
On the evaluation of some infinite series

Zihong Chen

Abstract

This paper deals with some general methods of evaluating infinite series, among which
the Poisson summation formula and the residue theorem are the main tools. The idea was
initially inspired by the well-known problem of finding the zeta value at even integers using
Fourier series, which reveals a recurrence relation, and the body of this paper focuses on
explicit formulas of the shifted value, a modified form of the famous Dirichlet series. Hence,
the first main result of this paper is evaluating explicitly the shifted zeta function at all even
integers. The rest of the paper seeks a similar formula for a more general type of rational
functions, and illustrates some of its applications.
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1 Introduction

Tracing back to Basel’s problem of finding the sum of the reciprocal of all perfect squares,
the exact computation of some infinite series have been in itself an appealing topic in math-
ematics.

This paper starts with evaluating the zeta function at even integers by Fourier series,
which reveals a recurrence relation. Motivated towards a more straightforward result, we
define the ‘shifted zeta function’ with a parameter t and turn to Fourier transform, together
with the Poisson summation formula. The immediate goal is to find all even values of shifted
zeta function(and other shifted functions may be computed likewise). However, the fact that
the type two shifted zeta function is not of moderate decrease, a property that excludes itself
from the subject of Fourier analysis, drives us to overcome this challenge by some tricks in
contour integration. Two methods are introduced at this point(the first of which is inspired
by a proof in Professor Elias Stein’s Complex Analysis), and the latter is extended to a
range of rational function whose poles are simple.

After deriving such general formula, we illustrated some applications of the formula by two
examples of summing over points in the complex plane. The latter example is particularly
worth noticing since it deals with irrational functions in general, while avoiding the trouble
involved in defining a non-integral power, i.e. to have a branch cut.

The paper ends with a final section that extends the summation formula to a larger set
of rational functions, posing no restriction on its poles. We represent the values of these
infinite series in terms of the numbers A(n, x), which is defined in analogue to the Bernoulli
numbers.

Some definitions are stated here.

Definition 1.1 The zeta function is defined by

ζ(s) =

∞∑
n=1

1

ns
, for s > 1,

the Dirichlet Lambda function is defined by:

λ(s) =

∞∑
n=1

1

(2n− 1)s
, for s > 1,

the Dirichlet eta function is defined by:

η(s) =

∞∑
n=1

(−1)n+1

ns
, for s > 0,

and the Dirichlet Beta function is defined by:

β(s) =

∞∑
n=1

(−1)n+1

(2n− 1)s
, for s > 0.

Propsition 1.2 Two basic identities of the Dirichlet functions:

(1) ζ(s) =
2s

2s − 1
λ(s);

(2) ζ(s) =
2s

2s − 2
η(s).

Proof. For (1),

ζ(s) =
∞∑
n=1

1

ns
=
∞∑
n=1

1

(2n− 1)s
+

1

2s

∞∑
n=1

1

ns
= λ(s) +

1

2s
ζ(s).
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For (2),

η(s) =
∞∑
n=1

(−1)n+1

ns
=
∞∑
n=1

1

(2n− 1)s
− 1

2s

∞∑
n=1

1

ns
= λ(s)− 1

2s
ζ(s).

Also,λ(s) =
2s − 1

2s
ζ(s), hence the result.

Definition 1.3 If f is an integrable function given on an interval [a, b] of length L, then
the nth Fourier coefficient of f is defined by

f̂(n) =
1

L

∫ b

a

f(x)e−
2πinx
L dx, n ∈ Z.

The Fourier series of f is given by

f(x) ∼
∞∑

n=−∞
f̂(n)e

2πinx
L .

2 A recurrence formula for ζ(2k)

At the beginning of this section, let us consider a simple function defined on [−π, π] by
f(θ) = |θ|. By the Dirichlet condition, the Fourier series of this function converges to itself.
A simple calculation yields:

f̂(n) =

{ π
2 , n = 0,
−1+(−1)n

πn2 , n 6= 0.

Hence, f(θ) =
π

2
einθ +

∑
n6=0

−1 + (−1)n

πn2
einθ. Plugging in θ = 0,

∑
n6=0

−1 + (−1)n

πn2
= − π

2
⇒

∑
n≥1, odd

−4

πn2
= − π

2
⇒ λ(2) =

π2

8
.

By the identity ζ(s) =
2s

2s − 1
λ(s), we obtain that ζ(2) =

π2

6
. An interesting question arises

at this point: as we see that f(θ) = |θ| yields the value of ζ(2), how about a more general
function f(θ) = |θ2k+1| ?

Let f be the function defined on [−π, π] by f(θ) = |θ2k+1|. The nth Fourier coefficient of
this function is given by

f̂(n) =
1

2π

∫ π

−π
f(θ)e−inθ dθ =

1

2π

(∫ π

0

θ2k+1e−inθ −
∫ 0

−π
θ2k+1e−inθ dθ

)
.

Integrate by part and obtain

3
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f̂(n) =
1

2π

[
θ2k+1e−inθ

−in − · · · · · · − P 2k+1
2k+1 e

−inθ

(−in)2k+2

]π
0

− 1

2π

[
θ2k+1e−inθ

−in − · · · · · · − P 2k+1
2k+1 e

−inθ

(−in)2k+2

]0
−π

= − 1

2π

2k+1∑
r=0

[
P r2k+1θ

2k+1−re−inθ

(in)r+1

]π
0

+
1

2π

2k+1∑
r=0

[
P r2k+1θ

2k+1−re−inθ

(in)r+1

]0
−π

= − 1

2π

[
2k+1∑
r=0

P r2k+1π
2k+1−r(−1)n

(in)r+1
− P 2k+1

2k+1

(in)2k+2

]
+

1

2π

[
−

2k+1∑
r=0

P r2k+1(−π)
2k+1−r

(−1)n

(in)r+1
+

P 2k+1
2k+1

(in)2k+2

]

=
P 2k+1
2k+1

(
1− (−1)n

)
π(−1)k+1n2k+2

− 1

2π

2k∑
r=0

P r2k+1π
2k+1−r((−1)n − (−1)n+2k−r)

(in)r+1
,

where Pmn = n!/(n −m)! stands for permutation. We need to calculate the value of f̂(0)
separately because the above calculation requires that n 6= 0, but the process is trivial.
Hence, we have

f̂(n) =


π2k+1

2k+2 , n = 0,

P 2k+1
2k+1

(
1−(−1)n

)
π(−1)k+1n2k+2 − 1

2

∑2k
r=0

P r2k+1π
2k−r

(
(−1)n−(−1)n+2k−r

)
(in)r+1 , n 6= 0.

Let θ = 0, then

f(0) ∼
∑
n6=0

f̂(n) +
π2k+1

2k + 2

=
∑
n6=0

P 2k+1
2k+1

(
1− (−1)n

)
π(−1)k+1n2k+2

− 1

2

∑
n6=0

2k∑
r=0

P r2k+1π
2k−r((−1)n − (−1)n+2k−r)

(in)r+1
+
π2k+1

2k + 2

= 0.

Now, let’s take two steps by order.

1)
∑
n6=0

P 2k+1
2k+1

(
1− (−1)n

)
π(−1)k+1n2k+2

= 2P 2k+1
2k+1

∑
n>0, odd

2

π(−1)k+1n2k+2

= (−1)k+1P 2k+1
2k+1

4

π
λ(2k + 2).

2)
1

2

∑
n6=0

2k∑
r=0

P r2k+1π
2k−r((−1)n − (−1)n+2k−r)

(in)r+1
=

1

2

2k∑
r=0

P r2k+1π
2k−r

∑
n6=0

(−1)n − (−1)n−r

(in)r+1
.
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If r is even, then the latter sum is definitely zero. Therefore, we shall only consider r at
odd integers.

1

2

2k∑
r=0

P r2k+1π
2k−r

∑
n6=0

(−1)n − (−1)n−r

(in)r+1
=

1

2

k∑
j=1

P 2j−1
2k+1π

2k−2j+1
∑
n6=0

2(−1)n

(in)2j

= 2
k∑
j=1

P 2j−1
2k+1π

2k−2j+1
∞∑
n=1

(−1)n−j

n2j

= 2
k∑
j=1

(−1)j+1P 2j−1
2k+1π

2k−2j+1η(2j)

= 2
k∑
j=1

(−1)j+1P 2j−1
2k+1π

2k−2j+1
(22j − 2

22j − 1

)
λ(2j).

Summing up the result of 1) and 2), we get

(−1)k+1P 2k+1
2k+1

4

π
λ(2k + 2) = 2

k∑
j=1

(−1)j+1P 2j−1
2k+1π

2k−2j+1
(22j − 2

22j − 1

)
λ(2j)− π2k+1

2k + 2

⇒ λ(2k + 2) =
π2k+2

2P 2k+1
2k+1

(
k∑
j=1

(−1)k+jP 2j−1
2k+1π

−2j
(22j − 2

22j − 1

)
λ(2j)− (−1)k+1

4k + 4

)
. (1)

To complete the formula for ζ(2k), we use the identity ζ(s) =
2s

2s − 1
λ(s) and substitute k

for k + 1. This leads to

ζ(2k) =
(2π)2k

2(22k − 1)P 2k−1
2k−1

(
k−1∑
j=1

(−1)k+j+1P 2j−1
2k−1π

−2j
(22j − 2

22j

)
ζ(2j)− (−1)k

4k

)
, (2)

which is a recurrence formula for zeta function at even integers.

