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Abstract 
In the first part, we proof some new identities of Stirling numbers, Lah 
numbers and Bell numbers using generating functions and inversion 
formulas. In the second part, we propose a new inversion formula based 
on inverse functions and discuss some applications of this formula. In 
the third part, we generalize the definition of binomial coefficients, 
Stirling numbers and Lah numbers. Then we discuss some basic 
properties of the new sequences and show a practical way to obtain new 
combinatorial identities. 
KEYWORDS: Combinatorial identities; Stirling numbers; Lah numbers; 

Bell numbers; Binomial coefficients ; Generating functions ; Inversion 

formulas 

 1

S10

Page - 378



 

1 Introduction 

1.1 Notations 

n[ ]x      for .  ,  for .  ( 1) ( 1)x x x n= − ⋅⋅⋅ − +  n 1≥ 0[ ] 1x = n[ ] 0x = 0n <

n[ ]x      for .  ,  for . ( 1) ( 1)x x x n= + ⋅⋅⋅ + −  n 1≥ 0[ ] 1x = n[ ] 0x = 0n <

k
nC , ( )  n

k
[ ]

!
kn

k
= , where , . n C∈ k N∈

( , )s n k   Stirling number of the first kind, see Definition 1. 

( , )S n k   Stirling number of the second kind, see Definition 2. 

( , )L n k    Lah number, see Definition 3. 

nB       Bell number, see Definition 4. 

ijδ       Kronecker symbol. , if ; , if .  0ijδ = i j≠ 1ijδ = i = j

i, j, k, l, n are the indexes of a sequence,  they are integers without specification. 

1.2 Definitions [1  ]

Definition 1. Stirling number of the first kind  is the coefficient of ( , )s n k kx  in the 

expansion of n[ ]x , or n 0[ ] ( , )n k
kx s n k x== ∑ .  is defined as 0 when 

 or .  

( , )s n k

0k n> ≥ 0k <

Since  are linearly independent, they can be the basis of 

polynomial ring 

0 1 2 n[ ] ,[ ] ,[ ] , ,[ ] ,x x x x⋅ ⋅ ⋅ ⋅ ⋅ ⋅

[ ]xR , thus we have the following 

Definition 2. Stirling number of the second kind  is the coefficient of ( , )S n k [ ]kx  in 

the expansion of nx , or 0 ( , )[n n
k kx S n k x==∑ ] .  is defined as 0 when 

 or .   

( , )S n k

0k n> ≥ 0k <

Definition 3. Lah number is the coefficient of [ ]kx  in the expansion of n[ ]x− , or 

0[ ] ( , )[ ]n
n k kx L n k x=− =∑ ( , ). n k

k

 is defined as 0 when  or .   0k n> ≥ 0k <L

Definition 4. Bell number , where . 0 ( , )n
n kB S n==∑ n∈ N
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1.3 Genarating Functions  [1] [2]

Definition 5 . The ordinary generating function of  is  
[1]

0{ }n na ≥

                 
0

( ) n
n

n
f x a

∞

=

=∑ x                 (1.1) 

Definition 6 . The exponential generating function of  is 
[1]

0{ }n na ≥

                 
0

( )
!

n

n
n

xg x a
n

∞

=

=∑                 (1.2) 

(1.1) and (1.2) are called formal power series. In combinatorics we seldom deal with their 
convergence or other properties that are often involved in mathematical analysis. For rigorous 
theory of generating functions, please refer to [4][5]. We will list some basic properties [1  of 

generating functions without proof. Denote the ordinary generating functions of  and { }  

as  and 

]

{ }na nb

1( )A x 1( )B x  respectively, and the exponential generating functions as  and 2 ( )A x

2 ( )B x  respectively. We have the following   

Property 1.  { } { }n na b= ⇔ 1 1( ) ( )A x B x= ⇔ 2 2( ) ( )A x B x=

Property 2. The ordinary generating function and exponential generating function of  are 

 and  respectively, where  is a complex constant. 

n{ aα }

1 ( )A xα 2 ( )A xα α

Property 3. The ordinary generating function and exponential generating function of  

are  and  respectively. 

n n{ }a b+

1 1( ) ( )A x B x+ 2 2( ) ( )A x B x+

Property 4.  1 1 0
( ) ( ) n

nn
A x B x c x∞

=
=∑ , where 0

n
n k k nc a= −= kb∑ ,  

2 2 0( ) ( )
!

n

n n
xA x B x d
n

∞
==∑ , where 0

n k
n k n k nd C a= −= kb∑ . 

Definition 7
[1

. If 
]

0( ) n
n nA x a x∞

== ∑ 0( ) n
n nb x∞

==, B x ∑ , 0( ) n
n nC x c x∞

== ∑ satisfy 

that ( ) ( ) ( )B x C x A x= , then  is called the quotient of ( )C x ( )A x  divided by ( )B x , and 

denoted as 
( )( )
( )

A xC x
B x

= . 

Definition 8 . The formal derivative of 
[1]

0( ) n
n nA x ∞

== a x∑  is denoted as 

 3

S10

Page - 380



 

1
1( ) n

n nDA x na x∞ −
==∑ . 

Definition 9 . The higher derivative of 
[1] ( )A x  is 

1

( )                       0
( )

( ( ))           1
n

n

A x n
D A x

D D A x n−

=⎧
= ⎨

≥⎩
        (1.3)  

Definition 10
[1

. If 
] ( )B x  satisfy that ( ) ( )A x DB x= , then ( )B x  is called the formal 

primitive function of ( )A x . 

2 Identities of Stirling numbers, Lah numbers and Bell Numbers 

2.1 Basic properties 

Theorem 1
[1

.     (1)                           (2.1) 
] ( 1, ) ( , 1) ( ,s n k s n k ns n k+ = − − )

)

n k

(2)                          (2.2) ( 1, ) ( , 1) ( , )S n k S n k kS n k+ = − +

(3)                    (2.3) ( 1, ) ( ) ( , ) ( , 1L n k n k L n k L n k+ = − + − −

(4) 1
0

n
k

n
k

B C B+
=

=∑                                          (2.4) 

Proof. For a more generalized proof of (2.1)(2.2)(2.3), see Theorem 20. We only present a new 
proof of (2.4). First we proof 

0 0
( , )

!
n

kn
k x

k k

xS n k x e k
k

∞
−

= =

=∑ ∑                                  (2.5) 

by induction. Denote 
0

( ) ( , )
n

k
n

k
f x S n k

=

=∑ x . 

If , we have , and 0n = ( ) 1nf x =
0 0

1
! !

n
k k

x x x

k k

x xe k e e e
k k

∞ ∞
− − −

= =

= = ⋅∑ ∑ x = . 

