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Abstract 

This paper is inspired by an IMO problem which demonstrates that 2∏ 𝑝𝑖
𝑘
𝑖=1 + 1 has at least 

4𝑘 positive divisors, where 𝑝𝑖 is odd prime greater than 3[1]. In this paper, we generalized the 

conclusion. In this process, we proved a theorem which happens to be a corollary of Zsigmondy 

Theorem[2]. Using this theorem we proved that 𝑎𝑛 + 1 has at least d(𝑓(𝑛))  distinct prime 

factors when 3 ∤ 𝑛 , and d(𝑓(𝑛)) − 1 when 3∣𝑛, where 𝑓(𝑛) stands for the greatest odd 

divisor of 𝑛, d(𝑛) stands for the number of positive divisors of 𝑛. We generalized the result 

again by including the irrational numbers. We proved that there exists a constant 𝑀 such that 

𝑡(𝛼𝑛 − 𝛽𝑛 ) has at least  
𝑑(𝑛)

Ω(𝑛)+1
− 𝑀  distinct prime factors. 
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Section Zero: Notations 

In this paper, we used the following notations. We have listed their definitions in the following 

chart will use them directly in our paper. 

 

𝑓(𝑛) The greatest odd divisor of 𝑛. 

d(𝑛) The number of distinct positive factors of 𝑛. 

𝑝𝑖 Prime number. 

(𝑎, 𝑏) The greatest common divisor of 𝑎 and 𝑏. 

𝑎 ∤ 𝑏 𝑏 can not be divided by 𝑎. 

𝑎 ∣ 𝑏 𝑏 can be divided by 𝑎. 

𝑎𝑛 ∣∣ 𝑏 𝑎𝑛 ∣ 𝑏 while 𝑎𝑛+1 ∤ 𝑏. 

[ 𝑎, 𝑏] The least common multiple of 𝑎 and 𝑏. 

(
𝑎

𝑏
) 

𝑎!

𝑏!(𝑎−𝑏)!
. 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑝) 𝑎 and 𝑏 have the same residue modulo 𝑝. 

∏ 𝑝𝑎

𝑘

𝑎=1

 The product of 𝑝1, 𝑝2 , 𝑝3 , … 𝑝𝑘. 

∑ 𝑝𝑎

𝑘

𝑎=1

 The sum of 𝑝1, 𝑝2 , 𝑝3 , … 𝑝𝑘. 

∃ Exist. 

∀ For all. 

𝜑(𝑛)  
Euler's function. It stands for the number of positive integers co-prime to 

and smaller than 𝑛. 

𝑁+ The set of all positive integers. 

𝜇(𝑛) 

Möbius function. 𝜇(𝑛) = 1 if n is a square-free positive integer with 

an even number of prime factors. 𝜇(𝑛) = −1 if n is a square-free 

positive integer with an odd number of prime factors. 𝜇(𝑛) = 0 if n has 

a squared prime factor. 

Ω(𝑛) The number of prime factors of 𝑛 (the number of repetition counts). 
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Section One: Lemmas 

In order to prove our conclusion, we first need two pertinent lemmas. Following are our 

proofs. The first lemma is a conclusion often found in mathematical competitions[ 3 ] while the 

second is our corollary. 

Lemma One 

Let 𝑎 ≥ 2, 𝑝 be an odd prime, 𝑎, 𝛼, 𝛽, 𝑛 ∈ 𝑁+, 𝑛 is an odd integer, assume 𝑝𝛼 ∣∣ 𝑎 + 1,  𝑝𝛽 ∣∣

𝑛, then 

 𝑝𝛼+𝛽 ∣∣ 𝑎𝑛 + 1. (1.1.1) 

 

Proof: 

Since 𝑝𝛼 ∣∣ 𝑎 + 1, let 𝑎 = 𝑘𝑝𝛼 − 1 , (𝑘, 𝑝) = 1, then 

 𝑎𝑛 + 1 = (𝑘𝑝𝛼 − 1)𝑛 + 1 = ∑(−1)𝑛−𝑖 (
𝑛

𝑖
) 𝑘 𝑖 𝑝∝𝑖

𝑛

𝑖=1

. (1.1.2) 

Our main idea is to prove that among the sum of 𝑛 items above, the index of 𝑝 in the first item 

is smaller than that in any other item. Since then, the index of first item decides the index of the 

whole. 

For 𝑖 = 1, 𝑝𝛼+𝛽 ∣∣ (−1)𝑛−1𝑛𝑘𝑝∝. 

For 𝑖 ≥ 2, we are familiar that 

 (
𝑛

𝑖
) =

𝑛

𝑖
(

𝑛 − 1

𝑖 − 1
). (1.1.3) 

Let 𝑝𝛾 ∣∣ 𝑖, then 

 𝑝𝛽−𝛾 ∣
𝑛

𝑖
(

𝑛 − 1

𝑖 − 1
) = (

𝑛

𝑖
). (1.1.4) 

Notice that here 𝛽 − 𝛾 is not necessary to be positive, but this won’t interfere with our proof. 

Therefore the index of 𝑝 in (−1)𝑛−𝑖 (𝑛
𝑖
)𝑘 𝑖𝑝∝𝑖 is at least 𝛼𝑖 + 𝛽 − 𝛾. We shall prove that it is 

greater than 𝛼 + 𝛽, which is the index of first item. 

Since 𝑝𝛾 ∣∣ 𝑖, we know that 𝑖 is very large, specifically we have 

 𝑖 ≥ 𝑝𝛾 ≥ 3γ = (1 + 2)γ ≥ 1 + 2γ. (1.1.5) 

If γ ≠ 0, then 

 𝛼𝑖 + 𝛽 − 𝛾 = 𝛼 + 𝛽 + (𝛼(𝑖 − 1) − 𝛾) ≥ 𝛼 + 𝛽 + 𝛾(2𝛼 − 1) ≥ 𝛼 + 𝛽 + 1. (1.1.6) 

If γ = 0, then 

 𝛼𝑖 + 𝛽 − 𝛾 ≥ 2𝛼 + 𝛽 ≥ 𝛼 + 𝛽 + 1. (1.1.7) 

Based on what have been argued above, we have 

 𝑝𝛼+𝛽 ∣∣ ∑(−1)𝑛−𝑖 (
𝑛

𝑖
) 𝑘 𝑖 𝑝∝𝑖

𝑛

𝑖=1

= 𝑎𝑛 + 1. (1.1.8) 
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Lemma Two 

Let 𝑎 ≥ 2, 𝑝 is an odd prime , 𝑎 ∈ 𝑁+ , then 𝑎𝑝 + 1  must have a prime divisor that does not 

divide 𝑎 + 1, unless 𝑎 = 2, 𝑝 = 3. 

