate system in which the 
center O is the origin. We first consider the 
situation where the axes of the circumscribed 
ellipses are not parallel to the square’s sides (Fig. 
21). Let A (𝑥𝑥1,𝑦𝑦1) , B (𝑥𝑥2,𝑦𝑦2) , and the 
circumscribed ellipses are expressed by 

𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
= 1. 

Since A, B are on the ellipse, we have Fig. 21 The axes of the circumscribed 
ellipses are not parallel to the square’s 
sides 
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⎩
⎨

⎧𝑥𝑥1
2

𝑎𝑎2
+
𝑦𝑦12

𝑏𝑏2
= 1

𝑥𝑥22

𝑎𝑎2
+
𝑦𝑦22

𝑏𝑏2
= 1

 

Then we can get 

⎩
⎪
⎨

⎪
⎧𝑎𝑎2 =

𝑥𝑥12𝑦𝑦22 − 𝑥𝑥22𝑦𝑦12

𝑦𝑦22 − 𝑦𝑦12

𝑏𝑏2 =
𝑥𝑥12𝑦𝑦22 − 𝑥𝑥22𝑦𝑦12

𝑥𝑥12 − 𝑥𝑥22

 

Plug 𝑥𝑥12 + 𝑦𝑦12 = 𝑥𝑥22 + 𝑦𝑦22 in to the above equations, and we have 

𝑎𝑎2 = 𝑏𝑏2. 

Hence, there exists one and only one circumscribed ellipse of the square, which is the 
circumscribed circle.  

Next, we consider the situation where the axes of the circumscribed ellipses are 
parallel to the square’s sides (Fig. 22). Let B(𝑥𝑥0, 𝑥𝑥0), and the circumscribed ellipses 
are expressed by 

𝑥𝑥2

𝑎𝑎2
+
𝑦𝑦2

𝑏𝑏2
= 1. 

Since B is on the ellipse, we have 

𝑥𝑥02

𝑎𝑎2
+
𝑥𝑥02

𝑏𝑏2
= 1. 

By using the fundamental inequations, we 

have 

1
𝑥𝑥02

=
1
𝑎𝑎2

+
1
𝑏𝑏2

≥ 2�
1

𝑎𝑎2𝑏𝑏2
=

2
𝑎𝑎𝑎𝑎

. 

Namely, we have 
𝑎𝑎𝑎𝑎 ≥ 2𝑥𝑥02, 

so 

𝑆𝑆 = 𝜋𝜋𝜋𝜋𝜋𝜋 ≥ 2𝜋𝜋𝑥𝑥02. 

When and only when 0a b x= = , the equality holds, which namely means the area is the 
minimum. At this time, the circumscribed ellipse of the square is the circumscribed circle. 

In conclusion, among the circumscribed ellipses of a square, the area of the 
circumscribed circle is the minimum. 

It is obvious that the diagonals of the square are the perpendicular diameters of its 
circumscribed circle. So what about their projections on the section? To answer the 

Fig. 22 The axes of the circumscribed ellipses 
are parallel to the square’s sides 
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question, we need to use the following lemma. 

Lemma 3 If the projections of an ellipse’s two diameters on its bottom are 
perpendicular, these two diameters must be conjugate (Fig. 23).  

Proof  Suppose there is a cylinder. Let A’B’ and C’D’ are 
the perpendicular diameters of the bottom. Draw M’N’// A’B’. 
Let K’ is the midpoint of chord M’N’, so its projection K is 
the midpoint of MN[2]. Since parallelism does not change 
through projection, we also have MN// AB. Thus AB and CD 
are conjugate. 

Now we can prove Lemma 3. 

From Lemma 3, we can conclude that the projections of the 
circle’s two diameters on its section are conjugate. Hence, we 
can prove Theorem 4. 

Moreover, to figure out the value of the minimal area, we drew the following theorem. 

Theorem 5 The minimal area is 
2
π

 times of the area of the parallelogram. 