3 The shifted zeta function

3.1 Some tools

This subsection will provide some preliminaries and tools we will use to pursue our main results.
LetM(R) denote the set of functions of moderate decrease in the sense that f is continuous and
there exists a constant A > 0 so that

|f(x)| ≤ A

1 + x2
, for all x ∈ R.

For a function in M(R), we define its Fourier transform by

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξ dx.

The Fourier inversion is defined by

f(x) =

∫ ∞
−∞

f̂(ξ)e2πixξ dξ.

5

E02

- 5 -



Indeed, for any function in M(R), its Fourier inversion is the function itself. (More often we allow
Fourier transform and inversion to functions of the Schwartz space, but an extension can be
readily made to functions of moderate decrease. A brief reasoning can be found in [1], Chapter 5.
section 1.7.)

Poisson Summation Formula: If f ∈M(R), then

∞∑
n=−∞

f(x+ n) =

∞∑
n=−∞

f̂(n)e2πinx.

Proof. Define g(x) =

∞∑
n=−∞

f(x+ n) and let

g(x) =

∞∑
n=−∞

ĝ(n)e2πinx,

which is the Fourier series of g. As g(x) is clearly of period 1,

ĝ(n) ∼
∫ 1

0

g(x)e−2πinx dx

=

∫ 1

0

∞∑
k=−∞

f(x+ k)e−2πinx dx

=

∞∑
k=−∞

∫ 1

0

f(x+ k)e−2πinx dx

=

∫ ∞
−∞

f(x)e−2πinx dx

= f̂(n).

This completes the proof.

3.2 Definition

In this section, we are going to focus on some types of Dirichlet series with a parameter t. Let’s
begin with the definition:

Definition 3.1 For s > 1 and t > 0, the shifted zeta function by t is defined as

ζt(s) =

∞∑
n=1

1

ns + ts
.

Define similarly for other Dirichlet L-series.

It seems unclear at present why we need to have this new definition. But observe that once we
add a non-zero parameter t, the function 1/zk, whose pole is of order k, becomes 1/(zk+ tk), whose
poles are all simple. This property will make the calculation a lot simpler as we will see later in
this section. Our goal here is to find a formula when s is an even integer and t ∈ R, though our
computation holds in some cases where t isn’t real.

3.3 The shifted values at s = 2

To solve the shifted zeta function at s = 2, we shall meet with a special function named the Poisson
kernel, which is given by

Py(x) =
y

π(x2 + y2)
, for x ∈ R and y > 0.
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Poisson kernel has its significance in physics since it is a solution to the steady-state heat equation
in the upper half plane. However, at this point, we are to explore how this special function relates
to our first shifted zeta function, the ζt(2).

We claim that the Fourier transform of Py(x) is:∫ ∞
−∞
Py(x)e−2πixξ dx = e−2π|ξ|y.

Proof. Firstly, we observe that Py(x) is of moderate decrease, so the Fourier transform make
sense. We now use Fourier inversion to prove this.∫ ∞

−∞
e−2π|ξ|ye2πiξx dξ = Py(x).

Split this integral into −∞ to 0 and 0 to ∞. Then we have∫ ∞
0

e−2πξye2πiξx dξ =

∫ ∞
0

e2πi(x+iy)ξ dξ =

[
e2πi(x+iy)ξ

2πi(x+ iy)

]∞
0

= − 1

2πi(x+ iy)
.

and similarly, ∫ 0

−∞
e2πξye2πiξx dξ =

1

2πi(x− iy)
.

Therefore ∫ ∞
−∞

e−2π|ξ|ye2πiξx dξ = − 1

2πi(x+ iy)
+

1

2πi(x− iy)
=

y

π(x2 + y2)
.

In order to obtain ζt(2), we apply the Poisson summation to the Poisson kernel.

∞∑
n=−∞

y

π
(
(x+ n)2 + y2

) =

∞∑
n=−∞

e−2πy|n|e2πinx

=

∞∑
n=0

e−2πyne2πinx +

0∑
n=−∞

e2πyne2πinx − 1

=
1

1− e2πi(x+iy)
− e2πi(x−iy)

1− e2πi(x−iy)
− 1

=
e2πi(x+iy) − e2πi(x−iy)

1− (e2πi(x+iy) + e2πi(x−iy)) + e4πix

=
e4πy − 1

e4πy − 2 cos(2πx)e2πy + 1
.

Where we’ve used the usual geometric series sum. Substitute t for y,

∞∑
n=−∞

1

(n+ x)2 + t2
=

π(e4πt − 1)

t(e4πt − 2e2πt cos(2πx) + 1)
.

Let x = 0, we have

∞∑
n=1

1

n2 + t2
=

1

2

(
π(e2πt + 1)

t(e2πt − 1)
− 1

t2

)
=
tπ(e2πt + 1)− e2πt + 1

2t2(e2πt − 1)
. (3)

Which is the formula for ζt(2).
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By a simple observation we have

ηt(2) = ζt(2)− 1

2
ζ t

2
(2)

=
tπ(e2πt + 1)− e2πt + 1

2t2(e2πt − 1)
− 1

2

tπ(eπt + 1)− 2eπt + 2

t2(eπt − 1)

=
e2πt − 2πteπt − 1

2t2(e2πt − 1)
.

In fact, there is another way by which we may directly derive ηt(2). In this case, we return to the
Fourier series for periodic functions. Consider the 2π-periodic even function on the interval [−π, π]
defined by

f(θ) =


e−tθ, [0, π],

etθ, [−π, 0).

The Fourier coefficient of this function is

f̂(n) =
1

2π

∫ π

0

e−tθe−inθ dθ +
1

2π

∫ 0

−π
etθe−inθ dθ

=
1

2π

[
e−(t+in)θ

−(t+ in)

]π
0

+
1

2π

[
e(t−in)θ

t− in

]0

−π

=
1

2π

(
e−tπe−inπ

−(t+ in)
+

1

t+ in

)
+

1

2π

(
1

t− in −
e−tπeinπ

t− in

)

=

(
1− e−tπ(−1)n

)
t

π(n2 + t2)
.

Fortunately, this holds for each n, so we don’t need to separate the case when n = 0.

f(θ) ∼
∑
n6=0

(
1− e−tπ(−1)n

)
t

π(n2 + t2)
+

1− e−tπ

πt

=

∞∑
n=1

(
1− e−tπ(−1)n

)
t

π(n2 + t2)
· 2 cos(nθ) +

1− e−tπ

πt
.

Let θ =
π

2
, then

2

∞∑
n=1

1− e−tπ(−1)n

π(n2 + t2)
cos(

nπ

2
) =

e−
tπ
2

t
− 1− e−tπ

πt2

2

∞∑
n=1

1− e−tπ

π((2n)2 + t2)
cos(nπ) =

e−
tπ
2

t
− 1− e−tπ

πt2

∞∑
n=1

1− e−tπ

(n2 + ( t
2
)2)

(−1)n = 2π
(e− tπ2

t
− 1− e−tπ

πt2

)
⇒ η t

2
(2) =

2π

1− e−tπ
(e− tπ2

t
− 1− e−tπ

πt2

)
=

2(etπ − tπe
tπ
2 − 1)

t2(etπ − 1)
.

Substitute t for
t

2
, we will obtain the expression for ηt(2):

ηt(2) =

∞∑
n=1

(−1)n+1

(n2 + t2)
=
e2πt − 2πteπt − 1

2t2(e2πt − 1)
. (4)
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Finally, we come to the shifted value of the Lambda function.

λt(2) =

∞∑
n=0

1

(2n+ 1)2 + t2

=
1

2
(ζt(2) + ηt(2))

=
1

2

(
tπ(e2πt + 1)− e2πt + 1

2t2(e2πt − 1)
+
e2πt − 2πteπt − 1

2t2(e2πt − 1)

)

=
πe2πt − 2πeπt + π

4t(e2πt − 1)
. (5)

3.4 The value of ζ(2), η(2) and λ(2) as a limit

In fact, the function

∞∑
n=1

1/(n2 + t2) is continuous on R. Thus, we can check our result by letting

t → 0, expecting those values tend exactly to the common Dirichlet series. The computation is
rather simple:

Let’s come first with the ζt(2).

lim
t→0

ζt(2) = lim
t→0

tπ(e2πt + 1)− e2πt + 1

2t2(e2πt − 1)

= lim
t→0

π(e2πt + 1) + 2π2te2πt − 2πe2πt

4t(e2πt − 1) + 4πt2e2πt

= lim
t→0

4π3te2πt

4(e2πt − 1) + 16πte2πt + 8π2t2e2πt

= lim
t→0

4π3e2πt + 8π4te2πt

24πe2πt + 48π2te2πt + 16π3t2e2πt

=
π2

6
.