 

Proof: 

First we can prove that 𝑎𝑝 + 1 ≥ 𝑝(𝑎 + 1), and 𝑎𝑝 + 1 = 𝑝(𝑎 + 1) if and only if 𝑎 = 2, 𝑝 = 3. 

This fact looks trivial at first, but it is important to deal with details clearly.  

In fact, since 𝑝 is an odd prime, 𝑝 ≥ 3. 

Then 

 

𝑎𝑝 + 1 ≥ (1 + (𝑎 − 1))
𝑝

+ 1

≥ 2 + (
𝑝

1
) (𝑎 − 1) + (

𝑝

2
) (𝑎 − 1)2 + (𝑎 − 1)𝑝. 

(1.2.1) 

Because 𝑎 ≥ 2, we have 𝑎 − 1 ≥ 1, (𝑎 − 1)2 ≥ 1, (𝑎 − 1)𝑝 ≥ 1. 

Therefore 

 𝑎𝑝 + 1 ≥ 3 + 𝑝(𝑎 − 1) +
𝑝(𝑝 − 1)

2
= 𝑝(𝑎 + 1) +

(𝑝 − 2)(𝑝 − 3)

2
. (1.2.2) 

When 𝑝 = 3, 
(𝑝−2)(𝑝−3)

2
= 0 . We also have 𝑎𝑝 + 1 = 𝑝(𝑎 + 1), if and only if 𝑎 = 2. 

When 𝑝 > 3, 
(𝑝−2)(𝑝−3)

2
> 0 . 

Therefore, we proved our earlier conclusion. 

Suppose lemma 2 is incorrect, then ∀𝑞 is prime, 𝑞 ∣ 𝑎𝑝 + 1, we have 𝑞 ∣ 𝑎 + 1. 

Let 𝑞 𝛼 ∣∣ 𝑎 + 1, 𝛼 ∈ 𝑁+. 

According to lemma 1, 

If 𝑞 ≠ 𝑝, 𝑞 𝛼 ∣∣ 𝑎𝑝 + 1.  

If 𝑞 = 𝑝, 𝑞 𝛼+1 ∣∣ 𝑎𝑝 + 1. 

Therefore, the index of prime 𝑞 ≠ 𝑝 in 𝑎𝑝 + 1  is no more than that in 𝑎 + 1 , the index of 𝑝 is 

no more than that in 𝑎 + 1 . 

∴ 𝑎𝑝 + 1 ≤ 𝑝(𝑎 + 1). This contradicts our earlier conclusion. 

Therefore, the supposition is fallacious and lemma 2 is correct.   
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Section Two: The First Conclusion 

Using the two preceding lemmas, we study the problem and guess that 𝑎𝑛 + 1 always has a 

“unique” prime factor. Hence, when 𝑛  is odd, we could acquire many different prime factors 

considering 𝑎𝑛 + 1 has many ways to be factorized. However, only by considering 23 + 1 = 32, 

we know that the guess is fallacious. Luckily, this is the only exception. Following is our proof. 

Theorem One 

∀𝑎 ≥ 2, 𝑛 ≥ 4 or 𝑎 ≥ 3, 𝑛 ≥ 2, 𝑛 is odd, there exists a prime 𝑝, such that 

 𝑝 ∣ 𝑎𝑛 + 1, and ∀𝑚 < 𝑛, 𝑚 ∈ 𝑁+, 𝑝 ∤ 𝑎𝑚 + 1. (2.1.1) 

 

Proof: 

Suppose that the conclusion is fallacious. Then for every prime divisor 𝑝 of 𝑎𝑛 + 1, there exists 

𝑚 ∈ 𝑁+, 𝑚 < 𝑛, such that 𝑝 ∣ 𝑎𝑚 + 1 . 

We take the smallest 𝑚  satisfying the above condition. We shall prove 𝑚 ∣ 𝑛  first. It is a 

conclusion similar to that of the order, the proof is also similar. Just use the division algorithm and 

some idea from infinite descent. 

If 𝑚 ∤ 𝑛, let 𝑛 = 𝑠𝑚 + 𝑟 , r, 𝑠 ∈ 𝑁+, 0 < 𝑟 < 𝑚. Then 

 0 ≡ 𝑎𝑛 + 1 ≡ 𝑎𝑠𝑚+𝑟 + 1 ≡ (𝑎𝑚)𝑠𝑎𝑟 + 1 ≡ (−1)𝑠𝑎𝑟 + 1 (𝑚𝑜𝑑 𝑝). (2.1.2) 

When 2 ∤ s, 𝑎𝑟 ≡ 1 (𝑚𝑜𝑑 𝑝), then 

 0 ≡ 𝑎𝑚 + 1 ≡ 𝑎𝑚−𝑟𝑎𝑟 + 1 ≡ 𝑎𝑚−𝑟 + 1 (𝑚𝑜𝑑 𝑝), (2.1.3) 

which means 𝑝 ∣ 𝑎𝑚−𝑟 + 1. 

Since 𝑚 is the smallest, we have 𝑚 − 𝑟 ≥ 𝑚, 𝑟 ≤ 0. 

This contradicts with 0 < 𝑟 < 𝑚. 

If 2 ∣ s, then 0 ≡ 𝑎𝑟 + 1 (𝑚𝑜𝑑 𝑝). 

Since 𝑚 is the smallest, 𝑟 ≥ 𝑚. 

This contradicts 0 < 𝑟 < 𝑚. 

Based on what have been argued above,, 𝑚 ∣ 𝑛. 

If 𝑛 is prime, then for every prime factor 𝑝 of 𝑎𝑛 + 1, have there existed 𝑚 < 𝑛, 𝑝 ∣ 𝑎𝑚 + 1 

should we have 𝑚 ∣ 𝑛. 

Hence 𝑚 = 1. From lemma 2 we know that theorem 1 is correct. 