(2.5) holds for . 0n =
Suppose (2.5) holds for n, with (2.2) we have  

1

1
0

( ) ( 1, )
n

k
n

k
f x S n k x

+

+
=

= +∑
1

0
( ( , 1) ( , ) )

n
k k

k
S n k x kS n k x

+

=

− +∑=  

= =1

0 0
( , ) ( , )

n n
k k

k k
S n k x kS n k x+

= =

+∑ ∑ ( ( ) ( ))n nx f x Df x+  

By induction hypothesis,  
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1

1 0
( )

( 1)!
n n

k k
x x

n
k k !

x xDf x e k e k
k k

−∞ ∞
− −

= =

= −
−∑ ∑  

 =
0
( 1) (

!
n

k
x

n
k

xe k f
k

∞
−

=

+ −∑ )x  

Thus, 

1( ) ( ( ) ( ))n n nf x x f x Df x+ = + =
1

0
( 1)

!
n

k
x

k

xe k
k

+∞
−

=

+∑  

       =
1

1

0
( 1)

( 1)!
n

k
x

k

x
k

+
+∞

−

=

+
+∑e k =

1

0 !
n

k
x

k

xe k  
k

+
∞

−

=
∑

According to mathematical induction, (2.5) holds for arbitrary non-negative integer n. 
Set x=1, we obtain  

0

1(1)
!

n

n n
k

kB f
e k

∞

=

= = ∑                                            (2.6) 

Hence,  

      
0 0 0k =

1
!

in n
k i
n k n

k i

kC B C
e k

∞

= =

= ∑∑ ∑
0 0

1 1
!

n
i i
n

k i

C k
e k

∞

= =

= ∑ ∑ =
0

1 ( 1)
!

n

k

k
e k

∞

=

+∑  

       
1

0

1 ( 1)
( 1)!

n

k

k
e k

+∞

=

+=
+∑

1

0

1
!

n

k

k
e k

+∞

=

= ∑ = 1nB +                            ,  

Theorem 2
[1

.  (1)
]

0

1( , ) (ln(1 ))
! !

n
k

n

xs n k x
n k

∞

=

= +∑                                 (2.7) 

(2)
0

1( , ) ( 1)
! !

n
x k

n

xS n k e
n k

∞

=

= −∑                                (2.8) 

(3)
0

( , )
(1 )(1 2 ) (1 )

k
n

n

xS n k x
x x k

∞

=

=
− − ⋅ ⋅ ⋅ −∑ x

                   (2.9) 

           (4)
0

1( , ) ( )
! ! 1

n
k

n

x xL n k
n k x

∞

=

−=
+∑                                (2.10) 

(5) 1

0 !
x

n
e

n
n

xB e
n

∞
−

=

=∑                                         (2.11) 

Proof is omitted, We remark that (2.11) implies (2.6). In fact, 

1

0 0 0 0

1 1 ( ) 1 1 ( ) 1( ) (
! ! ! !

x x
n x k n

e e
n

n k k n n 0 0
)

! !

n n

k

x e kx xB e e
n e e k e k n e n

∞ ∞ ∞ ∞ ∞
−

= = = = =

= = = = =∑ ∑ ∑ ∑ ∑ k
k

∞

=
∑  
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Compare the coefficient of 
!

nx
n

, we obtain (2.6). 

In Theorem 7 there is a new proof for (2.7) . 

Theorem 3
[1

.   (1) 
]

1 2

1 2
0

( , ) ( 1)
n k

n k
n k

n
s n k

ε ε ε
ε ε ε

−

+
−

< < <⋅⋅⋅< <

= − ⋅ ⋅ ⋅∑         (2.12) (n k≥ )

⋅ ⋅⋅             (2) 1 2

1
1 2, , 0

( , ) 1 2 k

k
k

n k
S n k k εε ε

ε ε
ε ε ε

+⋅⋅⋅+ = −
⋅⋅⋅ ≥

= ∑                  (2.13) (n k≥ )

             (3) 
1

1( , ) ( 1)
!

k
k i i n

k
i

S n k C i
k

−

=

= −∑               (      (2.14) )n k≥

             (4) 1
1

!( , ) ( 1)
!

n k
n

nL n k C
k

−
−= −                          (2.15)  (n k≥ )

(5) 
0 1

1 ( 1)
!

n k
k i i n

n
k i

kB C i
k

−

= =

= −∑ ∑                        (2.16) (n k≥ )

k i

Proof is omitted. In Theorem 22 there is a generalized proof for (2.12) and (2.13).   

2.2 Identities of Stirling numbers 

The following identities  are famous : [2]

                  (Vandermonde’s identity)                  (2.17) 
0

C = C C
k

k i
n m n m

i

−
+

=
∑

                                                             (2.18) 1
1C C

m
n m
k n

k n

+
+

=

=∑

The following two theorems proof similar identities of Stirling number. 

Theorem 4.  
0

( , ) ( ) ( , ) ( , )
k m

j i i
j

i j i
s n m k n s n k i s m j C−

= =

+ = − −∑∑  

 
0

( ) ( , ) ( , )
k n

j i i
j

i j i
m s m k i s n j C−

= =

= − −∑∑                      (2.19) 

Proof. Compare the two sides of [ ] [ ] [ ]n m n mx x x n+ = −  , 

        
0

[ ] ( , )
n m

k
n m

k
x s n m k x

+

+
=

= +∑  
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0 0

0 0 0

0 0

[ ] [ ] ( , ) ( , )(

                   ( , ) ( , ) ( )

                   ( , ) ( ) ( , )

 

)
n m

i j
n m

i j

jn m
i j

j
i j l

n m m
i l j l l

j
i l j l

x x n s n i s m j

s n i s m j n C

s n i n C s m j

x x n

l l lx x

x x

= =

−

= = =

−

= = =

⎛ ⎞⎛ ⎞− = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

−∑ ∑

∑ ∑ ∑

∑ ∑ ∑

0 0

                  ( ) ( , ) ( , )
n m k m

k j i
j

k i j i

n s n k i s m j Cx
+

−

= = =

= − −∑ ∑∑ i

  

Compare the coefficient of kx , we obtain  

0
( , ) ( ) ( , ) ( , )

k m
j i i

j
i j i

s n m k n s n k i s m j C−

= =

+ = − −∑∑ , 

Exchange , we have  ,m n

         
0

( , ) ( ) ( , ) ( , )
k n

j i i
j

i j i
s n m k m s m k i s n j C−

= =

+ = − −∑∑                        ,  

We don’t have similar identities for Stirling numbers of the second kind, for the expansion of 

[ ] [ ]i jx x  using basis { }[ ]nx  contains  and  (see Theorem 8), which leads to 

a trivial identity. 

( , )s n k ( , )S n k

Theorem 5. 
( 1) ( 1)( , ) ( 1, 1)

! !

k mm

k n
s k n s m n

k m=

− −= +∑ +                              (2.20) 

          
( , ) ( 1, 1)

( 1) ( 1)

m

k
k n

S k n S m n
n n=

+ +=
+ +∑ m                                        (2.21) 

Proof. According to Theorem 1, 

          ( )( 1) ( 1)( , ) ( 1, 1) ( , 1)
! !

k km m

k n k n
s k n s k n ks k n

k k= =

− −= + + +∑ ∑ +  

1( 1) ( 1)( 1, 1) ( , 1)
! ( 1)!

k km

k n
s k n s k n

k k

−

=

⎛ ⎞− −= + + −⎜ ⎟−⎝ ⎠
∑ +  

1( 1) ( 1) ( 1)( 1, 1) ( , 1) ( 1, 1
! ( 1)! !

m n m

s m n s n n s m n
m n m

−− − −= + + − + = +
−

)+  

( )( , ) 1 ( 1, 1) ( 1) ( , 1)
( 1) ( 1)

m m

k k
k n k n

S k n S k n n S k n
n n= =

= + + − +
+ +∑ ∑ +                       

1

( 1, 1) ( , 1)
( 1) ( 1)

m

k k
k n

S k n S k n
n n −

=

⎛ ⎞+ + += −⎜ ⎟+ +⎝ ⎠
∑  
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1

( 1, 1) ( , 1) ( 1, 1
( 1) ( 1) ( 1)m n

S m n S n n S m n
n n n−

+ + + + += − =
+ + +

)
m

]

                   ,

The following theorem present an expansion of [ nx m+  using basis { }[ ]nx . 

