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Abstract 
The following inequality is proved in reference[1]: 

If 4, , , , Ra b c d a b c d ++ + + = ∈ , then: 2 2 2 2 2 2 2a b c d a b c d− − − − 2+ + + ≥ + + +  

This dissertation has made an in-depth and comprehensive discussion on the above 
inequality. On one hand, we’ve extended the four-variables to multi-variables; on the 
other hand, we’ve extended the quadratic inequality to high-power ones. We have proved 
whether the extended proposition is true or not and came up with three theorems and one 
truth table. Meanwhile, we’ve brought forward a worth-thinking problem at the end of 
the dissertation.  

 

Keyword:  inequality, multi-variables, high-power, and convexity of function , 

substitution based on classification. 
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Part 1 Generalized proposition to multi-variable cases 
Consider the following: 

Proposition 1:  

Assume that ,Nn +∈ Rix +∈ ( 1, 2... )i n= , and
1

n

i
i

x n
=

=∑ , then 

2 2

1 1

n n

i
i i

ix x−

= =

≥∑ ∑                              (1) 

Now let P(n) denote proposition 1 for convenience. Define P(n) to be 1 if P(n) holds, 
otherwise define P(n) to be 0 . 

According to the results of reference[1] , we can conclude that P(4)=1. Specially, if 

we take several 1ix = , then we can conclude that when 4n ≤ , ( ) 1P n = . So now we can 

assume . Actually, if P(m)=1 for some m5n ≥ N+∈ ,then for any n<m. 

Meanwhile, if P(m)=0 for some 

( )P n =1

Nm +∈ , then ( )P n 0=  for any n>m. Now we define 

2
2

1 x( ) (f x R )x
x +∈= − , then (1) is equivalent to: 

1

( ) 0
n

i
i

f x
=

≥∑ (2) 

Now we have: 

Theorem 1:  holds iff( ) 1P n = 10n ≤ . 

  Theorem 1 is equivalent to P(10)=1 and P(11)=0. Now we give the proving: 

First we will explore the properties of f(x). Its derivative 3

2'( ) 2f x x
x

= − −  is 

negative when ,indicating that f(x) is strictly decreasing on . Its (0, )x∈ +∞ (0, )x∈ +∞

2nd derivative is a convex function when x4''( ) 6f x x−= 2− ∈
1
40,3

⎛ ⎞
⎜ ⎟
⎝ ⎠

, indicating that 

f(x) is a convex function when x∈ (0,1] . 

     Now we give the following lemmas: 

Lemma 1:  (11) 0P =
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  Proof: take 1 2 10
3...
5

x x x= = = = , 11 5x = , then 
11

1

( ) 0i
i

f x
=

<∑ , the proof is 

finished. 

Lemma 2: Assume ,109,1,10 =+≥≤< yxyx then 0)()(9 ≥+ yfxf  

Proof: 

   Take 9x t
y
= , then we have (0,9]t∈ , 10 10,

9( 1) 1
tx y

t t
= =

+ +
 

Then  9 ( ) ( ) 0f x f y+ ≥

2 2900 ( 1) [9 ( ) ( )] 0t t f x f y⇔ + + ≥  

4 4 2 4 4(9 9) (10 ) 9 [( 1) 10 ] 0t t t t⇔ + − + + − ≥  

Define  to be the above LHS, then ( )g t

2 4 3 2( ) (9 ) (9 198 550 342 81)g t t t t t t= − + − + +  

The same time,  4 3 29 198 550 342 81t t t t+ − + +

2(2 9 81 2 198 342 550)t≥ × + × −  

2(54 520 550) 0t≥ + − >  

So . The proof is finished. ( ) 0g t ≥

Lemma 3: 

Assume 0 1x< ≤ , ,1 21, 1y y≥ ≥ 1 28 1x y y 0+ + = ,then 1 28 ( ) ( ) ( ) 0f x f y f y+ + ≥  

  Proof: First we prove: 

Assume , ,then1 2, 1y y ≥ 1s y y= + 2

2

1 2
( 2)( 2( ) ( )

1
s s sf y f y

s
)− − +

+ ≥
−

(3) 

According our assumption, we have ( 1)( 1)i jy y 0− − ≥ ,(1 2i j≤ < ≤ ). 