If 𝑛 is composite, let the standard factorization of 𝑛 be 

 𝑛 = ∏ 𝑝𝑖
𝛼𝑖

𝑘

𝑖=1

. (2.1.4) 

Here 𝑘 represents the number of distinct prime factors of 𝑛. 

Let 𝑛𝑖 =
𝑛

𝑝𝑖
 , (𝑖 = 1,2,3, …, 𝑘). 

From our earlier arguments, we know that for any prime 𝑝 ∣ 𝑎𝑛 + 1, 

∃𝑚 ∈ 𝑁+, 𝑚 < 𝑛, 𝑚 ∣ 𝑛, 𝑝 ∣ 𝑎𝑚 + 1. 

Hence, there exists integer 𝑖, such that 𝑚 ∣ 𝑛𝑖. For every prime factor 𝑞 of 𝑎𝑛𝑖 + 1 

Let 𝑞 𝛼 ∣∣ 𝑎𝑛𝑖 + 1, 𝛼 ∈ 𝑁. According to lemma 1, 
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When 𝑞 = 𝑝𝑖, 𝑞 𝛼+1 ∣∣ 𝑎𝑛 + 1. 

When 𝑞 ≠ 𝑝𝑖, 𝑞 𝛼+1 ∣∣ 𝑎𝑛 + 1. 

Hence we have 

 𝑎𝑛 + 1|[ 𝑎𝑛1 + 1, 𝑎𝑛2 + 1, … , 𝑎𝑛𝑘 + 1] ∏ 𝑝𝑖

𝑘

𝑖=1

. (2.1.5) 

By observing the above divisibility, we find that (2.1.5) is not likely to be true. In fact, the right 

side is 𝑎𝜑(𝑛) approximately, whereas the left side is greater. Following are detailed analysis on 

the scale of each side, especially the right. 

We want to prove 

 𝑎𝑛 + 1> [ 𝑎𝑛1 + 1, 𝑎𝑛2 + 1, …, 𝑎𝑛𝑘 + 1] ∏ 𝑝𝑖

𝑘

𝑖=1

, (2.1.6) 

which, in another word means 

 𝑎𝑛 ≥  [ 𝑎𝑛1 + 1, 𝑎𝑛2 + 1, … , 𝑎𝑛𝑘 + 1] ∏ 𝑝𝑖

𝑘

𝑖=1

. (2.1.7) 

However, the least common multiple is not easy to estimate, so we shall use a conclusion to 

simplify the right side. That is when 𝑢, 𝑣 are odd, we have 

 (𝑎𝑢 + 1, 𝑎𝑣 + 1) = 𝑎(𝑢,𝑣) + 1. (2.1.8) 

We see that when 𝑢, 𝑣 are odd, we have 

 (𝑎𝑢 + 1, 𝑎𝑣 + 1) ∣ (𝑎2𝑢 − 1, 𝑎2𝑣 − 1) = 𝑎2(𝑣,𝑢) − 1. (2.1.9) 

While 

 (𝑎(𝑢,𝑣) − 1, 𝑎𝑢 + 1) = (𝑎(𝑢,𝑣) − 1, 𝑎𝑢 − 1 + 2) = (𝑎(𝑢,𝑣) − 1, 2). (2.1.10) 

Since we have 

 𝑎(𝑢,𝑣) + 1 ∣ 𝑎𝑢 + 1，𝑎(𝑢,𝑣) + 1 ∣ 𝑎𝑢 + 1. (2.1.11) 

We could acquire 

 𝑎(𝑢,𝑣) + 1 ∣ (𝑎𝑢 + 1, 𝑎𝑣 + 1). (2.1.12) 

If 𝑎  is even, then (𝑎(𝑢,𝑣) − 1, 2) = 1, (𝑎𝑢 + 1, 𝑎𝑣 + 1) = 𝑎(𝑢,𝑣) + 1. 

If 𝑎 is odd, then (𝑎(𝑢,𝑣) − 1,2) = 2, we can consider the index of 2 in 𝑎𝑢 + 1 and 𝑎(𝑢,𝑣) +

1. 

Let (𝑢, 𝑣) = 𝑑, 𝑢 = 𝑙𝑑, such that 𝑑 is odd, therefore we have 

 𝑎𝑢 + 1 = (𝑎𝑑 + 1) ∑ 𝑎𝑠𝑑

𝑙−1

𝑠=0

(−1)𝑠 . (2.1.13) 

We notice that this addition consists of an odd number (𝑙) of odd numbers. Hence, the result is 

odd. 

Therefore, the indexes of 2 in 𝑎𝑢 + 1 and 𝑎(𝑢,𝑣) + 1 are equal, and we still have 

 (𝑎𝑢 + 1, 𝑎𝑣 + 1) = 𝑎(𝑢,𝑣) + 1. (2.1.14) 

Then 
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(𝑎𝑛𝑖1 + 1, 𝑎𝑛𝑖2 + 1, …, 𝑎𝑛𝑖𝑠 + 1) = 𝑎 (𝑛𝑖1,𝑛𝑖2,…,𝑛𝑖𝑠
) + 1. 

Now we will use cross classification to represent the least common multiple: 

 

[ 𝑎𝑛1 + 1, 𝑎𝑛2 + 1,… , 𝑎𝑛𝑘 + 1]

= ∏ (𝑎𝑛𝑖1 + 1, 𝑎𝑛𝑖2 + 1, … , 𝑎𝑛𝑖𝑡

1≤𝑖1<𝑖2,…,<𝑖𝑡≤𝑘
1≤𝑡≤𝑘

+ 1)（-1）
𝑡+1

= ∏ (𝑎 (𝑛𝑖1,𝑛𝑖2,…,𝑛𝑖𝑠
) + 1)（-1）

𝑡+1

1≤𝑖1<𝑖2,…,<𝑖𝑡≤𝑘
1≤𝑡≤𝑘

. 