Theorem 6. 
0

[ ] ( , ) ( , )[j k j
n k

i j k n
]ix m C m s n k S j−

≤ ≤ ≤ ≤

+ = ∑ i x

k j j

                         (2.22) 

Proof. 
0 0 0

[ ] ( , )( ) ( , )
n n k

k j
n k

k k j
x m s n k x m s n k C m −

= = =

+ = + =∑ ∑∑ x

i

 

   ,  
0 0 0 0

( , ) ( , )[ ] ( , ) ( , )[ ]
jn k

j k j j k j
k i k

k j i i j k n
s n k C m S j i x C m s n k S j i x− −

= = = ≤ ≤ ≤ ≤

= =∑∑ ∑ ∑

Set x n= , we obtain 

Corollary 6.1. 
0

1 ( , ) ( , ) !
!

m j i k j
n m k n

i j k n

C C C m s n k S
n

−
+

≤ ≤ ≤ ≤

= ∑ j i i                        (2.23) 

Theorem 7.    

[1]

0

0 0

( , )                        m=1                        (2.24)
!( ( ))

! ( , )(ln )   m 1                        (2.25)
! ( )!

n

k
n

n k ik

n
n i

xs n k
nln x m

k x s n i m
m n k i

∞

=

−∞

= =

⎧
⎪+ ⎪= ⎨
⎪ ≠⎪ −⎩

∑

∑ ∑
 

Proof. 
0 0 0 0 0

[ ] 1 1( ) ( , ) ( , )
! ! !

n n
t t n n t n n k k t nn

n n k k n

t nx m m x m x s n k t t m s n k x
n n n

∞ ∞ ∞
− − −

= = = = =

+ = = =∑ ∑∑ ∑ ∑  

     ln( )

0
( ) (ln( )

!

k
t t x m

k

t )kx m e x m
k

∞
+

=

+ = = +∑  

      If , then compare the coefficient of  we have 1m = kt

[1]

0

( ( 1)) ( , )    
! !

k n

n

ln x xs n k
k n

∞

=

+ =∑  

which proof (2.7) in Theorem 2. 

If , then  depends on ， 1m ≠ tm t

ln

0
(ln )

!

k
t t m

k

tm e m
k

∞

=

= =∑ k  

Henceforth, 
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0 0 0

0 0 0

0 0 0

( , )     ( ) (ln )
! !

( , ) (ln )                  
! ( )

( , ) (ln )                  
! ( )!

i j
t k

k
j k i

i ji
i k

k
i j k

k ik
k n

n
k i n

s k j t

!

ix m x
m k i

s k j mt x
m k i j

s n i mt x
m n k i

+∞ ∞ ∞

= = =

−∞ ∞

= = =

−∞ ∞

= = =

+ =

=
−

=
−

∑∑∑

∑ ∑∑

∑ ∑∑

m

 

Compare the coefficient of , we obtain kt

0 0

(ln( )) ( , )(ln )
! ! (

k n k

n
n i

x m x s n i m
k m n k i

−∞

= =

+ =
−∑ ∑ )!

k i

                       ,  

Set  in (2.25), we have m e=

Corollary 7.1.  
0 0

(ln( )) ( , )
! ! (

k n k

n
n i )!

x e x s n
k e n k

∞

= =

+ =
−∑ ∑ i

i
                              (2.26) 

Set  in (2.25), we have  1k =

Corollary 7.2.  
1

1

( 1)ln( 1) ln( ) ln
n n

n
n

x xx m m
m m

−∞

=

−+ = + − =∑ n

n

                     (2.27) 

Which is the same as Taylor expansion of . Thus (2.25) is a generalization of (2.27). ln( 1)x +

The following theorem present an expansion of [ ] [ ]mx x using basis { }[ ]nx . 

Theorem 8. 
0 0

[ ] [ ] [ ] ( , ) ( , ) ( , )
m n m n k

m n i
i k i j

x x x S k i s n j s m k
+ +

= = =

= −∑ ∑∑ j                     (2.28) 

Proof.  
0 0

[ ] [ ] ( ( , ) )( ( , ) )
n m

i j
m n

i j
x x s n i x s m j

= =

= ∑ ∑ x  

0 0
( , ) ( , )

m n k
k

k j
x s n j s m k j

+

= =

= −∑ ∑  

0 0 0
( ( , )[ ] )( ( , ) ( , )

m n k k

i
k i j

S k i x s n j s m k j
+

= = =

= −∑ ∑ ∑ )  

0 0
[ ] ( , ) ( , ) ( , )

m n m n k

i
i k i j

x S k i s n j s m k j
+ +

= = =

=∑ ∑∑ −                         ,  

Set x m n= + , we have 

Corollary 8.1.            (2.29) 2

0 0
! !( ) ! ( , ) ( , ) ( , )

m n m n k
n i
m n m n

i k i j
m n C i C S k i s n j s m k j

+ +

+ +
= = =

= −∑ ∑∑
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2.3 Identities of Lah numbers 

Theorem 9 [1 .  ] 1
1

1

[ ][ ]
! !

n n
k k
n

k

xx C
n k

−
−

=

=∑                                          (2.30) 

Proof. 
0

[ ] ( 1) [ ] ( 1) ( , )[ ]
n

n n n
n k

k

x x L n k
=

= − − = − ∑ x  

By Theorem 3, we have  

1
1

!( , ) ( 1)
!

n k
n

nL n k C
k

−
−= −  

             1 1
1 1

0 0

[ ]![ ] ( 1) ( 1) [ ] !
! !

n n
n n n k k k

n k n
k k

xnx C x n
k k

− −
− −

= =

= − − =∑ ∑C  

1
1

1

[ ][ ] 
! !

n n
k k
n

k

xx C
n k

−
−

=

=∑                                              ,  

(2.30) can be written as 

 
1

1 1
     n

n

k

x n n
n k k=

+ − −⎛ ⎞ ⎛ ⎞⎛
=⎜ ⎟ ⎜ ⎟⎜−⎝ ⎠ ⎝ ⎠⎝
∑

x ⎞
⎟
⎠

 

Which is the same as Vandermonde’s identity when . x ∈ +N

By (2.12), we know that , compare the coefficient of | ( , ) | ( 1) ( , )n is n i s n i+= − ix  in (2.30), we 

obtain 

Corollary 9.1. 1
1

1

1 1( , ) ( , )
! !

n
k
n

k

s n i C s k i
n k

−
−

=

=∑   (0                        (2.31) )i n≤ ≤

With a more generalized form of Vandermonde’s identity  [2]

0

   
  

   

k

i

x y x y
k i k=

+⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ i

                                       (2.32) 

where ,x y  are arbitrary complex numbers, we can proof a new identity. 

Theorem 10.                            (2.33) 
0 0

2 ( , ) ( , ) ( , )
jk

j
k

i l

s k j s i j s k i j l C
= =

= −∑∑ i−

Proof.  Set x y=  in (2.32), we get 

0

2    
 

k

i

x x x
k i k=

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ i

 

Compare the expansion of both sides, 

0

2 [2 ] 1 2 ( , )
 ! !

k
j jk

j

x x s k j x
k k k =

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑  
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0 0 0 0 0

   1 1[ ] [ ] ( , ) ( , )
! !

jk k k k
i i j
k i k i k

i i i j l

x x
C x x C x s i l s k i j l

i k i k k−
= = = = =

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ ∑ − −  

0 0 0

1 ( , ) ( , )
!

jk k
j i

k
j i l

x s i l s k i j l C
k = = =

= −∑ ∑∑ −

i−

i

 

         We obtain 

                            ,  
0 0

2 ( , ) ( , ) ( , )
jk

j
k

i l

s k j s i l s k i j l C
= =

= −∑∑

In (2.33), set , the left hand side is , the right hand side is  j k= 2k

0 0 0

( , ) ( , )
k k k

i i
k k

i l i

C s i l s k i k l C
= = =

− − =∑ ∑ ∑  

And we obtain 

Corollary 10.1.                                                  (2.34) 
0

2
k

k
k

i

C
=

=∑

which is a well-known identity. (2.34) is a special case of (2.33). 

Theorem 11. 1
0 0 0

( 1)( , ) !
!

i j nn
i n
j n i

k i j
L n k n C C

j

+ +∞ ∞

+ −
= = =

−=∑ ∑∑                         (2.35) 

Proof.  By (2.10), we have 

0 0 0 0
( ( , )) ( , )

! !

n nn

n k k n

x xL n k L n k
n n

∞ ∞ ∞

= = = =

=∑ ∑ ∑∑
0

1 ( )
! 1

k

k

x
k x

∞

=

−=
+∑                         

                       
0

1 1( 1)
! 1

k

k k x

∞

= +∑= −
0 0

1 1( ( 1) ( ) )
! 1

i k i i
k

k i

C
k x

∞ ∞
−

= =

= −
+∑ ∑                       

                       1
0 0 0

1( 1) ( ( 1) )
!

k i i j j j
k i

k i j
C x C

k

∞ ∞ ∞
−

+ −
= = =

= − −∑∑ ∑ j  

                       1
0 0 0

( 1)
!

i j k
i j j
k i j

i j k
C C x

k

+ +∞ ∞ ∞

+ −
= = =

−=∑∑∑  

                       1
0 0 0

( 1)
!

i j n
i n n
j n i

i n j
C C x

j

+ +∞ ∞ ∞

+ −
= = =

−=∑∑∑  

        Compare the coefficient of nx , we obtain  

 1
0 0 0

( 1)( , ) !
!

i j nn
i n
j n i

k i j
L n k n C C

j

+ +∞ ∞

+ −
= = =

−=∑ ∑∑                     ,  
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Together with (2.15), we have  

Corollary 11.1.  
1
1

1
0 0 0

( 1)
! !

k i jn
i nn
j n i

k i j

C
C C

k j

− +∞ ∞
−

+ −
= = =

−=∑ ∑∑  (2.36) 

By the relation between Lah numbers and Stirling numbers [1 ,  ]

               
0

( , ) ( 1) ( , ) ( , )
n

j

j
L n k s n j S j k

=

= −∑

We obtain 

Corollary 11.2. 1
0 0 0 0

( 1)( 1) ( , ) ( , ) !
!

i j nn n
l i

j n i
k l i j

s n l S l k n C C
j

+ +∞ ∞

+ −
= = = =

−− =∑∑ ∑∑ n             (2.37) 

Theorem 12.   1
0 0 0

!( 1) ( , ) 1
!

i j k i k
j k i

i j k

k C C L n k
j

∞ ∞ ∞
+ +

+ −
= = =

−∑∑∑ =

ka

                        (2.38) 

Proof.  Apply the inversion formula of Lah number (Theorem 14.(3)) 

                
0 0

( , ) ( , )
n n

n k n
k k

a L n k b b L n k
= =

= ⇔ =∑ ∑

       to Theorem 11, where  and 1nb = 1
0 0

( 1)!
!

i j n
i n

n j
i j

a n C C
j

+ +∞ ∞

+ −
= =

−= ∑∑ n i , 

       we obtain 

               1
0 0 0

( 1)1 ( , ) !
!

i j kn
i k
j k i

k i j
L n k k C C

j

+ +∞ ∞

+ −
= = =

−=∑ ∑∑  

1
0 0 0

!( 1) ( , )
!

i j k i k
j k i

i j k

k C C L n k
j

∞ ∞ ∞
+ +

+ −
= = =

= −∑∑∑                     ,  

  Together with (2.15), we have 

        1
1 1

0 0 0

!1 ( 1)
!

i j k n i k k
j k i n

i j k

n C C C
j

∞ ∞ ∞
+ + + −

+ − −
= = =

= −∑∑∑  

          1
1 1

0 0 0

!( 1)
!

n
k i j k n i
n j

k i j

nC C
j

∞ ∞
− + + +
− +

= = =

= −∑ ∑∑ k
k iC −  

          
1

1 1
1

0 0 0

!( 1)
!

n
k i j k n i
n j

k i j

nC C
j

− ∞ ∞
+ + + + +

− +
= = =

= −∑ ∑∑ k
k iC  

Change  into , n 1n +

         1

0 0 0

( 1)!1 ( 1)
!

k i j k n i
n j

k i j

nC C
j

∞ ∞ ∞
+ + + +

+
= = =

+= −∑ ∑∑ k
k iC  
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          1

0 0 0

( 1)! ( 1)
!( 1)

i j k
k i k
n j k in

i j k

n C C C
j

+ +∞ ∞ ∞
+
+

= = =

+ −=
− ∑∑∑  

Corollary 12.1. 1

0 0 0

( 1) ( 1)
! (

i j k n
k i k
n j k i

i j k
C C C

j n

+ +∞ ∞ ∞
+
+

= = =

− −=
+∑∑∑ 1)!

                    (2.39) 

Calculate the sum of (2.39) with variable n, the right hand side is  

1

0 1 0

( 1) ( 1) ( 1) 11 1
( 1)! ! !

n n n

n n nn n n

−∞ ∞ ∞

= = =

− − −= = − =
+∑ ∑ ∑ e

−  

which implies 

Corollary 12.2.  1

0 0 0 0

( 1) 11
!

i j k
k i k
n j k i

n i j k
C C C

j e

+ +∞ ∞ ∞ ∞
+
+

= = = =

− = −∑∑∑∑   (2.40) 

(2.39) can be written as  

1

0 0 0

( 1) ( 1)
! (

i j k nn
k i k
n j k i

k i j
C C C

j n

+ +∞ ∞
+
+

= = =

− −=
+∑ ∑∑ 1)!

k k
ka

                    (2.41) 

  Apply the inversion formula of binomial coefficients (Theorem 14.(1))  

              
0 0

( 1)
n n

k n
n n k n n

k k

a C b b C−

= =

= ⇔ = −∑ ∑  

  to (2.41), where 
( 1)

( 1)

n

na
n
−=
+ !

 and 1

0 0

( 1)
!

i j n
i n

n
i j

b
j

+ +∞ ∞
+
+

= =

−=∑∑ j n iC C                      

  we obtain 1

0 0 0

( 1) ( 1)( 1)
! (

i j n kn
i n n k k
j n i n

i j k
C C C

j k

+ +∞ ∞
+ −
+

= = =

− −= −
+∑∑ ∑ 1)!