Proof  From Lemma 2, when E is the minimal circumscribed ellipse of the 
parallelogram, which is a section, its projection E’ is the circumscribed circle of the 
square, which is the bottom. Let the area of the parallelogram is S, while the area of 
the square is S’. According to the fundamental theorem in projective geometry, we 
know that 𝑆𝑆′ = 𝑆𝑆 ∙ cos𝜃𝜃  and 𝑆𝑆𝐸𝐸′ = 𝑆𝑆𝐸𝐸 ∙ cos𝜃𝜃 . Thus we can get the following 
equations. 

𝑆𝑆𝐸𝐸
𝑆𝑆

=
𝑆𝑆𝐸𝐸′
𝑆𝑆′

=
𝜋𝜋𝑟𝑟2

2𝑟𝑟2
=
𝜋𝜋
2

 

Hence, we can prove Theorem 5. 

Drawing Method of the Minimal Circumscribed Ellipse of a Parallelogram 

Since we have found out the minimal circumscribed ellipse of parallelograms, we 
need to find the drawing method. According to Theorem 4, this proposition is 
equivalent to drawing an ellipse of which the conjugate diameters are the diagonals of 
the parallelogram. So next we will point out the drawing method of the ellipse when 
we know a pair of conjugate diameters of it (Fig. 24).  

If we set up a corresponding relationship between AD, BC and a pair of conjugate 
diameters of a circle, the corresponding ellipse to the circle is namely what we want. 
  

Fig. 23 Lemma 3 
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Drawing Steps: 

1. Let BC be coincide with B’C’ and draw 
another diameter A’D’⊥B’C’. Then we can 
determine the corresponding relationship 
between the circle and the ellipse by the 
axis BC (B’C’) and a pair of corresponding 
points A-A’.  

2. Through any point N’ on the circle, draw 
∆N’NM∽∆A’AO. N is on the ellipse and M 
is on the axis BC. 

3. Same as above, draw a series of points 
similar to point N and join them together 
with a smooth curve. This is namely the 
ellipse we want. 

From the drawing method, we can easily draw the following theorem and corollary: 

Theorem 5 There exists one and only one ellipse of which the conjugate diameters 
are the diagonals of a parallelogram. 

Corollary 2 There exists one and only one minimal circumscribed ellipse of a 
parallelogram. 

5.2 Trapezium 

Theorem 6 Let M, N are the midpoints of the bases of a trapezium. The center O of 
the minimal circumscribed ellipse of a trapezium is on MN, and it satisfies the ratio 

𝑀𝑀𝑀𝑀
𝑂𝑂𝑂𝑂

= �
(1 − 2𝑚𝑚2) + √𝑚𝑚4 −𝑚𝑚2 + 1
(2 −𝑚𝑚2) − √𝑚𝑚4 −𝑚𝑚2 + 1

�, 

where m is the ratio between two bases (Fig. 25).  

 

Fig. 24 The drawing method of the minimal 
circumscribed ellipse of a parallelogram 

Fig. 25 The minimal circumscribed ellipse of a 
trapezium 

E06

Page - 65



Proof  As the procedures above, we begin with the simpler and more special one, 
which is a isosceles trapezium. 

If an isosceles trapezium and the shape of its circumscribed ellipse (namely the 
eccentricity) are given, the ellipse is determined. In order to facilitate the research, the 

paper uses the ratio between major and minor axes ( )bk k R
a

+= ∈  to describe the 

shape of a circumscribed ellipse.  

Suppose the equation of the circumscribed ellipses is
2 2

2 2 1x y
a b

+ = , and ( )bk k R
a

+= ∈ . 

Due to the fact that ellipses and isosceles trapeziums are both graphs of axial 
symmetry, the symmetry axis of the isosceles trapezium must be the major or minor 
axis of the circumscribed ellipses. We might as well assume y axis is its symmetry 
axis (Fig. 26). Let 𝑃𝑃1(𝑥𝑥1,𝑦𝑦1), 𝑃𝑃2(𝑥𝑥2, 𝑦𝑦2), 𝑃𝑃3(−𝑥𝑥2,𝑦𝑦2), 𝑃𝑃4(−𝑥𝑥1,𝑦𝑦1), and 𝑥𝑥2 > 𝑥𝑥1 >
0, 𝑦𝑦1 > 0, 𝑦𝑦2 < 0. In this case, 𝑥𝑥1 and 𝑥𝑥2, which are half of the two bases of the 
isosceles trapezium , are fixed values; 𝑦𝑦1 and 𝑦𝑦2 are non-fixed values, while they 
must satisfy 𝑦𝑦1 − 𝑦𝑦2 = 𝑦𝑦0. Here 𝑦𝑦0 is the height of the isosceles trapezium, which is 
also a fixed value.  

Since the four vertexes are on the ellipse, we have 

⎩
⎨

⎧𝑥𝑥1
2

𝑎𝑎2
+
𝑦𝑦12

𝑏𝑏2
= 1

𝑥𝑥22

𝑎𝑎2
+
𝑦𝑦22

𝑏𝑏2
= 1

 

So 

⎩
⎪
⎨

⎪
⎧ 𝑦𝑦1

𝑏𝑏
= �1 −

𝑥𝑥12

𝑎𝑎2

𝑦𝑦2
𝑏𝑏

= −�1 −
𝑥𝑥22

𝑎𝑎2

 

Subtract the above equations  

𝑦𝑦1
𝑏𝑏
−
𝑦𝑦2
𝑏𝑏

=
𝑦𝑦0
𝑏𝑏

= �1 −
𝑥𝑥12

𝑎𝑎2
+ �1 −

𝑥𝑥22

𝑎𝑎2
. 

Plug 𝑏𝑏 = 𝑎𝑎𝑎𝑎 into it, then we get 

𝑎𝑎2 =
𝑦𝑦04 + 𝑘𝑘4(𝑥𝑥22 − 𝑥𝑥12)2 + 2𝑘𝑘2𝑦𝑦02(𝑥𝑥22 + 𝑥𝑥12)

4𝑘𝑘2𝑦𝑦02
. 

Thus the area of the circumscribed ellipses can be expressed by 

𝑆𝑆 = 𝜋𝜋𝜋𝜋𝜋𝜋 = 𝜋𝜋𝑎𝑎2𝑘𝑘 = 𝜋𝜋
𝑦𝑦04 + 𝑘𝑘4(𝑥𝑥22 − 𝑥𝑥12)2 + 2𝑘𝑘2𝑦𝑦02(𝑥𝑥22 + 𝑥𝑥12)

4𝑘𝑘𝑦𝑦02
. 

Fig. 26 Set up a rectangular coordinate system 
for an isosceles trapezium 
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Set 

𝑓𝑓(𝑘𝑘) =
4𝑦𝑦0

2

𝜋𝜋
𝑆𝑆 = (𝑥𝑥2

2 − 𝑥𝑥1
2)2𝑘𝑘3 + 2𝑦𝑦0

2(𝑥𝑥2
2 + 𝑥𝑥1

2)𝑘𝑘 +
𝑦𝑦0

4

𝑘𝑘
. 

To get the minimum of S,  𝑓𝑓(𝑘𝑘) should achieve its minimum, where its derivative is 
equal to zero. 

𝑓𝑓′(𝑘𝑘) = 3(𝑥𝑥22 − 𝑥𝑥12)2𝑘𝑘2 + 2𝑦𝑦02(𝑥𝑥22 + 𝑥𝑥12)−
𝑦𝑦04

𝑘𝑘2
= 0 

So we can get 

𝑘𝑘2 =
−𝑦𝑦02(𝑥𝑥22 + 𝑥𝑥12) + 2𝑦𝑦02�𝑥𝑥14 + 𝑥𝑥24 − 𝑥𝑥12𝑥𝑥22

3(𝑥𝑥22 − 𝑥𝑥12)2
 

On the other hand, from 

⎩
⎨

⎧𝑥𝑥1
2

𝑎𝑎2
+
𝑦𝑦12

𝑏𝑏2
= 1

𝑥𝑥22

𝑎𝑎2
+
𝑦𝑦22

𝑏𝑏2
= 1,

 

