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Abstract

In the first part, we proof some new identities of Sirling numbers, Lah
numbers and Bell numbers using generating functions and inversion
formulas. In the second part, we propose a new inversion formula based
on inverse functions and discuss some applications of this formula. In
the third part, we generalize the definition of binomial coefficients,
Sirling numbers and Lah numbers. Then we discuss some basic
properties of the new sequences and show a practical way to obtain new
combinatorial identities.
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1 Introduction

1.1 Notations
[x], =X(X-1---(x—-n+1) for n=21. [x],=1, [X],=0 for n<O.
[XI" =x(x+1---(x+n-=1) for n>1. [x]°=1, [X]"=0 for n<O.
Cﬁ(ﬂ) :%,where neC, ke N.
s(n,k)  Sirling number of the first kind, see Definition 1.
S(n,k)  Sirling number of the second kind, see Definition 2.
L(n,k)  Lah number, see Definition 3.

B Bell number, see Definition 4.

0, Kronecker symbol. &, =0,if i#]; § =1,if i=].
i,j, Kk |, n aretheindexes of asequence, they areintegerswithout specification.

1.2 Definitionst®
Definition 1. Sirling number of the first kind S(N, k) is the coefficient of x* in the

expansion of [x],, or [x], =Y ¢ os(n,k)x“. s(n,k) is defined as O when
k>n>0 or k<O.

Since [X],.[X],,[X],,--~[X],.--- are linearly independent, they can be the basis of
polynomial ring R[X], thus we have the following
Definition 2. Sirling number of the second kind S(n, k) is the coefficient of [x], in

the expansion of x", or x”:ZLOS(n,k)[x]k. S(n,k) is defined as 0 when
k>n>0 or k<O.

Definition 3. Lah number is the coefficient of [X], in the expansion of [-X],, or
[-X], =D rob(NK)[X],. LK) isdefinedasOwhen k>n>0 or k<O.

Definition 4. Bell number B, = > ¢ ;S(n,k), where ne N .

2
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1.3 Genarating Functions ™™

Definition 5" . The ordinary generating function of {a} .o is
f(x)=) ax" (1.1)
n=0
Definition 6" . The exponential generating function of {a} s is

9(0=> 2, (12
n=0 n!

(1.1) and (1.2) are called formal power series. In combinatorics we seldom dea with their
convergence or other properties that are often involved in mathematical analysis. For rigorous

theory of generating functions, please refer to [4][5]. We will list some basic properti&s[” of

generating functions without proof. Denote the ordinary generating functionsof {a,} and {b.}

as A(x) and B(X) respectively, and the exponential generating functions as A,(X) and

B,(X) respectively. We have the following

Property 1. {8} ={b,} & A(X)=B.(X) & A(X)=B,(X)

Property 2. The ordinary generating function and exponential generating function of {ca,} are
aA(X) and aA,(X) respectively, where « isacomplex constant.

Property 3. The ordinary generating function and exponential generating function of {a, +0b,}

ae A(X)+B(X) and A (X)+B,(X) respectively.

Property 4. A(X)B,(X) = Z:zo c,X",where C, = z - o

w oy X "
A’z(X) BZ(X) = Z n:Odn W ! where dn = Z k:OC:akbn—k

Definition 7. 1f A(X) = Y. =0, X", B(X)=> 2 hx",C(x) =D _c,x" satisly
that B(X)C(Xx) = A(X), then C(X) is caled the quotient of A(X) divided by B(X), and

denoted as C(X) = AX) .

B(x)
Definition 8 ™ . The forma derivative of A(X) = Z T_oa,X" is denoted as
3
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DA(X) =Y 7 na x"".
Definition 9™ . The higher derivativeof A(X) is

A(X) n=0

13
D(D""A(X)) n>1 (13)

D"A(X) :{

Definition 107, If B(x) satisfy that A(x) = DB(X), then B(x) is caled the formal
primitive function of A(X).
2 ldentities of Stirling numbers, Lah numbersand Bell Numbers

2.1 Basic properties

Theorem1™. (1) s(n+1k) = s(n,k—1) — ns(n, k) 2.1)
(2 S(n+21,k) = S(n,k—1) + kS(n, k) (2.2
B L(n+Lk)=—(n+k)L(n,k)-L(n, k-2 (2.3)
4B, =Y CyB, (2.4)
k=0

Proof. For a more generalized proof of (2.1)(2.2)(2.3), see Theorem 20. We only present a new
proof of (2.4). First we proof

n o K
kK _ X n X
I(Z:(;S(n,k)x =e kzz(;k o (2.5)

by induction. Denote  f (X) = >_ S(n, k)x".

k=0
e X e X
If Nn=0, wehave f,(X)=1,and € kZ:(:)k H:e ;E:e e =1
(2.5) holdsfor n=0.
Suppose (2.5) holds for n, with (2.2) we have
f .(X)= E%‘S(nﬂ., k) x* :f(S(n, k —1)x* +kS(n, k)x*)
k=0 k=0

=3 S(n, k)X + > kS(n, k)X =x( f, (x) + DF, (x))

By induction hypothesis,

4
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a0 XK
Df, () =&YK’ (k T K

k=1 k=0

- " X
=" Y (k+D)' T f,(9
k=0 .

Thus,

k+1

f,0(0 = X(£,(+ Df, () =&Y (k +1)

k=0

k+1

= X > n+1X
=g k+1 =e*) k
IO TR

According to mathematical induction, (2.5) holds for arbitrary non-negative integer n.
Set x=1, we obtain

1e<> n
B=f@D==Y—
= . o ki

Hence,

n ok 18 Sk 1a81L K+1
ZC”BKZEZC”ZE:EKZ::;E,ZO z( +)

k=0 i=0 k=0 ™+

n+1 n+1
_ Z(k+1) Zk _B .
ek 7 (k+D)!  eiz k!

Theorem2” . ()Y s(n, k)% - %(In(1+ X))«
n=0 : :

- X" ~ 1 ) )
(2);)5(”,‘()?!—@(3 -1

Xk

T (- X)(1-2%) - (- k)

(B)ZS(n k)"

o Xn
Link) X =L =X
(4% (nk)— = ()"

(5)2 Xe

Proof is omitted, We remark that (2.11) implies (2.6). In fact,

g X-er-le 15 ) I s, 15X S

n! ekO k! ekok'n o n! ok

5
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n

X .
Compare the coefficient of —,we obtain (2.6).
n:

In Theorem 7 thereis anew proof for (2.7) .
Theorem3™. (@) s(nk) =)™ Y  ge-6, (12K

O<gy<ey<<gn <N

@ S(nky= > 192%...k% (n=k)
g
1 : K—i irn
©) S(n,k):ﬁé(—l) Cli (n=Kk)
) L(n,k):(—l)”%C,'j_‘ll (n=k)
n 1 k o
5 B,=> =2 (-h'Ci" (n>k)
k=0 kl i=1

Proof is omitted. In Theorem 22 thereis a generalized proof for (2.12) and (2.13).
2.2 I dentities of Sirling numbers

The following identities!? are famous :

n+m

k . .
(o :Z C.C'  (Vandermonde'sidentity)
i=0
C 1
n M+
Z c:k = Cn+l
k=n

The following two theorems proof similar identities of Sirling number.

Theorem4. s(n+m,k) = ii (—n)""'s(n,k—i)s(m, j)C;

i=0 j=i

=2

k n
i=0 j=i

(-m)""'s(m k—i)s(n, j)C;
Proof. Comparethe two sidesof [X],,,, =[X].[x—n],, .

n+m

[y = 2, SN+ M K)X

k=0

6

Page - 383

(2.12)

(2. 13)

(2. 14)

(2. 15)

(2. 16)

(2.17)

(2.18)

(2.19)



S10

n

[X]n[x_ n]m :(z

s(n,i)xij Zm:s(m,j)(x—n)"]
(Zs(n i)X (is(m, j)zj“(—n)"‘I C;x']

i j 1=0

s(n,i)xi (Zm:x'zm:(—n)j" C}S(m,i)]

=0 =l

3 X"Zklzm: (-n)""'s(n,k—i)s(m, j)C;

k=0 i=0 j=i

Compare the coefficient of X*, we obtain

s(n+m,k) :ii( )’ s(n,k—i)s(m, j)C!,

Exchange m,n, we have
s(n+mk)=>">"(-m)"~'s(m k—i)s(n, j)C| 0
i=0 j=i
We don't have similar identities for Sirling numbers of the second kind, for the expansion of
[X];[X]; usingbasis {[X],} contains s(n,k) and S(n,k) (see Theorem 8), which leads to
atrivial identity.

(1) (1)

Theorem 5. Z s(m+l n+1) (2.20)
k=n

Zm: S(k,n)  S(m+1n+1)

(D (n+Y" (2.21)

Proof. According to Theorem 1,

Z( ) s(k n) = z( D" (s(k+1,n+1)+ks(k,n+1))

k=n

m (_1)k ~ (_1)k—l
g?( o s(k+1,n+1) (k_l)!s(k,n+1)J

(D ~——qm+1,n+1)— Ej);s(n n+l)= (Dms(rm-lnﬂ)

m Sk,n) &
Z(n+1)k Z(n T (S(k+1,n+1)— (N+1)S(k, n+1))

k=n k=n

Zm: S(k+Ln+1) S(k,n+1
(n+1D* (n+D**

k=n

7
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_ S(m+Ln+D) S(n,n+D) S(m+1n+l)

M+)™ ()™ (n+D)” )
The following theorem present an expansion of [X+m], using basis {[x],}.
Theorem6. [x+ml, = Y CIm<Is(n,K)S(j,i)x] (2.22)
o<i<j<ksn
Proof. [x+m], _Zs(n K)(x+m)* _ZZs(n K)C)mIx!
- k=0 j=0
n K . d , .
= s(nk)CIM Y S(j,i)Ix] = Y Cms(nk)S(j,i)x]; o
k=0 j=0 i=0 0si< j<k<n
Set X=n, we obtain
Corollary 6.1. CT, == > C/Cm“’s(n,k)S(j,i)i! (2.23)
0<|<J<k<n
N 1
|20 s(n k)= m=1 (2.24)
Theorem 7. w wo ) ' I
' Z > s(n Diinm)™ m=1 (2.25)
o M'nli= (k—i)!
t °c'[t] t—nyn mnl t—n, N k nkN:l-t—n n
Proof. (x+m)' =) =om™x" =) —m"x"s(n, k)t = > > —m"s(n, k) x
o n! o ko N! ko non!
oo tk
(x+m)t =entem =% — k (In(x+ m))*
k=0

If m=1, then compare the coefficient of t* we have

(In(x+1))

k Zs(n k)

which proof (2.7) in Theorem 2.

If m#1,then m dependson t,

o ¢k
mt — e’(Inm — zt—(h‘l m)k
oo K!

Henceforth,

8
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(x+m)t=iii (likj,) <! - (Inm)

= 5k, }) i (Inm)”
tzz R (Y

tkii s(n,i) v (Inm)*<*

ko icono Mnt o (k—i)!

Compare the coefficient of t*, we obtain

n

(In(x+m)) i X" & s(n,i)(Inm)*’
momnlis (k=i)!

Set m=e in(2.25), we have

n

(In(x+€))~ i X s(n,i)

k
k! —=enl= (k-i)!

Set k=1 in(2.25), we have

Corollary 7.1.

n-1 n
Corollary 7.2. In(—+1)_ln(x+m) Inm= Z( 2”]
n=1

(2.26)

(2.27)

Which isthe same as Taylor expansion of In(x+1) . Thus (2.25) is agenerdization of (2.27).

The following theorem present an expansion of [x],,[X],using basis {[x],} -

m+n -k

Theorem 8. [X], [X], Z[x] ZZS(k s(n, j)s(m k- j)
mw.m4m=§}mmmiwnm0
—ZXKZS(n j)s(m k- j)

- "i(zk: S(k,i)[X]i)(i s(n, j)s(m k- j))

—Z[x] > Y S(k)s(n, Hs(mk- )
St X=m+n, we have
Corollary 81. min!(C" )? _nfllcmmfzk:S(k,i)s(n,j)s(m,k—j)
9
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2.3 ldentities of Lah numbers

Theorem ot X _ chk:jﬂ (2.30)
n k!

Proof. [X]"=(-1)"[-X], = (—1)”i L(n,K)[x],

By Theorem 3, we have

L(n,k) =(-1)" ch;

( 1) Z( 1) —Ckl[x]k _nIZCk 1[X]k

b

Which is the same as Vandermonde's identity when Xe N, .

By (2.12), we know that |s(n,i) |= (=1)™ s(n,i), compare the coefficient of X' in (2.30), we

obtain

Corollary 9.1. il|s(n, )| = Zicﬁjs(k,i) (0<i<n) (2.31)
n!

o K!

With a more generalized form of Vandermonde's identity 21

)

where X,y arearbitrary complex numbers, we can proof a new identity.
: k J .
Theorem 10.  2's(k, j) =Y > s(i, j)s(k—i, j —1)C, (2.33)
i=0 1=0

Proof. Set X=1YV in(2.32), weget

200

Compare the expansion of both sides,

2X) [2x, 15,00 o
(kj_ o _E;Z s(k, j)x

10
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:%ixiiis(i,l)s(k—i,j—l)cik

*j=0 =0 I=0
We obtain

2's(k, j):zk:is(i,l)s(k—i, j-NC,

i=0 1=0
In(2.33), set j =k, theleft hand sideis 2, the right hand sideis

iCLZk:S(i,I)S(k—i,k—I):iC,L

i=0 1=0
And we obtain
k .
Corollary 10.1. 2=>"C,
i=0
which is awell-known identity. (2.34) is a special case of (2.33).

Theorem 11. ZL(n K) = n'zzﬁc,cﬂ. a4

i=0 j=0
Proof. By (2.10), we have

Z—(ZL(n =33 Ln k)— iki ()

nO - k=0 n=0 - k=0

S 1 N i k—i 1 i
—Zg(m— D ZE(ZCk(—l) (m))

k=0 ™+ =0

o

PIICEEEIINE RN

i+j+k
el

Il
M
M:

Mx

I
<}
i
<}
x
i
<}

0 o0 o ( 1)|+J+n .
:ZZZ C:]Cn+| -1

=0 n=0 j=0

Compare the coefficient of X", we obtain

|+]+n

ZL(H k)—n'zz iCoia

i=0 j=0

11
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Together with (2.15), we have

LG o (D i,
Corollary 11.1. E _k' = E E —le an+H
k=0 K: i=0 j=0 :

By the relation between Lah numbers and Sirling numbers™
L(n,k)=>"(-1)s(n, j)S(j,k)
i=0

We obtain

Corollary 11.2. ZZ( 1)' s(n,NS(, k) —n|zz 1)I+J+n ,C:ﬂ 4,

k=0 1=0 i=0 j=0

Theorem12. 33 ( Y K -CC LK) =1

i=0 j=0 k=0

Proof. Apply theinversion formula of Lah number (Theorem 14.(3))

a, = Zn: L(n,k)b, & b, = Zn: L(n,k)a,

oo i+j+n
to Theorem 11, where b, =1 and a, = nlzz#c C,
i-0j=0 "
we obtain
|+]+k
1= ZL(n k)klzz iCeia
i=0 j=0

O N i+j+ k! i
=335 (e Ch LK)
Together with (2.15), we have

1= iii (_1)i+i+k+n T_:C; C:H,lcrl:ll
> - - [

= cnk‘fZZ(—l)'“*k*“%c;ckﬁi1

— C:&ii( 1)|+]+k+l+n JC Cll::ll

Change N into n+1,

1= . C: NhN 1|+j+k+n (n+1) CCk+l
DA

K+i

12
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|+j+k k+1 (_l)n
Ci G ~ (n+1)!

(2.39)

Corollary 12.1 iii
k=0

Calculate the sum of (2.39) with variable n, the right hand sideis

- () Z(1) :1_2(—1')":1_%

= (n+1)! n!

which implies

) i+j+k
Corollary 12.2. zzzz(_l)_J Ckcickflzl—é (2.40)

o oo _1 i+j+k ) _1 n
O ) I S AT (242
Apply theinversion formula of binomia coefficients (Theorem 14.(1))

a, =3 Clh, &b, =Y ()™ Cla,
k=0 k=0

_1\" o o ( q)itjtn
to (2.41), where a, :% and b, =3 > 1)j| cicr
: i=0 j=0 :

we obtain ii I+J+n Cn+1 Z( )nk k (_1)k
] n+i
i=0 j=0

oo oo |+ n k
Corollary 12.3 Zz | C crt _z(kc-::l)' (2.42)

i=0 j=0 k=0

2.4 | dentities of Bell numbers

n k-1
Theorem 13. Z z LBg B, = (2.43)
k=1 & +-+g=n k(gl L& N - ‘

£1,Ep 7,621

3||_\

Proof. According to (2.11), we have
oo Xn

In(1+ZB—) e -1= g

oo k
X
By Taylor expansion In(1+ X) = Z (-t PR we have
k=1

13
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By multinomial theorem

n!
( X 4o+ )”: A x% ... x&
X+ X+ X, cﬁ_Zw_n PRI

€162 1620

and comparing the coefficient of X", we have

( 1)k -1
kZ;£1+§< >1 k(gl ') “a “ =

3 0On inversion formulas
3.1 Remarks on some well-known inver sion for mulas

Consider two series{@,} and{b,} , we can set up two groups of equations, in each group we use

one of the series to represent the element of another. The two groups of equations are equivalence,
that is if one group of the equations holds, the other holds too. These equations are called
inversion formulas. Due to the equivalence of the equations, if we proof one group of them we
will obtain the other immediately, which is convenience for proving some combinatorial identities.
Here are some frequently used inversion formulas.

Theorem 14 .

Vne N

(1) Zk 0 n
b,=> (D" Cra, Vne N
> 17 =>"" s(nk)b, Vne N
b, =Y., S(nk)a, Vne N
3 13 =>"" L(nk)h, Vne N
b,=> . L(nka, Vne N

The generalization of Theorem 14 isthe following.

Theorem 155 {f.(0}., ad {g,(X)} ., ae two groups of linearly independent
functions respectively (i.e. f.(X) and g,(X) are both polynomials of degree n), functions of

two variables a(n,k), A(n,k) satisfy that

14

Page - 391



S10

f.0=>" ankg () VneN
9,0 =>" Bk () VneN

then we have an inversion formula

a, = a(nkb, Vne N (3.1)
b=, AnKk)a, Vne N (3.2)

Proof. f(x)=Y" a(nkgm=>" ank> " Aki)ix)=>" 03" alnkpki)

9.00=>1 BNK=" ANk akidg()=>" g (x> AnKalki)
Since {f,(x)} , ad {g,(X)} ., aelinearly independent respectively, we obtain
S a(nk)Bki) =3 " fnKak,i) =8,

Thus, if (3.1) holds for arbitrary non-negative integer n, then

Y Anka =3 AR akih =Y By Ankaki) =Y bd, =b,
Thisimplies(3.1) = (3.2). (3.2) = (3.1) can be proved in the same way. m]

The connection between Theorem 14 and Theorem 15 is shown by the following table.

e B a0 | ek | A0k
D) " | (x#D)" | (DTG, C,
@) M, | sk | SK)
3 M, | (O | Ll | Lk

The inversion technique is powerful because it can transform an identity into another easier
identity equivalently, aswe can seein Theorem 12.
In the following section, we will use generating functions to find inversion formulas.

3.2 A new inversion formula
We should investigate the following theorem first.

Theorem 16%. (1) Suppose the ordinary generating functions of {f,} ~ and {g,}  ae
f(x) and g(x) respectively. If f(x)g(x)=1,then
a,=y fib, (YneN) o b =>" ga, (vneN) (33)

15
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(2) Suppose the exponential generating functions of {f } ~and {g,} , ae f(x) and

n=0

g(x) respectively. If f(x)g(x)=1, then

a, =y Ckfhb_, (VneN) < Db =>" Ckga, (VneN) (3.4)
Proof is omitted. Suppose the ordinary generating functions (or exponential generating functions)

of {a} , and {b] ~ ae A(x) and B(X) respectively. Since f(x)g(x)=1, wehave

AX)=B(X)f(x) << B(X)=AXg(x) (35)

Compare the coefficients, we obtain (3.3) and (3.4) immediately. With two equivalence
equations of generating functions (i.e. (3.5)), we have an inversion formula correspondingly.

Suppose g(X) istheinversefunctionof f(X),wehave

AX)=f(B(x) < B(X)=9g(AX) (36)
We obtain anew inversion formula.

Theorem 17. Suppose the exponential generating functionsof {f } and {g,} , are f(x)

and g(X) respectively. If f(X) istheinversefunctionof g(X), then we have the following

inversion formula

a,=>f ¥ b,b, b, -= Vne N, 3.7)

=l g+-+g=n I

H

o} }:g, > a i Vne N, (3.8)

|
&+-+E=N I

Proof. Suppose the ordinary generating functions of {a,}  and {b,}  are A(X) and

nx1

B(X) respectively. If (3.7) holds for arbitrary positive integer n, then

f.

(B =3 (D) =3x0 30 T bbb, =3ax=A

i=1 ! n=1 s & +tg=n n=1

Thus B(X) = g(A(X)), which is equivalence to

9
_Z L > a.a, -a VneN,
|1I £ t+g=n

S0(3.7) = (3.8). Similarly, (3.8) = (3.7). O

In order to apply Theorem 17, we give tow pairs of reciprocal functionsfirst.

16
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@ f(=e-1=Y2
1 N!

and g(¥) =In(x+1) =3 (-1)" -1X Z( D™ (n— 1|—

%) f(x)z\/1_4—1 Z (4x) _1= Zk'Czkki
. !

_l ~ 1 :1 ~ » (-2 ‘ _ oo (_1)k+l X_k
and g(x)_4(1 (x+1)2j 4(1 g( k]x] kZ; " (k+1)!k!

By Theorem 17, we have

Corollary 17.1. anzz_—]; z b.b, b, (Vne N,)

i=1 I & +-+&=N

n (_1)i+l
e b=>-= a.a -a (vne N,)
i=1 I & +tg P I
Corollary 17.2. &, = ZC'ZI z D (Vne N,)

&+-+&=n

& b= z(l)_l('”) > aa, s (heN)

&

Theorem 18. X:Zn: Z A-@-%%)- A== (3.9)
|_1I &+t = 81 : €|

Proof. By Corollary 17.1, it is sufficient to proof that

1(1 x)" 2(1-1 Z N

EttE=

Since the equation & +---+& =N has C} different positive integer solutions, thus it is

sufficient to proof that

_M1_ n n (_1i-1 ) )

In fact,

Z( 1) C"lX' z( D CX' ZC( X)' = 1- (1n—x)n 0

17
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Set X=1 and X=2 inTheorem 18 respectively, we have

n
Corollary 18.1. 1=Z:_1 Z ! (3.10)
izt | ! & +tg =N & &
n, 1 2
Corollary 182. 2= Z_— Z (3.11)
i=1 | ! &++g=n 81 T gi
2)e &

Theorem 19. x:Zn:c;i > ix‘(1—X)“-2‘(2—x-glx)---(z—X—giX) (3.12)
i=1

i
&+-+&=N 4

Proof. According to Corollary 17.2, it is sufficient to proof that
18 i+1 (g i-1y/l 1 n-2
Zz D™ +pCiX = 2 X(1-X)"?(2- X-NX)
i=1

Denote the left hand sideas f (X), then f(X) = Dg(X), where

IS SR i+1:£2 i3y X(1-X""
g(x)_4;Cn—1( X) 4 ;Cn—l( X) 4
Thus,
f(x)=Dg(x)=2X(1;X)n_ _(n—1)x4(1—x)“- =%X(1—X)”-2(2—x—nx) O

Set X=2, -1, %,inTheorem 19 respectively, we have

n

Corollary 191 (-1)"2=Y (-1)'C}; > &€ (3.13)
i=1 & +t+g=n
1 1,
Corollary 19.2. —E: Z(—1—6) C, z (,+3)---(&+9 (3.19)
Corollary 193 271 =Y %)ic;i S (@-£)-(3-¢) (3.15)
i=1 & +-+&=Nn

We can see that Theorem 17 can be used to discover and prove a new kind of combinatorial
identities which contain symbol z . Thisnew inversion formulais a useful new method.

£ +-+&=N

4 Generalization and simplification —a promising new way

In the research of combinatorial identities, we often face a paradox: on the one hand, we expect
the identities to be concise and symmetric; on the other hand, many concise identities are based on
some specific properties of several sequences such as binomial coefficients, which makes them
hard to be generalized. In view of such a paradox, we propose that we should start from
generalizing the definitions, and deduce the common properties of the generalized sequence. Then

18
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by adding some specific properties to the sequence, we obtain identities which are origina and
simple aswell.

4.1 Generalization of definitions

Definition 11. Given asequence {a,}, ;. let f (x)=]] ", (x-a) (ne N,),and f,(x)=1.
Definition 12. Sequence {b(n,k)} satisfy that fn(x):Z:i)Q(n,k)X‘ , and define
b(n,k)=0 when k>n>0 or k<O.

Since { f,(X)} arelineary independent, we can introduce

Definition 13. Sequence {b,(nK)} satisfy tha X'=> B(NKf() , ad define
b,(n,k)=0 when k>n>=0 or k<O.

Definition 14. Sequence {d(nk)} satisfy that f(-X)=>, dnKf (X and define
d(n,k)=0 when k>n>0 or k<O.

Set g,=n-1, then b (n,Kk)=s(n,k), b,(n k)=S(nk), d(nk)=L(nK).

st a =-1, then b(nk)=C*, b(nk)=(-1)"*C*, d(nk)=(-1) 2"*Ck .

Henceforth, the definitions above are generalizations of binomial coefficients, Sirling numbers
and Lah numbers.

4.2 Generalization of basic properties

Theorem 20. (1) b(n+1Lk)=b(n,k-1)-a,b(nK) (4. 1)
2 b,(n+1k)=b,(n,k-1)+a_,b,(n,k) (4. 2)
@ d(n+1k)=—(a,,+a,,)d(nk)-d(nk-1) (4.3)

Proof. (D))" b(n+LK)X = f,.,(x) = f,00(X=a,,) = 2 (b (0, K)x** = a, b, (n,k)x")
Compare the coefficient of X* , we have
b(n+1,k) =b(nk-1)-a,j(nk)
(@ Y b (n+ 1K) () =x"" = x> " b, (0, K) (%) = X1 B, (k)@ F (9 + Fiey (X))
Compare the coefficient of f, (X) , we have
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b,(n+1,k) =b,(n,k-1)+a,b,(n.k)
@since f,,(-X)=—f,(-X)(x+a,.,),
> d(n+1k) f, () =—(x+a,,)> 1  d(nk)f, ()
=3 (K@ f (9 + 8, (0 + Fy(X)

= _ZE:O ((an+1 + ak+1)d (n,k)+d(n,k-1)) fk (%)

Compare the coefficient of f, (X) , we have

d(n+1k)=~(a,, +8,)d(nk)-d(nk-1) o
oo Xk
Theorem21. > b, (N, K)X" = (4.4)
" [[@-ax)

i=1

Proof. Denote G, (X) = i:bz(n,k)xn .When k>0,

n=0

@ - i:bz(n+l K)x" = ibz(n, k-Dx"+ ak+1ibz(n, K)X" =G4 (X) +8.,,G(X)

Thus,

X
1- X

G (X) = G1(X)

Since & :Zn:bz(n, k) f, (&) =Db,(n,0), we have

N n_ S n_ 1

6,00 = 2000 =T (a0 =

6.0 =3 b, kyx ==X -
n=0 [Ia—a@

Theorem22. () b(n+Lk)=(-)™ > aa --a_  (nzk) (4.5)

I<g<gy<<€, <N

@ b(n+ik)= Y a'a’ --al (n=k) (4.6)

& ++E=n-K
&, En 20

20

Page - 397



S10

Proof. (1) fn(x)zzn:bl(n,k)xk=]£[(x—81)

Compare the coefficient of X, we obtain (4.5).

(2)According to Theorem 21,

) nk k+1 1 B oo j
RCTES | e  OACED

i=1

Compare the coefficient of X", we obtain (4.6) O

4.3 Some common properties

& (=D)*b(k,n) _ (=)™ (m+1n+1)
Th 23. (1 = E0) 4.7
corem23.() 22— 2. a & #0) (47
@ ibzgﬁ’ ”)=b2(m;f:”+1) @,.,%0) (48)
Theoram 2¢.(1) Y00 KIB,(m = Y b, (Kb KM =5, 9
k=m k=m
Q)idmmmkm=@h (4.10

@ a,=YhnkA (VNeN,) o £ =Y bnke, (e N,) @11

(@q;fpmm@(megc>m=EMmmmmeg(ma

k=0
Theorem 25. f (x+m)= > m<IClb,(nK)b,(j,i) f,(X) (4.13)
o<i<j<ksn
mmmmadmmziermng@m (4.14)
j=k

WmﬁiﬁmkHA@:nkm:ibﬂhmjﬂ

SNCILICE) FXGOIAED WAS) ALIHNEHS

Compare the coefficient of f, (X) , we obtain (4.14) O
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4.4 Other properties based on special {a,}

Theorem 27.1f a, =an+ 3 where aand [ are constants, then

B(n+mKk) =D (am) B (n.k-Dh(m j)C

i=0 j=i

=2

k n
i=0 j=i

(—am)"'b, (m,k—i)b,(n, j)C!

J

The proof issimilar to Theorem 4.

In the following discussion, a, =" where q isaconstant.

11« -1

Theorem 28. (1) b,(nk)=——"=2—

[Iaf—DII«f—D

i=1

(2 by(n,k)=b,(n,n-k)

Proof. (1) We use mathematical inductionon n.

(4.15)

(4.16)

(4.17)

N=0 istrivial. Suppose (4.16) holdsfor Nn,thenfor 1<k <n+1

b,(n+1K) =b,(n.k—1)+a,,b, (k)

fi«f—b fi«f—n
= n-k+1 +qk K = n-

IT«f—DII(d—D []«f—n{laf-n

i i=1

n+l

n+1

[I«f—n

n-k+1

[]UT—D[](d—D

n+1

1" =>"b,(n+1,k) f (1) =b,(n+1,0),

li:!(qi -1) [ -1 an+1_1J
q

+
n+l _1 q qn+1 _ 1

Thus (4.16) holdsfor n+1.

n—k+1

[]«f—n[](d—n

According to mathematical induction, (4.16) holds for arbitrary non-negative integer n.

(2) (4.17) follows immediately from (4.16)

If weset q— 1, according to L'Hospital’srule,

22
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[l -2 [Tia"

i i=1
lim— _I|m -

_ _c*.
quIU] DII«x -1) IPq4IIm‘1 K-k

N

And (4.17) becomes the well-known C¥ =C™.

If g"=1 for some integer M, then the denominator and numerator of (4.16) are both zero.

Suppose ( is a unit root with order d where d is a positive integer, then the number of

zeroes among lj(qi -1), lj(qi ~1) and lrj(qi ~1) ae [g} [g} and [n%k}

respectively. Since [g} > {g} + [n%k} foral 0<k<n+1, wehavethefollowing
[1@-y
%I;n
b,(n,k) = : (4.18)
[T@-0 ][] (@-9
I<i<k I<isn-k
dJi d]i
With (4.18), it is easy to deduce that
Theorem 29. Suppose ( isaunit root with order d , then
b,(n,k) =b,(r.1,) (4.19)

where I, and r, aretheleast non-negativeresidueof K and n modulo d respectively.

Corollary 29.1 If r,<r,,then b,(n,k)=0.

5 Concluding remarks

In this article, we obtain many new identities of Sirling numbers, Lah numbers and Bell numbers.
We proof a new inversion formula and provide a new method to proof a specific kind of new
identities. We also generalize the definition of binomial coefficient, Sirling number and Lah
number, and proof the generalized form of some identities as well as some other new identities.

By setting some specia {an} , We can obtain some new identities in relatively simple form. This

could be a new way to research combinatorial identities.
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