 

 

Corollary 12.3. 1

0 0 0

( 1)
! (

ki j n
i n n
j n i

i j k

C
C C

j k

+∞ ∞
+
+

= = =

− =
+∑∑ ∑ 1)!

                      (2.42) 

2.4 Identities of Bell numbers 

Theorem 13.   
1

1
1 2

1

1 1
, , , 1

( 1) 1
( ! !) !k

k
k

kn

k n k

B B
k nε ε

ε ε
ε ε ε

ε ε

−

= +⋅⋅⋅+ =
⋅⋅⋅ ≥

− ⋅ ⋅ ⋅ =
⋅ ⋅ ⋅∑ ∑                     (2.43) 

Proof.  According to (2.11), we have  

1 1

  (1 ) 1
! !

n n
x

n
n n

x xln B e
n n

∞ ∞

= =

+ = − =∑ ∑ . 

By Taylor expansion 1

1

(1 ) ( 1)
k

k

k

xln x
k

∞
−

=

+ = −∑ , we have 
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1

1 1 1

( 1) ( )
! !

n k
k

n
n k n

nx xB
n k

−∞ ∞ ∞

= = =

−=∑ ∑ ∑ n
 

By multinomial theorem  

1 2

1
1 2

1 2 1 2
1

, , , 0

!( )
! !

k

k
k

cc cn
k k

c c n k
c c c

nx x x x x
c c+⋅⋅⋅+ =

⋅⋅⋅ ≥

+ + ⋅ ⋅ ⋅ + = ⋅ ⋅ ⋅
⋅ ⋅ ⋅∑ x   

and comparing the coefficient of nx , we have 

            
1

1
1 2

1

1 1
, , , 1

1 ( 1)
! ( ! !) k

k
k

kn

k n k

B B
n k ε

ε ε
ε ε ε

ε ε

−

= +⋅⋅⋅+ =
⋅⋅⋅ ≥

−=
⋅⋅⋅∑ ∑ ε⋅ ⋅⋅

∈

∈

∈

∈

∈

                           ,  

3 On inversion formulas 

3.1 Remarks on some well-known inversion formulas 

Consider two series{ and{  , we can set up two groups of equations, in each group we use 

one of the series to represent the element of another. The two groups of equations are equivalence, 
that is if one group of the equations holds, the other holds too. These equations are called 
inversion formulas. Due to the equivalence of the equations, if we proof one group of them we 
will obtain the other immediately, which is convenience for proving some combinatorial identities.  

}na }nb

Here are some frequently used inversion formulas. 

Theorem 14 .   [1]

（1）  0

0

                     

( 1)            

n k
n n kk

n n k k
n n kk

a C b n

b C a n
=

−
=

⎧ = ∀⎪
⎨

= − ∀ ∈⎪⎩

∑
∑

N

N

（2）  0

0

( , )                   

( , )                  

n
n kk

n
n kk

a s n k b n

b S n k a n
=

=

⎧ = ∀⎪
⎨

= ∀⎪⎩

∑
∑

N

N

（3）  0

0

( , )                 

( , )                 

n
n kk

n
n kk

a L n k b n

b L n k a n
=

=

⎧ = ∀⎪
⎨

= ∀⎪⎩

∑
∑

N

N

The generalization of Theorem 14 is the following. 

Theorem 15 .   [3] { } 0
( )n n

f x
≥

 and { } 0
( )n n

g x
≥

 are two groups of linearly independent 

functions respectively (i.e. ( )nf x  and  are both polynomials of degree n), functions of 

two variables , 

( )ng x

( , )n kα ( , )n kβ  satisfy that  
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( ) ( , ) ( )      

( ) ( , ) ( )      

n
n kk

n
n kk

f x n k g x n

g x n k f x n

α

β
=

=

= ∀

= ∀

∈

∈

∑
∑

0

0

N

N
 

then we have an inversion formula  

           
( , )                                                            (3.1)

( , )                                                            (3.2)

n
n kk

n
n kk

a n k b n

b n k a n

α

β
=

=

⎧ = ∀ ∈⎪
⎨

= ∀ ∈⎪⎩

∑
∑

0

0

N

N

Proof. ( ) ( , ) ( ) ( , ) ( , ) ( ) ( ) ( , ) ( , )n n k n n
n k i ik k i i o k i

f x n k g x n k k i f x f x n kα α β α
= = = = =

= = =∑ ∑ ∑ ∑ ∑0 0 0
k iβ  

( ) ( , ) ( ) ( , ) ( , ) ( ) ( ) ( , ) ( , )n n k n n
n k i ik k i i o k i

g x n k f x n k k i g x g x n kβ β α β
= = = = =

= = =∑ ∑ ∑ ∑ ∑0 0 0
k iα  

Since { } 0
( )n n

f x
≥

 and { } 0
( )n n

g x
≥

 are linearly independent respectively, we obtain 

                ( , ) ( , ) ( , ) ( , )  n n
nik i k i

n k k i n k k iα β β α δ
= =

= =∑ ∑

Thus, if (3.1) holds for arbitrary non-negative integer n, then 

( , ) ( , ) ( , ) ( , ) ( , )n n k n n n
k i ik k i i k i i

n k a n k k i b b n k k i b bβ β α β α
= = = = = =

= = =∑ ∑ ∑ ∑ ∑ ∑0 0 0 0 0 i ni nδ =  

This implies (3.1) ⇒  (3.2).  (3.2)  (3.1) can be proved in the same way.            ,  ⇒
 
The connection between Theorem 14 and Theorem 15 is shown by the following table. 
          

       Theorem 15 

Theorem 14 ( )nf x ( )ng x  ( , )n kα  ( , )n kβ  

 ( ) 1  nx  ( )nx + 1  ( )n k k
nC−−1  k

nC  

 ( ) 2   [ ]nx nx  ( , )s n k  ( , )S n k  

 ( ) 3   [ ]nx (-1) [ ]n nx  ( , )L n k  ( , )L n k  

 
The inversion technique is powerful because it can transform an identity into another easier 

identity equivalently, as we can see in Theorem 12. 
In the following section, we will use generating functions to find inversion formulas. 

3.2 A new inversion formula 
We should investigate the following theorem first. 

Theorem 16 . (1) Suppose the ordinary generating functions of [ ]3 { } 0n n
f

≥
 and { } 0n n

g
≥

 are  

( )f x   and  respectively. If ( )g x ( ) ( )f x g x =1, then 

   (          (n n
n k n k n k n kk k

a f b n b g a n− −= =
= ∀ ∈ ⇔ = ∀∑ ∑0 0

N) N)∈           (3.3) 
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(2) Suppose the exponential generating functions of { } 0n n
f

≥
 and { } 0n n

g
≥

 are ( )f x  and 

 respectively. If ( )g x ( ) ( )f x g x =1 , then  

   (          (n nk
n n k n k n n k n kk k

a C f b n b C g a n−= =
= ∀ ∈ ⇔ =∑ ∑0 0

N) N)k
− ∀ ∈                 (3.4) 

Proof is omitted. Suppose the ordinary generating functions (or exponential generating functions) 

of { } 0n n
a

≥
 and { } 0n n

b
≥

 are ( )A x  and ( )B x  respectively. Since ( ) ( )f x g x =1, we have  

( ) ( ) ( )       ( ) ( ) ( )A x B x f x B x A x g x= ⇔ =                         (3.5) 

Compare the coefficients, we obtain (3.3) and (3.4) immediately. With two equivalence  
equations of generating functions (i.e. (3.5)), we have an inversion formula correspondingly. 

Suppose  is the inverse function of ( )g x ( )f x , we have  

( ) ( ( ))       ( ) ( ( ))A x f B x B x g A x= ⇔ =                         (3.6) 

We obtain a new inversion formula. 

Theorem 17. Suppose the exponential generating functions of { } 1n n
f

≥
 and { } 1n n

g
≥

 are ( )f x  

and  respectively. If ( )g x ( )f x  is the inverse function of , then we have the following 

inversion formula 

( )g x

1 2

1

1 2

1

1

1

1                                            (3.7)
!

1                                           (3.8)
!

i

i

i

i

n

n i
i n

n

n i
i n

a f b b b n
i

b g a a a n
i

ε ε ε
ε ε

ε ε ε
ε ε

+
= +⋅⋅⋅+ =

+
= +⋅⋅⋅+ =

⎧ = ⋅⋅⋅ ⋅ ∀ ∈⎪
⎪
⎨
⎪ = ⋅⋅⋅ ⋅ ∀ ∈
⎪⎩

∑ ∑

∑ ∑

N

N

Proof. Suppose the ordinary generating functions of { } 1n n
a

≥
 and { } 1n n

b
≥

 are ( )A x  and 

( )B x  respectively. If (3.7) holds for arbitrary positive integer n, then  

( ( ))  = ( ) ( )
! ! i

i

n
j i n ni i

j n
i j n i n n

f ff B x b x x b b b a x A x
i i ε ε ε

ε ε

∞ ∞ ∞ ∞

= = = = +⋅⋅⋅+ = =

= ⋅ ⋅⋅⋅ = =∑ ∑ ∑ ∑ ∑ ∑1 2
11 1 1 1 1

 

 Thus ( ) ( ( ))B x g A x= , which is equivalence to  

     
! i

i

n
i

n
i n

gb a a a n
i ε ε ε

ε ε
+

= +⋅⋅⋅+ =

= ⋅⋅⋅∑ ∑ 1 2
11

N∀ ∈  

So (3.7)  (3.8). Similarly, (3.8)  (3.7).                                       ,  ⇒ ⇒
 
In order to apply Theorem 17, we give tow pairs of reciprocal functions first. 
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  (1) 
1

( ) 1
!

n
x

n

xf x e
n

∞

=

= − =∑  

  and 1 1

1 1

( ) ( 1) ( 1) ( 1) ( 1)!
!

n n
n n

n n

x xg x ln x n
n n

∞ ∞
− −

= =

= + = − = − −∑ ∑  

  (2)  
1

2 2
0 1

1( ) 1 ( 4 ) 1 !
!1 4  

k
k k

k
k k

xf x x k C
kx k

−∞ ∞

= =

⎛ ⎞
⎜ ⎟= − = − − =
⎜ ⎟−
⎝ ⎠

∑ ∑  

  and 
1

2
0 1

21 1 1 ( 1)( ) 1 1 ( 1)!
 4 ( 1) 4 4

k k
k

k k !
xg x x k

kx k

+∞ ∞

= =

−⎛ ⎞⎛ ⎞ ⎛ ⎞ −= − = − = +⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑  

By Theorem 17, we have 

Corollary 17.1.  
1 2

11

1                        ( )    
! i

i

n

n
i n

a b b b n
i ε ε ε

ε ε
+

= +⋅⋅⋅+ =

= ⋅⋅⋅ ∀∑ ∑ N∈  

    ⇔
1 2

1

1

1

( 1)               ( ) 
i

i

in

n
i n

b a a a
i ε ε ε

ε ε

+

+
= +⋅⋅⋅+ =

−= ⋅⋅⋅∑ ∑ Nn∀ ∈

∈

 

Corollary 17.2.    
1 2

1

2
1

                     ( ) 
i

i

n
i

n i
i n

a C b b b nε ε ε
ε ε

+
= +⋅⋅⋅+ =

= ⋅⋅⋅ ∀∑ ∑ N

    ⇔
1 2

1

1

1

( 1) ( 1)     ( ) 
4 i

i

in

n
i n

ib a a aε ε ε
ε ε

−

+
= +⋅⋅⋅+ =

− += ⋅⋅⋅ ∀ ∈∑ ∑ Nn  

Theorem 18.  
1

11 1

1 (1 (1 ) ) (1 (1 ) )
!

i

i

n

i n i

x xx
i

εε

ε ε ε ε= +⋅⋅⋅+ =

− − ⋅⋅⋅ − −=
⋅⋅⋅∑ ∑                     (3.9) 

Proof. By Corollary 17.1, it is sufficient to proof that 

1

1

1

1 (1 ) ( 1)

i

n in
i

i n

x x
n i ε ε

−

= +⋅⋅⋅+ =

− − −=∑ ∑  

Since the equation  has  different positive integer solutions, thus it is 

sufficient to proof that 

1 i nε ε+ ⋅⋅⋅ + = 1
1

i
nC −

−

1
1
1

1

1 (1 ) ( 1)n in
i i
n

i

x C
n i

x
−

−
−

=

− − −=∑  

In fact, 

1 1
1
1

1 1 0

( 1) ( 1) 1 1 1 (1 )( )
i in n n

i i i i i i
n n n

i i i

nxC C C
i n n n

x xx
− −

−
−

= = =

− − −= = − − =∑ ∑ ∑ n
−

            ,
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Set  and  in Theorem 18 respectively, we have 1x = 2x =

Corollary 18.1.  
11 1

1 11            
!

i

n

i n ii ε ε ε ε= +⋅⋅⋅+ =

=
⋅⋅⋅∑ ∑                                (3.10)   

Corollary 18.2.  
1

12 |
1 1

, ,

1 22
!

i
i

in

i n ii ε ε
ε ε

ε ε
/

= +⋅⋅⋅+ =
⋅⋅⋅

=
⋅⋅⋅∑ ∑                                      (3.11) 

Theorem 19.  
1

2
2 1

1

1 (1 ) (2 ) (2 )   
4

i

n
i i n i
i ii

i n
Cx x x x x x x

ε ε
ε−

= +⋅⋅⋅+ =

= − − − ⋅⋅⋅ −∑ ∑ ε−    (3.12) 

Proof. According to Corollary 17.2, it is sufficient to proof that 

1 1 2
1

1

1 1( 1) ( 1) (1 ) (2 )
4 4

n
i i n

n
i

iCi x x x x n+ − −
−

=

− + = − − −∑ x  

Denote the left hand side as ( )f x , then ( ) ( )f x Dg x= , where 

( )( ) ( ) ( )
nn n

i i i i
n n

i i

g x C Cx x xx x
−

− + − −
− −

= =

−= − = − =∑ ∑
2 2

1 1 1
1 1

1 1

11 1
4 4

1

4
 

Thus, 

( ) ( ) ( )( ) ( ) ( ) ( )
n n

nx xf x Dg x x x n x x x n
− −

−− − −= = − = − − −
1 2 2

22 1 1 1 1 1 2
4 4 4

x       ,

Set ， ，2x = 1− 1
2 , in Theorem 19 respectively, we have 

Corollary 19.1.                             (3.13) 
1

2 1
1

( 1) 2 ( 1)
i

n
n i i

i
i n

C
ε ε

ε ε
= +⋅⋅⋅+ =

− = − ⋅⋅⋅∑ ∑ i

Corollary 19.2.   
1

2 1
1

1 1( ) ( 3) ( 3
2 16

i

n
i i

in
i n

C
ε ε

ε ε
= +⋅⋅⋅+ =

− = − + ⋅⋅⋅ +∑ ∑ )i                  (3.14) 

Corollary 19.3.   
1

1
2 1

1

12 ( ) (3 ) (3
4

i

n
n i i

i
i n

C
ε ε

ε−

= +⋅⋅⋅+ =

= − ⋅∑ ∑ )iε⋅⋅ −                     (3.15) 

We can see that Theorem 17 can be used to discover and prove a new kind of combinatorial 

identities which contain symbol . This new inversion formula is a useful new method. 
i nε ε+⋅⋅⋅+ =

∑
1

4 Generalization and simplification – a promising new way 
In the research of combinatorial identities, we often face a paradox: on the one hand, we expect 
the identities to be concise and symmetric; on the other hand, many concise identities are based on 
some specific properties of several sequences such as binomial coefficients, which makes them 
hard to be generalized. In view of such a paradox, we propose that we should start from 
generalizing the definitions, and deduce the common properties of the generalized sequence. Then 
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by adding some specific properties to the sequence, we obtain identities which are original and 
simple as well. 

4.1 Generalization of definitions 

Definition 11. Given a sequence { } 1n n
a

≥
, let 

1
( ) ( )n

n ii
x x

=
= −∏ a ( )n +∈ N , and . 0 ( ) 1f x =f

Definition 12. Sequence { }1( , )b n k  satisfy that 10
( ) ( , )n k

n k
f x b n k x

=
=∑ , and define 

 when  or . 1( , ) 0b n k = 0k n> ≥ 0k <

Since { }( )nf x  are lineary independent, we can introduce 

Definition 13. Sequence { }2( , )b n k  satisfy that 20
( , ) ( )nn

kk
b n k f xx

=
=∑ , and define 

 when  or . 2 ( , ) 0b n k = 0k n> ≥ 0k <

Definition 14. Sequence { }( , )d n k  satisfy that 
0

( ) ( , ) ( )n
n k kf x d n k f

=
− = x∑  and define 

  when  or . ( , ) 0d n k = 0k n> ≥ 0k <

Set , then , , .  1na n= − ( , ) ( , )b n k s n k=1 ( , ) ( , )b n k S n k=2 ( , ) ( , )d n k L n k=

Set , then , , . 

Henceforth, the definitions above are generalizations of binomial coefficients, Stirling numbers 
and Lah numbers. 

1na = − ( , ) k
nb n k C=1 ( , ) ( )n k k

nb n k C−= −2 1 ( , ) ( )k n k k
nd n k C−= −1 2

4.2 Generalization of basic properties 

Theorem 20.  (1)                      (4.1) 1 1 1 1( 1, ) ( , 1) ( , )nb n k b n k a b n k++ = − −

            (2)                      (4.2) 2 2 1 2( 1, ) ( , 1) ( ,kb n k b n k a b n k++ = − + )

)

)

            (3)                (4.3) 1 1( 1, ) ( ) ( , ) ( , 1n kd n k a a d n k d n k+ ++ = − + − −

 

Proof.  (1)  1 1
1 1 1 1 1 10 0
( 1, ) ( ) ( )( ) ( ( , ) ( , )n nk k k

n n n nk k
b n k x f x f x x a b n k x a b n k x+ +

+ + += =
+ = = − = −∑ ∑

         Compare the coefficient of kx , we have 

1 1 1 1( 1, ) ( , 1) ( , )nb n k b n k a b n k++ = − −  

       (2)  ( , ) ( ) ( , ) ( ) ( , )( ( ) ( ))n n nn
k k k kk k k

b n k f x x x b n k f x b n k a f x f x+ ++
+ += = =

+ = = = +∑ ∑ ∑1 11
2 2 2 10 0 0

1 k 1

         Compare the coefficient of ( )kf x , we have 
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2 2 1 2( 1, ) ( , 1) ( ,kb n k b n k a b n k++ = − + )

n

)k

 

       (3)Since , 1 1( ) ( )( )n nf x f x x a+ +− = − − +

1
10 0

( 1, ) ( ) ( ) ( , ) (n n
k nk k

d n k f x x a d n k f x+
+= =

+ = − +∑ ∑  

                1 1 10
( , )( ( ) ( ) ( ))n

n k k k kk
d n k a f x a f x f x+ + +=

= − + +∑

                  1 10
(( ) ( , ) ( , 1)) ( )n

n k kk
a a d n k d n k f x+ +=

= − + + −∑
 

         Compare the coefficient of ( )kf x , we have 

                                  ,  1 1( 1, ) ( ) ( , ) ( , 1n kd n k a a d n k d n k+ ++ = − + − − )

Theorem 21.  2 1
0

1

( , )
(1 )

k
n

k
n

i
i

xb n k x
a x

∞

+
=

=

=
−

∑
∏

                                     (4.4) 

Proof.  Denote . When , 2
0

( ) ( , ) n
k

n
G x b n k x

∞

=

=∑ 0k >

2 2 1 2 1
0 0 0

( ) ( 1, ) ( , 1) ( , ) ( ) ( )n n nk
k k

n n n

G x b n k x b n k x a b n k x G x a G x
x

∞ ∞ ∞

+ −
= = =

= + = − + = +∑ ∑ ∑ 1k k+  

       Thus, 

       1
1

( ) ( )
1k k

k

xG x G x
a x −

+

=
−

 

       Since , we have  1 2 1 2
0

( , ) ( ) ( ,0)
n

n
k

k
a b n k f a b n

=

= =∑

             0 2 1
0 0 1

1( ) ( ,0) ( )
1

n n

n n

G x b n x a x
a x

∞ ∞

= =

= = =
−∑ ∑  

              2 1
0

1

( ) ( , )
(1 )

k
n

k k
n

i
i

xG x b n k x
a x

∞

+
=

=

= =
−

∑
∏

                          ,  

Theorem 22. (1)
1 2

1 2

1
1

( 1, ) ( 1)       ( )
n k

n k

n k

n

b n k n ka a aε ε ε
ε ε ε

−

−

+

≤ < <⋅⋅⋅< ≤

≥+ = − ⋅⋅⋅∑       (4.5) 

           (2)        (4.6) 
11 2

1 1
1 1, , 0

2 1 2 1( 1, )                   ( )k

k
k

k
n k

b n k n ka a a εε ε

ε ε
ε ε

+

+
+ ≥

+
+⋅⋅⋅+ = −
⋅⋅⋅

≥+ = ⋅⋅⋅∑
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Proof.  (1) 1
0 1

( ) ( , ) ( )
nn

k
n i

k i

f x b n k x x a
= =

= =∑ ∏ −  

         Compare the coefficient of kx , we obtain (4.5). 