(2.1.15) 

Notice that for every positive integer 𝑚, we have 

 𝑎𝑚 < 𝑎𝑚 + 1 < 𝑎𝑚 (1 +
1

𝑎
 ). (2.1.16) 

Hence 

 

∏ (𝑎 (𝑛𝑖1,𝑛𝑖2,…,𝑛𝑖𝑠
) + 1)（-1）

𝑡+1

1≤𝑖1<𝑖2,…,<𝑖𝑡≤𝑘
1≤𝑡≤𝑘

≤ ∏
𝑎  (𝑛𝑖1,𝑛𝑖2,…,𝑛𝑖𝑠

)（-1）
𝑡+1

1≤𝑖1<𝑖2,…,<𝑖𝑡≤𝑘
1≤𝑡≤𝑘

 ∏  (1 +
1

𝑎
 )

1≤𝑖1<𝑖2,…,<𝑖𝑡≤𝑘
1≤𝑡≤𝑘
𝑡 is odd

. 
(2.1.17) 

We shall now simplify our right side of this inequality. 

The first product is a product some power of 𝑎. The power is 

 
∑  (𝑛𝑖1

,𝑛𝑖2
, … , 𝑛𝑖𝑠

)
（-1）

𝑡+1

1≤𝑖1<𝑖2,…,<𝑖𝑡≤𝑘
1≤𝑡≤𝑘

. 
(2.1.18) 

Notice that 

 (𝑛𝑖1
,𝑛𝑖2

, … , 𝑛𝑖𝑠
) = (

𝑛

𝑝𝑖1

,
𝑛

𝑝𝑖2

, … ,
𝑛

𝑝𝑖𝑠

) =
𝑛

𝑝𝑖1
𝑝𝑖2,…,

𝑝𝑖𝑠

. (2.1.19) 

So the power of 𝑎 is 

 
∑  (

𝑛

𝑝𝑖1
𝑝𝑖2,…,

𝑝𝑖𝑠

)

（-1）
𝑡+1

1≤𝑖1<𝑖2,…,<𝑖𝑡≤𝑘
1≤𝑡≤𝑘

= 𝑛(1 − ∏(1 −
1

𝑝𝑖
))

𝑘

𝑖=1

= 𝑛 − 𝜑(𝑛). 

(2.1.20) 

The second product of the right side is 

 
∏  (1 +

1

𝑎
 )

1≤𝑖1<𝑖2,…,<𝑖𝑡≤𝑘
1≤𝑡≤𝑘
𝑡 is odd

= (1 +
1

𝑎
 )

∑ (𝑘
𝑡

)𝑡 is odd

. 
(2.1.21) 

Since 
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 ∑ (
𝑘

𝑡
)

𝑡 is odd

=
(1 + (−1))

𝑘
+ (1 + 1)𝑘

2
= 2𝑘−1 . (2.1.22) 

The right side of (2.1.17) can be written as 

 𝑎𝑛−𝜑(𝑛) (1 +
1

𝑎
 )

2𝑘−1

∏ 𝑝𝑖

𝑘

𝑖=1

. (2.1.23) 

Now (2.1.7) is equivalent to 

 𝑎𝜑(𝑛) ≥ (1 +
1

𝑎
 )

2𝑘−1

∏ 𝑝𝑖

𝑘

𝑖=1

. (2.1.24) 

From a direct sense, the above inequality is trivial, since in the left side, the power of 𝑎 is 

already 𝜑(𝑛), which is approximately ∏ 𝑝𝑖
𝑘
𝑖 =1 . Following is detailed proof. Basically, we are 

trying to show how small (1 +
1

𝑎
 )

2𝑘−1

is. 

First, we have 

 𝜑(𝑛) = 𝑛 ∏ (1 −
1

𝑝𝑖

) = ∏ 𝑝
𝑖
𝛼𝑖

𝑘

𝑖=1

𝑘

𝑖=1

(1 −
1

𝑝𝑖

) ≥ ∏（𝑝𝑖

𝑘

𝑖=1

− 1) ≥  2𝑘 . (2.1.25) 

Therefore 

 
𝑎𝜑(𝑛)

(1 +
1
𝑎  )

2𝑘−1 ≥ (
𝑎

√1 +
1
𝑎

)𝜑(𝑛) ≥ (
2√6

3
)

𝜑(𝑛)

≥ (
3

2
)

𝜑(𝑛)

. (2.1.26) 

In the above inequality, we used that 𝑎 is not less than 2 and 
𝑎

√1+
1

𝑎

 increase monotonously. 

Also, we have 

 (
3

2
)

𝜑(𝑛)

≥ 1 +
1

2
𝜑(𝑛) +

1

4
𝜑(𝑛)2 >

1

4
𝜑(𝑛)2 . (2.1.27) 

Now we only need to prove 

 
1

4
𝜑(𝑛)2 ≥ ∏ 𝑝𝑖

𝑘

𝑖=1

. (2.1.28) 

Since 𝑛 is composite, we have 𝑘 ≥ 2 𝑜𝑟 𝛼1 ≥ 2，𝑘 = 1. 

First case: 𝑘 ≥ 2. 

At this time, we acquire 

 𝜑(𝑛)2 ≥ ∏(𝑝𝑖 − 1)2

𝑘

𝑖=1

. (2.1.29) 

So 

N28

Page - 319



 

 

 𝜑(𝑛)2

∏ 𝑝𝑖
𝑘
𝑖=1

≥ ∏
(𝑝𝑖 − 1)2

𝑝𝑖

𝑘

𝑖=1

≥
(𝑝1 − 1)2

𝑝1

(𝑝2 − 1)2

𝑝2
≥

(3 − 1)2

3

(5 − 1)2

5

=
64

15
. 

(2.1.30) 

Hence 

 
1

4
𝜑(𝑛)2 ≥

16

15
∏ 𝑝𝑖

𝑘

𝑖=1

> ∏ 𝑝𝑖

𝑘

𝑖=1

. (2.1.31) 

Therefore 

 𝑎𝜑(𝑛) ≥ (1 +
1

𝑎
 )

2𝑘−1

∏ 𝑝𝑖

𝑘

𝑖=1

. (2.1.32) 

Second case: 𝛼1 ≥ 2，𝑘 = 1. 

At this time, we acquire 

 
1

4
𝜑(𝑛)2 ≥

1

4
𝑝1

2(𝑝1 − 1)2 > 𝑝1 . (2.1.33) 

So 

 𝑎𝜑(𝑛) ≥ (1 +
1

𝑎
 )

2𝑘−1

∏ 𝑝𝑖

𝑘

𝑖=1

. (2.1.34) 

Above all, the inequality (2.1.7) holds, so (2.1.5) cannot be true. Contradiction! 

