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Abstract. For the sequence of integers 1,2,4,. . ., 2n−1, . . ., by computation, one finds
that the frequency (over front n terms) that a random decimal begins with the digit
1 is nearly lg 3/2, while the frequency that a random decimal begins with the digit 9
approaches to lg 10/9. In fact, such kind of phenomenon about infinite series is usually
referred to as the so-called “Benford’s law”. As early as 1881, Simon Newcomb first
observed this phenomenon. The first one who studied this phenomenon might be Frank
Benford, a physician, who published his paper in 1938. In 1971 and 1978, Wlodarski
and Brady respectively published their papers which stated that Fibonacci and Lucas
numbers satisfy Benford’s law from statistics. In 1981, Lawrence Washington strictly
proved the above mentioned observation. The aim of this paper is to improve Washing-
ton’s theorem. As a direct application, we find out more new number sequences that
satisfy Benford’s law.

1. Introduction

If one considers the number sequence 1, 2, . . ., 2n−1, . . . and count the frequency that
a random decimal begins with the digit d (1 ≤ d ≤ 9), say f(d, n), the following table
can be obtained:

Table 1

F (d) d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9
n = 102 0.300 0.170 0.130 0.100 0.070 0.070 0.060 0.050 0.050
n = 103 0.301 0.176 0.125 0.097 0.079 0.069 0.056 0.052 0.045
n = 104 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

One knows from Table 1 that the frequency f(n, d) displays its own regularities as
d varies from 1 to 9. In fact, it is proven that f(n, 1) 7→ P (1) = lg 2 ≈ 0.301 and
that f(9, n) 7→ P (9) = lg 10

9
≈ 0.046 as n 7→ +∞. Thus, quite contrary to the naive

expectation, f(n, 1) 6= f(n, 9).
As early as 1881, Simon Newcomb [3] observed the above phenomenon. More system-

atical study might initiate with Frank Benford, a physician, who published his paper [1]
on this topic in 1938. Such kind of distribution rules of infinite number series is usually
referred to as “Benford’s Law” to recognize the contribution of Benford.

Definition 1.1. For an infinite number sequence {an}, as n 7→ ∞, if the frequency
f(n, d) (1 ≤ d ≤ 9) that the random decimal begins with digit d has the limit

P (d) = lg
d+ 1

d
= lg(1 +

1

d
),

we say that {an} satisfies Benford’s law.
1

E31

- 97 -



Write (1 +
√

5)n = Ln +Fn
√

5 where {Ln} and {Fn} are usually called Lucas sequence
and Fibonacci sequence, respectively.

In this paper, we are interested in the following aspect of Benford’s law:

• In 1971 and 1978, Wlodarski [6] and Brady [2] respectively published their pa-
pers and pointed out that both Fibonacci sequence and Lucas sequence satisfy
Benford’s law from statistics.
• In 1981, Washington [5] applied Weyl’s theorem to prove that Fibonacci numbers

and Lucus numbers satisfy Benford’s law.

Hence it is interesting to find out more new number sequences which can be proven
to satisfy Benford’s law. The aim of this note is to improve the method of Washington
[5] and to generalize his result. As a direct application of our theorem, we are able
to find out some new examples (see Example 2.5, 2.6 and Corollary 2.7) which satisfy
Benford’s law. In the last section, we have written a short program to compute some other
number sequences, which do not satisfy the conditions of our theorem, and to investigate
statistically if they satisfy Benford’s law.

2. The main result and the proof

The main result of this paper is the following theorem:

Theorem 2.1. Let {xn} be a sequence of positive real numbers. Assume that

(1). there are complex numbers ci, ai (i = 1, . . . , k) such that

xn =
k∑
i=1

cia
n
i

holds for any n > 0;
(2). there exists an integer s > 0 such that cs 6= 0, lg |as| is not a rational number and

that |as| > |aj|, ∀ j 6= s.

Then the number sequence {xn} satisfies Benford’s law.

Proof. First of all we may write

xn = csa
n
s

(
1 +

∑
j 6=s

cj
cs
·
anj
ans

)
= csa

n
s (1 + rn),

where rn =
∑

j 6=s
cj
cs
· a

n
j

ans
and |rn| 7→ 0 as n 7→ ∞.

Lemma 2.2. Both as and cs must be real numbers. Hence rn is a real number for any
n > 0.

Proof. If as is not real, we may always find some very large integer n0 so that csa
n0+1
s has

non-zero argument θ which does not depend on n. Since rn 7→ 0, xn0+1 is in a very small
neighborhood of csa

n0+1
s . Thus xn0+1 can not be a real number, a contradiction. So as

must be real. Similarly cs must be real too. �

Step 1. The real sequence yn = αn(1 + rn).
We first study the special number sequence {yn} where α > 0, lgα is irrational and

rn 7→ 0 as n 7→ ∞. Denote by 〈lg yn〉 the fractional part of lg yn. We are going to prove
that the fractional sequence is equidistributed mod 1, namely, the probability that 〈lg yn〉
is in the given interval [u, v) ⊂ [0, 1] is equal to v − u.