       (2)According to Theorem 21, 

               
1 1

2
0 01 1

1( , ) ( ( ) )
1

k k
n k j

i
n ji ii

b n k x a x
a x

+ +∞ ∞
−

= == =

= =
−∑ ∑∏ ∏  

         Compare the coefficient of n kx − , we obtain (4.6)                           ,  

4.3 Some common properties 

Theorem 23. (1) 1 1

1 1 1 1

( 1) ( , ) ( 1) ( 1, 1)    ( 0)
k mm

i
k n k m

b k n b m n aa a a a= + +

− − + += ≠
⋅⋅⋅ ⋅ ⋅⋅∑               (4.7) 

           (2) 
2 2

2 2
2

( , ) ( 1, 1)                   ( 0)
n n

m

nk m
k n

b k n b m n aa a
+ +

+
=

+ += ≠∑              (4.8) 

Theorem 24. (1)                    (4.9) 1 2 2 1( , ) ( , ) ( , ) ( , )
n n

mn
k m k m

b n k b k m b n k b k m δ
= =

=∑ ∑ =

∈

∈

)i

           (2)                                       (4.10) ( , ) ( , )
n

mn
k m

d n k d k m δ
=

=∑

         (3)  (4.11) 1 2
0 0

( , )   ( )    ( , ) ( )
n n

n k n k
k k

b n k b n kn nα β β α+ +
= =

= ∀ ∈ ⇔ = ∀∑ ∑N N

         (4)   (4.12) 
0 0

( , )   ( )    ( , ) ( )
n n

n k n k
k k

d n k d n kn nα β β α+ +
= =

= ∀ ∈ ⇔ = ∀∑ ∑N N

Theorem 25. ( ) ( , ) ( , ) (k j j
n k

i j k n
f x m m C b n k b j i f x−

≤ ≤ ≤ ≤

+ = ∑ 1 2
0

                    (4.13) 

Theorem 26.                                 (4.14) 1 2( , ) ( 1) ( , ) ( , )
n

j

j k

d n k b n j b j k
=

= −∑

Proof.  1
0 0

( , ) ( ) ( ) ( 1) ( , )
n n

j j
k n

k j

d n k f x f x b n j x
= =

= − = −∑ ∑

        1 2 1 2
0 0 0

( 1) ( , ) ( , ) ( ) ( ) ( 1) ( , ) ( , )
jn n n

j j
k k

j k k j k

b n j b j k f x f x b n j b j k
= = = =

= − = −∑ ∑ ∑ ∑

 

     Compare the coefficient of ( )kf x , we obtain (4.14)                          ,  
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4.4 Other properties based on special { }na  

Theorem 27. If na nα β= +  where and α β are constants, then  

        1 1
0

( , ) ( ) ( , ) ( , )
k m

j i i
j

i j i

b n m k n b n k i b m j Cα −

= =

+ = − −∑∑ 1

                                       (4.15) ( ) ( , ) ( , )
k n

j i i
j

i j i

m b m k i b n j Cα −

= =

= − −∑∑ 1 1
0

The proof is similar to Theorem 4. 

In the following discussion,  where  is a constant. 1n
na q −= q

Theorem 28.  (1) 1
2

1 1

( 1)
( , )

( 1) ( 1

n
i

i
k n k

i i

i i

q
b n k

q q

=
−

= =

−
=

− −

∏

∏ ∏ )

)

                             (4.16) 

             (2)                                      (4.17) 2 2( , ) ( , )b n k b n n k= −

Proof.  (1) We use mathematical induction on . n
        is trivial. Suppose (4.16) holds for , then for  0n = n 1 1k n≤ ≤ +

        2 2 1 2( 1, ) ( , 1) ( ,kb n k b n k a b n k++ = − +

        1 1
1 1

1 1 1 1

( 1) ( 1)

( 1) ( 1) ( 1) ( 1

n n
i i

ki i
k n k k n k

i i i i

i i i i

q q
q

q q q q

= =
− − + −

= = = =

− −
= +

− − −

∏ ∏

∏ ∏ ∏ ∏ )−
 

        

1 1

1
1 1

1 11 1

1 1 1 1

( 1) ( 1)
1 1
1 1( 1) ( 1) ( 1) ( 1

n n
i i

k n k
ki i

k n k k n kn n
i i i i

i i i i

q q
q qq

q qq q q q

+ +

− +
= =

− + − ++ +

= = = =

− −
⎛ ⎞− −= + =⎜ ⎟− −⎝ ⎠− − − −

∏ ∏

∏ ∏ ∏ ∏
i

)

1,0)

 

        , 
1

1
2 2

0
1 ( 1, ) (1) (

n
n

k
k

b n k f b n
+

+

=

= + = +∑

Thus (4.16) holds for . 1n +
According to mathematical induction, (4.16) holds for arbitrary non-negative integer n. 
(2) (4.17) follows immediately from (4.16)                                   ,

If we set , according to L’Hospital’s rule, 1q →
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1

1 1

1 1 1 1

1 1 1 1

( 1)
!lim lim

!( )!( 1) ( 1)

n n
i i

ki i
nk n k k n kq qi i i i

i i i i

q iq
n C

k n kq q iq iq

−

= =
− −→ → − −

= = = =

−
= =

−− −

∏ ∏

∏ ∏ ∏ ∏
=

k

) ) )

. 

And (4.17) becomes the well-known . k n
n nC C −=

If  for some integer , then the denominator and numerator of (4.16) are both zero. 

Suppose  is a unit root with order  where  is a positive integer, then the number of 

zeroes among ,  and  are 

1mq = m

q d d

1

( 1
n

i

i

q
=

−∏
1

( 1
k

i

i

q
=

−∏
1

( 1
n k

i

i

q
−

=

−∏ n
d
⎡ ⎤
⎢ ⎥⎣ ⎦

, 
k
d
⎡ ⎤
⎢ ⎥⎣ ⎦

 and 
n k

d
−⎡ ⎤

⎢ ⎥⎣ ⎦
 

respectively. Since 
n k n k
d d d

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤≥ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 for all , we have the following 0 k n≤ ≤ +1

1
  | 

2

1 1
  |   | 

( 1)

( , )
( 1) ( 1

i

i n
d i

i

i k i n k
d i d i

q

b n k
q q

≤ ≤
/

≤ ≤ ≤ ≤ −
/ /

−

=
− −

∏

∏ ∏ )i

1

1

                                   (4.18) 

With (4.18), it is easy to deduce that 

Theorem 29. Suppose  is a unit root with order , then  q d

                                                       (4.19) 2 2 2( , ) ( , )b n k b r r=

where  and  are the least non-negative residue of  and  modulo  respectively. 1r 2r k n d

Corollary 29.1  If , then . 2r r< 2 ( , ) 0b n k =

5 Concluding remarks 
In this article, we obtain many new identities of Stirling numbers, Lah numbers and Bell numbers. 
We proof a new inversion formula and provide a new method to proof a specific kind of new 
identities. We also generalize the definition of binomial coefficient, Stirling number and Lah 
number, and proof the generalized form of some identities as well as some other new identities. 

By setting some special{ }na  , we can obtain some new identities in relatively simple form. This 

could be a new way to research combinatorial identities. 
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