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Abstract

Let r(n) denote the arithmetic function whose Dirichlet series is

ζ2(2s− 2)

ζ2(4s− 4)

∏
p

(1 + p(ps − 1)−1).

We obtain the asymptotic formula

∑
n≤x

r(n) =
225

2π4
x2
∏
p

(
1− 1

p(p+ 1)

)
+

2ζ( 1
2
)

π2
x

3
2

∏
p

(
1− 1

p
3
2 (p+ p

1
2 + 1)

)
+O(x1.417+ε(2x)log x),

(1)

by applying Perron’s formula to the Dirichlet series of r(n) where ε(x) =
1 + o(1)

log(log x)
.
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3.4 Modified Lindölef’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5 Integrals on the Horizontal Sides . . . . . . . . . . . . . . . . . . . . . . . . 7
3.6 Integral on the Vertical Side . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Some Further Thoughts 9

5 Acknowledgements 10

1

E05

- 53 -



1 Introduction

Let rad(n) denote the radical of an integer n, which is the product of the distinct prime
numbers dividing n, or equivalently,

rad(n) =
∏
p|n

p prime

p.

Assume rad(1) = 1, so that rad(n) is multiplicative.
The best estimation for

∑
n≤x rad(n) is

∑
n≤x

rad(n) =
x2

2

∏
p

(
1− 1

p(p+ 1)

)
+O(x

3
2 ),

obtained by E.Cohen in his articles [6] and[7]. Alternative derivations for Cohen’s result
are available in [5] and Tenenbaum’s book [2]

However, in this thesis, we obtain asymptotics for the sum of the arithmetic function r(n)
which is closely related to rad(n). The Dirichlet series of r(n) satisfies

R(s) =
ζ2(2s− 2)

ζ2(4s− 4)

∑
n≥1

rad(n)

ns

=

[∏
p

(
1 +

1

p2s−2

)]2∏
p

(
1 +

p

ps − 1

)
. (2)

If we define

q(n) =

{
1 if n is a square number,

0 if n is not a square number,
(3)

we can express r(n) as the Dirichlet convolution rad ∗ q(n)|µ(
√
n)|n ∗ q(n)|µ(

√
n)|n, or

equivalently

r(n) =
∑
def=n

rad(d)q(e)q(f)|µ(
√
e)µ(

√
f)|ef,

where d, e and f are divisors of n.
Applying Perron’s formula to the Dirichlet series of r(n), we can have estimates that involve
more main terms and smaller error term. Further research beyond this thesis may be
conducted in the future to recover estimates of

∑
n≤x rad(n) from

∑
n≤x r(n).

2 Outline of Proof

Let R(s) denote the Dirichlet series of r(n), which is

R(s) =
∑
n≥1

r(n)

ns

=
ζ2(2s− 2)

ζ2(4s− 4)

∏
p

(
1 +

p

ps − 1

)
=
ζ(s)ζ(s− 1)ζ(2s− 2)

ζ(4s− 4)

∏
p

(1− 1

p4s−4
− 1

p3s−2
− 1

ps
+

1

p2s−1
+

1

p4s−3
). (4)

Our aim is to extract more information about
∑
n≤x r(n) by applying Perron’s formula to

2
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R(s).

First, we use an effective form of Perron’s formula to derive

∑
n≤x

r(n) =
1

2πi

∫ c+iT

c−iT
R(s)xs

ds

s
+O(x1+ε(2x)) +O(

x2+1+ε(2x) log x

T
). (5)

Using some suitable contour, we can then apply the residue theorem to obtain

1

2πi

∫ c+iT

c−iT
R(s)

xs

s
ds =

225

2π4
x2
∏
p

(
1− 1

p(p+ 1)

)
+

2ζ( 1
2 )

π2
x

3
2

∏
p

(
1− 1

p
3
2 (p+ p

1
2 + 1)

)

+
1

2πi

(
−
∫ c−iT

d−iT
+

∫ c+iT

d+iT

+

∫ d+iT

d−iT

)
R(s)

xs

s
ds. (6)

The remaining work is to estimate the integral on the right hand side of (6).
Combining some results on the Riemann Zeta function ζ(s), we can get(
−
∫ c−iT

d−iT
+

∫ c+iT

d+iT

+

∫ d+iT

d−iT

)
R(s)

xs

s
= O(

x1.51

T 0.84
) +O(

x2

T
) +O(x1.3T 0.2

√
log T ). (7)

Choosing T = x0.583 and putting the estimates together into (5), we can finally obtain the
asymptotic formula

∑
n≤x

r(n) =
225

2π4
x2
∏
p

(
1− 1

p(p+ 1)

)
+

2ζ( 1
2 )

π2
x

3
2

∏
p

(
1− 1

p
3
2 (p+ p

1
2 + 1)

)
+O(x1.417+ε(2x)log x). (8)

3 Manipulations

Throughout the following sections, we follow the convention s = σ + it, where σ and t
denote the real part (<) and imaginary part (=) of s, respectively.