We recall Weyl’s criterion here.
2
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Lemma 2.3. ([4, P.112]) A sequence of real numbers {ξn} in [0, 1) is equidistributed if
and only if, for all integers l 6= 0, one has

lim
N 7→∞

1

N

N∑
n=1

e2πilξn = 0. (1)

As a slightly special case, since lgα is irrational, we have

lim
n7→∞

1

n

n∑
j=1

e2πil lgα
j

= lim
n7→∞

1

n
· e

2πil lgα − e2πil lgαn+1

1− e2πil lgα
= 0. (2)

Hence the sequence {〈n lgα〉} is equidistributed mod 1. By applying Relation (2), we
have

lim
n7→∞

1

n

n∑
j=1

e2πil lg yj

= lim
n7→∞

1

n

n∑
j=1

e2πil(j lgα+lg(1+rj))

= lim
n7→∞

1

n

n∑
j=1

e2πil lg(1+rj) · e2πilj lgα − lim
n7→∞

1

n

n∑
j=1

e2πil lgα
j

= lim
n7→∞

1

n

n∑
j=1

ujvj = 0, (3)

where uj = e2πil lg(1+rj) − 1 7→ 0 as j 7→ ∞, vj = e2πilj lgα satisfies {vn} being bounded.
The last equation is due to Lemma 2.4 which is a basic property of limits.

Lemma 2.4. For real number sequences {un} and {vn}, if limn7→∞ un = 0 and {vn} is
bounded, then limn7→∞

1
n

∑n
j=1 ujvj = 0.

Step 2. The statement for {xn}.
Set α = as and c = cs. Then xn = cyn for any n > 0. Since α > 0 and lgα is irrational,

the number sequence {〈lg xn〉} = {〈lg c + lg yn〉} is equidistributed by virtue of Step 1.
Assume that m is the integral part of lg xn. Then we have seen that the probability that
{lg xn−m} is in the interval [lg d, lg(d+ 1)) is equal to lg(d+ 1)− lg d, which means that
the probability that xn begins with the digit d is equal to lg(d+ 1)− lg d for 1 ≤ d ≤ 9.
Thus P (d) = lg(d+ 1)− lg d and {xn} satisfies Benford’s law. �

As direct applications of Theorem 2.1, we provide some new examples.

Example 2.5. Let (a+b
√

2)n = An+Bn

√
2 where a and b are positive rational numbers.

Clearly we have

An =
1

2

(
(a+ b

√
2)n + (a− b

√
2)n
)
;

Bn =

√
2

4

(
(a+ b

√
2)n + (a− b

√
2)n
)
.

By Theorem 2.1, one knows that both {An} and {Bn} satisfy Benford’s law.

3
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Example 2.6. Let (a+ b 3
√

2)n = Cn +Dn
3
√

2 +En
3
√

4 where a and b are positive rational

numbers. Let ω = −1
2

+
√
3
2
i. One has the following relations:

Cn + 3
√

2Dn + 3
√

4En = (a+ b 3
√

2)n

Cn + 3
√

2ωDn + 3
√

4ω2En = (a+ b 3
√

2ω)n

Cn + 3
√

2ω2Dn + 3
√

4ω4En = (a+ b 3
√

2ω2)n.

The above equations in terms of Cn, Dn and En has the coefficient determinant a “Vander
Monde Determinant” which is equal to

∆ =

∣∣∣∣∣∣
1 3
√

2 3
√

4

1 3
√

2ω 3
√

4ω2

1 3
√

2ω2 3
√

4ω4

∣∣∣∣∣∣ = 2(ω − 1)(ω2 − 1)(ω2 − ω).

Thus Cn, Dn and En all have their formulae solution. For example, one has

Cn =
1

3

(
(a+ b

3
√

2)n + (a+ b
3
√

2ω)n + (a+ b
3
√

2ω2)n
)
.

Notice that (ω − 1)(ω2 − 1) = 3, α = a + b 3
√

2 and that lgα is irrational. Theorem 2.1
implies that {Cn} satisfies Benford’s law. So do {Dn}, {En} for similar reasons.

Inspired by above examples, we have the following corollary.

Corollary 2.7. Let t and m be positive integers. Assume that the minimal degree of
rational polynomials f(x) with f( m

√
t) = 0 is m. Let a and b be positive rational numbers.

Write

(a+ b
m
√
t)n = A(0)

n + A(1)
n

m
√
t+ · · ·+ A(m−1)

n
m
√
tm−1.

Then each of {A(0)
n }, {A(1)

n }, . . ., {A(m−1)
n } satisfies Benford’s law.

Proof. Let ω = e
2πi
m . By binomial formula, we have the following linear equations in

terms of A
(j)
n :

A
(0)
n + A

(1)
n

m
√
t + · · · + A

(m−1)
n

m
√
tm−1 = (a+ b m

√
t)n

A
(0)
n + A

(1)
n

m
√
tω + · · · + A

(m−1)
n

m
√
tm−1ωm−1 = (a+ b m

√
tω)n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A
(0)
n + A

(1)
n

m
√
tωm−1 + · · · + A

(m−1)
n

m
√
tm−1ω(m−1)2 = (a+ b m

√
tωm−1)n

For each j = 0, . . . ,m − 1, multiply the first equation by ωm−1, the second by ωm−1−j,
. . ., the k-th equation by ωm−1−(k−1)j, the last equation by ωm−1−(m−1)j and add up all
together to obtain:

A(j)
n =

1

m
m
√
tj

(
(a+ b

m
√
t)n + ω−j(a+ b

m
√
tω)n + · · ·+ ω−(m−1)j(a+ b

m
√
tωm−1)n

)
.

Note that |a + b m
√
t| > |a + b m

√
tωj|, ∀j = 1, · · · ,m − 1. Note also that lg(a + b m

√
t)

is irrational. Otherwise, a + b m
√
t = 10u/v for positive integers u, v, which implies (a +

b m
√
t)v = 10u and then m

√
t is a root of a rational polynomial g(x) of degree < m, a

contradiction. Thus Theorem 2.1 implies that {A(j)
n } satisfies Benford’s law for any

j ