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Abstract. It is known that for all graphs G, the G-parking functions biject

to the spanning trees of G. Given a graph G and a family of subsets Σ of
{1, . . . , n} that is downward closed by inclusion, we define the notion of a

(G,Σ)-parking function, which generalizes the G-parking functions; the G-

parking functions correspond to the case Σ = {{∅}}. We show that the (G,Σ)-
parking functions are in bijection with the forests of G that have a certain

property determined by Σ.

Given G and Σ, we also define algebras AG,Σ and BG,Σ. These algebras
are the quotients of the polynomial ring modulo two ideals; one of these is a

monomial ideal and the other, an ideal generated by powers of linear forms, is

its deformation. We prove that these algebras have the same dimension, which
is equal to the number of (G,Σ)-parking functions. Moreover, we prove that

these two algebras have the same Hilbert series, thereby establishing a class of
monomial ideals and their deformations with equal Hilbert series.

1. Introduction

The classical parking functions are sequences of n nonnegative integers (b1, . . . , bn)
whose decreasing rearrangements are termwise less than (n, n−1, . . . , 1). The park-
ing functions have several interesting combinatorial and geometric interpretations;
for instance, they count the number of spanning trees of the complete graph on
n+1 vertices [9] and the number of regions of the Shi hyperplane arrangement [14].
More properties of classical parking functions may be found in [9], [14], and [15].

Various generalizations of the parking functions have been studied in the liter-
ature. The ρ-parking functions, studied by Pitman and Stanley [11] and Yan [16],
are sequences (b1, . . . , bn) whose decreasing rearrangements are termwise less than
a nonincreasing sequence ρ = (ρ1, . . . , ρn). These will be discussed in Section 8.

The G-parking functions, introduced by Postnikov and Shapiro [12], are another
robust generalization of the parking functions, which generalize the parking func-
tions from the complete graph Kn+1 to an arbitrary digraph G. The G-parking
functions have many interpretations in combinatorics and physics, and are related
to chip-firing games [2] and the abelian sandpile model [7] [10] introduced by Dhar.
For example, if G is a symmetric digraph, Gabrielov showed [8] that the G-parking
functions biject to the recurrent states of the abelian sandpile model.

Given a graph G, Postnikov and Shapiro [12] defined two algebras AG and BG,
which are the quotients of the polynomial ring by a monotone monomial ideal and
its deformation, a power ideal. They proved that a set of monomials correspond-
ing to the G-parking functions are a basis for both algebras, showing that these
algebras have the same dimension and Hilbert series. These are a case of a mono-
tone monomial ideal and its deformation having equal Hilbert series; however, this
equality is not true for all monotone monomial ideals.
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2 BRICE HUANG

For graphs G, Desjardins [6] proved that two pairs of algebras closely related to
the algebras AG and BG also have same monomial bases. In each pair of algebras,
one algebra is the quotient of the polynomial ring by a monomial ideal and the other
is the quotient of the polynomial ring by a power ideal, its deformation. This result
provides two other instances of a monotone monomial ideal and its deformation
having equal Hilbert series.

In this paper, for all graphs G and families of subsets Σ of {1, . . . , n} that are
downward closed by inclusion, we define the (G,Σ)-parking functions, which gen-
eralize the G-parking functions. We also define the algebras AG,Σ and BG,Σ, which
are the quotients of the polynomial ring by a monotone monomial ideal and its de-
formation. We prove that these algebras share a monomial basis that corresponds
to the (G,Σ)-parking functions and have the same dimension and Hilbert series;
consequently, we describe a class of monotone monomial ideals and their deforma-
tions with equal Hilbert series that generalizes the work of Postnikov-Shapiro and
Desjardins.

The remainder of this paper is organized as follows: in Sections 2 and 3, we
review definitions and already-known results on G-parking functions and monotone
monomial ideals. These include the aforementioned results of Postnikov-Shapiro
and Desjardins, as well as Theorem 3.3, which relates the Hilbert series of a mono-
tone monomial ideal to that of its deformation. In Section 4, we define the (G,Σ)-
parking functions and the algebras AG,Σ and BG,Σ; we also state our two main re-
sults, Theorems 4.2 and 4.4. Theorem 4.2 states that the (G,Σ)-parking functions
biject to a class of oriented forests of G with a property determined by Σ, providing
a combinatorial interpretation of the (G,Σ)-parking functions; Theorem 4.4 states
that the algebras AG,Σ and BG,Σ share a monomial basis corresponding to the
(G,Σ)-parking functions, and consequently share a Hilbert series. We show that
certain known results on monotone monomial ideals and deformations with equal
Hilbert series are special cases of Theorem 4.4. In Section 5 we illustrate Theo-
rem 4.4 and the concept of a (G,Σ)-parking function with examples. In Section 6
we prove Theorem 4.2 by formulating and proving a bijection between the (G,Σ)-
parking functions and a class of oriented forests of G that generalizes the bijection
of Chebikin and Pylyavskyy [5] between the G-parking functions and the oriented
spanning trees of G. In Section 7 we finish the proof of Theorem 4.4. While the
proofs of Theorems 4.2 and 4.4 are inspired by the work of Chebkin-Pylyavskyy [5]
and Postnikov-Shapiro [12], respectively, the combinatorial details of these proofs
are different, due to the added generality of these results. In Section 8 we address
the ρ-parking functions and define two algebras, Aρ and Bρ, also the quotients of
the polynomial ring by a monotone monomial ideal and its deformation. We discuss
the implications of this work on the question of when Aρ and Bρ have equal dimen-
sion and Hilbert series. Finally, in Section 9 we state some conjectures related to
this work and suggest possibilities for future study.

2. G-Parking Functions, Monomial Algebras, and Power Algebras

The G-parking functions [12] are a broad generalization of the classical parking
functions. Let G be a directed graph on the vertices {0, 1, . . . , n}. We allow G to
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A GENERALIZATION OF G-PARKING FUNCTIONS AND RELATED ALGEBRAS 3

have multiple edges, but not loops1. If G is an undirected graph, we may define
the G-parking functions by treating G as a symmetric directed graph and replacing
each undirected edge with a pair of directed edges, one in each direction. For a
nonempty I ⊆ {1, . . . , n} and a vertex i ∈ I, let dI(i) denote the number of edges
from i to vertices outside I. A G-parking function is a sequence of nonnegative
integers (b1, . . . , bn) with the property that for each nonempty I ⊆ {1, . . . , n},
there exists a vertex i ∈ I such that bi < dI(i).

Remark 2.1. The Kn+1-parking functions are the classical parking functions of
size n.

An oriented subtree of a digraph G is a subgraph T ⊆ G such that for every
vertex i ∈ T , there exists a directed path in T from i to 0. A oriented spanning
tree of G is an oriented subtree of G that includes every vertex of G. If G is
an undirected graph, the oriented spanning trees of G correspond to the ordinary
spanning trees of G.

Theorem 2.2. [12] The number of G-parking functions equals the number of ori-
ented spanning trees of G.

Theorem 2.2 implies that the number of G-parking functions can be computed
by the Matrix-Tree Theorem, which gives the number of oriented spanning trees of
a digraph G in terms of its Laplacian matrix LG [15].

Observe that setting G = Kn+1 recovers the fact that the classical parking
functions of size n count the spanning trees of Kn+1.

In [5], Chebikin and Pylyavskyy proved Theorem 2.2 combinatorially by estab-
lishing a bijection between the G-parking functions the oriented spanning trees of G.
We will generalize this bijection to a larger class of parking functions in Section 6.

We now reformulate the G-parking functions algebraically. Let K be a field with
characteristic 0. In the polynomial ring K[x1, . . . , xn], define the monomial

mI =
∏
i∈I

x
dI(i)
i

for all nonempty I ⊆ {1, . . . , n}, and let IG = 〈mI〉 be the ideal in K[x1, . . . , xn]
generated by all such mI . Define the algebra AG = K[x1, . . . , xn]/IG. Then, a

sequence (b1, . . . , bn) is a G-parking function if and only if
∏
i x

bi
i does not equal 0

in AG.
The set of monomials not in IG form a linear basis of AG, known as its standard

monomial basis. These monomials correspond to the G-parking functions; thus, the
number of G-parking functions equals dimAG.

Suppose that G is a graph on {0, 1, . . . , n}. For a nonempty I ⊆ {1, . . . , n},
define DI as the number of edges from vertices in I to vertices outside I. In other
words, DI =

∑
i∈I dI(i). For all nonempty I ⊆ {1, . . . , n}, define

pI =

(∑
i∈I

xi

)DI

and let JG = 〈pI〉 be the ideal generated in K[x1, . . . , xn] by all such pI . Define
the algebra BG = K[x1, . . . , xn]/JG.

1For the remainder of this paper, we will use the terms “directed graph” and “digraph” to
refer to directed graphs and “undirected graph” and “graph” to refer to undirected graphs. We

allow all directed and undirected graphs to have multiple edges, but not loops.
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4 BRICE HUANG

Theorem 2.3. [12] The monomials
∏
i x

bi
i , as (b1, . . . , bn) ranges over all G-

parking functions, form a basis of BG, and

dimAG = dimBG = NG

where NG is the number of spanning trees of G. Moreover, Hilb AG = Hilb BG.

In fact, we can refine the above theorem. For any graph G, fix a total order on
the edges of G. Given a spanning tree T ⊆ G, say that an edge e ∈ T is internally
active if there does not exist an edge e′ ∈ G \ T such that e′ is smaller than e and
T ∪e′ contains a cycle that includes e; say that an edge e ∈ G\T is externally active
if it is the smallest edge of the unique cycle in T ∪e. The internal activity of T is the
number of edges e ∈ T that are internally active, and the external activity of T is
the number of edges e ∈ G\T that are externally active. Although the external and
internal activities of any spanning tree are dependent on the order of the edges, the
number of spanning trees with each pair of internal and external activities (i, j) is
independent of the edge ordering; these are given by the coefficients of the graph’s
Tutte polynomial. For more on tree activities and the Tutte polynomial, see for
example [4].

Theorem 2.3 (continuing from p. 4). The kth graded components AkG and BkG obey

dimAkG = dimBkG = N
|G|−n−k
G

where N
|G|−n−k
G is the number of spanning trees of G with external activity |G| −

n− k.

Theorem 2.3 implies that the number of G-parking functions with sum k equals
the number of spanning trees of G with external activity |G| − n − k. Benson,
Chakrabarty, and Tetali proved this fact combinatorially in [3] by finding an ex-
ternal activity-preserving bijection from the G-parking functions to the spanning
trees of G.

Two results related to Theorem 2.3 were proved by Desjardins in [6]:
Let G be a graph on {0, 1, . . . , n}. For all nonempty I = {i1 < · · · < ir} ⊆

{1, . . . , n}, define

mI = xi1
∏
i∈I

x
dI(i)
i

and

pI =

(∑
i∈I

xi

)DI+1

.

Let IG,1 = 〈mI〉 and JG,1 = 〈pI〉 be the ideals generated by all such mI

and pI , respectively. Define the algebras AG,1 = K[x1, . . . , xn]/IG,1 and BG,1 =
K[x1, . . . , xn]/JG,1.

Define a forest of a graph G as an acyclic edge set of G. Fix a total order on the
edges of G. For a forest F ⊆ G, define an edge e ∈ G \ F to be externally active if
F ∪E contains a cycle and e is the smallest edge of this cycle. The external activity
of a forest is the number of edges e ∈ G \F that are externally active. The number
of forests with each external activity is independent of the chosen edge ordering.

Theorem 2.4. [6] The standard monomial basis of AG,1 is a basis of BG,1. Fur-
thermore, the kth graded components AkG,1 and BkG,1 have dimension equal to the

number of forests F of G with external activity |G| − |F | − k.
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A GENERALIZATION OF G-PARKING FUNCTIONS AND RELATED ALGEBRAS 5

In [13], Postnikov, Shapiro, and Shapiro proved Theorem 2.4 for the case G =
Kn+1. In this case, Postnikov, Shapiro, and Shapiro showed that the algebra BG,1
is isomorphic to an algebra generated by curvature forms on the complete flag
manifold.

Next, suppose G is a graph on {0, 1, . . . , n} with the property that there is at
least one edge between any two vertices. For every nonempty I = {i1 < · · · < ir} ⊆
{1, . . . , n}, let

mI = x
dI(i1)−1
i1

∏
i∈I
i6=i1

x
dI(i)
i

and

pI =

(∑
i∈I

xi

)DI−1

.

Define IG,−1 = 〈mI〉 and JG,−1 = 〈pI〉 as the ideals generated by all such mI and
pI , respectively. Define the algebras AG,−1 = K[x1, . . . , xn]/IG,−1 and BG,−1 =
K[x1, . . . , xn]/JG,−1.

Theorem 2.5. [6] The standard monomial basis of AG,−1 is a basis of BG,−1. The
kth graded components AkG,−1 and BkG,−1 have dimension equal to the number of

spanning trees of G with internal activity 0 and external activity |G| − n− k.

Ideals generated by powers of linear forms, such as BG, BG,1, and BG,−1 have
also been studied extensively in the context of hyperplane arrangements and their
Tutte polynomials; see for example [1] and [6].

3. Monotone Monomial Ideals and their Deformations

Consider a set of monomials {mI} in the polynomial ring K[x1, . . . , xn], one
for each nonempty subset I ⊆ {1, . . . , n}. Such a set is a monotone monomial
family [12] if:

• For all I, mI is a monomial in the variables xi, i ∈ I, and
• If J ⊂ I and i ∈ J , then degxi

mJ ≥ degxi
mI .

A monotone monomial ideal is the ideal generated in K[x1, . . . , xn] by a mono-
tone monomial family.

If we let I = {i1, . . . , ir}, then a homogenous polynomial pI in the variables
xi1 , . . . , xir is an I-deformation of mI if deg(pI) = deg(mI) and

K[xi1 , . . . , xir ] = 〈RmI
〉 ⊕ (pI)

where 〈RmI
〉 denotes the linear span of monomials not divisible by mI and (pI)

denotes the ideal in K[xi1 , . . . , xir ] generated by pI . Furthermore, if pI is an I-
deformation of mI for all nonempty I ⊆ {1, . . . , n} and I = 〈mI〉 is a monotone
monomial ideal, then we say that J = 〈pI〉 is a deformation of I.

Lemma 3.1. [12] Suppose I = {i1, . . . , ir} and mI is a monomial in xi1 , . . . , xir .
If αi1 , . . . , αir are nonzero elements of K, then

(αi1xi1 + · · ·+ αirxir )
deg(mI)

is an I-deformation of mI .
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6 BRICE HUANG

Remark 3.2. Observe that for all graphs G, IG is a monotone monomial ideal and
JG is its deformation. Moreover, JG,1 is a deformation of the monotone monomial
ideal IG,1, and JG,−1 is a deformation of the monotone monomial ideal IG,−1.

The following result is an important property of monotone monomial ideals that
will be important to showing that certain pairs of algebras have equal Hilbert series.

Theorem 3.3. [12] Let I be a monotone monomial ideal in K[x1, . . . , xn], and
let J be a deformation of I. Define the algebras A = K[x1, . . . , xn]/I and B =
K[x1, . . . , xn]/J . The standard monomial basis of A spans B. Consequently, the
Hilbert series Hilb I, Hilb J , Hilb A, and Hilb B obey the termwise inequalities

Hilb I ≤ Hilb J
and

Hilb A ≥ Hilb B.

4. (G,Σ)-Parking Functions

In this section we present a generalization of the notion of a G-parking function.
Let G be a digraph on {0, 1, . . . , n} and Σ be a set of subsets of {1, . . . , n} with
the downward inclusion property that if I ∈ Σ and J ⊂ I, then J ∈ Σ. As before,
if G is an undirected graph, we may treat it as a symmetric directed graph. Let
IG,Σ = 〈mI〉 be the ideal in K[x1, . . . , xn] generated by

mI =


xi1
∏
i∈I

x
dI(i)
i I ∈ Σ∏

i∈I
x
dI(i)
i I 6∈ Σ

as I = {i1 < · · · < ir} ranges over all nonempty subsets of {1, . . . , n}. Define
AG,Σ = K[x1, . . . , xn]/IG,Σ. The sequence of nonnegative integers (b1, . . . , bn) is a

(G,Σ)-parking function if and only if
∏
i x

bi
i is nonvanishing in AG,Σ. Because the

monomials not in IG,Σ comprise the standard monomial basis of AG,Σ, the number
of (G,Σ)-parking functions equals dimAG,Σ.

Remark 4.1. The (G, {{∅}})-parking functions are the G-parking functions.

Define a oriented forest of a directed graph as a collection of vertices, some of
which are designated roots, and directed edges among these vertices, such that from
each vertex there is a unique path (which may have length 0) to a root. Define a
proper forest as an oriented forest in which each vertex is rooted at a vertex smaller
than or equal to itself. Define a Σ-proper forest as a proper forest in which the
set of vertices not rooted at 0 is an element of Σ. For undirected graphs, define
a Σ-forest as an acyclic edge set in which the set of vertices not connected to 0
is an element of Σ. In the case that a graph is undirected, its Σ-proper forests
correspond to its Σ-forests.

The first main result of this paper is:

Theorem 4.2. For any digraph G and any Σ with the downward inclusion property,
the (G,Σ)-parking functions biject to the (n+ 1)-vertex Σ-proper forests of G.

We will present this bijection in Section 6.

Remark 4.3. When Σ = {{∅}}, we recover Theorem 2.2 from Theorem 4.2.
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Suppose that G is a graph on {0, 1, . . . , n} and Σ is a set of subsets of {1, . . . , n}
with the downward inclusion property. Let JG,Σ = 〈pI〉 be the ideal in K[x1, . . . , xn]
generated by

pI =



(∑
i∈I

xi

)DI+1

I ∈ Σ(∑
i∈I

xi

)DI

I 6∈ Σ

as I ranges over all nonempty subsets of {1, . . . , n}. Define the algebra BG,Σ =
K[x1, . . . , xn]/JG,Σ. Observe that the downward inclusion property ensures that
IG,Σ is a monotone monomial ideal, and that JG,Σ is a deformation of IG,Σ.

Our second main result is:

Theorem 4.4. For all undirected graphs G and all Σ with the downward inclu-
sion property, the monomials

∏
i x

bi
i , as (b1, . . . , bn) ranges over all (G,Σ)-parking

functions, form a basis of BG,Σ, and

dimAG,Σ = dimBG,Σ = NG,Σ

where NG,Σ is the number of Σ-forests of G. Furthermore, the kth graded compo-
nents AkG,Σ and BkG,Σ have dimension equal to the number of Σ-forests F of G with

external activity |G| − |F | − k.

Theorem 4.4 establishes a large class of monotone monomial ideals and their
deformations with equal Hilbert series. We will prove this theorem in Sections 6
and 7.

Remark 4.5. When Σ = {{∅}}, Theorem 4.4 reduces to Theorem 2.3. When
Σ = P({1, . . . , n}), Theorem 4.4 reduces to Theorem 2.4. Theorem 4.4 interpolates
between and generalizes these two results.

5. Examples

To demonstrate Theorem 4.4 and the notions of (G,Σ)-parking functions and
Σ-forests, we present examples of Theorem 4.4 for the graph

0

1 2

3
q
q

q
q

G =

and various values of Σ.

Example 5.1. Let Σ = {{∅}}. In this case, the (G,Σ)-parking functions are the
G-parking functions and the Σ-proper forests of G are the spanning trees of G. G
has four spanning trees:

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

We have

IG,Σ = 〈x2
1, x

2
2, x

2
3, x1x2, x

2
1x

2
3, x2x3, x1x

0
2x3〉
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8 BRICE HUANG

and

JG,Σ = 〈x2
1, x

2
2, x

2
3, (x1 + x2)2, (x1 + x3)4, (x2 + x3)2, (x1 + x2 + x3)2〉.

The monomials not in IG,Σ are

1, x1, x2, x3.

These monomials are a basis for AG,Σ and BG,Σ and give rise to four (G,Σ)-parking
functions. The algebras AG,Σ and BG,Σ both have dimension 4, the number of
spanning trees of G, and both have Hilbert series 1 + 3t.

Example 5.2. Let Σ = {{∅}, {1}, {2}, {3}}. The Σ-forests of G are forests of G in
which the set of vertices not connected to 0 is {∅}, {1}, {2}, or {3}. In addition to
the four spanning trees above, three more forests of G are Σ-forests for this Σ:

q
q

q
q

q
q

q
q

q
q

q
q

In this case,

IG,Σ = 〈x3
1, x

3
2, x

3
3, x1x2, x

2
1x

2
3, x2x3, x1x

0
2x3〉

and

JG,Σ = 〈x3
1, x

3
2, x

3
3, (x1 + x2)2, (x1 + x3)4, (x2 + x3)2, (x1 + x2 + x3)2〉.

The monomials not in IG,Σ are

1, x1, x2, x3, x
2
1, x

2
2, x

2
3

which correspond to seven (G,Σ)-parking functions. These monomials form a basis
for AG,Σ and BG,Σ. The dimension of AG,Σ and BG,Σ is 7, which equals the
number of Σ-proper forests of G, and the common Hilbert Series of AG,Σ and BG,Σ
is 1 + 3t+ 3t2.

Example 5.3. Let G = P({1, 2, 3}). In this case, any forest of G is a Σ-forest. In
addition to the seven forests listed above, there are eight more:

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

We have

IG,Σ = 〈x3
1, x

3
2, x

3
3, x

2
1x2, x

3
1x

2
3, x

2
2x3, x

2
1x

0
2x3〉

and

JG,Σ = 〈x3
1, x

3
2, x

3
3, (x1 + x2)3, (x1 + x3)5, (x2 + x3)3, (x1 + x2 + x3)3〉.

The monomials not in IG,Σ, are

1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3, x1x

2
2, x1x

2
3, x2x

2
3, x1x2x3, x1x2x

2
3,
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A GENERALIZATION OF G-PARKING FUNCTIONS AND RELATED ALGEBRAS 9

which correspond to 15 (G,Σ)-parking functions. These form a basis of AG,Σ and
BG,Σ. The dimension of AG,Σ and BG,Σ is 15, the number of forests of G, and their
Hilbert series is 1 + 3t+ 6t2 + 4t3 + t4.

6. A Bijection from (G,Σ)-Parking Functions to Σ-Proper Forests

In this section we give a bijection from the (G,Σ)-parking functions to the (n+1)-
vertex Σ-proper forests of G. Let PG,Σ and FG,Σ denote the sets of (G,Σ)-parking
functions and (n+ 1)-vertex Σ-proper forests of G, respectively.

Say that an oriented forest F is a subforest of an oriented forest F ′ if the following
conditions hold:

(1) The vertices of F are a subset of the vertices of F ′

(2) The edges of F are a subset of the edges of F ′

(3) The roots of F are a subset of the roots of F ′

Observe that by the downward inclusion property, any subforest of a Σ-proper
forest must be a Σ-proper forest.

Furthermore, for any oriented forest F and any vertex i ∈ F , let rF (i) and eF (i)
denote, respectively, the vertex at which i is rooted in F and the edge coming out
of i in F , if it exists.

For every Σ-proper forest F ⊆ G, we assign a total order π(F ) to the vertices of
F . Let i >π(F ) j denote that i is larger than j in this order. A set of such orders
Π(G,Σ) is a proper set of forest orders if the following conditions hold:

(1) For all F , if eF (i) = (i, j), then i >π(F ) j.
(2) For all F , if vertices i, j ∈ F satisfy rF (i) > rF (j), then i >π(F ) j.
(3) For all F , if F ′ is a subforest of F , then the orders π(F ) and π(F ′) are

consistent.

One example of a proper set of forest orders is the breadth-first search order,
which is defined as follows: let hF (i) denote the length of the unique path in F
from i to a root; for all F and all i, j ∈ F , let i >π(F ) j if:

• rF (i) > rF (j), or
• rF (i) = rF (j) and hF (i) > hF (j), or
• rF (i) = rF (j) and hF (i) = hF (j) and i > j.

Fix a proper set of forest orders Π(G,Σ). If G has multiple edges, fix a total
order on each set of multiple edges.

For each Σ-proper forest F ⊆ G and each vertex i ∈ G, we define a total order
on the edges from i to vertices in F . If e = (i, j1) and e′ = (i, j2) are edges from i
to vertices in F , let e >π(F ) e

′ if j1 >π(F ) j2, or if j1 = j2 and e is larger than e′ in
the fixed order of multiple edges.

Define the function ΘΠ,G,Σ : FG,Σ → PG,Σ as follows: for all F , let ΘΠ,G,Σ(F ) =
(b1, . . . , bn), where bi is:

• the number of edges e from i such that e <π(F ) eF (i), if eF (i) exists, and
• the number of edges from i to vertices j such that j <π(F ) i, otherwise.

Proposition 6.1. ΘΠ,G,Σ is a bijection between PG,Σ and FG,Σ.

Remark 6.2. Observe that this bijection preserves Chebikin and Pylyavskyy’s
bijection [5] between G-parking functions and oriented spanning trees of G.

We construct a function ΦΠ,G,Σ : PG,Σ → FG,Σ, which we claim is the inverse
of ΘΠ,G,Σ: let P ∈ PG,Σ. Let the oriented forest F0 consist of the vertex 0. We
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10 BRICE HUANG

construct oriented forests F1, . . . , Fn = ΦΠ,G,Σ(P ) by the following algorithm, run
for m = 0, . . . , n− 1:

Let Um consist of the set of vertices i 6∈ Fm with more than bi outgoing edges to
vertices in Fm. We consider two cases:

(1) If |Um| > 0: For each vertex i ∈ Um, let ei denote the bi+1th smallest edge
from i to Fm in the order π(Fm). Let fm be the oriented forest consisting
of Fm, all vertices i ∈ U , and all edges ei, for i ∈ U . Let vm+1 be the
smallest vertex in Um in the order π(fm). Construct Fm+1 by adding vm+1

and evm+1
to Fm.

(2) If |Um| = 0: Let vm+1 be the numerically smallest vertex not in Fm. Con-
struct Fm+1 by adding vm+1 to Fm without adding an edge.

Example 6.3. Let

G =

s s
s s

s

-�
��

�
��
�*

?

H
HHH

HHHj

-

�
�

��	

@
@
@@R� �
���

���� ?

6

H
HH

H
HH

HY

�0

1

2

3

4

and Σ = P({1, 2, 3, 4}). Let our proper set of forest orders Π(G,Σ) be the breadth-
first search order. Consider the (G,Σ)-parking function P = (3, 2, 0, 0). The algo-
rithm for constructing ΦΠ,G,Σ(P ) constructs the following oriented forests:

s
s��

���
���

F1

s s
s��

���
����

F2

s s
s s��

���
����

F3

s s
s s

s
�
�

��	 ��
���

����
F4

We have U0 = {3, 4}, so f0 consists of the vertices 0, 3, 4, and the edges e3 = (3, 0)
and e4 = (4, 0). 3 is smaller than 4 in π(f0), so we construct F1 by adding the vertex
3 and the edge (3, 0) to F0.

Then, U1 = {4} and e4 = (4, 0), so we construct F2 by adding the vertex 4 and
the edge (4, 0) to F1.

Next, U2 is empty. Thus, we construct F3 by adding 1, the smallest vertex
outside of F2, without adding an edge.

Lastly, U3 = {2} and e2 = (2, 1), so we construct F4 = ΦΠ,G,Σ(P ) by adding the
vertex 2 and the edge (2, 1) to F3.

Observe that the order π(F4) is 0 <π(F4) 3 <π(F4) 4 <π(F4) 1 <π(F4) 2. Thus
ΘΠ,G,Σ(F4) = (3, 2, 0, 0), as expected.

We now prove that this is a bijection. We first show that ΘΠ,G,Σ and ΦΠ,G,Σ

map the sets FG,Σ and PG,Σ to each other.

Lemma 6.4. If F ∈ FG,Σ, then ΘΠ,G,Σ(F ) ∈ PG,Σ.

Proof. Let ΘΠ,G,Σ(F ) = (b1, . . . , bn). Consider any nonempty I ⊆ {1, . . . , n}, and
let j be the minimal element of I in the order π(F ). We consider two cases:

(1) eF (j) exists: By definition of ΘΠ,G,Σ, there are bj edges smaller than eF (j)
in π(F ). Because Π(G,Σ) is a proper set of forest orders and j is minimal
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A GENERALIZATION OF G-PARKING FUNCTIONS AND RELATED ALGEBRAS 11

in the order π(F ), eF (j) and the bj edges smaller than it in π(F ) must go
to vertices outside I. Therefore dI(j) ≥ bj + 1, and degxj

mI ≥ dI(j) >

bj = degxj

∏
i x

bi
i . So, mI does not divide

∏
i x

bi
i .

(2) eF (j) does not exist: j must be a root of F . Because Π(G,Σ) is a proper set
of forest orders and j is minimal in π(F ), we must have rF (i) ≥ rF (j) = j
for all i ∈ I. Because F is a proper forest, all vertices i ∈ I must satisfy
i ≥ rF (i) ≥ j; thus j is the numerically smallest vertex in I. Moreover,
because rF (i) ≥ rF (j) = j > 0 for all i ∈ I, all elements of I are not rooted
at 0; hence I ∈ Σ. This implies degxj

mI = dI(j) + 1. By definition of

ΘΠ,G,Σ, there are bj edges from j to vertices smaller than j in π(F ). By
minimality of j in π(F ), all of these edges must go to vertices outside I.

Therefore dI(j) ≥ bj . So, degxj
mI = dI(j)+1 ≥ bj+1 > bj = degxj

∏
i x

bi
i .

Thus mI does not divide
∏
i x

bi
i .

Therefore
∏
i x

bi
i is not divisible by any mI and does not vanish in AG,Σ. �

Lemma 6.5. Let P ∈ PG,Σ. In the algorithm for constructing ΦΠ,G,Σ(P ), if
|Um| = 0, then the set of vertices {0, 1, . . . , n} \ Fm ∈ Σ.

Proof. Let P = (b1, . . . , bn) and {0, 1, . . . , n} \Fm = I. Suppose for sake of contra-

diction that I 6∈ Σ. Then mI =
∏
i∈I x

dI(i)
i . Because P ∈ PG,Σ, mI does not divide∏

i x
bi
i . Thus, there exists i ∈ I such that dI(i) > bi. But dI(i) is the number of

edges from i to Fm, so there exists i ∈ I with more than bi edges to Fm. This
contradicts |Um| = 0. �

Lemma 6.6. If P ∈ PG,Σ, then ΦΠ,G,Σ(P ) ∈ FG,Σ.

Proof. Let ΦΠ,G,Σ(P ) = F . It is clear that each of the Fm is an oriented forest.
Because each Fm has one more vertex than the previous, F = Fn has n+1 vertices.
F is a proper forest because the roots of F are precisely the vertices that were added
to some Fm where |Um| = 0, and each such vertex was the numerically smallest
vertex not in that Fm when it was added.

If every vertex in F is rooted at 0, F is clearly Σ-proper. Else, let Fm be such
that every vertex in Fm is rooted at 0 and m is maximal. Then |Um| = 0; by
Lemma 6.5, the set of vertices {0, 1, . . . , n} \ Fm ∈ Σ. Hence, the set of vertices of
F that are not rooted at 0 is an element of Σ. Therefore, F is an (n + 1)-vertex
Σ-proper forest. �

Next we show that ΘΠ,G,Σ and ΦΠ,G,Σ are inverses.

Lemma 6.7. Let P ∈ PG,Σ and F = ΦΠ,G,Σ(P ). For m = 1, . . . , n, let vm be the
vertex in Fm but not in Fm−1. Then 0 <π(F ) v1 <π(F ) v2 <π(F ) · · · <π(F ) vn.

Proof. Because Π(G,Σ) is a proper set of forest orders and 0 is the smallest root
of F , 0 is minimal in π(F ). Therefore 0 <π(F ) v1. We inductively prove that
0 <π(F ) v1 <π(F ) · · · <π(F ) vm. Suppose 0 <π(F ) v1 <π(F ) · · · <π(F ) vm; we show
that vm <π(F ) vm+1. We consider three cases:

(1) |Um| = 0: vm+1 must be a root of F . As Fm is a subforest of F , rF (vm) =
rFm(vm) ∈ Fm. If rF (vm)=0, then rF (vm) < vm+1 = rF (vm+1), so
vm <π(F ) vm+1 because Π(G,Σ) is a proper set of forest orders. Else,
let Fi be such that rF (vm) ∈ Fi and i is minimal. rF (vm) must be the
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12 BRICE HUANG

smallest vertex not in Fi−1. But, vm+1 is not in Fi−1, so rF (vm) < vm+1 =
rF (vm+1). Because Π(G,Σ) is a proper set of forest orders, vm <π(F ) vm+1.

(2) |Um| > 0, vm+1 6∈ Um−1: vm+1 has at most bvm+1
edges to Fm−1 but at least

bvm+1
+ 1 edges to Fm, so G must have at least one edge from vm+1 to vm.

Moreover, by the inductive hypothesis, vm is the maximal vertex in Fm in
the order π(F ). As Fm is a subforest of F , vm is also the maximal vertex in
Fm in the order π(Fm). Thus the bvm+1

+1th smallest edge from vm+1 to Fm
in the order π(Fm) is from vm+1 to vm, and F includes the edge (vm+1, vm).
Because Π(G,Σ) is a proper set of forest orders, vm <π(F ) vm+1.

(3) |Um| > 0, vm+1 ∈ Um−1: Because vm+1 ∈ Um−1, |Um−1| > 0. So, vm ∈
Um−1. Let evm and evm+1

denote, respectively, the bvm + 1th smallest edge

from vm to Fm−1 in the order π(Fm−1) and the bvm+1 + 1th smallest edge
from vm+1 to Fm−1 in the order π(Fm−1). By the inductive hypothesis, vm
is the largest vertex in Fm in π(F ); it is therefore also the largest vertex in
Fm in π(Fm). So, in π(Fm), all edges from vm+1 to vm are larger than edges
from vm+1 to vertices in Fm−1; then, because there are at least bvm+1

+ 1
edges from vm+1 to Fm−1 and the orders π(Fm−1) and π(Fm) are consistent,
the bvm+1 + 1th smallest edge from vm+1 to Fm−1 in π(Fm−1) is also the

bvm+1
+1th smallest edge from vm+1 to Fm in π(Fm). Hence Fm+1 is formed

by adding evm+1
and vm+1 to Fm. Let f be the oriented forest consisting

of Fm−1, vm, vm+1, evm and evm+1
. f is a subforest of both fm−1 and

F , so π(f) is consistent with both π(fm−1) and π(F ). vm <π(fm−1) vm+1

because vm is the smallest vertex in Um−1 in the order π(fm−1). Hence
vm <π(f) vm+1, and vm <π(F ) vm+1.

�

Lemma 6.8. Let P ∈ PG,Σ and F = ΦΠ,G,Σ(P ). If |Um−1| = 0, then vm has
exactly bvm edges to vertices in Fm−1.

Proof. Suppose |Um−1| = 0. Then vm is the numerically smallest vertex not in
Fm−1. Let I be the set of vertices {0, 1, . . . , n}\Fm−1. By Lemma 6.5, I ∈ Σ. Thus

mI = xvm
∏
i∈I x

dI(i)
i . Because |Um−1| = 0, each vertex i ∈ I has at most bi edges to

vertices in Fm−1. Hence dI(i) ≤ bi for all i ∈ I. In particular, dI(vm) ≤ bvm . But,∏
i x

bi
i is not divisible by mI . This is only possible if degxvm

mI = dI(vm)+1 > bvm ,

which requires that dI(vm) = bvm . Therefore vm has exactly bvm edges to Fm−1. �

Lemma 6.9. Let P ∈ PG,Σ. Then ΘΠ,G,Σ(ΦΠ,G,Σ(P )) = P .

Proof. Let P = (b1, . . . , bn), F = ΦΠ,G,Σ(P ), and ΘΠ,G,Σ(F ) = P ′ = (b′1, . . . , b
′
n).

As before, let F1, . . . , Fn = F be the oriented forests made in the construction of
ΦΠ,G,Σ(P ), and let vm (1 ≤ m ≤ n) be the vertex in Fm but not Fm−1. For each
m, we consider two cases:

(1) eF (vm) exists: The edge eF (vm) must go to a vertex in Fm−1. By Lemma 6.7,
all edges e from vm such that e <π(F ) eF (vm) must go to vertices in
Fm−1. By construction, there are bvm edges e from vm to Fm−1 such that
e <π(Fm−1) eF (vm). Because the orders π(Fm−1) and π(F ) are consistent,
there are bvm edges e from vm such that e <π(F ) eF (vm). Thus b′vm = bvm .

(2) eF (vm) does not exist: Then |Um−1| = 0. By Lemma 6.8, vm has exactly
bvm edges to vertices in Fm−1. By Lemma 6.7, these are precisely the edges
from vm to vertices j such that j <π(F ) vm. Therefore b′vm = bvm .
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A GENERALIZATION OF G-PARKING FUNCTIONS AND RELATED ALGEBRAS 13

It follows that b′vm = bvm for all m. Therefore P ′ = P . �

Lemma 6.10. Let F ∈ FG,Σ. Then ΦΠ,G,Σ(ΘΠ,G,Σ(F )) = F .

Proof. Let P = (b1, . . . , bn) = ΘΠ,G,Σ(F ) and F ′ = ΦΠ,G,Σ(P ). Let F1, . . . , Fn =
F ′ be the oriented forests made in the construction of ΦΠ,G,Σ(P ), and let vm (1 ≤
m ≤ n) be the vertex in Fm but not Fm−1. We prove by induction on m that Fm
is a subforest of F whose vertices are the m + 1 smallest vertices of F in π(F ). 0
is the smallest vertex in the order π(F ), so the claim is true for m = 0.

Assume that Fm−1 is a subforest of F whose vertices are the m smallest vertices
of F in π(F ). Let v′m be the m + 1th smallest vertex of F in π(F ). We consider
two cases:

(1) eF (v′m) exists: Let eF (v′m) = (v′m, v). Because Π(G,Σ) is a proper set of
forest orders, v <π(F ) v

′
m. Thus v ∈ Fm−1. Because Fm−1 consists of the m

smallest vertices of F in π(F ), if an edge e from v′m satisfies e <π(F ) eF (v′m),
then e is to a vertex in Fm−1. By definition of ΘΠ,G,Σ, there are bv′m edges
from v′m such that e <π(F ) eF (v′m). These edges and the edge eF (v′m) all
go from v′m to vertices in Fm−1; hence v′m ∈ Um−1.

For each i ∈ Um−1, let ei be the bi + 1th smallest edge from i to Fm−1

in the order π(Fm−1). Because Fm−1 consists of the m smallest vertices of
F in π(F ), all edges e coming out of i ∈ Um−1 and satisfying e <π(F ) ei
must go to a vertex in Fm−1. Moreover, because the orders π(Fm−1) and
π(F ) are consistent, an edge from i satisfies e <π(Fm−1) ei if and only if it
satisfies e <π(F ) ei. Thus, for each i ∈ Um−1 there are exactly bi edges e
from i satisfying e <π(F ) ei. By choice of bi, ei is an edge in F . It follows
that fm−1, the oriented forest consisting of Fm−1, all i ∈ Um−1, and all ei
for i ∈ Um−1, is a subforest of F . So, the orders π(fm−1) and π(F ) are
consistent. Because v′m ∈ Um−1 and v′m is the smallest vertex not in Fm
in the order π(F ), v′m is the smallest vertex in Um−1 in the order π(fm−1).
Therefore Fm consists of Fm−1, v′m, and eF (v′m) and is a subforest of F
whose vertices are the m+ 1 smallest vertices of F in π(F ).

(2) eF (v′m) does not exist: v′m is a root of F . Because v′m is the smallest vertex
in π(F ) not in Fm−1, no edges in F go from a vertex outside Fm−1 to a
vertex in Fm−1. Because Π(G,Σ) is a proper set of forest orders, v′m must
be the numerically smallest root of F outside of Fm−1; moreover, because F
is a proper forest, v′m must be the numerically smallest vertex of F outside
of Fm−1. By definition of ΘΠ,G,Σ, each i 6∈ Fm−1 has at most bi edges to
Fm−1; hence |Um−1| = 0. Then Fm consists of Fm−1 and v′m; therefore Fm
is a subforest of F whose vertices are the m + 1 smallest vertices of F in
π(F ).

This implies that Fn = F ′ is a subforest of F whose vertices are the vertices of
F . Thus F ′ = F . �

Proof of Proposition 6.1: Proposition 6.1 follows from Lemmas 6.4, 6.6, 6.9, and
6.10. �

Hence the (G,Σ)-parking functions biject to the Σ-proper forests of G, as claimed
by Theorem 4.2.
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14 BRICE HUANG

7. Σ-Forest Algebras

Let G be a graph on {0, . . . , n} and Σ be a set of subsets of {1, . . . , n} with the
downward inclusion property.

For each nonempty I ⊆ {1, . . . , n}, letHI denote the set of edges between vertices
in I and vertices in {0, 1, . . . , n} \ I.

Associate with each edge e ∈ G a commutative variable φe, and let ΦG,Σ be the
algebra over K generated by the φe and obeying

φ2
e = 0 For all edges e ∈ G

and ∏
e∈HI

φe = 0 For all nonempty I 6∈ Σ.

Define a set of edges H ⊆ G to be Σ-good if
∏
e∈H φe does not vanish in ΦG,Σ.

Equivalently, H is Σ-good if the set of vertices not connected to 0 in G \H is an
element of Σ.

For i = 1, . . . , n, define

Xi =
∑

e=(i,j)∈G
i<j

φe −
∑

e=(i,j)∈G
i>j

φe

and let CG,Σ be the subalgebra of ΦG,Σ generated by X1, . . . , Xn.

Proposition 7.1. For all graphs G and all Σ,

dim CG,Σ = NG,Σ

where NG,Σ equals the number of Σ-forests of G. Moreover, the kth graded com-
ponent CkG,Σ has dimension equal to the number of Σ-forests F of G with external

activity |G| − |F | − k.

Define SG,Σ as the subspace of K[y1, . . . , yn] linearly spanned by

αH =
∏
e∈H

(αe)

as H ranges over all Σ-good subgraphs of G, where αe = yi − yj for e = (i, j) with
0 < i < j and αe = −yj for e = (0, j).

Lemma 7.2. For any Σ-good edge set H ⊆ G and any sequence a = (a1, . . . , an)
with sum |H|, the coefficient of

∏
e∈H φe in the expansion 1

a1!···an!X
a1
1 · · ·Xan

n equals

the coefficient of ya11 · · · yann in the expansion αH .

Proof. For fixed H and a, define an (H, a)-valid assignment as an assignment of
each edge of H to one of its endpoints such that each vertex i ∈ {1, . . . , n} has ai
edges assigned to it. In each (H, a)-valid assignment, let the value of an edge be
+1 if it is assigned to its smaller endpoint, and −1 if it is assigned to its larger
endpoint. Define the value of an (H, a)-valid assignment to be the product of the
values of its edges. Finally define f(H, a) as the sum of the values of all (H, a)-valid
assignments.

The coefficient of
∏
e∈H φe in the expansion 1

a1!···an!X
a1
1 · · ·Xan

n and the coeffi-

cient of ya11 · · · yann in the expansion αH both count f(H, a) - the first by choosing
edges to assign to each vertex, and the second by choosing the vertex to which each
edge is assigned. Therefore these coefficients are equal. �
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A GENERALIZATION OF G-PARKING FUNCTIONS AND RELATED ALGEBRAS 15

Lemma 7.3. For all G,Σ and all k, the kth graded components CkG,Σ and SkG,Σ
obey dim CkG,Σ = dimSkG,Σ.

Proof. Define bH,a = f(H, a), and let the matrix B = (bH,a), as H ranges over all
Σ-good sets of k edges and a = (a1, . . . , an) ranges over all sequences of length n
with sum k. Then, by Lemma 7.2, the dimensions of the kth graded components of
CG,Σ and SG,Σ both equal the rank of B. Therefore dim CkG,Σ = dimSkG,Σ. �

Fix an order on the edges of G. For all Σ-forests F in G, let F+ be the graph
consisting of F and all externally active edges.

Lemma 7.4. As F ranges over all Σ-forests of G, the αG\F+ linearly span SG,Σ.

Proof. Suppose for sake of contradiction that there exists a Σ-good edge set H
such that αH cannot be expressed as a linear combination of the αG\F+ . Out of
all such edge sets, let H be lexicographically maximal with respect to the order of
G’s edges. Observe that because H is Σ-good, all spanning forests of G \ H are
Σ-forests. We consider two cases:

(1) No edge e ∈ H is an externally active edge of any spanning forest F ⊆ G\H:
We claim that G \ H has a spanning forest F such that F+ includes all
edges of G \H. We may construct such an F by starting with an arbitrary
spanning forest f and repeatedly applying the following algorithm: if f+ =
G\H, stop; otherwise, let e ∈ G\H be an edge not in f+. Because e is not
externally active with respect to f , there exists an edge e′ in the cycle in
f∪e that is smaller than e. Modify f by replacing e′ with e. This algorithm
must terminate because it replaces an edge in f by a larger edge at each
step. So, there exists F such that F+ = G \H. Consequently H = G \F+,
and αH = αG\F+ is a contradiction.

(2) There exists an edge e ∈ H that is externally active in a spanning forest
F ⊆ G \H: Let e, e1, e2, . . . , ek be a cycle in G such that e is the minimal
edge in this cycle and e1, . . . , ek ∈ G \H. Then, αe = −(αe1 + · · ·+ αen).
Let H1, H2, . . . ,Hn be the Σ-good edge sets obtained from H by replacing
e with e1, e2, . . . , en, respectively. These are lexicographically larger than
H, so αH1 , αH2 , . . . , αHn are all expressible as linear combinations of the
αG\F+ . But now αH = −(αH1

+ · · ·+ αHn
) is a contradiction.

�

Lemma 7.5. As F ranges over all Σ-forests of G, the αG\F+ form a linear basis
of SG,Σ.

Proof. By Lemma 7.4, it suffices to prove dimSG,Σ = NG,Σ, where NG,Σ denotes
the number of Σ-forests of G. We induct on the number of edges in G.

Say a Σ-forest F is a minimal Σ-forest if the forest produced by removing any
edge e ∈ F from F is not a Σ-forest. If G is a minimal Σ-forest, then dimSG,Σ =
1 = NG,Σ. If G is a forest that is not a Σ-forest, then dimSG,Σ = 0 = NG,Σ. This
proves the induction’s base case.

If G has at least one edge, choose an edge e = (i, j) where i < j. For all I ∈ Σ,
define

fe(I) =


I \ {j} j ∈ I
I \ {i} j 6∈ I, i ∈ I
I otherwise
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16 BRICE HUANG

and let Σe = {fe(I)|I ∈ Σ}. It is clear that Σe also has the downward inclusion
property.

Let G − e be G with e removed; let G/e be G with e contracted and i and j
both relabeled as i. The Σ-forests of G that do not include e are the Σ-forests
of G − e, and the Σ-forests of G that include e biject to the Σe-forests of G/e by
contraction of e. Thus NG,Σ = NG−e,Σ + NG/e,Σe

. By the inductive hypothesis,
dimSG−e,Σ = NG−e,Σ and dimSG/e,Σe

= NG/e,Σe
.

Let S ′G,Σ denote the span of the αH , where H is Σ-good and e ∈ H. Let S ′′G,Σ
denote the span of the αH , where H is Σ-good and e 6∈ H. We have dimS ′G,Σ =
dimSG−e,Σ because these spaces are isomorphic as vector spaces via multiplication
by αe. Let p be the vector space homomorphism that takes elements of SG,Σ modulo
yi − yj . Then p(S ′′G,Σ) = SG/e,Σe

. Thus

dimS ′′G,Σ = dimSG/e,Σe
+ dim ker(p).

But, S ′G,Σ ∩ S ′′G,Σ ⊆ ker(p). Hence

dimS ′′G,Σ ≥ dimSG/e,Σe
+ dim(S ′G,Σ ∩ S ′′G,Σ).

Because S ′G,Σ and S ′′G,Σ together span SG,Σ, we have

dimSG,Σ = dimS ′G,Σ + dimS ′′G,Σ − dim(S ′G,Σ ∩ S ′′G,Σ).

Summing the last two relations yields

dimSG,Σ ≥ dimS ′G,Σ + dimSG/e,Σe
= dimSG−e,Σ + dimSG/e,Σe

By induction, the last quantity equals NG−e,Σ + NG/e,Σe
= NG,Σ, so dimSG,Σ ≥

NG,Σ. But Lemma 7.4 implies dimSG,Σ ≤ NG,Σ. Thus dimSG,Σ = NG,Σ. �

Proof of Proposition 7.1: Proposition 7.1 follows from Lemmas 7.3 and 7.5. �

Recall that BG,Σ = K[x1, . . . , xn]/JG,Σ, where JG,Σ = 〈pI〉 and

pI =



(∑
i∈I

xi

)DI+1

I ∈ Σ(∑
i∈I

xi

)DI

I 6∈ Σ

as I ranges over all nonempty subsets of {1, . . . , n}.

Lemma 7.6. CG,Σ is a subalgebra of BG,Σ.

Proof. For all I ∈ Σ, (∑
i∈I

Xi

)DI+1

=

(∑
e∈HI

±φe

)DI+1

= 0

because each term of the expansion
(∑

e∈HI
±φe

)DI+1
is divisible by the square of

some φe. For all I 6∈ Σ,(∑
i∈I

Xi

)DI

=

(∑
e∈HI

±φe

)DI

= 0

because the only square-free term of the expansion
(∑

e∈HI
±φe

)DI
is
∏
e∈H φe,

which is 0 because I 6∈ Σ. �
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We can now prove Theorem 4.4.
Proof of Theorem 4.4: By Theorem 3.3, we have the termwise inequality of

Hilbert series

Hilb AG,Σ ≥ Hilb BG,Σ
because JG,Σ is a deformation of IG,Σ. By Lemma 7.6,

Hilb BG,Σ ≥ Hilb CG,Σ.

Therefore

Hilb AG,Σ ≥ Hilb BG,Σ ≥ Hilb CG,Σ.
But, by Theorem 4.2 and Proposition 7.1,

dimAG,Σ = NG,Σ = dim CG,Σ.

Thus we in fact have

dimAG,Σ = dimBG,Σ = dim CG,Σ = NG,Σ

and

Hilb AG,Σ = Hilb BG,Σ = Hilb CG,Σ.
Moreover, by Proposition 7.1, dimAkG,Σ = dimBkG,Σ = dim CkG,Σ equals the number

of Σ-forests F of G with external activity |G| − |F | − k, and the theorem is proved.
�

8. ρ-Parking Functions

The ρ-parking functions are another generalization of the classical parking func-
tions developed in [11] and [16]. Let ρ = (ρ1, . . . , ρn) be a nonincreasing sequence
of positive integers. A sequence (b1, . . . , bn) is a ρ-parking function if and only if its
decreasing rearrangement is termwise less than ρ. Equivalently, for all nonempty
I ⊆ {1, . . . , n}, define

mI =

(∏
i∈I

xi

)ρ|I|

pI =

(∑
i∈I

xi

)|I|ρ|I|
.

Let Iρ = 〈mI〉 and Jρ = 〈pI〉 be ideals in K[x1, . . . , xn] generated by all such
mI and pI , respectively. Define the algebras Aρ = K[x1, . . . , xn]/Iρ and Bρ =
K[x1, . . . , xn]/Jρ. A sequence (b1, . . . , bn) is a ρ-parking function if and only if∏
i x

bi
i is nonvanishing in Iρ.

Remark 8.1. When ρ = (n, n− 1, . . . , 1), the ρ-parking functions are the classical
parking functions of size n.

Observe that Aρ is a monotone monomial ideal and Bρ is its deformation. While
it is not true that Hilb Aρ and Hilb Bρ are always equal, Theorem 3.3 implies that:

Proposition 8.2. The monomials
∏
i x

bi
i , as (b1, . . . , bn) ranges over all ρ-parking

functions, span Bρ, and

Hilb Aρ ≥ Hilb Bρ.

Furthermore,
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Proposition 8.3. When ρ = (l + (n − 1)k, l + (n − 2)k, . . . , l) is a decreasing
arithmetic sequence, the Hilbert series Hilb Aρ and Hilb Bρ are equal.

This is because when ρ = (l+ (n−1)k, l+ (n−2)k, . . . , l), Iρ and Jρ are IG and

JG, where G = Kk,l
n+1, the graph with k edges between any two nonzero vertices

and l edges between any nonzero vertex and 0. Hence Theorem 2.3 implies that Aρ
and Bρ have equal Hilbert series.

We claim that Hilb Aρ and Hilb Bρ for another class of ρ as well:

Proposition 8.4. When ρ = (l + (n− 1)k + 1, l + (n− 2)k, . . . , l) is a decreasing
arithmetic sequence whose largest term is increased by 1, the Hilbert series Hilb Aρ
and Hilb Bρ are equal.

Observe that when ρ = (l+ (n− 1)k+ 1, l+ (n− 2)k, . . . , l), Iρ and Jρ are IG,Σ
and JG,Σ, where G = Kk,l

n+1 and Σ = {{∅}, {1}, {2}, . . . , {n}}. Thus, as a corollary
to Theorem 4.4 we have that Hilb Aρ = Hilb Bρ.

9. Future Work

Suppose a graph G on {0, 1, . . . , n} has the property that there is at least one
edge between any two vertices. Let Σ be a family of subsets of {1, . . . , n} with the
downward inclusion property. Then, for each nonempty subset I = {i1 < · · · < ir}
of {1, . . . , n}, define

mI =


x
dI(i1)−1
i1

∏
i∈I
i6=i1

x
dI(i)
i I ∈ Σ∏

i∈I
x
dI(i)
i I 6∈ Σ

and

pI =



(∑
i∈I

xi

)DI−1

I ∈ Σ(∑
i∈I

xi

)DI

I /∈ Σ

and let I ′G,Σ = 〈mI〉 and J ′G,Σ = 〈pI〉 be the ideals generated by all such mI and
pI , respectively. Observe that because there is at least one edge between any two
vertices of G, I ′G,Σ is a monotone monomial ideal and J ′G,Σ is its deformation.

Define the algebras A′G,Σ = K[x1, . . . , xn]/I ′G,Σ and B′G,Σ = K[x1, . . . , xn]/J ′G,Σ.
Computer experiments suggest that the following conjecture is true:

Conjecture 9.1. For all G and Σ, the standard monomial basis of A′G,Σ is a basis

of B′G,Σ. Consequently, A′G,Σ and B′G,Σ have equal dimension and Hilbert series.

When Σ = {{∅}}, this conjecture reduces to Theorem 2.3. Moreover, when Σ =
P({1, . . . , n}), this conjecture reduces to Theorem 2.5. If proven, this conjecture
would interpolate between these two known results and establish another large class
of monotone monomial ideals and their deformations with equal Hilbert series.

In the context of ρ-algebras and ρ-parking functions, setting G = Kk,l
n+1 and

Σ = {{∅}, {1}, {2}, . . . , {n}} in Conjecture 9.1 implies:

Conjecture 9.2. When ρ = (l + (n − 1)k − 1, l + (n − 2)k, . . . , l) is a decreasing
arithmetic sequence whose largest term is decreased by 1, the Hilbert series Hilb Aρ
and Hilb Bρ are equal.
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It would be interesting to characterize all ρ for which Hilb Aρ and Hilb Bρ are
equal. Though Proposition 8.3, Proposition 8.4, and Conjecture 9.2 describe a large
class of ρ for which Hilb Aρ = Hilb Bρ, these are not the only cases of equality; for
instance, Hilb Aρ = Hilb Bρ for ρ = (5, 5, 3) and ρ = (8, 6, 5, 3). Nonetheless, the
author does not know of a strictly decreasing ρ satisfying Hilb Aρ = Hilb Bρ that
is not of the form:

• (l + (n− 1)k + c, l + (n− 2)k, . . . , l), where c ∈ {−1, 0, 1}, or
• (l + 3k + c, l + 2k + c, l + k, l), where c ∈ {−1, 1}.
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