Now we take , then , 12 1 2t y= y 12 1 1t s≥ − ≥
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2 2 2
1 2 1 2 1 2 12 2

1 2 1 2

1 1 2( ) ( ) [( ) 2 ]2f y f y y y y y y y
y y y y

+ = + − − ≥ − + −  

2
12

12

12( )t s
t

= + −  

When , 1t ≥ 1t
t

+  is strictly increasing. So 12
12

1 1 ( 1
( 1)

t s
t s

)+ ≥ + −
−

. 

Then
2

2
1 2

1 ( 2)(( ) ( ) 2( 1)
1 1

s s sf y f y s s
s s

2)− − +
+ ≥ + − − =

− −
, indicating that (3) is 

true. 

Now if we use (3) to prove 1 28 ( ) ( ) ( ) 0f x f y f y+ + ≥ , we only have to prove: 

2( 2)( 2)8 ( ) 0
1

s s sf x
s

− − +
+ ≥

−
，and 10 8s x= − 。 

Simplifying the above inequality, we have: 
2 3 2

2

8( 1) (72 81 10 9) 0
(8 9)

x x x x
x x

− − + +
− ≥

−
，which is: 

3 2(8 9)(72 81 10 9) 0x x x x− − + + ≤ ， 

3 272 81 10 9 0x x x⇔ − + + ≥ ( (0,x 1]∈∵ 8 9 0x )∴ − <  

Now define g(x) as the above LHS, then 2'( ) 216 162 10g x x x= − +  

)(' xg  has two roots when x 1 2
27 489 27 489(0,1] : ,

72 72
x x− +

∈ = =  

     Then we can conclude that g(x) is strictly increasing when x∈(0, , and is 

decreasing when . 

]1,(or] 21 xx

],( 21 xxx∈

So we only need to prove that  0)0(,0)( 2 ≥≥ gxg

Obviously,  and (0) 9 0g = > 2
4455 163 489( ) 0

864
g x −

= > . The proof is 

finished. 
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Lemma 4: 

   Assume that 0 1x< ≤ , ,1 2 3, , 1y y y ≥ 1 2 37 1x y y y 0+ + + =  

Then  1 2 37 ( ) ( ) ( ) ( )f x f y f y f y+ + + ≥ 0

3

Proof: First prove: 

       Assume ,1 2 3, , 1y y y ≥ 1 2s y y y= + + , then 

2 2 2
1 2 2 3 1 3 1 2 3

92( ) 2(2 3)
2 3

y y y y y y y y y s
s

− − −+ + + + + ≥ − +
−

  (4) 

According to our assumption, we can have ( 1)( 1)i jy y 0− − ≥ ,(1 3 ). Now 

we take , then . Let 

i j≤ < ≤

ij i jt y y= 1 1ij i jt y y≥ + − ≥
1( ) 2 ( 1)g t t t
t

= + ≥ , then obviously 

its derivative 2

1'( ) 2g t
t

= −  is greater than 0 when ∈x (1, )+∞ . Moreover, its 2nd 

derivative 3

2''( )g x
t

=  is greater than 0 when ∈x (1, )+∞ . So  is a strictly ( )g t

increasing convex function when ∈x (1, )+∞ . Also, 

1 2 1 3 2 3 1 2 32 1 2 1 2 1 2 3y y y y y y y y y s+ + ≥ − + − + − = −  

Plus 2 2 2
1 2 3

1 2 1 3 2 3

1 1 1y y y
y y y y y y

− − −+ + ≥ + +∵ , then 

2 2 2
1 2 1 3 2 3 1 2 3

1 3 1 3

12( ) (2 ) ( )ij ij
i j i jij

y y y y y y y y y t g t
t

− − −

≤ < ≤ ≤ < ≤

+ + + + + ≥ + =∑ ∑ ≥

1 3

1 2 3 2 33 ( ) 3 ( ) 3[ (2 3) ] 2(2 3)
3 3 3 2 3ij

i j

sg t g s s
s s≤ < ≤

−
≥ = − + = − +

9
2 3− −∑  

Then we’ve proved (4) is true. 
As a consequence of  

3 3 3
2 2

2 2
1 1 1 3 1

1 1( ) ( ) (2 )i i i j
i i i j ii i

f y y s y y
y y= = ≤ < ≤ =

− = − = − +∑ ∑ ∑ ∑ , 

and by using (4) at the same time, we have ∑
= −

−+−≤−
3

1

2

32
964)(

i
i S

SSyf . 

So in order to prove our lemma, we only need to prove  
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32
964)(7 2

−
−+−≥

S
SSxf       (5). 