we have 
𝑥𝑥22 − 𝑥𝑥12

𝑎𝑎2
=
𝑦𝑦12 − 𝑦𝑦22

𝑏𝑏2
=

(𝑦𝑦1 − 𝑦𝑦2)(𝑦𝑦1 + 𝑦𝑦2)
𝑎𝑎2𝑘𝑘2

=
𝑦𝑦0(𝑦𝑦1 + 𝑦𝑦2)

𝑎𝑎2𝑘𝑘2
. 

So 

𝑦𝑦1 + 𝑦𝑦2 =
𝑘𝑘2(𝑥𝑥22 − 𝑥𝑥12)

𝑦𝑦0
. 

Since 𝑦𝑦1 − 𝑦𝑦2 = 𝑦𝑦0, we can get 

�
𝑦𝑦1
𝑦𝑦2
� = �

𝑦𝑦02 + 𝑘𝑘2(𝑥𝑥22 − 𝑥𝑥12)
𝑦𝑦02 − 𝑘𝑘2(𝑥𝑥22 − 𝑥𝑥12)

�. 

Plug 

𝑘𝑘2 =
−𝑦𝑦02(𝑥𝑥22 + 𝑥𝑥12) + 2𝑦𝑦02�𝑥𝑥14 + 𝑥𝑥24 − 𝑥𝑥12𝑥𝑥22

3(𝑥𝑥22 − 𝑥𝑥12)2
 

into the above equation, we get 

�
𝑦𝑦1
𝑦𝑦2
� = �

(𝑥𝑥22 − 2𝑥𝑥12) + �𝑥𝑥14 + 𝑥𝑥24 − 𝑥𝑥12𝑥𝑥22

(2𝑥𝑥22 − 𝑥𝑥12)−�𝑥𝑥14 + 𝑥𝑥24 − 𝑥𝑥12𝑥𝑥22
�. 

Let 1

2

xm
x

= , which namely means the ration between the bases. Plug 1

2

xm
x

=  into 

the above equation, we finally get 

�
𝑦𝑦1
𝑦𝑦2
� = �

(1 − 2𝑚𝑚2) + √𝑚𝑚4 −𝑚𝑚2 + 1
(2 −𝑚𝑚2) − √𝑚𝑚4 −𝑚𝑚2 + 1

�. 

As mentioned is Chapter 4.1, for an isosceles trapezium, the center of its 
circumscribed conics must locate at the line which crosses the midpoints of its bases. 

Therefore, the value of 1

2

y
y

 indicates the location of the center of the minimal 
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circumscribed ellipse. Now we can prove Theorem 6 holds in this special case of 
isosceles trapeziums (Fig. 27).  

Due to the fact that parallelism and ratio between line segments do not change 
through parallel projective transformation[2], we can prove Theorem 6 holds in all 
cases of trapeziums. 

6. Circumscribed Ellipses of Cyclic Quadrilaterals 

Since any convex quadrilateral can be transformed to a cyclic quadrilateral through 
parallel projection, it is helpful for research on the general convex quadrilaterals to 
study the properties of cyclic quadrilaterals. Therefore, this paper has researched the 
connection between cyclic quadrilaterals and their circumscribed ellipses. 

Theorem 7: Let A, B, C, D are four points on the given ellipse of which the major 
diameters are parallel to the coordinate axis. If A, B, C, D are cyclic, the opposite 
sides of the quadrilateral formed by these four points will locate on two lines of which 
the slope angles are complementary (Fig. 28).  

Proof  For a given ellipse, set up a rectangular 
coordinate system of which the coordinate axis 
is parallel to its major axis (Fig.28), then the 
equation of the ellipse can be expressed by 

𝐴𝐴1𝑥𝑥2 + 𝐶𝐶1𝑦𝑦2 + 𝐷𝐷1𝑥𝑥 + 𝐸𝐸1𝑦𝑦 + 𝐹𝐹1 = 0. 

Suppose a cyclic quadrilateral ABCD, whose 
vertexes are on the ellipse above. Let the four 
vertexes are on the circle 

𝑥𝑥2 + 𝑦𝑦2 + 𝐷𝐷0𝑥𝑥 + 𝐸𝐸0𝑦𝑦 + 𝐹𝐹0 = 0. 

Then the quadratic curve crossing these four points can surely be expressed by 
         𝐴𝐴1𝑥𝑥2 + 𝐶𝐶1𝑦𝑦2 + 𝐷𝐷1𝑥𝑥 + 𝐸𝐸1𝑦𝑦 + 𝐹𝐹1 + 𝜆𝜆(𝑥𝑥2 + 𝑦𝑦2 + 𝐷𝐷0𝑥𝑥 + 𝐸𝐸0𝑦𝑦 + 𝐹𝐹0) = 0.     (11) 

On the other hand, the equation of a quadratic curve crossing the four points can also 
be expressed by 

Fig. 27 The minimal circumscribed ellipse of an 
isosceles trapezium 

Fig. 28 Set up a rectangular coordinate 
system for a cyclic quadrilateral 
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                 (𝑎𝑎1𝑥𝑥 + 𝑏𝑏1𝑦𝑦 + 𝑐𝑐1)(𝑎𝑎2𝑥𝑥 + 𝑏𝑏2𝑦𝑦 + 𝑐𝑐2) = 0.               (12) 

Obviously, there are no terms containing xy in equation(11). So by comparing 
equation(11) and (12), we can get 

𝑎𝑎1𝑏𝑏2 + 𝑎𝑎2𝑏𝑏1 = 0. 

Since the curve expressed in equation (11) crosses all the four given points A, B, C, D 
and there are no collinear points, the two lines expressed by equation (12) each 
respectively crosses two of the points. In brief, equation (12) can express any 
quadratic curve made up of the two lines where any pair of opposite sides of the 
quadrilateral A, B, C, D is located. 

Therefore, we can know that any pair of opposite sides of the complete quadrilateral A, 
B, C, D locates on two lines of which the slope angles are complementary. And the 
slopes of the two lines are opposite numbers if they exist, namely 

𝑎𝑎1
𝑏𝑏1

= −
𝑎𝑎2
𝑏𝑏2

. 

Now, we can prove Theorem 7. 

From the theorem above, we can infer two corollaries as following: 

Corollary 3 For a circumscribed ellipse of a cyclic quadrilateral, the included angles 
between its axis and the opposite sides of the quadrilateral are equal. 

Corollary 4 For the circumscribed ellipses of a cyclic quadrilateral, their major axes 
are parallel to each other. 

7. Postscript and Perspective 

During the course of researching, the author had some insight into the innate 
connection of conic sections as well as a taste of the beauty and harmony of geometry. 
As a few beautiful properties and theorems were found, due to the limited time and 
knowledge, some questions yet remained to be solved: 
 In the discussion of hyperbola in Chapter 3.4, we found out the coverage area of 2 

kinds of hyperbola by using intuitive figures and the concept of limit, while 
rigorous proof remains to be given. 

 In the discussion of circumscribed conic sections in Chapter 4, rigorous proof of 
our conclusion is also uncompleted. 

Meanwhile, further study has been scheduled as following: 
 We will research other properties of the circumscribed conic curves of 

quadrilaterals (such as the locus of the foci, the range of the eccentricity) so as to 
reveal the deeper connection between convex quadrilaterals and their 
circumscribed ellipses. 

 If possible, we hope to extend the above results to three-dimensional situations, 
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which is namely the circumscribed quadric surface of a solid figure. Since 
quadrics are widely applied to construction engineering, I believe such study has 
bright perspective.  
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