An Asymptotic Formula in Number Theory

Zhenhua Liu

No. 2 High School of East China Normal University Advisor: Zhongyuan Dai

An Asymptotic Formula in Number Theory
 Zhenhua Liu

December 5, 2015

Abstract

Let $\mathrm{r}(n)$ denote the arithmetic function whose Dirichlet series is $$
\frac{\zeta^{2}(2 s-2)}{\zeta^{2}(4 s-4)} \prod_{p}\left(1+p\left(p^{s}-1\right)^{-1}\right)
$$

We obtain the asymptotic formula

$$
\begin{align*}
\sum_{n \leq x} \mathrm{r}(n)= & \frac{225}{2 \pi^{4}} x^{2} \prod_{p}\left(1-\frac{1}{p(p+1)}\right)+\frac{2 \zeta\left(\frac{1}{2}\right)}{\pi^{2}} x^{\frac{3}{2}} \prod_{p}\left(1-\frac{1}{p^{\frac{3}{2}}\left(p+p^{\frac{1}{2}}+1\right)}\right) \tag{1}\\
& +\mathcal{O}\left(x^{1.417+\epsilon(2 x)} \log x\right)
\end{align*}
$$

by applying Perron's formula to the Dirichlet series of $\mathrm{r}(n)$ where $\epsilon(x)=\frac{1+o(1)}{\log (\log x)}$.

Contents

1 Introduction 2
2 Outline of Proof 2
3 Manipulations 3
3.1 Effective Perron's Formula 3
3.2 Evaluation of Integral 5
3.3 Estimates for Bounded Factors in $R(s)$ 6
3.4 Modified Lindölef's Theorem 6
3.5 Integrals on the Horizontal Sides 7
3.6 Integral on the Vertical Side 8
3.7 Conclusion 9
4 Some Further Thoughts 9
5 Acknowledgements 10

1 Introduction

Let $\operatorname{rad}(n)$ denote the radical of an integer n, which is the product of the distinct prime numbers dividing n, or equivalently,

$$
\operatorname{rad}(n)=\prod_{\substack{p \mid n \\ p \text { prime }}} p
$$

Assume $\operatorname{rad}(1)=1$, so that $\operatorname{rad}(n)$ is multiplicative.
The best estimation for $\sum_{n \leq x} \operatorname{rad}(n)$ is

$$
\sum_{n \leq x} \operatorname{rad}(n)=\frac{x^{2}}{2} \prod_{p}\left(1-\frac{1}{p(p+1)}\right)+\mathcal{O}\left(x^{\frac{3}{2}}\right)
$$

obtained by E.Cohen in his articles [6] and[7]. Alternative derivations for Cohen's result are available in [5] and Tenenbaum's book [2]

However, in this thesis, we obtain asymptotics for the sum of the arithmetic function $\mathrm{r}(n)$ which is closely related to $\operatorname{rad}(n)$. The Dirichlet series of $r(n)$ satisfies

$$
\begin{align*}
R(s) & =\frac{\zeta^{2}(2 s-2)}{\zeta^{2}(4 s-4)} \sum_{n \geq 1} \frac{\operatorname{rad}(n)}{n^{s}} \\
& =\left[\prod_{p}\left(1+\frac{1}{p^{2 s-2}}\right)\right]^{2} \prod_{p}\left(1+\frac{p}{p^{s}-1}\right) . \tag{2}
\end{align*}
$$

If we define

$$
q(n)= \begin{cases}1 & \text { if } n \text { is a square number } \tag{3}\\ 0 & \text { if } n \text { is not a square number }\end{cases}
$$

we can express $\mathrm{r}(n)$ as the Dirichlet convolution $\operatorname{rad} * q(n)|\mu(\sqrt{n})| n * q(n)|\mu(\sqrt{n})| n$, or equivalently

$$
\mathrm{r}(n)=\sum_{d e f=n} \operatorname{rad}(d) q(e) q(f)|\mu(\sqrt{e}) \mu(\sqrt{f})| e f,
$$

where d, e and f are divisors of n.
Applying Perron's formula to the Dirichlet series of $\mathrm{r}(n)$, we can have estimates that involve more main terms and smaller error term. Further research beyond this thesis may be conducted in the future to recover estimates of $\sum_{n \leq x} \operatorname{rad}(n)$ from $\sum_{n \leq x} \mathrm{r}(n)$.

2 Outline of Proof

Let $R(s)$ denote the Dirichlet series of $\mathrm{r}(n)$, which is

$$
\begin{align*}
R(s) & =\sum_{n \geq 1} \frac{\mathrm{r}(n)}{n^{s}} \\
& =\frac{\zeta^{2}(2 s-2)}{\zeta^{2}(4 s-4)} \prod_{p}\left(1+\frac{p}{p^{s}-1}\right) \\
& =\frac{\zeta(s) \zeta(s-1) \zeta(2 s-2)}{\zeta(4 s-4)} \prod_{p}\left(1-\frac{1}{p^{4 s-4}}-\frac{1}{p^{3 s-2}}-\frac{1}{p^{s}}+\frac{1}{p^{2 s-1}}+\frac{1}{p^{4 s-3}}\right) . \tag{4}
\end{align*}
$$

Our aim is to extract more information about $\sum_{n \leq x} \mathrm{r}(n)$ by applying Perron's formula to
$R(s)$.
First, we use an effective form of Perron's formula to derive

$$
\begin{equation*}
\sum_{n \leq x} \mathrm{r}(n)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} R(s) x^{s} \frac{d s}{s}+\mathcal{O}\left(x^{1+\epsilon(2 x)}\right)+\mathcal{O}\left(\frac{x^{2+1+\epsilon(2 x)} \log x}{T}\right) \tag{5}
\end{equation*}
$$

Using some suitable contour, we can then apply the residue theorem to obtain

$$
\begin{align*}
\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} R(s) \frac{x^{s}}{s} d s= & \frac{225}{2 \pi^{4}} x^{2} \prod_{p}\left(1-\frac{1}{p(p+1)}\right)+\frac{2 \zeta\left(\frac{1}{2}\right)}{\pi^{2}} x^{\frac{3}{2}} \prod_{p}\left(1-\frac{1}{p^{\frac{3}{2}}\left(p+p^{\frac{1}{2}}+1\right)}\right) \\
& +\frac{1}{2 \pi i}\left(-\int_{d-i T}^{c-i T}+\int_{d+i T}^{c+i T}+\int_{d-i T}^{d+i T}\right) R(s) \frac{x^{s}}{s} d s \tag{6}
\end{align*}
$$

The remaining work is to estimate the integral on the right hand side of (6).
Combining some results on the Riemann Zeta function $\zeta(s)$, we can get

$$
\begin{equation*}
\left(-\int_{d-i T}^{c-i T}+\int_{d+i T}^{c+i T}+\int_{d-i T}^{d+i T}\right) R(s) \frac{x^{s}}{s}=\mathcal{O}\left(\frac{x^{1.51}}{T^{0.84}}\right)+\mathcal{O}\left(\frac{x^{2}}{T}\right)+\mathcal{O}\left(x^{1.3} T^{0.2} \sqrt{\log T}\right) \tag{7}
\end{equation*}
$$

Choosing $T=x^{0.583}$ and putting the estimates together into (5), we can finally obtain the asymptotic formula

$$
\begin{align*}
\sum_{n \leq x} \mathrm{r}(n)= & \frac{225}{2 \pi^{4}} x^{2} \prod_{p}\left(1-\frac{1}{p(p+1)}\right)+\frac{2 \zeta\left(\frac{1}{2}\right)}{\pi^{2}} x^{\frac{3}{2}} \prod_{p}\left(1-\frac{1}{p^{\frac{3}{2}}\left(p+p^{\frac{1}{2}}+1\right)}\right) \\
& +\mathcal{O}\left(x^{1.417+\epsilon(2 x)} \log x\right) \tag{8}
\end{align*}
$$

3 Manipulations

Throughout the following sections, we follow the convention $s=\sigma+i t$, where σ and t denote the real part (\Re) and imaginary part (\Im) of s, respectively.

3.1 Effective Perron's Formula

Let $F(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}$ be a Dirichlet series with finite abscissa of absolute convergence σ_{α}, with $a(n)$ being an arbitrary arithmetic function.
Suppose that there exists some real number $\alpha \geq 0$ such that, for $\sigma>\sigma_{a}$,

$$
\sum_{n \leq 1} \frac{|a(n)|}{n^{s}}=\mathcal{O}\left(\left(\sigma-\sigma_{a}\right)^{-\alpha}\right)
$$

and there exists a non-decreasing function $B(x)$ satisfying $|a(n)|<B(n)$.
Then for $x \geq 2, T \geq 2, \Re(s)=\sigma \leq \sigma_{a}, c=\sigma_{a}-\sigma+\frac{1}{\log x}$, we have

$$
\sum_{n \leq x} \frac{a(n)}{n^{s}}=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} F(s+w) x^{w} \frac{d w}{w}+\mathcal{O}\left(x^{\sigma_{a}-\sigma} \frac{(\log x)^{\alpha}}{T}+\frac{B(2 x)}{x^{\sigma}}\left(1+x \frac{\log x}{T}\right)\right)
$$

For the proof, see Tenenbaum's book [2].

Since $R(s)$ has a simple pole at $s=2$, to get $\sum_{n \leq x} \mathrm{r}(n)$, we can apply the theorem to $R(s)$ with $s=0, \sigma=0, \alpha=1, c=2+\frac{1}{\log x}, B(x)=x^{1+\epsilon(2 x)}$ and we have

$$
\sum_{n \leq x} \mathrm{r}(n)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} R(w) x^{w} \frac{d w}{w}+\mathcal{O}\left(x^{1+\epsilon(2 x)}\right)+\mathcal{O}\left(\frac{x^{2+\epsilon(2 x)} \log x}{T}\right)
$$

More specifically, to determine $B(x)$, we begin by

$$
R(s)<\prod_{p}\left(1+e \frac{p}{p^{s}}+e \frac{p^{2}}{p^{2 s}}+e \frac{p^{3}}{p^{3 s}}+e \frac{p^{4}}{p^{4 s}}+\cdots\right),
$$

where $e=2.718 \cdots$ is the base of the natural logarithm. Thus we have

$$
r(n)<e^{\omega(n)} n,
$$

where $\omega(n)$ is the arithmetic function that counts the number of distinct primes dividing n. Using estimates for $\omega(n)$ from Tenebaum's book [2], we can get

$$
\omega(n)<\epsilon(n) \log n=\frac{\log n}{\log (\log n)}(1+o(1))
$$

where $\epsilon(n)=\frac{1+o(1)}{\log (\log n)}$, so that we have

$$
B(2 x)=(2 x)^{1+\epsilon(2 x)}=\mathcal{O}\left(x^{1+\epsilon(2 x)}\right)
$$

here.

Figure 1: Contour γ

3.2 Evaluation of Integral

To evaluate the integral, we can use a rectangular contour γ with four corners at $c-i T$, $c+i T, d+i T$ and $d-i T$, as shown in Figure 1 , where $d=1.3$ and $c=2+\frac{1}{\log x}$.
To be convenient, we'll use s instead of w in the integral.
By residue theorem,

$$
\frac{1}{2 \pi i} \oint_{\gamma} R(s) \frac{x^{s}}{s} d s=\frac{x^{2}}{2} \operatorname{Res}[R(s), 2]+\frac{2 x^{\frac{3}{2}}}{3} \operatorname{Res}\left[R(s), \frac{3}{2}\right] .
$$

For

$$
\begin{equation*}
R(s)=\frac{\zeta(s) \zeta(s-1) \zeta(2 s-2)}{\zeta(4 s-4)} \prod_{p}\left(1-\frac{1}{p^{4 s-4}}-\frac{1}{p^{3 s-2}}-\frac{1}{p^{s}}+\frac{1}{p^{2 s-1}}+\frac{1}{p^{4 s-3}}\right) \tag{9}
\end{equation*}
$$

using

$$
\lim _{s \rightarrow 1}(s-1) \zeta(s)=1
$$

we can get

$$
\begin{align*}
\operatorname{Res}[R(s), 2] & =\lim _{s \rightarrow 2}(s-2) R(s) \\
& =\lim _{s \rightarrow 2} \frac{\zeta^{2}(2 s-2)}{\zeta^{2}(4 s-4)}[(s-1)-1] \zeta(s-1) \zeta(s) \prod_{p}\left(1-\frac{1}{p^{2 s-2}}-\frac{1}{p^{s}}+\frac{1}{p^{2 s-1}}\right) \\
& =\frac{\zeta^{2}(2)}{\zeta^{2}(4)} \zeta(2) \prod_{p}\left(1-\frac{2 p-1}{p^{3}}\right) \\
& =\frac{\zeta^{2}(2)}{\zeta^{2}(4)} \prod_{p}\left(\frac{1-\frac{2 p-1}{p^{3}}}{1-\frac{1}{p^{2}}}\right) \\
& =\frac{\zeta^{2}(2)}{\zeta^{2}(4)} \prod_{p}\left(1-\frac{1}{p(p+1)}\right) \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
\operatorname{Res}\left[R(s), \frac{3}{2}\right]= & \lim _{s \rightarrow \frac{3}{2}}\left(s-\frac{3}{2}\right) R(s) \\
= & \lim _{s \rightarrow \frac{3}{2}} \frac{1}{2}[(2 s-2)-1] \zeta(2 s-2) \frac{\zeta(s) \zeta(s-1)}{\zeta(4 s-4)} \\
& \prod_{p}\left(1-\frac{1}{p^{4 s-4}}-\frac{1}{p^{3 s-2}}-\frac{1}{p^{s}}+\frac{1}{p^{2 s-1}}+\frac{1}{p^{4 s-3}}\right) \\
= & \frac{1}{2} \frac{\zeta\left(\frac{3}{2}\right) \zeta\left(\frac{1}{2}\right)}{\zeta(2)} \prod_{p}\left(1-\frac{p^{\frac{3}{2}}+p^{\frac{1}{2}}-1}{p^{3}}\right) \\
= & \frac{1}{2} \frac{\zeta\left(\frac{1}{2}\right)}{\zeta(2)} \prod_{p}\left(\frac{1-p^{-\frac{3}{2}}-p^{-\frac{5}{2}}+p^{-3}}{1-p^{-\frac{3}{2}}}\right) \\
= & \frac{1}{2} \frac{\zeta\left(\frac{1}{2}\right)}{\zeta(2)} \prod_{p}\left(1-\frac{1}{p^{\frac{3}{2}}\left(p+p^{\frac{1}{2}}+1\right)}\right) . \tag{11}
\end{align*}
$$

Putting the residue back into the formula, we have obtained

$$
\begin{align*}
\sum_{n \leq x} \mathrm{r}(n)= & \frac{1}{2 \pi i} \int_{c-i T}^{c+i T} R(s) \frac{x^{s}}{s} d s+\mathcal{O}\left(x^{1+\epsilon(2 x)}\right)+\mathcal{O}\left(\frac{x^{2+\epsilon(2 x)} \log x}{T}\right) \\
= & \frac{225}{2 \pi^{4}} x^{2} \prod_{p}\left(1-\frac{1}{p(p+1)}\right)+\frac{2 \zeta\left(\frac{1}{2}\right)}{\pi^{2}} x^{\frac{3}{2}} \prod_{p}\left(1-\frac{1}{p^{\frac{3}{2}}\left(p+p^{\frac{1}{2}}+1\right)}\right) \\
& +\frac{1}{2 \pi i}\left(-\int_{d-i T}^{c-i T}+\int_{d+i T}^{c+i T}+\int_{d-i T}^{d+i T}\right) R(s) \frac{x^{s}}{s} d s \\
& +\mathcal{O}\left(x^{1+\epsilon(2 x)}\right)+\mathcal{O}\left(\frac{x^{2+\epsilon(2 x)} \log x}{T}\right) . \tag{12}
\end{align*}
$$

It remains to estimate the integral on the three sides other than $\Re(s)=c$.

3.3 Estimates for Bounded Factors in $R(s)$

We choose $d=1.3$. In the rectangle contour, we have uniformly that,

$$
|\zeta(s)|<\zeta(\sigma)<\zeta(1.3)
$$

Let $P(s)$ denote the product

$$
\prod_{p}\left(1-\frac{1}{p^{4 s-4}}-\frac{1}{p^{3 s-2}}-\frac{1}{p^{s}}+\frac{1}{p^{2 s-1}}+\frac{1}{p^{4 s-3}}\right)
$$

Since

$$
\sum_{p}\left(-\frac{1}{p^{4 s-4}}-\frac{1}{p^{3 s-2}}-\frac{1}{p^{s}}+\frac{1}{p^{2 s-1}}+\frac{1}{p^{4 s-3}}\right)
$$

converges absolutely for $\Re(s) \geq d$.
we have

$$
P(s)=\mathcal{O}(1)
$$

in the rectangle.
Using Euler Product, we can show that $\left|\frac{1}{\zeta(s)}\right|<\frac{\zeta(\sigma)}{\zeta(2 \sigma)}$, so that we have

$$
\frac{1}{\zeta(4 s-4)}=\mathcal{O}(1)
$$

in the rectangle.

3.4 Modified Lindölef's Theorem

Let Ω be a half-strip in the complex plane

$$
\Omega=\left\{s \in \mathbb{C} \mid \sigma_{1} \leq \Re(s)=\sigma \leq \sigma_{2} \text { and } \Im(s)=t \geq t_{0}>0\right\} \subsetneq \mathbb{C} .
$$

Suppose that f is holomorphic on Ω. If p, q are such constants that $|f(s)|=\mathcal{O}\left(t^{p}\right)$ on $\Re(s)=\sigma_{1}$ and $|f(s)|=\mathcal{O}\left(t^{q}\right)$ on $\Re(s)=\sigma_{2}$, and if there is a constant A such that $\frac{|f(\sigma+i t)|}{t^{A}}$ is bounded on Ω, then

$$
|f(\sigma+i t)|=\mathcal{O}\left(t^{k(\sigma)}\right)
$$

throughout Ω, where

$$
k(\sigma)=\frac{q-p}{\sigma_{2}-\sigma_{1}}\left(\sigma-\sigma_{1}\right)+p
$$

is the affine function which is p at σ_{1} and q at σ_{2}. For proof, see Edwards' monograph [1].
Also needed from Titchmarsh's monograph [3] and Tenenbaum's book [2] is the conclusion that for $t \geq 1$, we have

$$
\zeta(s)=\mathcal{O}\left(t^{\kappa(\sigma)} \log t\right)
$$

where

$$
\kappa(\sigma) \leq \begin{cases}\frac{1}{3}(1-\sigma) & \text { for } \frac{1}{2}<\sigma \leq 1, \tag{13}\\ \frac{1}{6}(3-4 \sigma) & \text { for } 0 \leq \sigma \leq \frac{1}{2}\end{cases}
$$

3.5 Integrals on the Horizontal Sides

To estimate $\zeta(s-1) \zeta(2 s-2)$ in the whole rectangle, we can apply the Lindölef's theorem separately to $\zeta(s-1)$ and $\zeta(2 s-2)$.

First we partition the rectangle into two sets, with their real parts satisfying $1.3 \leq \sigma \leq 1.51$ and $1.51<\sigma \leq c$, respectively. Then we can use estimate (13) to derive that, for $t \geq 1$ on $\sigma=1.3$,

$$
\zeta(s-1) \zeta(2 s-2)=\mathcal{O}\left(t^{0.44} \log ^{2} t\right)
$$

on $\sigma=1.51$,

$$
\zeta(s-1) \zeta(2 s-2)=\mathcal{O}\left(t^{0.16} \log t\right)
$$

and on $\sigma=c$,

$$
\zeta(s-1) \zeta(2 s-2)=\mathcal{O}(1)
$$

Since $\zeta(s-1) \zeta(2 s-2)$ is bounded by polynomial of t on the strip

$$
\Omega=\left\{s \in \mathbb{C} \mid 1.3 \leq \Re(s)=\sigma \leq c \text { and } \Im(s)=t \geq t_{0}>0\right\}
$$

(see Ford's thesis [4]), we can apply modified Lindölef's theorem to obtain bound for $\sigma(s-$ 1) $\sigma(2 s-2)$ in the two strips $1.3 \leq \sigma \leq 1.51$ and $1.51<\sigma \leq c$ separately.

In $1.3 \leq \Re(s)=\sigma \leq 1.51$,

$$
\sigma(s-1) \sigma(2 s-2)=\mathcal{O}\left(t^{k_{1}(\sigma)}\right),
$$

where $k_{1}(\sigma)$ is the affine function that reaches 0.44 on $\sigma=1.3$ and 0.16 on $\sigma=1.51$.
Similarly, in $1.51 \leq \Re(s)=\sigma \leq c$,

$$
\sigma(s-1) \sigma(2 s-2)=\mathcal{O}\left(t^{k_{2}(\sigma)}\right)
$$

where $k_{2}(\sigma)$ is the affine function that reaches 0 on $\sigma=c$ and 0.16 on $\sigma=1.51$.
Using the results in Section 3.3, we can get

$$
\left|\int_{d+i T}^{c+i T} R(s) \frac{x^{s}}{s} d s\right|=\frac{1}{T} \mathcal{O}\left(\int_{d+i T}^{c+i T}\left|\zeta(s-1) \zeta(2 s-2) x^{s}\right||d s|\right)
$$

Using the estimation for $\zeta(s-1) \zeta(2 s-2)$ obtained above, we have

$$
\begin{align*}
\int_{d+i T}^{c+i T}\left|\zeta(s-1) \zeta(2 s-2) x^{s}\right||d s| \leq & \int_{1.3}^{1.51}|\zeta(\sigma-1+i t) \zeta(2 \sigma-2+2 i t)| x^{\sigma} d \sigma \\
& +\int_{1.51}^{c}|\zeta(\sigma-1+i t) \zeta(2 \sigma-2+2 i t)| x^{\sigma} d \sigma \\
= & \mathcal{O}\left(x^{1.51} T^{0.44} \log T\right)+\mathcal{O}\left(x^{2}\right), \tag{14}
\end{align*}
$$

For $\left|\int_{d-i T}^{c-i T} R(s) \frac{x^{s}}{s} d s\right|$, using the identity $\zeta(\bar{s})=\overline{\zeta(s)}$ we can get the same estimate. In conclusion,

$$
\begin{equation*}
\left(\int_{d+i T}^{c+i T}+\int_{d-i T}^{c-i T}\right) \zeta(s-1) \zeta(2 s-2) x^{s} d s=\mathcal{O}\left(\frac{x^{1.51} \log T}{T^{0.56}}\right)+\mathcal{O}\left(\frac{x^{2}}{T}\right) \tag{15}
\end{equation*}
$$

3.6 Integral on the Vertical Side

To estimate the integral on the vertical side, we need estimate for mean value of $|\zeta(s)|^{2}$ in the rectangle.
For $\frac{1}{2}<\sigma<1$, we have

$$
\begin{equation*}
\int_{1}^{T}|\zeta(\sigma+i t)|^{2} d t=\mathcal{O}(T) \tag{16}
\end{equation*}
$$

For proof, see the monographs [3] and [1].
First, we separate the mean value part.

$$
\begin{align*}
\int_{d}^{d+i T} R(s) \frac{x^{s}}{s} d s & =\int_{d}^{d+i} R(s) \frac{x^{s}}{s}+\int_{d+i}^{d+i T} R(s) \frac{x^{s}}{s} \\
& =\mathcal{O}\left(x^{1.3}\right)+x^{1.3} \mathcal{O}\left(\int_{1}^{T}\left|\frac{\zeta(s-1) \zeta(2 s-2)}{s}\right| d t\right) \tag{17}
\end{align*}
$$

and then

$$
\begin{align*}
\int_{1}^{T}|\zeta(s-1) \zeta(2 s-2)|\left|\frac{d t}{s}\right| & <\int_{1}^{T}|\zeta(s-1) \zeta(2 s-2)|\left|\frac{d t}{t}\right| \\
& \leq \sqrt{\left(\int_{1}^{T}|\zeta(0.3+i t)|^{2} \frac{d t}{t}\right)\left(\int_{1}^{T}|\zeta(0.6+2 i t)|^{2} \frac{d t}{t}\right)} \tag{18}
\end{align*}
$$

where we use the Cauchy-Schwarz inequality in the second line.
Let $f(T)=\int_{1}^{T}|\zeta(0.6+2 i t)|^{2} d t$. Then we can use equation (16) to obtain

$$
f(T)=\frac{1}{2} \int_{1}^{T}|\zeta(0.6+2 i t)|^{2} d(2 t)=\mathcal{O}(T)
$$

so we have

$$
\begin{align*}
\int_{1}^{T}|\zeta(0.6+2 i t)|^{2} \frac{d t}{t} & =\left.\frac{f(t)}{t}\right|_{1} ^{T}+\int_{1}^{T} \frac{f(t)}{t^{2}} d t \\
& =\mathcal{O}(1)+\mathcal{O}(\log T) \tag{19}
\end{align*}
$$

Using the functional equation for $\zeta(s)$ and the complex Stirling formula for $\Gamma(s)$, we can get, for $0<\sigma<1$,

$$
\zeta(s)=\mathcal{O}\left(t^{\frac{1}{2}-\sigma}|\zeta(1-s)|\right)
$$

Using this estimate, we can get

$$
\begin{align*}
\int_{1}^{T}|\zeta(0.3+i t)|^{2} \frac{d t}{t} & =\int_{1}^{T}|\zeta(0.3-i t)|^{2} \frac{d t}{t} \\
& =\mathcal{O}\left(\int_{1}^{T} t^{0.4}|\zeta(0.7+i t)|^{2} \frac{d t}{t}\right) \\
& =\mathcal{O}\left(\int_{1}^{T}|\zeta(0.7+i t)|^{2} \frac{d t}{t^{0.6}}\right) \tag{20}
\end{align*}
$$

Using methods similar to (10), we can get

$$
\int_{1}^{T}|\zeta(0.3+i t)|^{2} \frac{d t}{t}=\mathcal{O}\left(T^{0.4}\right)
$$

Combining these results into (18), we can get

$$
\int_{1}^{T}\left|\frac{\zeta(s-1) \zeta(2 s-2)}{s}\right| d t=\mathcal{O}\left(T^{0.2} \sqrt{\log T}\right)
$$

Similarly, we have

$$
\int_{-T}^{1}\left|\frac{\zeta(s-1) \zeta(2 s-2)}{s}\right| d t=\mathcal{O}\left(T^{0.2} \sqrt{\log T}\right)
$$

In conclusion,

$$
\begin{equation*}
\int_{d-i T}^{d+i T} R(s) \frac{x^{s}}{s} d s=\mathcal{O}\left(x^{1.3} T^{0.2} \sqrt{\log T}\right) \tag{21}
\end{equation*}
$$

3.7 Conclusion

Combining the estimates in the previous sections we can get, for x big enough,

$$
\begin{align*}
\sum_{n \leq x} \mathrm{r}(n)= & \frac{225}{2 \pi^{4}} x^{2} \prod_{p}\left(1-\frac{1}{p(p+1)}\right)+\frac{2 \zeta\left(\frac{1}{2}\right)}{\pi^{2}} x^{\frac{3}{2}} \prod_{p}\left(1-\frac{1}{p^{\frac{3}{2}}\left(p+p^{\frac{1}{2}}+1\right)}\right) \\
& +\mathcal{O}\left(x^{1+\epsilon(2 x)}\right)+\mathcal{O}\left(\frac{x^{2+\epsilon(2 x)} \log x}{T}\right)+\mathcal{O}\left(\frac{x^{1.51} \log T}{T^{0.56}}\right) \\
& +\mathcal{O}\left(\frac{x^{2}}{T}\right)+\mathcal{O}\left(x^{1.3} T^{0.2} \sqrt{\log T}\right) . \tag{22}
\end{align*}
$$

Choosing $T=x^{0.583}$, we can get

$$
\begin{align*}
\sum_{n \leq x} \mathrm{r}(n)= & \frac{225}{2 \pi^{4}} x^{2} \prod_{p}\left(1-\frac{1}{p(p+1)}\right)+\frac{2 \zeta\left(\frac{1}{2}\right)}{\pi^{2}} x^{\frac{3}{2}} \prod_{p}\left(1-\frac{1}{p^{\frac{3}{2}}\left(p+p^{\frac{1}{2}}+1\right)}\right) \\
& +\mathcal{O}\left(x^{1.417+\epsilon(2 x)} \log x\right) \tag{23}
\end{align*}
$$

where $\epsilon(x)=\frac{1+o(1)}{\log (\log x)}$. For $\epsilon(x)$, detailed calculations show that we have $1.417+\epsilon(2 x)<$ 1.5 when $x<e^{92}$ and $x>e^{e^{21.8}}$.

4 Some Further Thoughts

Recently, the author was considering asymptotics for the sum $\sum_{n \leq x} \frac{1}{\operatorname{rad}(n)}$. Using results from Tenebaum's book [2], we can prove the limit

$$
\lim _{x \rightarrow+\infty} \frac{\sum_{n \leq x} \frac{1}{\operatorname{rad}(n)}}{x}=0
$$

Moreover, generalizing the results from [9], we can show that the sum $\sum_{n \leq x} \frac{1}{\operatorname{rad}(n)}$ grows faster than $C_{A}(\log x)^{A}$ for any $A>0$ where C_{A} is a positive constant depending on A. However, the author has not derived any aymptotics now.

5 Acknowledgements

First of all, I would like to thank my math teacher Zhongyuan Dai for his useful suggestions, unwavering support and constant motivation. Also I would like to thank my classmates for their help and Eric Naslund for his answers to my questions posted on Mathematics Stack Exchange.

References

[1] H.M. Edwards, Riemann's Zeta Function, p186, Dover Publications, NY, 2001.
[2] G. Tenenbaum, Introduction to Analytic and Probablistic Number Theory, Cambridge University Press, Cambridge, UK, 1996.
[3] E. C. Titchmarsh, D. R. Heath-Brown, The Theory Of The Riemann Zeta-Function, Oxford University Press, Oxford, UK, 1986.
[4] K. Ford, Vinogradov's Integral and Bounds for the Riemann Zeta Function, 2001, available at http://www.math.illinois.edu/ ford/wwwpapers/zetabd.pdf.
[5] E. Naslund, Average order of $\operatorname{rad}(n)$, answer at MathStackExchange, available at http://math.stackexchange.com/questions/1395269/average-order-of-mathrmradn.
[6] E. Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math.Z. 74 (1960) pp. 66-80; MR 22 No. 3707.
[7] E. Cohen, Some asymptotic formulas in the theory of numbers, Trans. Amer. Math. Soc. 112 (1964), pp. 214-227; MR 29 No. 3458.
[8] M. Huxley and A. Iv́ic, Subconvexity for the Riemann Zeta-Function and the Divisor Problem, Bulletin CXXXIV de l'Académie Serbe des Sciences et des Arts - 2007, Classe des Sciences mathematiques et naturelles, Sciences mathematiques No. 32, pp. 13-32.
[9] Matt E, Ramanujan's First Letter to Hardy and the Number of 33Smooth Integers, answer to the MathStackExchange question, available at http://math.stackexchange.com/questions/15966/ramanujans-first-letter-to-hardy-and-the-number-of-3-smooth-integers.
[10] E. Naslund, Average order of $\frac{1}{\operatorname{rad}(n)}$, answer at MathStackExchange, available at http://math.stackexchange.com/questions/1520961/average-order-of-frac1mathrmradn.