Where we have used the L’Hospital’s rule three times. Similarly,

lim
t→0

ηt(2) = lim
t→0

e2πt − 2πteπt − 1

2t2(e2πt − 1)

= lim
t→0

2πe2πt − 2πeπt − 2π2teπt

4t(e2πt − 1) + 4πt2e2πt

= lim
t→0

4π2e2πt − 4π2eπt − 2π3teπt

4(e2πt − 1) + 16πte2πt + 8π2t2e2πt

= lim
t→0

8π3e2πt − 6π3eπt − 2π4te2πt

24πe2πt + 48π2te2πt + 16π3t2e2πt

=
π2

12
,
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and

lim
t→0

λt(2) = lim
t→0

πe2πt − 2πeπt + π

4t(e2πt − 1)

= lim
t→0

2π2e2πt − 2π2eπt

4(e2πt − 1) + 8πte2πt

= lim
t→0

4π3e2πt − 2π3eπt

16πe2πt + 16π2te2πt

=
π2

8
.

All these limits agree to the original Dirichlet series. From another point of view, we have found
a new way to evaluate the Dirichlet series at 2, that is, by seeing them as the limits of the shifted
values.

3.5 The shifted zeta function at 2k

In this subsection, we are going to present a method to calculate the shifted zeta function at natural
powers of 2 and t ∈ R. In fact, we extend our definition of the shifted value as followed.

Definition 3.2 For s > 1 and t ∈ C, the type 1 shifted zeta function by t is defined as

ζ+
t (s) =

∞∑
n=1

1

ns + ts

and the type 2 shifted zeta function by t is defined as

ζ−t (s) =

∞∑
n=1

1

ns − ts .

For convenience, we may omit the + in ζ+
t (s).

Our first step forward is to extend our previous formula

ζt(2) =

∞∑
n=1

1

n2 + t2
=
tπ(e2πt + 1)− e2πt + 1

2t2(e2πt − 1)
, t > 0

to t ∈ C. However, viewed as a function in t for t ∈ C, the right hand side above is a meromorphic
function except for poles at ±i,±2i, · · · . Since the series on the left also converges absolutely except
at these points, it follows immediately from analytic continuation that the equation hold for all t ∈ C
which is not a nonzero multiple of i. Substitute it for t where t is not a nonzero integer in the above
equation, we obtain

ζ−t (2) =
1

2t2
− π

2t tanπt
. (6)

Now, we are able to obtain a recurrence formula for ζ−t (2k).

ζ−t (2k+1) =

∞∑
n=1

1

n2k+1 − t2k+1

=
1

2t2k

∞∑
n=1

( 1

n2k − t2k
− 1

n2k + t2k

)
=

1

2t2k

(
ζ−t (2k)− ζ−ωk(t)(2

k)
)
. (7)

where ωk(t) = e
(i π

2k
)
t and t is not a nonzero multiple of any number in the set {ei

π
2n | n =

0, 1, 2, · · · , k}. We’ve also used the simple fact that

ζt(2
k) = ζ−ωk(t)(2

k), for k ∈ N∗.
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In fact, the recurrence formula

1. ζ−t (2k+1) =
1

2t2k

(
ζ−t (2k)− ζ−ωk(t)(2

k)
)

2. ζ−t (2) =
1

2t2
− π

2t tanπt
(initial condition) (8)

holds for all complex t that is not a nonzero multiple of any number in the set {ei
π
2n | n =

0, 1, 2, · · · , k}. Hence, we may compute the value of ζ−t (2k) for all real numbers t that is not a
nonzero integer(notice that the poles of the shifted zeta function of type 2 are exactly the nonzero
integers). To compute ζt(2

k) , use the identity ζt(2
k) = ζ−ωk(t)(2

k).

3.6 The shifted zeta function at even integers

Now, we are heading for our mission stated at the beginning of this section, to find the shifted zeta
function at s = 2k and t ∈ R. Previously, we used Fourier series to evaluate the shifted eta function
at s = 2; however, for s > 2, the Fourier series is no longer useful. In the general case, we turn to
the application of the Poisson summation formula, which requires us to know at first the Fourier
transform of a function. A simple yet powerful tool we will use throughout the rest of this paper,
and in particular, to compute a wide range of Fourier transform at this moment, is the residue
theorem stated as follows:∫

γ

f(z) dz = 2πi

N∑
k=1

reszkf, when the orientation of γ is positive;

∫
γ

f(z) dz = −2πi

N∑
k=1

reszkf, when the orientation of γ is negative.

Here, positive means counterclockwise and negative means clockwise.
Now, we’ll move on to the calculation of∫ ∞

−∞

1

x2k + y2k
e−2πixξ dx, y, ξ ∈ R.

Consider the function f(z) =
1

z2k + y2k
e−2πizξ and choose the contour consisting of an oriented

semicircle in the upper half plane for ξ < 0.

−R R

γR

The oriented semicircle in the upper half plane

1

Figure 1
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Denote the half circle by γR, and we will find that in the upper half plane, the poles of f are

z = y e
(2n−1)

2k
iπ , n ∈ {1, 2, · · · , k}. Let ωn = y e

(2n−1)
2k

iπ. By the residue formula:∫ R

−R

1

x2k + y2k
e−2πixξ dx+

∫
γR

f(z) dz = 2πi

k∑
n=1

resωnf.

(1). Consider the second integral on the left:∣∣∣ ∫
γR

f(z) dz
∣∣∣ =

∣∣∣ ∫ π

0

e−2πi(R cos θ+iR sin θ)ξ

(Reiθ)2k + y2k
(iReiθ)dθ

∣∣∣
≤
∫ π

0

∣∣∣ e2πξR sin θ

R2k−1 +O( 1
R

)

∣∣∣ dθ
≤ π

R2k−1 +O( 1
R

)
.

Let R tend to infinity, then this integral clearly tends to zero.

(2). To calculate the residue, note that:

(z − ωn)f(z) =
z − ωn
z2k + y2k

e−2πizξ

and

lim
z→ωn

z − ωn
z2k + y2k

e−2πizξ = lim
z→ωn

e−2πizξ − 2πiξ e−2πizξ(z − ωn)

2kz2k−1
=
e−2πiωnξ

2kω2k−1
n

.

In fact, f have poles of order 1 (simple poles):

resωnf =
e−2πiωnξ

2kω2k−1
n

.

Therefore, ∫ ∞
−∞

1

x2k + y2k
e−2πixξ dx = 2πi

k∑
n=1

resωnf =
iπ

k

k∑
n=1

e−2πiωnξ

ω2k−1
n

.

as the radius R tends to infinity.
For ξ > 0, we use the negatively oriented semicircle in the lower half plane. The calculation is

similar and the trivial differences are that:
(1). z(θ) = Re−iθ with regard to the negative orientation.
(2). The poles of f become ωn. So we jump to conclusion that:∫ ∞

−∞

1

x2k + y2k
e−2πixξ dx = − iπ

k

k∑
n=1

e−2πiωnξ

ω2k−1
n

.

Let’s see what can be done further. Denote ωn by an − bni. Take the complex conjugate of the
right hand side of the above equation.

− iπ
k

k∑
n=1

e−2πiωnξ

ω2k−1
n

=
iπ

k

k∑
n=1

e−2πi(an−bni)ξ

ω2k−1
n

=
iπ

k

k∑
n=1

e2πi(an+bni)ξ

ω2k−1
n

=
iπ

k

k∑
n=1

e2πiωnξ

ω2k−1
n

.
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And we also known that the Fourier transform of a real function is real. Hence,

− iπ
k

k∑
n=1

e−2πiωnξ

ω2k−1
n

=
iπ

k

k∑
n=1

e2πiωnξ

ω2k−1
n

.

To sum up with,∫ ∞
−∞

1

x2k + y2k
e−2πixξ dx =

iπ

k

k∑
n=1

e2πiωn|ξ|

ω2k−1
n

where ωn = ye
2n−1
2k

iπ. (9)

Indeed, the validity of the above result can also be checked by an elementary way using the
Fourier inversion. Let’s see how this can be done.∫ ∞

−∞

iπ

k

k∑
n=1

e2πiωn|ξ|

ω2k−1
n

e2πixξ dξ =
iπ

k

k∑
n=1

(∫ ∞
0

e2πi(x+ωn)ξ

ω2k−1
n

dξ +

∫ 0

−∞

e2πi(x−ωn)ξ

ω2k−1
n

dξ
)

=
iπ

k

k∑
n=1

1

ω2k−1
n

( e2πi(x+ωn)ξ

2πi(x+ ωn)

∣∣∣∞
0

+
e2πi(x−ωn)ξ

2πi(x− ωn)

∣∣∣0
−∞

)
=
iπ

k

k∑
n=1

1

ω2k−1
n

(
− 1

2πi(x+ ωn)
+

1

2πi(x− ωn)

)
=

1

k

k∑
n=1

1

ω2k−2
n (x2 − ωn2)

.

1

k

k∑
n=1

1

ω2k−2
n (x2 − ω2

n)
=

1

k

k∑
n=1

1

ω2k−2
n x2 − ω2k

n

=
1

k

k∑
n=1

1

x2e
(k−1)(2n−1)

k
iπy2k−2 − e(2n−1)iπy2k

=
1

ky2k−2

k∑
n=1

1

y2 − x2e
1−2n
k

iπ

=
1

ky2k−2

k∑
n=1

1

y2 − x2e
2(k−n+1)−1

k
iπ

=
1

ky2k−2

k∑
n=1

1

y2 − x2e
2n−1
k

iπ

=
1

kx2y2k−2

k∑
n=1

1
y2

x2
− e

2n−1
k

iπ
.

Substitute s for
y2

x2
in the sum part,

1

kx2y2k−2

k∑
n=1

1

s− e
2n−1
k

iπ
=

1

kx2y2k−2

∑k
r=1

∏
n6=r(s− e

2n−1
k

iπ)∏k
n=1(s− e

2n−1
k

iπ)
.

Assume
k∏
n=1

(s− e
2n−1
k

iπ) = A1s
k +A2s

k−1 + · · ·+Aks+Ak+1,

k∑
r=1

∏
n6=r

(s− e
2n−1
k

iπ) = B1s
k−1 +B2s

k−2 + · · ·+Bk−1s+Bk.
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A careful observation of their binomial expansions will tell:

Bn =
kCn−1

k−1

Cn−1
k

An = (k − n+ 1)An, n ∈ {1, 2, · · · , k}.

Also notice that e
2n−1
k

iπ is the root of unity of xk + 1 = 0. Hence,

k∏
n=1

(s− e
2n−1
k

iπ) = A1s
k +A2s

k−1 + · · ·+Aks+Ak+1 = sk + 1

⇒ B1 = k, B2 = B3 = · · · = Bk = 0.

Therefore,

1

kx2y2k−2

k∑
n=1

1

s− e
2n−1
k

iπ
=

1

kx2y2k−2

∑k
r=1

∏
n6=r(s− e

2n−1
k

iπ)∏k
n=1(s− e

2n−1
k

iπ)

=
1

kx2y2k−2

ksk−1

sk + 1

=
1

x2k + y2k
.

Which completes the proof.
Apply the Poisson summation formula to (9). Then,

∞∑
n=−∞

1

n2k + y2k
=
iπ

k

k∑
n=1

∞∑
r=−∞

e2πiωn|r|

ω2k−1
n

=
iπ

k

k∑
n=1

( 2

1− e2πiωn
− 1
)( 1

ω2k−1
n

)
=
iπ

k

k∑
n=1

1 + e2πiωn

(1− e2πiωn)ω2k−1
n

.

Therefore,
∞∑
n=1

1

n2k + y2k
=

1

2

( iπ
k

k∑
n=1

1 + e2πiωn

(1− e2πiωn)ω2k−1
n

− 1

y2k

)
. (10)

This is our formula for the type 1 shifted zeta function at even integers.
Indeed, from (9) we may derive that for 0 ≤ a < 1,∫ ∞

−∞

e−2πiax

x2k + y2k
e−2πixξ dx =

iπ

k

k∑
n=1

e2πiωn|ξ+a|

ω2k−1
n

.

Applying the Poisson summation formula yields

∞∑
m=−∞

e−2πiam

m2k + y2k
=
iπ

k

k∑
n=1

∞∑
m=−∞

e2πiωn|m+a|

ω2k−1
n

=
iπ

k

k∑
n=1

e2πiωna + e−2πiωnae2πiωn

(1− e2πiωn)ω2k−1
n

. (11)

Since the leftmost term equals 2

∞∑
n=1

cos(2πan)

n2k + y2k
+

1

y2k
. Setting a = 1/q, we will obtain a shifted

zeta function modulo q.
The value of the type 2 shifted zeta function follows from analytic continuation. However, we

want to derive these values directly, which in fact require some more effort. The difficulty lies in
the fact that g(x) = 1/(x2k − y2k) is not of moderate decrease, and hence, using Fourier transform
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and Poisson summation is questionable. However, by applying a few tricks in contour integration,
we are able to overcome these problems.

yR R

γϵ1 γϵ2

−y

γR

1

Figure 2

Let f(z) = e−2πizξ/(z2k − y2k) . For ξ < 0 , integrate this function along the contour in figure 2,
which consists of a big semicircle γR with radius R, centered at origin; two small semicircles γε1
and γε2 , with radius ε1 and ε2, centered at −y and y, respectively; and finally, three line segments
along the real axis.

Hence(∫ −y−ε1
−R

+

∫ y−ε2

−y+ε1

+

∫ R

y+ε2

) e−2πixξ

x2k − y2k
dx+

∫
γε1

f(z) dz+

∫
γε2

f(z) dz+

∫
γR

f(z) dz = 2πi
∑

resωnf.

Where ωn = ye
n
k
iπ, n ∈ {1, 2, · · · , k − 1}. The residue can be computed as before. Thus,

2πi
∑

resωnf =
iπ

k

k−1∑
n=1

e−2πiωnξ

ω2k−1
n

.

Also, ∣∣∣ ∫
γR

f(z) dz
∣∣∣→ 0 as R→∞.

What’s new about the contour is the two small semicircles γε1 and γε2 . First look at the inte-
gration alone γε1 , which is parametrized by z = −y + ε1e

iθ.∫
γε1

f(z) dz =

∫ 0

π

e−2πi(−y+ε1e
iθ)

(−y + ε1eiθ)2k − y2k
iε1e

iθ dθ.

Let ε1 tends to 0, then the above integral tends to

lim
ε1→0

∫
γε1

f(z) dz = lim
ε1→0

∫ 0

π

e−2πi(−y+ε1e
iθ)

(−y + ε1eiθ)2k − y2k
iε1e

iθ dθ

= i

∫ 0

π

e2πiyξ
(

lim
ε1→0

ε1e
iθ

(−y + ε1eiθ)2k − y2k

)
dθ

= i

∫ π

0

e2πiyξ

2ky2k−1
dθ

=
iπe2πiyξ

2ky2k−1
.

We may exchange the limit with the integration since the integrand is bounded and integrable for

small ε1. Similarly, the integral along γε2 tends to − iπe
−2πiyξ

2ky2k−1
.
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Therefore, for ξ < 0

PV

∫ ∞
−∞

e−2πixξ

x2k − y2k
dx = 2πi

∑
resωnf −

(∫
γε1

f(z) dz +

∫
γε2

f(z) dz +

∫
γR

f(z) dz
)

=
iπ

k

k−1∑
n=1

e−2πiωnξ

ω2k−1
n

+
π sin(2πyξ)

ky2k−1
.

Note that in the above equation, PV stands for Cauchy principal value, and is defined by

PV

∫ ∞
−∞

e−2πixξ

x2k − y2k
dx = lim

ε1,ε2→0+
R→∞

(∫ −y−ε1
−R

+

∫ y−ε2

−y+ε1

+

∫ R

y+ε2

) e−2πixξ

x2k − y2k
dx.

A similar approach for ξ > 0, except that we use the contour in the lower plane by symmetry, yields
that:

PV

∫ ∞
−∞

e−2πixξ

x2k − y2k
dx = − iπ

k

k−1∑
n=1

e−2πiωnξ

ω2k−1
n

− π sin(2πyξ)

ky2k−1
.

To sum up, for all ξ ∈ R

PV

∫ ∞
−∞

e−2πixξ

x2k − y2k
dx =

iπ

k

k−1∑
n=1

e2πiωn|ξ|

ω2k−1
n

− π sin(2πy|ξ|)
ky2k−1

. (12)

These integrals converge in terms of their Cauchy principal values. But neither could be identified as
a ‘Fourier transform’ because the integrand is not of moderate decrease(they are not even Riemann
integrable). Indeed, neither Fourier inversion nor Poisson summation formula holds in this case,
which is an evident fact since the sin z function oscillates rapidly when z tends to infinity along the
real axis. So our next mission is to find a summation formula that works.

We will use a similar approach to that in the proof of the Poisson summation formula demon-
strated in Book [2], page 118− 119.

Construct a function h(z) = 1/((z2k − y2k)(e2πiz − 1)) , y ∈ R. The poles of this function in the
complex plane consists of all integers and the zeros of z2k − y2k. Choose the rectangle contour γN
shown in figure 3, of length 2N + 1 and width 2b.

· · · · · ·

−N − 1
2 + ib N + 1

2 + ib

−N − 1
2 − ib N + 1

2 − ib

y−y 0−1 1−N−N − 1 N N + 1

γN

1

Figure 3

Let b arbitrarily small so that the contour doesn’t contain any other zeros of z2k − y2k beside y
and −y, which are on the real axis. First, let’s compute the residue.

1) resnh = lim
z→n

z − n
(z2k − y2k)(e2πiz − 1)

=
1

2πi(n2k − y2k)
.

2) resyh = lim
z→y

z − y
(z2k − y2k)(e2πiz − 1)

=
1

2ky2k−1(e2πiy − 1)
and res−yh =

1

−2ky2k−1(e−2πiy − 1)
.

Hence, ∑
|n|≤N

1

n2k − y2k
+

iπ

ky2k−1

( 1

e2πiy − 1
− 1

e−2πiy − 1

)
=

∫
γN

h(z) dz.
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Let N tends to infinity, the first sum on the left hand side becomes

∞∑
n=−∞

g(n), where g(z) =

1/(z2k − y2k). Consider the integral along the left vertical side,∣∣∣ ∫ N− 1
2
−ib

N− 1
2

+ib

h(z) dz
∣∣∣ ≤ ∫ b

−b

1

|(−N − 1
2
− it)2k − y2k| · |e2πi(−N− 1

2
−it)|

dt

≤
∫ b

−b

A

|(−N − 1
2
− it)2k − y2k|

dt,

from the fact that 1/(e2πiz − 1) is bounded for Re(z) = n + 1
2
. The integral tends to zero as N

tends to infinity, so does that along the right side. Therefore,

∞∑
n=−∞

g(n) +
iπ

ky2k−1

( 1

e2πiy − 1
− 1

e−2πiy − 1

)
=

∫
L1

h(z) dz −
∫
L2

h(z) dz. (13)

Where L1 and L2 represent the real line shifted by −b and b respectively, both oriented from left
to right.

Notice that h(z) =
g(z)

e2πiz − 1
. On L1, as |e2πiz| > 1,

1

e2πiz − 1
= e−2πiz

∞∑
n=0

e−2πinz,

and on L2, as |e2πiz| < 1,

1

e2πiz − 1
= −

∞∑
n=0

e2πinz.

So that∫
L1

h(z) dz −
∫
L2

h(z) dz =

∫
L1

g(z)e−2πiz
∞∑
n=0

e−2πinz dz +

∫
L2

g(z)

∞∑
n=0

e2πinz dz

=

∞∑
n=0

∫
L1

g(z)e−2πi(n+1)z dz +

∞∑
n=0

∫
L2

g(z)e2πinz dz. (14)

To simplify the above, we need another observation. Integrate f(z) =
e−2πizξ

z2k − y2k
, ξ > 0 over the

contour shown below.

−R R

−R − ib R − ib

−y y

γϵ1 γϵ2

1

Figure 4
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The integral over the vertical sides tend to 0 as R tends to infinity. And the integral over the
two semicircles sum up to π sin(2πyξ)/ky2k−1 as ε1 and ε2 tend to 0. So we conclude that∫

L1

f(z) dz = PV

∫ ∞
−∞

f(x) dx+
π sin(2πyξ)

ky2k−1
.

For ξ < 0, integrate along the rectangle in the upper half plane by symmetry and we yield:∫
L2

f(z) dz = PV

∫ ∞
−∞

f(x) dx− π sin(2πyξ)

ky2k−1
.

Combining this with (12) and (14), we find that the unpleasant ‘sine’s are cancelled.∫
L1

h(z) dz −
∫
L2

h(z) dz =

∞∑
n=0

∫
L1

g(z)e−2πi(n+1)z dz +

∞∑
n=0

∫
L2

g(z)e2πinz dz

=

∞∑
n=0

(
PV

∫ ∞
−∞

g(x)e−2πi(n+1)x dx+
π sin(2πy(n+ 1))

ky2k−1

)
+

∞∑
n=0

(
PV

∫ ∞
−∞

g(x)e2πinx dx− π sin(2πy(−n))

ky2k−1

)
=

∞∑
n=0

(
iπ

k

k−1∑
m=1

e2πiωm(n+1)

ω2k−1
m

− π sin(2πy(n+ 1))

ky2k−1
+
π sin(2πy(n+ 1))

ky2k−1

)

+

∞∑
n=0

(
iπ

k

k−1∑
m=1

e2πiωmn

ω2k−1
m

− π sin(2πyn)

ky2k−1
− π sin(2πy(−n))

ky2k−1

)

=
iπ

k

k−1∑
m=1

2
∑∞
n=0 e

2πiωmn − 1

ω2k−1
m

=
iπ

k

k−1∑
n=1

1 + e2πiωn

(1− e2πiωn)ω2k−1
n

.

By (13),

∞∑
n=−∞

g(n) +
iπ

ky2k−1

( 1

e2πiy − 1
− 1

e−2πiy − 1

)
=
iπ

k

k−1∑
n=1

1 + e2πiωn

(1− e2πiωn)ω2k−1
n

. (15)

But

iπ

ky2k−1

( 1

e2πiy − 1
− 1

e−2πiy − 1

)
=

π

ky2k−1
· cot(πy)

= − iπ
k
· 1 + e2πi(−y)

(1− e2πi(−y))(−y)2k−1
.

Hence we may conclude that

∞∑
n=−∞

g(n) =
iπ

k

k∑
n=1

1 + e2πiωn

(1− e2πiωn)ω2k−1
n

,

where ωn = ye
n
k
iπ. If we plug in y = ye

iπ
2k , the above formula clearly agrees with the formula of

ζy(2k),
∞∑

n=−∞

1

n2k + y2k
=
iπ

k

k∑
n=1

1 + e2πiωn

(1− e2πiωn)ω2k−1
n

,

where ωn = ye
2n−1
2k

iπ.
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4 A summation formula for functions in R
We define R to be the set of rational functions

R(z) =
P (z)

Q(z)
,

where P and Q are polynomials with no common zeros such that (Degree Q) ≥ ((Degree P ) + 2,
and Q’s zeros are all distinct. Obviously,

g(z) =
1

z2k − y2k
∈ R.

In this section, we seek a general summation formula for R(z) ∈ R. Such formula can be obtained
through a similar argument in the previous section. However, we now present a simpler alternative.

· · · · · ·
x

x + 1x − 1

x + N

x + N + 1

γR

1

Figure 5

For R ∈ R, construct a function g(z) = R(z)/(e2πiz − e2πix) where 0 ≤ x < 1 is a real number
such that R(z) has no pole of the form n+ x , n ∈ Z.

Integrate g(z) along the positive big circle γR. Choose an R so large that the contour contains
all zeros of Q(recall that R(z) = P (z)/Q(z)) and does not pass through any point of {n + x : n ∈
Z}.Note that the poles of g in the complex plane are {n+ x : n ∈ Z} and the zeros of Q(z).
(1). The residue of g at {n+ x : n ∈ Z} is:

res(n+x)g = lim
z→(n+x)

(z − (n+ x))R(z)

e2πiz − e2πix
=
R(n+ x)

2πie2πix
.

(2). The residue of g at Q’s zeros is:

resζg = lim
z→ζ

P (z)(z − ζ)
Q(z)(e2πiz − e2πix)

=
P (ζ)

Q′(ζ)(e2πiζ − e2πix)
.
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(3). Also, by analogue to the previous cases that∣∣∣ ∫
γR

g(z) dz
∣∣∣ ≤ c1 ∫

γR

∣∣∣P (z)

Q(z)

∣∣∣ dz
≤ c2

∫ 2π

0

∣∣∣ 1

R2
R
∣∣∣ dθ

→ 0 as R→∞.

Hence, by the residue formula:∑
|n+x|≤R

P (n+ x)

Q(n+ x)e2πix
=

∫
γR

g(z) dz − 2πi
∑
ζ

P (ζ)

Q′(ζ)(e2πiζ − e2πix)
.

The right hand sum is taken over all zeros of Q, denoted by ζ . Let R tend to infinity,∑
n∈Z

P (n+ x)

Q(n+ x)
= 2πi

∑
ζ

P (ζ)

Q′(ζ)(1− e2πi(ζ−x))
. (16)

Which is our desired result.
We’ve seen that to apply this summation formula to some function inR, it’s not even necessary to

compute its Fourier transform. This convenience was facilitated by the use of an auxiliary function
whose poles are some(infinite) equidistant points on the real axis.

Translation and dilation

By this, we mean the sum of the formµ∑
n∈Z

P (δn+ x)

Q(δn+ x)
, for δ , x ∈ C.

In fact, we simply use the auxiliary function

g(z) =
1

e
2πiz
δ − e 2πix

δ

, for δ , x ∈ C.

and integrate

f(z) =
P (z)

Q(z)(e
2πiz
δ − e 2πix

δ )

along the previous contour. A similar manipulation yields∑
n∈Z

P (δn+ x)

Q(δn+ x)
=

2πi

δ

∑
ζ

P (ζ)

Q′(ζ)(1− e
2πi(ζ−x)

δ )
. (17)

The sum on the right is taken over all zeros of Q(z), denoted by ζ, which we assume is not of the
form δn+ x.

Transformations with respect to polynomials

Here we examine a more general summation:∑
n∈Z

P (F (n))

Q(F (n))
, where F is a polynomial.

The proceedings are very straightforward, though. Let f(z) =
P (F (z))

Q(F (z))(e2πiz − 1)
. Since F tends

to infinity with |z| at least as fast as G(z) = z,∣∣∣ ∫
γR

f(z) dz
∣∣∣→ 0 as R→∞.
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And by some simple computation on its residues, we find∑
n∈Z

P (F (n))

Q(F (n))
= 2πi

∑
ω

P (F (ω))

F ′(ω)Q′(F (ω))(1− e2πiω)
. (18)

{ω} denotes the sets of points such that F (ω) = ζ, where {ζ} are the zeros of Q. We should also
assume that F ′(ω) 6= 0. In fact, the translation and dilation is a special case of such transformation,
where we’ve let F (z) = δz + x.

Summation modulo q

The identity (11), which is an example of the shifted zeta function modulo q reminded us with
a simple question: given a sequence {an}∞n=−∞ such that am = an if m ≡ n(mod q), is there a

formula for

∞∑
n=1

anP (n)/Q(n)?

We say a sequence {an}∞n=−∞ to be odd if a−m = −am for m ∈ Z, and it’s even if a−m = am.
The answer is, there is a formula if the sequence {an}∞n=−∞ and the function P (z)/Q(z) are both
odd or even. In fact, if both the sequence and the function are odd or even, then we have (if assume
Q(0) is nonzero.)

∞∑
n=1

anP (n)

Q(n)
=

1

2

( ∞∑
n=−∞

anP (n)

Q(n)
− a0P (0)

Q(0)

)
.

Then,we have
∞∑

n=−∞

anP (n)

Q(n)
=

q∑
i=1

∞∑
n=−∞

aiP (qn+ i)

Q(qn+ i)
, (19)

which could be summed using the translation and dilation formula (17).

5 Two special summations in the complex plane

This section provides some insight into the applications of the results we have obtained, i.e., the
translation and dilation formula and the idea of auxiliary function.

5.1 Gradation

The title ‘gradation’ is not an intimidating mathematics terminology but merely a literal description
of the pattern of the set of points:

Λ1 = {niπ + logm : n ∈ Z , m ∈ N∗}.

1

Figure 6
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In fact, Λ1 is the set of points z such that ez is an integer. A figure of this lattice is given above
and, hence its name.

Now, we are going to seek a formula for the sum∑
z∈Λ1

P (z)

Q(z)
e−cz, where c is an integer ≥ 1 and

P (z)

Q(z)
∈ R.

We restrict the order of summation to first vertically, then horizontally; this is important since the
series itself doesn’t converge absolutely. First we shall see that∑

z∈Λ1

P (z)

Q(z)
e−cz =

∑
n∈Z,m∈N∗

P (iπn+ logm)

Q(iπn+ logm)
· (−1)cn

mc

=

∞∑
m=1

1

mc

∞∑
n=−∞

(−1)cnP (iπn+ logm)

Q(iπn+ logm)
.

Then, we separate two cases in terms of the parity of c.
1. If c is even, then (−1)cn = 1. Hence

∑
z∈Λ1

P (z)

Q(z)
e−cz =

∞∑
m=1

1

mc

∞∑
n=−∞

P (iπn+ logm)

Q(iπn+ logm)

=

∞∑
m=1

1

mc
· 2iπ

iπ

∑
ω

P (ω)

Q′(ω)(1− e
2iπ(ω−logm)

iπ )

= 2

∞∑
m=1

1

mc

∑
ω

P (ω)

Q′(ω)(1− e2ω

m2 )

= 2
∑
ω

P (ω)

Q′(ω)

∞∑
m=1

1

mc − e2ωmc−2
.

where we have applied the translation and dilation formula, and {ω} denotes the zeros of Q.

(1). If c = 2, we find the sum is simply 2
∑
ω

P (ω)ζ−eω (2)

Q′(ω)
. Recall that ζ−t (2) is the type two shifted

zeta function.

(2). If c > 2, let’s first consider the sum

∞∑
m=1

1

mc − e2ωmc−2
.

Let f(z) =
1

(zc − e2ωzc−2)(e2πiz − 1)
. Integrate this function over the big circle γR as before,

but we should be careful with the residue since this time, Q(z) = zc − e2ωzc−2 whose zeros are not
all simple.

The function f has simple poles at z = n, n ∈ Z− {0} with residue

resn6=0f = lim
z→n

(z − n)

(zc − e2ωzc−2)(e2πiz − 1)
=

1

2πi(nc − e2ωnc−2)
.

and at z = eω or e−ω with residue

reseωf =
1

2e(c−1)ω(e2πieω − 1)
and res−eωf = − 1

2e(c−1)ω(e−2πieω − 1)
.

It also has a pole at z = 0 of order c− 1 because zc − e2ωzc−2 and e2πiz − 1 has zero at 0 of order
c− 2 and 1 respectively. By the general residue formula,

resz=0f = lim
z→0

1

(c− 2)!

( d
dz

)c−2 z

(z2 − e2ω)(e2πiz − 1)
.
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However, calculating the c − 2 th derivative could be a lot of work; so we think of simplifying the
residue through some other approach. An important tool we will use is the generating function for
Bernoulli numbers,

z

ez − 1
=

∞∑
n=0

Bn
n!
zn, where |z| < 2π.

For z in a neighborhood of zero,

f(z) =
1

2πi

1

zc+1 − e2ωzc−1

2πiz

e2πiz − 1

= − 1

2πie2ω

1

(1− z2

e2ω
)zc−1

∞∑
n=0

Bn
n!

(2πiz)n

= − 1

2πie2ω

∞∑
m=1

( z2

e2ω

)m ∞∑
n=0

(2πi)nBn
n!

zn−c+1

= − 1

2πie2ω

∞∑
r=1−c

∑
2m+n=r+c−1

(2πi)nBn
n!e2mω

zr.

We’ve used the Cauchy product of the two series since they converge absolutely. The residue is now

equivalent to the coefficient of the term r = −1 multiplies − 1

2πie2ω
, which is

−
c−2∑
n=0
even

(2πi)n−1Bn
n!e(c−n)ω

.

By the residue theorem,

∑
n6=0

1

(nc − e2ωnc−2)
−

c−2∑
n=0
even

(2πi)nBn
n!e(c−n)ω

+ 2πi(
1

2e(c−1)ω(e2πieω − 1)
− 1

2e(c−1)ω(e−2πieω − 1)
) = 0.

Since c is even, we have

∞∑
m=1

1

mc − e2ωmc−2
=

1

2

c−2∑
n=0
even

(2πi)nBn
n!e(c−n)ω

− π cot(πeω)

2e(c−1)ω
.

Therefore ∑
z∈Λ1

P (z)

Q(z)
e−cz =

∑
ω

P (ω)

Q′(ω)

(
c−2∑
n=0
even

(2πi)nBn
n!e(c−n)ω

− π cot(πeω)

e(c−1)ω

)
. (20)

2. If c is odd, then (−1)cn = (−1)n.

∑
z∈Λ1

P (z)

Q′(z)
e−cz =

∞∑
m=1

1

mc

∞∑
n=−∞

(−1)n
P (iπn+ logm)

Q(iπn+ logm)
.

We observe that ∑
z∈Z

(−1)n
P (δn+ x)

Q(δn+ x)
= 2

∑
n∈Z

P (2δn+ x)

Q(2δn+ x)
−
∑
n∈Z

P (δn+ x)

Q(δn+ x)
.
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Hence,

∞∑
m=1

1

mc

∞∑
n=−∞

(−1)n
P (iπn+ logm)

Q(iπn+ logm)
=

∞∑
m=1

1

mc

(
2 · 2iπ

2iπ

∑
ω

P (ω)

Q′(ω)(1− e
2iπ(ω−logm)

2iπ )

− 2iπ

iπ

∑
ω

P (ω)

Q′(ω)(1− e
2iπ(ω−logm)

iπ )

)

= 2

∞∑
m=1

1

mc

∑
ω

P (ω)

Q′(ω)

(
1

1− eω

m

− 1

1− e2ω

m2

)

= 2
∑
ω

P (ω)

Q′(ω)

∞∑
m=1

eω

mc−1(m2 − e2ω)
.

We find that the result is so similar to the case when c is even.

(1). If c = 1, then the sum is 2
∑
ω

P (ω)eωζ−eω (2)

Q′(ω)
.

(2). If c > 1, ∑
z∈Λ1

P (z)

Q(z)
e−cz =

∑
ω

P (ω)

Q′(ω)

(
c−1∑
n=0
even

(2πi)nBn
n!e(c−n)ω

− π cot(πeω)

e(c−1)ω

)
. (21)

Now, consider the lattice given by:

Λ2 = {niπ − logm : n ∈ Z , m ∈ N∗}

which is symmetric to the previous one along the imagery axis. We may proceed the sum
∑
z∈Λ2

P (z)

Q(z)
e−cz

by a similar approach. But an interesting fact is that this sum converges (when first summed in n,
then in m) for c ≥ 0. And the lower-bound case as c = 0 is:

∑
z∈Λ2

P (z)

Q(z)
=

∞∑
m=1

∞∑
n=−∞

P (iπn− logm)

Q(iπn− logm)

=

∞∑
m=1

2iπ

iπ

∑
ω

P (ω)

Q′(ω)(1− e
2iπ(ω+logm)

iπ )

= 2

∞∑
m=1

∑
ω

P (ω)

Q′(ω)(1− e2ωm2)

= −2
∑
ω

P (ω)ζ−
e−ω

(2)

Q′(ω)e2ω
.

5.2 Radiation

In this subsection, we will explore a new type of auxiliary function. Consider the set of points given
by:

Λ3 = {z = e
miπ
k n

1
k : m = 1, 2, · · · , 2k , n ∈ N},

which are the poles of the function g(z) = 1/(e2πizk − 1) , k ∈ Z and k ≥ 1(we will assume k > 1
later since k = 1 was already discussed in the previous section). The pattern gives the sense of
particles illuminating from the origin, but what is unlike a normal radiation, on each ray, points
get denser when they are more distant from the center.
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γN

The lattice Λ3 when k = 2

1

Figure 7

For P (z)/Q(z) ∈ R whose zeros or poles are not in Λ3, construct the function f(z) = P (z)/[Q(z)(e2πizk−
1)]. Integrate this function along the circle γN centered at the origin with radius [N

1
k +(N+1)

1
k ]/2

where N is an integer so large that γN contains all the zeros of Q , denoted by {ζ}. (Here we also

assume that Q’s zeros do not coincide with those of e2πizk − 1.) Let’s first compute the residue of
f .

(1). resζf = lim
z→ζ

P (z)(z − ζ)
Q(z)(e2πizk − 1)

=
P (ζ)

Q′(ζ)(e2πiζk − 1)
.

(2). resz0∈Λ3−{0}f = lim
z→z0

P (z)(z − z0)

Q(z)(e2πizk − 1)
=

1

2πi
· P (z0)

kzk−1
0 Q(z0)

.

(3). The pole of f at 0 is of order k as we observe the first derivative of e2πizk − 1, which is

2πikzk−1e2πizk , has a zero at 0 of order k − 1. Hence,

resz=0f = lim
z→0

1

(k − 1)!

( d
dz

)k−1 P (z)zk

Q(z)(e2πizk − 1)
.

Indeed, we may simplify this result to a much nicer form. First, let’s come back to the definition of
residue and prove that

resz=0

( P (z)

Q(z)(e2πizk − 1)

)
=

1

2πi
resz=0

( P (z)

Q(z)zk

)
.

Here, we invoke again the Bernoulli numbers given by

z

ez − 1
=

∞∑
n=0

Bn
n!
zn, where |z| < 2π,
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and obtain

P (z)

Q(z)(e2πizk − 1)
=
P (z)

Q(z)

∞∑
n=0

Bn
n!

(2πizk)n−1

=
P (z)

Q(z)

( 1

2πizk
+

∞∑
n=1

(2πi)n−1Bn
n!

zk(n−1)
)

=
1

2πi

P (z)

Q(z)zk
+
P (z)

Q(z)

∞∑
n=0

(2πi)nBn+1

(n+ 1)!
zkn.

Where |z| < 1 and we’ve used the fact that B0 = 1. Since the last sum denotes a meromorphic
function whose poles are non-zero, we may conclude that

resz=0

( P (z)

Q(z)(e2πizk − 1)

)
=

1

2πi
resz=0

( P (z)

Q(z)zk

)
.

Next, we prove a lemma:

Lemma 5.1 Let A denote the set of zeros of Q(z). Then, for z /∈ A,

P (z)

Q(z)
=
∑
ζ∈A

P (ζ)

Q′(ζ)(z − ζ) (22)

whenever P (z)/Q(z) is a proper rational function and Q has distinct zeros.

Proof. Let f(z) = P (z)/Q(z)(z − x), where x is a complex number not in A. Hence, f(z) ∈ R.
Integrate f(z) along γR, the circle centered at the origin with radius R that contains x. Obviously,∣∣∣ ∫

γR

f(z) dz
∣∣∣→ 0 as R→ 0.

Also, resz=xf =
P (x)

Q(x)
by definition, and

resz=ζf = lim
z→ζ

P (z)(z − ζ)
Q(z)(z − x)

=
P (ζ)

Q′(ζ)(ζ − x)
.

Hence,
P (x)

Q(x)
=
∑
ζ∈A

P (ζ)

Q′(ζ)(x− ζ)

by the residue theorem and our lemma is proved.
Therefore,

2πi · resz=0f = resz=0

( P (z)

Q(z)zk

)
=

1

(k − 1)!
lim
z→0

( d
dz

)k−1P (z)

Q(z)

=
1

(k − 1)!
lim
z→0

( d
dz

)k−1∑
ζ

P (ζ)

Q′(ζ)(z − ζ)

=
1

(k − 1)!
lim
z→0

∑
ζ

P (ζ)

Q′(ζ)
(−1)k−1 (k − 1)!

(z − ζ)k

= −
∑
ζ

P (ζ)

Q′(ζ)ζk
.
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Now, we shall move on to the integration over γN . Intuitively we would think this integral tends
to zero, but the reasoning is a little trickier. Since we find that on each branch, the circle γN
always goes in between two adjacent poles. Our concern is, as N tends infinitely large, the distance
between adjacent poles becomes infinitely small, and hence the contour gets infinitely close to some
poles. So it is necessary to examine the value(or growth, if no value at all) at the intersection of

γN with each branch. But it suffices to compute the limit of g(z) at z = [N
1
k + (N + 1)

1
k ]/2 as N

tends to infinity.

lim
N→∞

zk = lim
N→∞

∑k
i=1 C

i
k
k
√
N i(N + 1)k−i

2k

= lim
N→∞

∑k
i=1 C

i
k
k
√
Nk + (k − i)Nk−1 +O(Nk−2)

2k

= lim
N→∞

∑k
i=1 C

i
k
k

√
(N + k−i

k
)k +O(Nk−2)

2k

=

∑k
i=1 C

i
k(N + 1− i

k
)

2k

=
(N + 1)2k − 2k−1

2k

= N +
1

2
.

where we’ve used two basic combinatoric identities

k∑
i=1

Cik = 2k and
i

k
Cik = Ci−1

k−1. Thus,

lim
N→∞

g(z) =
1

e2πi(N+ 1
2

) − 1
= −1

2
.

which means that g is bounded. Now that we may easily conclude that∣∣∣ ∫
γN

f(z) dz
∣∣∣ = 0 as N →∞.

By the residue theorem,∑
z0∈Λ3−{0}

P (z0)

kzk−1
0 Q(z0)

+ 2πi
∑
ζ

P (ζ)

Q′(ζ)(e2πiζk − 1)
−
∑
ζ

P (ζ)

Q′(ζ)ζk
= 0.

which is equivalent to

2k∑
m=1

∞∑
n=1

P (e
miπ
k n

1
k )

ke
(k−1)miπ

k n1− 1
kQ(e

miπ
k n

1
k )

= 2πi
∑
ζ

P (ζ)

Q′(ζ)(1− e2πiζk )
+
∑
ζ

P (ζ)

Q′(ζ)ζk
. (23)

This formula enables us to evaluate explicitly a range of infinite series containing non-integral powers
without having trouble with the definition of complex powers(i.e. to have a branch cut).

6 Extending the summation formula to R∗
In the previous section, we have encountered several occasions where computing the residue of a
higher-order pole is required; they are solved with the help of Bernoulli numbers. In light of those
results, we extend our summation formula in 4.3 to functions with arbitrary poles.

Let R∗ denotes the set of rational function with real coefficients

R(z) =
P (z)

Q(z)
, z ∈ C
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such that (Degree Q) ≥ (Degree Q) + 2 and P , Q have no common zeros. These functions differ
from those from R only by the absence of restriction on the zeros of Q. However, this, as we will
see later, could make the calculation of∑

n∈Z

P (δn+ x)

Q(δn+ x)
, δ, x ∈ C

a lot more complicated.

Let f(z) =
P (z)

Q(z)(e
2πi
δ

(z−x) − 1)
where δ and x are complex constants. Integrate f along the the

circle centered at the origin of radius R, denoted by γR. Obviously, we can argue as before that∣∣∣ ∫
γR

f(z) dz
∣∣∣→ 0 as R→∞.

Now we only need to concern its residue. Denote the zeros of Q by S = {ζ1, ζ2, · · · , ζq} and their
order by a1, a2, · · · , aq, respectively.
(1). f has simple poles at the δn+ x if δn+ x /∈ S , n ∈ Z. Hence,

resδn+x/∈Sf = lim
z→δn+x

P (z)(z − δn− x)

Q(z)(e
2πi
δ

(z−x) − 1)

=
δ

2πi

P (δn+ x)

Q(δn+ x)

(2). f also has poles at the zeros of Q with corresponding order. The residue formula tells us

resζif = lim
z→ζi

1

(ai − 1)!

( d
dz

)ai−1 P (z)(z − ζi)
Q(z)(e

2πi
δ

(z−x) − 1)

for ζi not of the form δn+x. For ai > 1 in general, we have little idea about this higher-derivative.
Therefore, we seek f ’s residue at ζm, m ∈ {1, 2, · · · , q} in a different approach, in analogue to the
cases in section 5, though the details are more delicate.

Write 1/Q(z) in the form c−1
0

q∏
i=1

(z − ζ)−ai , where c0 is the leading coefficient. We first expand

each of its factor (z − ζi)−ai , i 6= m to power series around ζm. Since( d
dz

)n
(z − ζi)−ai = (−1)n(ai)n(z − ζi)−ai−n,

where (a)n is the shifted factorial:(a)n = a(a+ 1) · · · (a+ n− 1), we have its Taylor expansion as

1

(z − ζi)ai
=

∞∑
n=0

(−1)n(ai)n
n!(ζm − ζi)ai+n

(z − ζm)n

=

∞∑
n=0

(−1)n
(
ai+n−1
ai−1

)
(ζm − ζi)ai+n

(z − ζm)n

for z near ζm. Also,

P (z) =

∞∑
k=0

P (k)(ζm)

k!
(z − ζm)k,

which is actually a finite sum. Next, we want to expand
1

e
2πi
δ

(z−x) − 1
around ζm. In order to do

so, we define A(n, x) by the generating function

1

ez − 1
=

∞∑
n=0

A(n, x)

n!
(z − x)n,
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where x ∈ C and x 6= 2πin , n ∈ Z. For z in a neighborhood of x,

1 = (ez − 1)

∞∑
n=0

A(n, x)

n!
(z − x)n

=
( ∞∑
m=0

ex

m!
(z − x)m − 1

)( ∞∑
n=0

A(n, x)

n!
(z − x)n

)
=

∞∑
r=0

∑
n+m=r

A(n, x)

n!m!
(z − x)r −

∞∑
n=0

A(n, x)

n!
(z − x)n

=

∞∑
r=0

ex

r!

r∑
n=0

A(n, x)

(
r

n

)
(z − x)r −

∞∑
n=0

A(n, x)

n!
(z − x)n.

We’ve proceeded the Cauchy product of two series despite the uncertainty about the convergence
of the series involving A(n, x); but we will prove it later. Equating the coefficients leads to

1. A(0, x) =
1

ex − 1

2. A(n, x) =
ex

1− ex
n−1∑
k=0

(
n

k

)
A(k, x). (24)

if x 6= 2πin. We also define A(−1, x) = 0 in this case. Regarding the problem of convergence of∑∞
n=0

A(n,x)
n!

(z−x)n, we only prove, though something quite intuitive, that its radius of convergence
is larger than zero for x 6= 2πin, i.e. the series doesn’t diverge everywhere. By the ratio test,

lim
n→∞

∣∣∣A(n+ 1, x)(z − x)

A(n, x)(n+ 1)

∣∣∣ < 1,

and from the observation that

A(n+ 1, x)

A(n, x)
=

∑n
m=0

(
n+1
m

)
A(m,x)∑n−1

k=0

(
n
k

)
A(k, x)

=
(n+ 1)A(n, x) +

∑n−1
m=0

(
n+1
m

)
A(m,x)∑n−1

k=0

(
n
k

)
A(k, x)

=
ex

1−ex
∑n−1
m=0(n+ 1)

(
n
m

)
A(m,x) +

∑n−1
m=0

(
n+1
m

)
A(m,x)∑n−1

k=0

(
n
k

)
A(k, x)

<

(
ex

1−ex + 1
)
(n+ 1)

∑n−1
m=0

(
n
m

)
A(m,x)∑n=1

k=0

(
n
k

)
A(k, x)

=
n+ 1

1− ex ,

because
(
n+1
m

)
< (n + 1)

(
n
m

)
, we may conclude that the radius of convergence is at least |1 − ex|.

Hence it converges absolutely for z in a neighborhood of x if x 6= 2πin.
On the other hand, if x = 2πim ,m ∈ Z,

1

ez − 1
=

∞∑
n=0

Bn
n!

(z − x)n−1 =

∞∑
n=−1

Bn+1

(n+ 1)!
(z − x)n

by the definition of Bernoulli numbers. Its radius of convergence is 2π, which is a well known fact.
Therefore, if x is an integral multiple of 2πi, we define

A(n, x) =
Bn+1

n+ 1
for n ≥ 0 and A(−1, x) = 1. (25)
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(24) and (25) together completes our definition for A(n, x) ,n ≥ −1 and x ∈ C. Now, the generating
function can be expressed as

1

ez − 1
=

∞∑
n=−1

A(n, x)

|n|! (z − x)n.

Let z = 2πi
δ

(z − x) and x = 2πi
δ

(ζm − x), we obtain

1

e
2πi
δ

(z−x) − 1
=

∞∑
n=−1

A(n, 2πi
δ

(ζm − x))

|n|!
(2πi

δ
(z − ζm)

)n
=

∞∑
n=−1

(2πi)nA(n, 2πi
δ

(ζm − x))

|n|!δn (z − ζm)n.

We need to decide the definition of A(n, x) in terms of whether 2πi
δ

(ζm − x) is a multiple of 2πi, or
equivalently, whether ζm is in the form of δn+ x ,n ∈ Z.

Summing up the above results gives

f(z) =
1

c0(z − ζm)am

( ∞∑
k=0

P (k)(ζm)

k!
(z − ζm)k

) ∏
i6=m

( ∞∑
mi=0

(−1)n
(
ai+mi−1
ai−1

)
(ζm − ζi)ai+mi

(z − ζm)mi
)

( ∞∑
n=−1

(2πi)nA(n, 2πi
δ

(ζm − x))

|n|!δn (z − ζm)n
)

=
1

c0(z − ζm)am

∞∑
r=0

∑
n+k+

∑
mi=r

(2πi)nA(n, 2πi
δ

(ζm − x))P (k)(ζm)

δn|n|!k!

∏
i6=m

(−1)mi
(
ai+mi−1
ai−1

)
(ζm − ζi)ai+mi

(z − ζm)r

=
1

c0

∞∑
r=0

( ∑
n+k+

∑
mi=r

(2πi)nA(n, 2πi
δ

(ζm − x))P (k)(ζm)

δn|n|!k!

∏
i6=m

(−1)mi
(
ai+mi−1
ai−1

)
(ζm − ζi)ai+mi

)
(z − ζm)r−am .

By its definition, the residue of f at ζm is the coefficient of (z− ζm)−1. In the present case, it’s the
coefficient of the term with r = am − 1, which is

1

c0
∏
i6=m(ζm − ζi)ai

∑
n+k+

∑
mi=am−1

(−1)
∑
mi(2πi)nA(n, 2πi

δ
(ζm − x))P (k)(ζm)

δn|n|!k!

∏
i6=m

(
ai+mi−1
ai−1

)
(ζm − ζi)mi

,

(26)
with k ≥ 0 ,n ≥ −1 and mi ≥ 0. It’s indeed complicated! In particular, if we let ζm be simple, i.e
am = 1 for all m, and require that ζm is not of the form δn + x, which implies the n = −1 term
vanishes, (26) becomes

1

c0
∏
i6=m(ζm − ζi)ai

P (ζm)A(0,
2πi

δ
(ζm − x)) =

P (ζm)

Q′(ζm)(e
2πi
δ

(ζm−x) − 1)

by definition of A(n, x) in (24). This is identical to the result we obtained in 4.3. The general
formula in terms of residue is ∑

n∈Z
δn+x/∈S

P (δn+ x)

Q(δn+ x)
= −2πi

δ

∑
ζ∈S

resz=ζf.

Where S is the set of zeros of Q, and the residue can be computed through (26). To end this
paper, we illustrate its application by a simple case of finding the value of ζ(2s)(s is an integer)
using complex analysis.

Let f(z) = 1/[zs(e2πiz − 1)]. Its residue at z = n , n 6= 0 is 1/2πink. Since the zero of zs

coincides with that of 1/(e2πiz − 1) at 0, we use the definition of A(n, x) in (25). Also, P (z) = 1
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and thus P (k)(z) vanishes for k > 0. Finally, 1/zs has only one pole so there is no ζi with i 6= m.
So (26) reduces to one term:

(2πi)sA(s− 1, 0)

(s− 1)!
,

because c0 = 1, δ = 1 and x = 0. By the residue theorem,∑
n∈Z

1

ns
= − (2πi)sA(s− 1, 0)

(s− 1)!
.

Substitute 2s for s, we obtain

ζ(2s) =
(−1)s+122s−1π2sB2s

(2s)!
,

using A(2s − 1, 0) = B2s/2s in (25), a beautiful formula first obtained by Euler almost three cen-
turies ago.
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