3.1 Effective Perron’s Formula

Let F (s) =
∑∞
n=1

a(n)
ns be a Dirichlet series with finite abscissa of absolute convergence σα,

with a(n) being an arbitrary arithmetic function.
Suppose that there exists some real number α ≥ 0 such that, for σ > σa,∑

n≤1

|a(n)|
ns

= O((σ − σa)−α),

and there exists a non-decreasing function B(x) satisfying |a(n)| < B(n).
Then for x ≥ 2, T ≥ 2,<(s) = σ ≤ σa, c = σa − σ + 1

log x , we have

∑
n≤x

a(n)

ns
=

1

2πi

∫ c+iT

c−iT
F (s+ w)xw

dw

w
+O

(
xσa−σ (log x)α

T
+
B(2x)

xσ

(
1 + x

log x

T

))
.

For the proof, see Tenenbaum’s book [2].
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Since R(s) has a simple pole at s = 2, to get
∑
n≤x r(n), we can apply the theorem to

R(s) with s = 0, σ = 0, α = 1, c = 2 + 1
log x , B(x) = x1+ε(2x) and we have

∑
n≤x

r(n) =
1

2πi

∫ c+iT

c−iT
R(w)xw

dw

w
+O(x1+ε(2x)) +O(

x2+ε(2x) log x

T
).

More specifically, to determine B(x), we begin by

R(s) <
∏
p

(1 + e
p

ps
+ e

p2

p2s
+ e

p3

p3s
+ e

p4

p4s
+ · · · ),

where e = 2.718 · · · is the base of the natural logarithm. Thus we have

r(n) < eω(n)n,

where ω(n) is the arithmetic function that counts the number of distinct primes dividing
n. Using estimates for ω(n) from Tenebaum’s book [2], we can get

ω(n) < ε(n) log n =
log n

log(log n)
(1 + o(1)) ,

where ε(n) =
1 + o(1)

log(log n)
, so that we have

B(2x) = (2x)1+ε(2x) = O(x1+ε(2x))

here.

23
2

T

−T

<(s)

=(s)

O

γ

Figure 1: Contour γ
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3.2 Evaluation of Integral

To evaluate the integral, we can use a rectangular contour γ with four corners at c − iT ,
c+ iT , d+ iT and d− iT , as shown in Figure 1, where d = 1.3 and c = 2 + 1

log x .
To be convenient, we’ll use s instead of w in the integral.
By residue theorem,

1

2πi

∮
γ

R(s)
xs

s
ds =

x2

2
Res[R(s), 2] +

2x
3
2

3
Res[R(s),

3

2
].

For

R(s) =
ζ(s)ζ(s− 1)ζ(2s− 2)

ζ(4s− 4)

∏
p

(1− 1

p4s−4
− 1

p3s−2
− 1

ps
+

1

p2s−1
+

1

p4s−3
), (9)

using
lim
s→1

(s− 1)ζ(s) = 1,

we can get

Res[R(s), 2] = lim
s→2

(s− 2)R(s)

= lim
s→2

ζ2(2s− 2)

ζ2(4s− 4)
[(s− 1)− 1]ζ(s− 1)ζ(s)

∏
p

(1− 1

p2s−2
− 1

ps
+

1

p2s−1
)

=
ζ2(2)

ζ2(4)
ζ(2)

∏
p

(
1− 2p− 1

p3

)

=
ζ2(2)

ζ2(4)

∏
p

(
1− 2p−1

p3

1− 1
p2

)

=
ζ2(2)

ζ2(4)

∏
p

(
1− 1

p(p+ 1)

)
, (10)

and

Res[R(s),
3

2
] = lim

s→ 3
2

(s− 3

2
)R(s)

= lim
s→ 3

2

1

2
[(2s− 2)− 1]ζ(2s− 2)

ζ(s)ζ(s− 1)

ζ(4s− 4)∏
p

(1− 1

p4s−4
− 1

p3s−2
− 1

ps
+

1

p2s−1
+

1

p4s−3
)

=
1

2

ζ( 3
2 )ζ( 1

2 )

ζ(2)

∏
p

(
1− p

3
2 + p

1
2 − 1

p3

)

=
1

2

ζ( 1
2 )

ζ(2)

∏
p

(
1− p− 3

2 − p− 5
2 + p−3

1− p− 3
2

)

=
1

2

ζ( 1
2 )

ζ(2)

∏
p

(
1− 1

p
3
2 (p+ p

1
2 + 1)

)
. (11)
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Putting the residue back into the formula, we have obtained

∑
n≤x

r(n) =
1

2πi

∫ c+iT

c−iT
R(s)

xs

s
ds+O(x1+ε(2x)) +O(

x2+ε(2x) log x

T
)

=
225

2π4
x2
∏
p

(
1− 1

p(p+ 1)

)
+

2ζ( 1
2 )

π2
x

3
2

∏
p

(
1− 1

p
3
2 (p+ p

1
2 + 1)

)

+
1

2πi

(
−
∫ c−iT

d−iT
+

∫ c+iT

d+iT

+

∫ d+iT

d−iT

)
R(s)

xs

s
ds

+O(x1+ε(2x)) +O(
x2+ε(2x) log x

T
). (12)

It remains to estimate the integral on the three sides other than <(s) = c.

3.3 Estimates for Bounded Factors in R(s)

We choose d = 1.3. In the rectangle contour, we have uniformly that,

|ζ(s)| < ζ(σ) < ζ(1.3),

Let P (s) denote the product∏
p

(
1− 1

p4s−4
− 1

p3s−2
− 1

ps
+

1

p2s−1
+

1

p4s−3

)
.

Since ∑
p

(
− 1

p4s−4
− 1

p3s−2
− 1

ps
+

1

p2s−1
+

1

p4s−3

)
converges absolutely for <(s) ≥ d.
we have

P (s) = O(1)

in the rectangle.

Using Euler Product, we can show that | 1

ζ(s)
| < ζ(σ)

ζ(2σ)
, so that we have

1

ζ(4s− 4)
= O(1)

in the rectangle.

3.4 Modified Lindölef’s Theorem

Let Ω be a half-strip in the complex plane

Ω = {s ∈ C|σ1 ≤ <(s) = σ ≤ σ2 and =(s) = t ≥ t0 > 0} ( C.

Suppose that f is holomorphic on Ω. If p, q are such constants that |f(s)| = O(tp) on
<(s) = σ1 and |f(s)| = O(tq) on <(s) = σ2, and if there is a constant A such that
|f(σ + it)|

tA
is bounded on Ω, then

|f(σ + it)| = O(tk(σ))

6
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throughout Ω, where

k(σ) =
q − p
σ2 − σ1

(σ − σ1) + p

is the affine function which is p at σ1 and q at σ2. For proof, see Edwards’ monograph [1].

Also needed from Titchmarsh’s monograph [3] and Tenenbaum’s book [2] is the conclu-
sion that for t ≥ 1, we have

ζ(s) = O
(
tκ(σ) log t

)
,

where

κ(σ) ≤

{
1
3 (1− σ) for 1

2 < σ ≤ 1,
1
6 (3− 4σ) for 0 ≤ σ ≤ 1

2 .
(13)

3.5 Integrals on the Horizontal Sides

To estimate ζ(s− 1)ζ(2s− 2) in the whole rectangle, we can apply the Lindölef’s theorem
separately to ζ(s− 1) and ζ(2s− 2).

First we partition the rectangle into two sets, with their real parts satisfying 1.3 ≤ σ ≤ 1.51
and 1.51 < σ ≤ c, respectively. Then we can use estimate (13) to derive that, for t ≥ 1
on σ = 1.3,

ζ(s− 1)ζ(2s− 2) = O(t0.44 log2 t),

on σ = 1.51,
ζ(s− 1)ζ(2s− 2) = O(t0.16 log t),

and on σ = c,
ζ(s− 1)ζ(2s− 2) = O(1).

Since ζ(s− 1)ζ(2s− 2) is bounded by polynomial of t on the strip

Ω = {s ∈ C|1.3 ≤ <(s) = σ ≤ c and =(s) = t ≥ t0 > 0}

(see Ford’s thesis [4]), we can apply modified Lindölef’s theorem to obtain bound for σ(s−
1)σ(2s− 2) in the two strips 1.3 ≤ σ ≤ 1.51 and 1.51 < σ ≤ c separately.
In 1.3 ≤ <(s) = σ ≤ 1.51,

σ(s− 1)σ(2s− 2) = O(tk1(σ)),

where k1(σ) is the affine function that reaches 0.44 on σ = 1.3 and 0.16 on σ = 1.51.
Similarly, in 1.51 ≤ <(s) = σ ≤ c,

σ(s− 1)σ(2s− 2) = O(tk2(σ)),

where k2(σ) is the affine function that reaches 0 on σ = c and 0.16 on σ = 1.51.

Using the results in Section 3.3, we can get

|
∫ c+iT

d+iT

R(s)
xs

s
ds| = 1

T
O(

∫ c+iT

d+iT

|ζ(s− 1)ζ(2s− 2)xs||ds|).

7
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Using the estimation forζ(s− 1)ζ(2s− 2) obtained above, we have∫ c+iT

d+iT

|ζ(s− 1)ζ(2s− 2)xs||ds| ≤
∫ 1.51

1.3

|ζ(σ − 1 + it)ζ(2σ − 2 + 2it)|xσdσ

+

∫ c

1.51

|ζ(σ − 1 + it)ζ(2σ − 2 + 2it)|xσdσ

= O(x1.51T 0.44 log T ) +O(x2), (14)

For |
∫ c−iT
d−iT R(s)x

s

s ds|, using the identity ζ(s̄) = ζ(s) we can get the same estimate.
In conclusion,(∫ c+iT

d+iT

+

∫ c−iT

d−iT

)
ζ(s− 1)ζ(2s− 2)xsds = O(

x1.51 log T

T 0.56
) +O(

x2

T
) (15)

3.6 Integral on the Vertical Side

To estimate the integral on the vertical side, we need estimate for mean value of |ζ(s)|2 in
the rectangle.
For 1

2 < σ < 1, we have ∫ T

1

|ζ(σ + it)|2dt = O(T ). (16)

For proof, see the monographs [3] and [1].

First, we separate the mean value part.∫ d+iT

d

R(s)
xs

s
ds =

∫ d+i

d

R(s)
xs

s
+

∫ d+iT

d+i

R(s)
xs

s

= O(x1.3) + x1.3O(

∫ T

1

|ζ(s− 1)ζ(2s− 2)

s
|dt), (17)

and then∫ T

1

|ζ(s− 1)ζ(2s− 2)||dt
s
| <

∫ T

1

|ζ(s− 1)ζ(2s− 2)||dt
t
|

≤

√√√√(∫ T

1

|ζ(0.3 + it)|2 dt
t

)(∫ T

1

|ζ(0.6 + 2it)|2 dt
t

)
, (18)

where we use the Cauchy-Schwarz inequality in the second line.

Let f(T ) =
∫ T
1
|ζ(0.6 + 2it)|2dt. Then we can use equation (16) to obtain

f(T ) =
1

2

∫ T

1

|ζ(0.6 + 2it)|2d(2t) = O(T ),

so we have ∫ T

1

|ζ(0.6 + 2it)|2 dt
t

=
f(t)

t

∣∣∣∣T
1

+

∫ T

1

f(t)

t2
dt

= O(1) +O(log T ). (19)

Using the functional equation for ζ(s) and the complex Stirling formula for Γ(s), we can
get, for 0 < σ < 1,

ζ(s) = O(t
1
2−σ|ζ(1− s)|),

8
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Using this estimate, we can get∫ T

1

|ζ(0.3 + it)|2 dt
t

=

∫ T

1

|ζ(0.3− it)|2 dt
t

= O(

∫ T

1

t0.4|ζ(0.7 + it)|2 dt
t

)

= O(

∫ T

1

|ζ(0.7 + it)|2 dt
t0.6

). (20)

Using methods similar to (10), we can get∫ T

1

|ζ(0.3 + it)|2 dt
t

= O(T 0.4).

Combining these results into (18), we can get∫ T

1

|ζ(s− 1)ζ(2s− 2)

s
|dt = O(T 0.2

√
log T ).

Similarly, we have ∫ 1

−T
|ζ(s− 1)ζ(2s− 2)

s
|dt = O(T 0.2

√
log T ).

In conclusion, ∫ d+iT

d−iT
R(s)

xs

s
ds = O(x1.3T 0.2

√
log T ). (21)

3.7 Conclusion

Combining the estimates in the previous sections we can get, for x big enough,∑
n≤x

r(n) =
225

2π4
x2
∏
p

(
1− 1

p(p+ 1)

)
+

2ζ( 1
2 )

π2
x

3
2

∏
p

(
1− 1

p
3
2 (p+ p

1
2 + 1)

)

+O(x1+ε(2x)) +O(
x2+ε(2x) log x

T
) +O(

x1.51 log T

T 0.56
)

+O(
x2

T
) +O(x1.3T 0.2

√
log T ). (22)

Choosing T = x0.583, we can get∑
n≤x

r(n) =
225

2π4
x2
∏
p

(
1− 1

p(p+ 1)

)
+

2ζ( 1
2 )

π2
x

3
2

∏
p

(
1− 1

p
3
2 (p+ p

1
2 + 1)

)
+O(x1.417+ε(2x)log x), (23)

where ε(x) =
1 + o(1)

log(log x)
. For ε(x), detailed calculations show that we have 1.417 + ε(2x) <

1.5 when x < e92 and x > ee
21.8

.

4 Some Further Thoughts

Recently, the author was considering asymptotics for the sum
∑
n≤x

1
rad(n) . Using results

from Tenebaum’s book [2], we can prove the limit

lim
x→+∞

∑
n≤x

1
rad(n)

x
= 0.

9
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Moreover, generalizing the results from [9], we can show that the sum
∑
n≤x

1
rad(n) grows

faster than CA(log x)A for any A > 0 where CA is a positive constant depending on A.
However, the author has not derived any aymptotics now.
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