When , we can prove that (5) is true easily, so we assume  1=x 10 << x

Also , so )1(73 xS −=−

0)1720136112)(1(
6)1417)(881(

32
61

32
9521)5(

23

232

2

2

32

≥−−+−−⇔

≥−+−+⇔
−

+−=
−

+−
≥

+++
⇔

xxxx
xxxxx

S
S

S
SS

x
xxx

 

01720136112 23 ≥++−⇔ xxx         (6) 

Take  1720136112)( 23 ++−= xxxxh

Then we only need to prove that  when 0)( ≥xh ]1,0[∈x . 

As a consequence of , we have  0)56884(4)( 2' =+−= xxxh

42
46217,

42
46217

21
+

=
−

= xx  

Then we can conclude that h(x) is strictly increasing when x∈(0, , and is 

decreasing when . 

]1,(or] 21 xx

],( 21 xxx∈

So we only need to prove that  0)0(,0)( 2 ≥≥ hxh

Obviously, 0
1323

46147213549)(,017)0( 2 >
−

=>= xhh , then the proof is finished. 

Lemma 5: 

   Assume that 0 1x< ≤ , , 61 2 3 4, , , 1y y y y ≥ 104321 =++++ yyyyx ,then 

1 2 3 46 ( ) ( ) ( ) ( ) ( )f x f y f y f y f y+ + + + ≥ 0

4

 

Proof: First prove: 

   Assume that ,1 2 3 4, , , 1y y y y ≥ 1 2 3s y y y y= + + + , then 

4
2

1 4 1

82 6(
2i j i

i j i

y y y s
s

−

≤ < ≤ =

+ ≥ − +2)
−∑ ∑      (7) 
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According to our assumption, we have ( 1)( 1)i jy y 0− − ≥ , (1 4i j≤ < ≤ ). 

Take , then . ij i jt y y= 1 1ij i jt y y≥ + − ≥

Let 2( ) 2 ( 1)
3

g t t t
t

= + ≥ , then we find  and  are all greater than 0 when '( )g t ''( )g t

x∈ , so  is a strictly increasing convex function when x(1, )+∞ ( )g t ∈ (1, )+∞ . 

Plus  and  1 2 3 4
1 4

3 3 3 3 6 3ij
i j

t y y y y s
≤ < ≤

≥ + + + − = −∑ 6

2 2 2 2
1 2 3 4

1 4

2 1
3 i j ij

y y y y
t

− − − −

≤ < ≤

+ + + ≥ ∑ 。 

4
2

1 4 1 1 4 1 4 1 4

2 12 (2 ) ( ) 6
3 6ij i ij ij ij

i j i i j i j i jij

t y t g t g
t

−

≤ < ≤ = ≤ < ≤ ≤ < ≤ ≤ < ≤

( )t∴ + ≥ + = ≥∑ ∑ ∑ ∑ ∑

3 6 2 4 86 ( ) 6 ( ) 6( 2 ) 6( 2)
6 2 3( 2) 2

s sg g s s
s s

− −
≥ = = − + = − +

− −
， 

Then we can say (7) is true. 
According to (7), in order to prove: 

1 2 3 46 ( ) ( ) ( ) ( ) ( )f x f y f y f y f y+ + + + ≥ 0  

we only need to prove that: 
286 ( ) 6( 2) 0

2
f x s s

s
+ − + − ≥

−
， 

Simplifying the above inequality, we have: 
2 3 2

2

6( 1) (21 28 5 4) 0
(3 4)

x x x x
x x

− − + +
− ≥

−
，which is : 

3 2(3 4)(21 28 5 4) 0x x x x− − + + ≤ ， (0,1]x∈∵ 3 4x 0∴ − <  

3 221 28 5 4 0x x x⇔ − + + ≥  

Let the above LHS=h(x), then its derivative 2'( ) 63 56 5h x x x= − + has two roots 

when x
63

46928,
63

46928:]1,0( 21
+

=
−

=∈ xx  

Then we can conclude that h(x) is strictly increasing when x∈ (0, , and is ]1,(or] 21 xx
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decreasing when . ],( 21 xxx∈

(0) 4 0h = >

So we only need to prove that  0)0(,0)( 2 ≥≥ hxh

Obviously,  and 2
4312 134 469( ) 0

1701
h x −

= > . The proof is finished. 

Lemma 6:  (10) 1P =

Proof: 

    First prove that if )
2

(2)()(then,2 bafbfaf + (8) ba ≥+≤+

1
2

≤
+

≤
baBecause  and  is strictly decreasing, then we have )(xfab

)
2

()( bafabf +
≥  

  So we only need to prove that )(2)()( abfbfaf ≥+ (9) 

0)2)(1(

)1(2))(1()9(Besides

22

22

22

22
22

22

≥−
+−

⇔

−≥+
−

⇔

ab
ba

ba
ba

ab
ab

ba
ba

ba

 

So (9) is true, which means (8) is true as well. 

Now according to our assumption:  

Divide into 2 parts, without losses of generality .We assume that 

 is no more than 1, and we denote the other elements, which are greater 

than 1, to be

∑∑
==

==
10

1

10

1
)(let10

i
i

i
i xfx σ，

)10

1021 ,..., xxx

kx

,1

xx ,..., 21

(,...2 =+ lkylyy . If 0=l , then it’s easy to conclude that 

, indicating that the above conclusion is true. Also, since , so 

if 

1... 10 == x

, let denotem

21 = xx

l k

1≥k

, Nl k m +> − ∈ . 

Since , ,  ∑ ∑∑
= ==

+ ++>++=
k

i

k

i
ii

m

j
jkii myxyyx

1 11

)()(10 kmyx
k

i
ii 210)(

1
=−<+∑

=
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there exists an integer t in the range [1,k], so that 2≤+ tt yx . In this case, we replace 

 withtt yx , )1(
2

≤
+ tt yx

. From (8) we can infer that σ  is not increasing. After this 

substitution, the sum of the 10 figures is still 10, but there’s one more figure which is less 
than 1. After several arrangements like this,  σ  is non-decreasing, and the sum of the 

10 figures is still 10, but . Now we denote 0>> lk ∑
=

=x

)(xf

k

i
ix

k 1

1 , and substitute 

. According to the convexity of , kxxx ,..., 21x with σ  is non-decreasing, so we 

only need to prove . Also, since 0)( +xkf )(
1

≥∑
=

l

i
jyf kl <lk <=+ 0,10 , so the only 

possible value for is 1,2,3,4. l
According to lemma 2 and 5, we can conclude that lemma 6 is true. According to 

lemma 1 and 6, we can conclude that proposition 1 is true. The proof is finished. 
Now we can extend proposition 1: 

Proposition 2: Assume that R ( ,1,2 ..., )ix i n
1

n

i
x

x a
=

=∑

10

,+∈ = ,(  is a positive 

constant), then: 

a

1).when ，∑ ； 10 0
n

i=

11 0
n

i=
∑

a n≤ ≤

a n≥ ≥

1

( )if x ≥

1

( )if x ≥2).when ，  is not always true. 

Now we give the proof: 
=n  1).We only need to discuss such circumstances that  and . 10<a

    Let 
a
− a )b =

10 )10,...2,1( =+= ibxy ii ，, then . Take 1,0(∈b . Obviously, 

 and . According to proposition 1, we 

have : . Also, since 

+

1

( )
n

i
i

f y
=
∑

∈ Ryi
10

i

≥ b

10 ==iy

0
ix

10

1

+∑
=i

ixb

iy

10

1
∑
=

ix> , and  is strictly decreasing, so = + )(xf
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)()( ii xfyf < , then . The proof is finished. 
1

( ) 0
n

i
i

f x
=

≥∑
  2).We only need to give proof when 11n =  

1 2 11,...,,x x x  Take those  from Lemma 1, then 
11

1

11i
i

x
=

=∑  and 
11

1

( ) 0i
i

f x
=

<∑ . 

Take 
11

1
i

i

y
=11i ixay = , then  and 0i iy x≥ > a=∑ . Also, since ( ) ( )i if y f x≤ , so 

. As a consequence, when ,  is not always true. 
11

1i=
∑ ( ) 0if y < 11a n≥ ≥

1

( )
n

i
i

f x
=

≥∑ 0

  When  and , there must be one figure among , which is 

less than 1. We can call it , then . Since  is strictly decreasing, we 

have , then . 

11n =

() xf≥

10a =

11x

)11x+
11

1
∑
=i

0,11)

()( 10
1

xfxf i +

1121 ..., xxx

0)11 ≥x

0)( 11 ≥xf

)(
9

1
≥∑

=

xf
i

i

)(xf

(+ xf( 1010xf )( 10 +xf i

Therefore: such that : [1b∈

))( 11

911

1

xxf
ii

i +≥ ∑∑
==

0≥ . 

From the above proof，there exists [10,11)b∈ , such that 

11

1

2,...,11), i
i

i x
=
∑

+ , Nn k +∈
1

n

i

( 1,= = b
11

1

( ) 0i
i

f x
=

≥∑, and . Rix +∀ ∈

Part 2 Generalized proposition to high-degree cases 

Consider the more general problem and denote the following proposition as . ( , )P n k

  Assume that , ,Rix ∈ ix n
=

=∑ , ( ) k
k

kf x x x−= − , then . 
1

( ) 0
n

k i
i

f x
=

≥∑

Similarly, we use  to denote that for (n,k), P(n,k) is true. Otherwise, 

P(n,k)=0 

1),( =knP

N24

Page - 303



According to part one, we can conclude that when 1),( =knP , for N ,+∀ ∈ ≤m m n , we 

have , and when ( , ) 1P m k = 0),( =knP , for N ,m + m n∀ ∈ ≥ , we also have 

. Furthermore, we can infer from the first and second derivatives of ( ,P m ) 0k = ( )f x , 

' 1(k
1 ''

2

( 1)) and ( ) (k k
k k

k k 21) k( )f x k x x f x k k x
x

− − −
+

−+
= − + = − − , that ( )kf x  is a decreasing 

function on , and is a convex function on . R+ (0,1]

Now we give such following: 

Lemma 7. 0)6,3()5,4()4,4()3,5( ==== PPPP  

  Proof: 

Take 7 11( , ) ( , )
10 5

x y = , then 4x y 5+ =

)3,5(

, and by directly calculating, we can see that 

, so we’ve proved 3 34 ( ) ( ) 0f x f y+ < 0=P . 

Take 3 11( , ) ( , )
5 5

x y = , then 3x y 4+ =

)4,4(

, and we’ve found that  , 

, so we’ve proved 

4 43 ( ) ( ) 0f x f y+ <

5 53 ( ) ( ) 0f x f y+ < 0)5,4( == PP . 

Take 3 3( , ) ( , )
4 2

x y = , then 2x y 3+ = , and we’ve found that  , 

so we’ve proved . 

6 62 ( ) ( ) 0f x f y+ <

(3,6) 0P =

Lemma 8:Assume that , Ra b +∈ , 2a b+ ≤ , then ( ) ( ) 2 ( ) 0
2k k k

a bf a f b f +
+ ≥ ≥ . 

Proof: We can easily prove by the assumption that 1
2

a bab +
≤ ≤ .  

So ( ) ( ) (1)
2k k k

a bf ab f f+
≥ ≥ 0= . 

( ) ( ) 2 ( )k k kf a f b f ab+ ≥  

2 2( ) ( ) 2( ) 2(
k k

k k k ka b a b ab ab
−− −⇔ + − + ≥ − )  

2 21 1[ ] [( ) ( ) ]
( ) ( )

k k
k k

a b
a b

⇔ − ≥ −  

22 2 1( ) ( 1)
k k

k ka b
a b

⇔ − − ≥ 0  
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From 1ab ≤ we can know that 1k ka b ≤ , so Lemma 8 is proved. 

From the convexity of ( )kf x , which is mentioned above, and Lemma 8, quite similar 

to the proof in lemma 6 in part one, we need to prove the proposition  only in 

the following case: 

1),( =knP

k l≥  and those  which are not greater than 1 can be replaced by their average 

value. 

ix

Lemma 9.  1)3,4( =P

Proof: 

We only need to prove that 3 33 ( ) ( ) 0f x f y+ ≥ , when 0 1 3x y x y 4< ≤ < + =， . 

Assume that ( 1yt t )
x

= ≥ , then we can conclude that 

3 4
{

x y
y tx
+ =
=

⇒

4
3{
4

3

x
t

ty
t

=
+

=
+

 

3 3 33 3 3x x y y− −− + −  

2

3 3

3( 1) ( ( ) 243)
64 ( 3)

t g t t
t t
−

= ⋅
+

+

6t

, 

in which g(t)=  2 3 4 5972 2106 53 497 174 20t t t t t+ + − + + +

3(2 972 2 2106 20 2 53 174 497)t≥ + × + × −  

3167t≥  

0≥  

So . The proof is finished. 3 33 ( ) ( ) 0f x f y+ ≥

Lemma 10:  1)5,3( =P

Proof: 

 We only need to prove that 5 52 ( ) ( ) 0f x f y+ ≥ , when 0 1 2x y x y 3< ≤ < + =， . 

N24

Page - 305



Assume that ( 1yt t )
x

= ≥ , then we can conclude that 

2 3
{

x y
y tx
+ =
=

⇒

3
2{
3

2

x
t

ty
t

=
+

=
+

 

5 5 52 2 5x x y y− −− + −  

2
9

5 5 5

2( 1) ( ( ) 2 )
3 ( 2)

t g t t
t t

−
= ⋅

+
+

t

 

In which  ( )g t =

2 3 4 5 6 7 8 9 10 11 123584 12416 28928 52160 21399 2562 14523 11034 5905 1384 223 22t t t t t t t t t t t+ + + + − − − + + + + +

4 5 6 7 821399 2562 (2 3584 2 12416 22 2 28928 223 2 52160 1384 14523) 11034 5905t t t t t≥ − + + × + × + × − − +

4 5 6 7 821399 2562 (32 14 32 1067 32 25199 32 281990 14523) 11034 5905t t t t t≥ − + + + + − − +  
4 5 6 721399 2562 8712 11034 5905t t t t≥ − + − + 8t

8t

3

 
4 5 6 6 7(21399 2562 3556 ) (5156 11034 5905 )t t t t t= − + + − +  

0≥  

So . The proof is finished. 5 52 ( ) ( ) 0f x f y+ ≥

Lemma 11: 

Assume that , 0 a b< < 2a b+ = , and 0)()(2 <+ bfaf kk

0)( 1

, then , so that 

, , and 

∃ 11 ,ba

110 ba << 31 =b2 1 +a )(2 11 1 <+ +f k+ afk b 。 

Proof: 
We can easily tell from the assumption that 

0 1a b< < < , 2 1 2 k
k k a b

a b
+ < + k .    (10) 
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11

1

Take ,  then 0 1 and 0 1 . Using power-mean inequality
1

we can conclude that:

2 2( ) ( ) , ( )
3 3

2Take 1,  and consider  , we have ( ) 1.
3

So  2 3                   

r r

r r
r

r r
r

r r

kr r a b b
k

a b a b r

a ba b

a b

α α
α α

α

= < < < < < <
+

+ +
≤ <

+
= < <

+ <
1 1

1 1
1 1

1 1

              (11)
Since ( ) , ( ) , (10) is equivalent to

2 1 2( ) ( ) (12)
( ) ( )
Also, from inequality (11) we can conclude that

21 0.
3

Now we take , .From  

r k k r k k

r k r k
r k r k

r r

r r

a a b b

a b
a b

a b

a a b b

δ

δ δ

+ +

+ +
+ +

= =

+ < +

+
= − >

= + = + 1 1 1 1
1 1 1 1 1 1

1 1

1 1 1 1
1 1 1 1 1 1

1 1

0  we have 0 , and 2 3.

Noticing that ( ) ( ) , ( ) ( )  we can conclude that
2 1 2 12 2( ) ( ) ,

( ) ( )

Also, considering 

r r

k r k r k k r k r k

k k r k r k
k k r k r k

a b a b a b

a a a b b b

a b a b
a b a b

δ δ+ + + + + +

+ + + +
+ + + +

< < < < +

= + > = + >

+ > + + < +

，

=

1 1
1 11 1

1 1

1 1 1 1

2 1(12) ,we can know that 2 ,  

which is exactly 2 ( ) ( ) 0,

k k
k k

k k

a b
a b

f a f b

+ +
+ +

+ +

+ < +

+ <

The proof of Lemma 11 is finished. 
At the end, we give two following corollaries: 
Corollary 1: 

Assume that (3, ) 0 ( N , 2),  then we have , R .P k k k a b+ += ∈ > ∈，

0 ,2 3, and 2 ( ) ( ) 0k ka b a b f a f b< < + = + <  

Proof: 
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1 2 3
3

1 2 3
1

1 2 3

3 1 2

From the assumption we can know that , , R ,

3 and ( ) 0.

So we can conclude that at least one of , ,  is greater than 1.
And let's just take 1,  then 2.

From Lemma 8 we ca

k i
i

x x x

x x x f x

x x x
x x x

+

=

∈

+ + = <

> + <

∑

1 2
1 2

1 2
3

3

1

n conclude that ( ) ( ) 2 ( ).
2

Take , , then
2

0  2 3,  and 2 ( ) ( ) ( ) 0.

k k k

k k k i
i

x xf x f x f

x xa b x

a b a b f a f b f x
=

+
+ ≥

+
= =

< < + = + ≤ <∑，

 

Corollary 2: 

Assume that , then for0),3( =kP 1 1 1, N ,  we have (3, )k k k P k+ 0∀ ≥ ∈ =

1, we have (3, ) 1P k+ =

. Assume 

that , then for . 1),3( =kP 1 1, Nk k k ∈∀ ≤

Proof: 

 Assume that , from the results of Corollary 1 and Lemma 11 we can 

conclude that , and by using this result repeatedly we can conclude that 

. And if , using proof of contradiction and the former result we 

can know that . Using this result repeatedly, we can conclude 

that . 

0),3( =kP

0)1,3( =+k

),3( kP

)1,3( −kP

P

1

0),3( 1 =kP

),3( 1kP

1=

1=

=

    Now by summarizing the whole dissertation, we can conclude that: 
Theorem 3: 

1). (1, ) ( ,1) (2, ) 1( , NP k P n P k n k )+= = = ∀ ∈  

101)2,().2 ≤⇔= nnP  

2)6(,1),().5
31)5,()4,().4

41)3,().3

≤⇔≥=
≤⇔==

≤⇔=

nkknP
nnPnP

nnP
 

Proof: 
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1)We can easily prove that (1, ) ( ,1) 1.Also,from Lemma 8,  we have (2, ) 1.
2)From Theorem 1, we can conclude that ( , 2) 1 10

P k P n P k
P n n

= = =
= ⇔ ≤

 

3)From Lemma 9 and the properties of ( , ),  we have ( ,3) 0( 5),
and from the convexity of ( ) on (0,1] and Lemma 8,  we know that

   Lemma 9 proved (4,3) 1,  so ( ,3) 1 4.
k

P n k P n n
f x

P P n n

= ≥

= = ⇔ ≤

 

4)From Lemma 7 we can know that (4, 4) 0,  so ( , 4) 0( 4),
    and Lemma 10 proved that (3,5) 1. From Corollary 2, we can conclude that
    (3, 4) 1,  so ( , 4) 1 3.
    Similarly, from (3,5) 1,  we c

P P n n
P

P P n n
P

= = ≥
=

= = ⇔ ≤
= an conclude that ( ,5) 1 3.

    From Lemma 7,  we have (4,5) 0,  and then ( ,5) 0( 4), so ( ,5) 1 3
P n n

P P n n P n
= ⇔ ≤

n= = ≥ = ⇔ ≤

5)When 2, ( , ) 1,  assume that 6, 3. From Lemma 7  (3,6) 0
    and Corollary 2,  we can conclude that (3, ) 0( 6).
    Also, from the properties of the proposition, we have ( , ) 0( 3).
    So w

n P n k k n P
P k k

P n k n

≤ = ≥ ≥ =
= ≥

= ≥
hen 6, ( , ) 1 2.k P n k n≥ = ⇔ ≤

 

In summary, we’ve finished the proof. 

According to Theorem 3, we can get the truth table of  as following: ),( knP

n  
k  

1 2 3 4 5 6 7 8 9 10 11 … 

1 1 1 1 1 1 1 1 1 1 1 1 … 

2 1 1 1 1 1 1 1 1 1 1 0 … 

3 1 1 1 1 0 0 0 0 0 0 0 … 

4 1 1 1 0 0 0 0 0 0 0 0 … 

5 1 1 1 0 0 0 0 0 0 0 0 … 

6 1 1 0 0 0 0 0 0 0 0 0 … 

7 1 1 0 0 0 0 0 0 0 0 0 … 

#  #  #  #  #  #  #  #  #  #  #  #  %

 
At the end, we indicate that, we may extend Theorem 3 the way we’ve extended 

Theorem 1 to Theorem 2. 
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Summary: 
During our research, we are deeply amazed by the beauty and complexity of algebra, 

as we can produce a series of worth-thinking and in-depth extensions from a simple 
inequality. What we’ve done is extending the original inequality to higher-order ones, but 
we also think it’s possible to extend it to real inequalities. As math enthusiasts in the new 
century, we hope that one day, this extension will be proved. 
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