Hence our Theorem 1 is correct.   
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Section Three: The Second Conclusion and a Special Case of the Dirichlet’s Theorem 

With the preceding theorem, we could easily acquire one of the conclusions of our thesis and 

give an estimation of the number of prime factors of 𝑎𝑛 + 1. Meanwhile, we notice that theorem 

one can help us provide the proof of a special case of the Dirichlet’s Theorem, the case when the 

first term is 1. 

When 𝑛 is even, let 𝑛 = 2𝑘𝑛1, where 𝑛1  is the greatest odd factor of 𝑛. Then we have𝑎𝑛 + 1 =

（𝑎2𝑘
）

𝑛1

+ 1 . Therefore, we can convert this case to the case when 𝑛  is odd. Therefore, in 

theorem 2 we only discuss the case when 𝑛 is odd. 

Theorem Two 

Let 𝑎 ≥ 2, 𝑛  be an odd positive number. Then when 3∣𝑛  or 3 ∤ 𝑛, 𝑎𝑛 + 1  has at least  

d(𝑛) − 1 or d(𝑛) prime factors, respectively. 

 

Proof: 

For any divisor 𝑚 of 𝑛 (𝑚 ≠ 3) , from theorem 1 we know that there exists a prime 𝑝 such that 

 𝑝 ∣ 𝑎𝑚 + 1, and ∀𝑘 ∈ 𝑁+, 𝑘 < 𝑚, 𝑝 ∤ 𝑎𝑘 + 1. (3.1.1) 

Let 𝑝 = 𝑝(𝑚). Since 𝑛 is an odd positive number, we have 

 𝑎𝑚 + 1 ∣ 𝑎𝑛 + 1. (3.1.2) 

Hence, all 𝑝(𝑚) divide 𝑎𝑛 + 1. 

Next we prove 𝑝(𝑖) ≠ 𝑝(𝑗) ( 𝑖 ≠ 𝑗). 

In fact, had there existed 𝑖 ≠ 𝑗, while 𝑖, 𝑗 are both positive divisors of 𝑛, such that 𝑝(𝑖) = 𝑝(𝑗) , 

we could assume 𝑖 < 𝑗. 

From the definition of 𝑝(𝑗), we have 

 ∀𝑘 ∈ 𝑁+, 𝑘 < 𝑗, 𝑝 ∤ 𝑎𝑘 + 1. (3.1.3) 

However, 𝑝(𝑖) = 𝑝(𝑗), from the definition of 𝑝(𝑖), we have 

 𝑝(𝑖) ∣ 𝑎𝑖 + 1. (3.1.4) 

This is a contradiction. 

Hence, when 3∣ 𝑛, we acquire d(𝑛) − 1 different prime factors. 

When 3 ∤ 𝑛, we acquire d(𝑛) different prime factors.  
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Theorem Three 

Let 𝑛 ∈ 𝑁+, then the sequence {𝑡𝑛 + 1}𝑡=1
∞  includes an infinite number of prime terms. 

 

Proof: 

Let 𝑛 = 2𝑘𝑛1, such that 𝑛1 is odd. Now we take {𝑎𝑘}𝑘=1
∞  in that 

 𝑎1 = 32𝑘
,𝑎𝑚+1 = (∏(𝑎𝑘

𝑛1 + 1)

𝑚

𝑘=1

)

2𝑘

. (3.2.1) 

We know then that 𝑎1
𝑛1 + 1, 𝑎2

𝑛1 + 1, 𝑎3
𝑛1 + 1, … are all respectively co-prime. 

From Theorem 1, we know that 

For any positive integer 𝑖, there exists a prime 𝑝𝑖 ∣ 𝑎𝑖
𝑛1 + 1, such that 

 ∀𝑚 < 𝑛, 𝑚 ∈ 𝑁+, 𝑝𝑖 ∤ 𝑎𝑖
𝑚. + 1. (3.2.2) 

From the definition of {𝑡𝑛 + 1}𝑡=1
∞ , we know that these exists 𝑏𝑖 ∈ 𝑁+, such that 𝑎𝑖=𝑏𝑖

2𝑘
. 

Hence, we have 𝑝𝑖 ∣ 𝑎𝑖
2𝑛1 − 1 = 𝑏𝑖

2𝑘+1𝑛1 − 1. 

Let the order of 𝑏𝑖 modulo 𝑝𝑖 be 𝑡: 𝑡 is the smallest integer that satisfy 

 𝑝𝑖 ∣ 𝑏𝑖
𝑡 − 1. (3.2.3) 

From the properties of order, we have 

 𝑡 ∣ 2𝑘+1𝑛1 . (3.2.4) 

Since we obviously also have 𝑝𝑖 ∤ 𝑏
𝑖
2𝑘𝑛1 − 1, we have 

 𝑡 ∤ 2𝑘𝑛1 . (3.2.5) 

Therefore 

 2𝑘+1 ∣∣ 𝑡. (3.2.6) 

As a result, let 𝑡 = 2𝑘+1𝑛2, such that 

 𝑛2 ∣ 𝑛1 . (3.2.7) 

We also have 𝑏𝑖
𝑡 − 1 = (𝑏𝑖

𝑡

2 − 1) (𝑏𝑖

𝑡

2 + 1), 

But since 
𝑡

2
< 𝑡, we have 𝑝𝑖 ∤ 𝑏𝑖

𝑡

2 −1. 

Hence, 𝑝𝑖 ∣ 𝑏𝑖

𝑡

2 + 1 = 𝑏𝑖
2𝑘𝑛2 + 1 = 𝑎𝑖

𝑛2 + 1. 

According to (3.2.2), 𝑛2 ≥ 𝑛1, but from (3.2.7), 𝑛1 ≥ 𝑛2 . 

Therefore, 𝑛1 = 𝑛2, 𝑡 = 2𝑘+1𝑛1 = 2𝑛. 

According to the Fermat’s Little Theorem, we know 

 𝑝𝑖 ∣ 𝑏𝑖
𝑝𝑖−1 − 1. (3.2.8) 

As a result, 2𝑛 ∣ 𝑝𝑖 − 1, 𝑝𝑖 ∈ {𝑡𝑛 + 1}𝑡=1
∞ . 

Since 𝑎1
𝑛1 + 1 , 𝑎2

𝑛1 + 1 , 𝑎3
𝑛1 + 1 , … are all respectively co-prime, we know that 𝑝𝑖  (𝑖 =

1, 2, 3 … ) are all different. 

Hence, we have found an infinite number of prime terms in  {𝑡𝑛 + 1}𝑡=1
∞ ., and the proof is 
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complete.  
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Section Four: A Second Thought of Theorem One 

Considering the preceding proof, we can see that we almost only used the property of 

sequence {𝑎𝑛 + 1}𝑛=1
∞  that every two items of this sequence have their greatest common 

divisor in this sequence. In another word, (𝑎𝑢 + 1, 𝑎𝑣 + 1) = 𝑎(𝑢,𝑣) + 1. 

Using the equation from Möbius inversion, we can prove a generalized conclusion. 

Theorem Four 

If a sequence of positive integers {𝑥𝑛}𝑛=1
∞  satisfies the following property: 

 ∀ 𝑚, 𝑛 ∈ 𝑁+, (𝑥𝑚,𝑥𝑛 ) = 𝑥(𝑚,𝑛) , (4.1.1) 

then there exists a sequence of positive integers {𝑦𝑛 }𝑛=1
∞ , such that 

 𝑥𝑛 = ∏ 𝑦𝑑

𝑑|𝑛

. (4.1.2) 

 

Proof: 

First, let’s analyze what should {𝑦𝑛 }𝑛=1
∞  satisfy. According to Möbius inversion, (4.1.2) can be 

transformed to 

 𝑦𝑛 = ∏ 𝑥𝑑
𝜇(

𝑛
𝑑)

𝑑|𝑛

, (4.1.3) 

where 𝜇(𝑛) denotes Möbius Function. 

Hence, we only need to prove that the right side of (4.1.3) is a positive integer. 

It is clear that 𝑑 needs to be concerned only when 𝜇(
𝑛

𝑑
) ≠ 0. In another word, we only consider 

such 𝑑 that 
𝑛

𝑑
 is square-free. 

We use the same notation in theorem 1 and recollect the following two definitions: 

 𝑛𝑖 =
𝑛

𝑝𝑖
. (4.1.4) 

𝑘 stands for the number of distinct prime factors of n. 

Since we know that 

 
𝑛

𝑝𝑖1
𝑝𝑖2,…,

𝑝𝑖𝑠

= (
𝑛

𝑝𝑖1

,
𝑛

𝑝𝑖2

, … ,
𝑛

𝑝𝑖𝑠

) = (𝑛𝑖1
,𝑛𝑖2

, … , 𝑛𝑖𝑠
), (4.1.5) 

we can represent 𝑦𝑛 as 

 
𝑦𝑛 = 𝑥𝑛 × ∏ 𝑥(𝑛𝑖1,𝑛𝑖2,…,𝑛𝑖𝑡

)
（-1）

𝑡

1≤𝑖1<𝑖2,…,<𝑖𝑡≤𝑘
1≤𝑡≤𝑘

. 
(4.1.6) 

We notice that 

 𝑥(𝑛𝑖1,𝑛𝑖2,…,𝑛𝑖𝑠
) = (𝑥𝑛𝑖1

,𝑥𝑛𝑖2
,… , 𝑥𝑛𝑖𝑡

). (4.1.7) 

Considering the formula of cross classification or exclusion and inclusion theorem, we can find 
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that the above equation can be simplified to be 

 𝑦𝑛 =
𝑥𝑛

[𝑥𝑛1
,𝑥𝑛2

,… , 𝑥𝑛𝑘
]
. (4.1.8) 

Since (𝑥𝑛1
,𝑥𝑛 ) = 𝑥(𝑛1,𝑛) = 𝑥𝑛1

, we get 𝑥𝑛1
| 𝑥𝑛.  In other word, 𝑥𝑛 is a multiple of every 𝑥𝑛𝑖

, 

so it has to be the multiple of their least common multiple, [𝑥𝑛1
,𝑥𝑛2

,… , 𝑥𝑛𝑘
]. Therefore, we 

have 𝑦𝑛 is an integer. 

We notice that since every 𝑥𝑛𝑖
 is positive, 𝑦𝑛 is also positive. 

Hence, 𝑦𝑛 is a positive integer and the proof of theorem 4 is complete.   
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From the representation of 𝑥𝑛, we have enough confidence to find many prime divisors of 

𝑥𝑛 . At least we have already proven that it contains many divisors. A direct thought is to prove 

that 𝑦𝑛 is greater than 1 and co-prime to each other. However, this guess is not totally true; 

following is a correct and close statement. 

Theorem Five 

In the sequence {𝑦𝑛 }𝑛=1
∞  from theorem four, we have the following property: if 𝑚 ∤ 𝑛  and 𝑛 ∤

𝑚, then 

 (𝑦𝑚, 𝑦𝑛 ) = 1. (4.2.1) 

 

Proof: 

We mentioned that the sequence {𝑥𝑛 }𝑛=1
∞  has a property that (𝑥𝑚,𝑥𝑛 ) = 𝑥(𝑚,𝑛). 

Hence, we have 

 (
𝑥𝑚

𝑥(𝑚,𝑛)
,

𝑥𝑛

𝑥(𝑚,𝑛)
) = 1. (4.2.2) 

From the representation of 𝑥𝑚, 𝑥𝑛, and 𝑥(𝑚,𝑛), we have 

 

𝑥𝑚

𝑥(𝑚,𝑛)
= ∏ 𝑦𝑑

𝑑|𝑚

𝑑∤(𝑚,𝑛)

; 
(4.2.3) 

 

𝑥𝑛

𝑥(𝑚,𝑛)
= ∏ 𝑦𝑑

𝑑|𝑛

𝑑∤(𝑚,𝑛)

. 
(4.2.4) 

Since 𝑚 ∤ 𝑛 and 𝑛 ∤ 𝑚, we know that (𝑚, 𝑛) < 𝑚, 𝑛. 

So, we could acquire 

 
𝑦𝑚| ∏ 𝑦𝑑

𝑑|𝑚

𝑑∤(𝑚,𝑛)

=
𝑥𝑚

𝑥(𝑚,𝑛)
; 

(4.2.5) 

 
𝑦𝑛 | ∏ 𝑦𝑑

𝑑|𝑚

𝑑∤(𝑚,𝑛)

=
𝑥𝑚

𝑥(𝑚,𝑛)
. 

(4.2.6) 

Therefore, we know that 

 (𝑦𝑚, 𝑦𝑛 ) = 1, (4.2.7) 

and the proof is complete.  
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Section Five: Preparation for the Final Conclusion 

Next we will choose a specific sequence {𝑥𝑛}𝑛=1
∞  and consider the number of prime factors 

of each term. In order to meet the requirement that (𝑥𝑚,𝑥𝑛 ) = 𝑥(𝑚,𝑛), we consider a familiar 

sequence {𝑡(𝛼𝑛 − 𝛽𝑛 )}𝑛=o
∞ , where 𝛼, 𝛽, and 𝑡 are real numbers. 

Theorem Six 

Let 𝑥𝑛 = 𝑡(𝛼𝑛 − 𝛽𝑛 ) (𝑛 ∈ 𝑁), where α > β, 𝛼 and 𝛽 are the roots of the equation 𝑥2 −

𝑢𝑥 + 𝑣 = 0, in which 𝑢 and 𝑣 are co-prime positive integers, 𝑢2 > 4𝑣, and u > v. Here 𝑡 =

𝑘

𝛼−𝛽
 in which𝑘 ∈ 𝑁+, (𝑘, 𝑣) = 1. 

Then we have 

 ∀ 𝑚, 𝑛 ∈ 𝑁+, (𝑥𝑚,𝑥𝑛 ) = 𝑥(𝑚,𝑛) . (5.1.1) 

 

Proof: 

First, we can prove that 

 𝑥𝑛  (𝑛 ≠ 0) ∈ 𝑁+ . (5.1.2) 

We see that 𝑥0 = 0, 𝑥1 = 𝑘. 

From the definition of the sequence, we know that 

 𝑥𝑛+1 = 𝑢𝑥𝑛 − 𝑣𝑥𝑛−1 . (5.1.3) 

Therefore, using mathematical induction, we can easily prove (5.1.2). 

Next, we use Euclidean Algorithm to calculate (𝑥𝑚, 𝑥𝑛). 

Since 𝑚, 𝑛 ∈ 𝑁+, we can assume 𝑚 < 𝑛, then 

 
𝑥𝑛 − 𝑥𝑚(𝛼𝑛−𝑚 + 𝛽𝑛−𝑚) = −𝑡(𝛼𝛽)𝑚 (𝛼𝑛−2𝑚 − 𝛽𝑛−2𝑚)

= 𝑡(𝛼𝛽)𝑛−𝑚(𝛼2𝑚−𝑛 − 𝛽2𝑚−𝑛 ). 
(5.1.4) 

We notice that 𝛼𝑛−𝑚 + 𝛽𝑛−𝑚 is symmetrical about 𝛼 and 𝛽, hence it can be written as a 

polynomial of α + β and αβ. Therefore, 𝛼𝑛−𝑚 + 𝛽𝑛−𝑚 is an integer. 

Hence 

 
(𝑥𝑚,𝑥𝑛 ) = (𝑥𝑚, −𝑡(𝛼𝛽)𝑚(𝛼𝑛−2𝑚 − 𝛽𝑛−2𝑚))

= (𝑥𝑚, 𝑡(𝛼𝛽)𝑛−𝑚(𝛼2𝑚−𝑛 − 𝛽2𝑚−𝑛 )). 
(5.1.5) 

Because we have (5.1.3), we can acquire 

 𝑥𝑚 ≡ 𝑢𝑥𝑚−1(𝑚𝑜𝑑𝑣). (5.1.6) 

We know that 𝑢, 𝑣  are co-prime positive integers, and 𝑥1 = 𝑘, which is also co-prime to 𝑣, so 

 ∀ 𝑚 ∈ 𝑁+, (𝑥𝑚,𝑣) = 1. (5.1.7) 

In other word, 

 ∀ 𝑚 ∈ 𝑁+, (𝑥𝑚, 𝛼𝛽) = 1. (5.1.8) 

Then from (5.1.5), we have: 

When −2𝑚 ≥ 0, (𝑥𝑚, 𝑥𝑛) = (𝑥𝑚, 𝑥𝑛−2𝑚); 

When −2𝑚 ≤ 0, (𝑥𝑚, 𝑥𝑛) = (𝑥𝑚, 𝑥2𝑚−𝑛 ). 

In either case, the superscripts have the same greatest common divisor. In other word, we know 
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 (𝑚, 𝑛) = (𝑚, 𝑛 − 2𝑚) = (𝑚,2𝑚 − 𝑛). (5.1.9) 

Since the smaller one of the superscript always decrease, this calculation must end in finite steps. 

At this time, we can suppose we have 

 (𝑥𝑚,𝑥𝑛 ) = (𝑥𝑖 ,𝑥𝑗), (5.1.10) 

In which either 𝑖 = 0 or 𝑗 = 0. In either case, 𝑖 𝑜𝑟 𝑗 = (𝑖, 𝑗) = (𝑚, 𝑛). 

Also, we know (𝑥𝑖 ,𝑥𝑗) = 𝑥𝑖  or 𝑥𝑗  (because 𝑥0 = 0). 

So we have 

 (𝑥𝑚, 𝑥𝑛) = (𝑥𝑖, 𝑥𝑗) = 𝑥𝑖  or 𝑥𝑗 = 𝑥(𝑖,𝑗) = 𝑥(𝑚,𝑛), (5.1.11) 

and the proof is complete.  
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Although we already proved that the sequence {𝑡(𝛼𝑛 − 𝛽𝑛 )}𝑛=o
∞  satisfies our conditions in 

theorem four, we still need to prove that the corresponding sequence {𝑦𝑛 }𝑛=1
∞  satisfies the 

condition that 𝑦𝑛 > 1, otherwise we will not find many prime factors even though we have 

represented 𝑡(𝛼𝑛 − 𝛽𝑛 ) as the product of many positive integers. 

Theorem Seven 

Let {𝑥𝑛} be the same sequence mentioned in the theorem six and let 𝑦𝑛 be its corresponding 

sequence as described in theorem four. Then there exists a positive integer 𝑀, such that once 

𝑛 > 𝑀, we have 

 𝑦𝑛 > 1 (5.2.1) 

 

Proof: 

First, we observe that there exists two constants 𝑐1 ,𝑐2  such that 

 𝑐1𝛼𝑛 < 𝑥𝑛 = 𝑡(𝛼𝑛 − 𝛽𝑛 ) < 𝑐2𝛼𝑛, (5.2.2) 

because |(
𝛽

𝛼
)𝑛| is sufficiently small when 𝑛 is sufficiently big. 

Now we recall the representation of 𝑦𝑛 from theorem four: 

 
𝑦𝑛 = 𝑥𝑛 × ∏ 𝑥(𝑛𝑖1,𝑛𝑖2,…,𝑛𝑖𝑠

)
（-1）

𝑠

1≤𝑖1<𝑖2,…,<𝑖𝑠≤𝑘
1≤𝑠≤𝑘

. 
(5.2.3) 

When 𝑠 is odd, we use the right side of (5.2.2) to estimate. 

When 𝑠 is even, we use the left side of (5.2.2) to estimate. 

Then we have 

 𝑦𝑛 >
𝑐1

2𝑘−1

𝑐2
2𝑘−1 × 𝑥𝑛 × ∏

𝛼 (𝑛𝑖1,𝑛𝑖2,…,𝑛𝑖𝑠
)
（-1）

𝑠

1≤𝑖1<𝑖2,…,<𝑖𝑠≤𝑘
1≤𝑠≤𝑘

. (5.2.4) 

In other word, there exists a constant 𝑐 such that 

 
𝑦𝑛 > 𝑐 × 𝑥𝑛 × ∏

𝛼 (𝑛𝑖1,𝑛𝑖2,…,𝑛𝑖𝑠
)（-1）

𝑠+1

1≤𝑖1<𝑖2,…,<𝑖𝑠≤𝑘
1≤𝑠≤𝑘

= c𝛼𝜑(𝑛) 
(5.2.5) 

Since 𝛼 > 𝛽, and 𝛼𝛽 = 𝑣 ∈ N, we have 𝛼 > 1. 

Hence when 𝑛 is sufficiently big, 𝜑(𝑛) is sufficiently big. Then we have 

 𝑦𝑛 > c𝛼𝜑(𝑛) > 1, (5.2.6) 

and the proof is complete.   
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Section Six: The Final Theorem 

Now, it is time to estimate the number of distinct prime factors of 𝑥𝑛 and get the result. 

Theorem Eight 

Using all the same notations and definitions as mentioned in section four and five, we consider 

the sequence {𝑥𝑛 }𝑛=1
∞ = {𝑡(𝛼𝑛 − 𝛽𝑛 )}𝑛=o

∞ . There exists a constant 𝑀 such that 𝑥𝑛 has at least 

𝑑(𝑛)

Ω(𝑛)+1
− 𝑀  distinct prime factors. 

 

Proof: 

Our main idea is to find many divisors of 𝑛, such that anyone of them do not divide any other 

one. Consider the representation of 𝑥𝑛, 

 𝑥𝑛 = ∏ 𝑦𝑑

𝑑|𝑛

. (6.1.1) 

In fact, once we find 
𝑑(𝑛)

Ω(𝑛)+1
 different items from the right side of (6.1.1), with every two of 

them co-prime, we can find 
𝑑(𝑛)

Ω(𝑛)+1
− 𝑀 items greater than 1 and co-prime to each other. Hence 

we can find at least 
𝑑(𝑛)

Ω(𝑛)+1
− 𝑀  prime factors. 

We use the following method to find these divisors. 

We choose all the divisors of 𝑛 such that Ω(𝑛) = 𝑒, where 𝑒 is an temporarily undetermined 

constant. 

This method of choosing can guarantee that anyone of them do not divide any other one. In fact 

if 𝑓|𝑔, then Ω(𝑓) ≤ Ω(𝑔), the equality is true only when 𝑓 = 𝑔. 

Now we will prove that there exists a value of 𝑒 such that we can choose at least 
𝑑(𝑛)

Ω(𝑛)+1
 

divisors. 

Let the standard factorization of 𝑛 be 

 𝑛 = ∏ 𝑝𝑖
𝛼𝑖

𝑘

𝑖=1

. (6.1.2) 

Then consider the polynomial 

 𝐿(𝑥) = ∏ ∑ 𝑥𝑗

𝛼𝑖

𝑗=0

𝑘

𝑖=1

. (6.1.3) 

The degree of this polynomial is Ω(𝑛), and the sum of all the coefficients is 𝐿(1) = 𝑑(𝑛) . 

We can choose the term with the greatest coefficient. Suppose this term is 𝑥𝑟, then its 

coefficient is greater than the average value 
𝑑(𝑛)

Ω(𝑛)+1
. 
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Consider the meaning of the exponent of each term, we know that its coefficient represents how 

many divisors we can choose using our method. 

We now choose 𝑒 = 𝑟, and the proof is complete.   
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Section Seven: Conclusion 

In this paper, we mainly discussed the number of distinct prime factors of one specific kind 

of sequence {𝑡(𝛼𝑛 − 𝛽𝑛 )}𝑛=o
∞ . For a more concrete example, we gave an estimation of distinct 

prime factors of sequence {𝑎𝑛 + 1}𝑛=1
∞ . As a by-product, we proved a special case of the 

Dirichlet’s Theorem. Following are our main results: 

1. ∀𝑎 ≥ 2, 𝑛 ≥ 4 or 𝑎 ≥ 3, 𝑛 ≥ 2, 𝑛 is odd, there exists a prime 𝑝, such that 

𝑝 ∣ 𝑎𝑛 + 1, and ∀𝑚 < 𝑛, 𝑚 ∈ 𝑁+ ,𝑝 ∤ 𝑎𝑚 + 1. 

2. Let 𝑎 ≥ 2, 𝑛 be an odd positive number. Then when 3 ∣ 𝑛 or 3 ∤ 𝑛, 𝑎𝑛 + 1 has at 

least d(𝑛) − 1 or d(𝑛) prime factors, respectively. 

3. Let 𝑛 ∈ 𝑁+, then the sequence {𝑡𝑛 + 1}𝑡=1
∞  includes an infinite number of prime 

terms. 

4. Consider the sequence {𝑥𝑛}𝑛=1
∞ = {𝑡(𝛼𝑛 − 𝛽𝑛 )}𝑛=o

∞ . There exists a constant 𝑀 such 

that 𝑥𝑛 has at least 
𝑑(𝑛)

Ω(𝑛)+1
− 𝑀  distinct prime factors. 
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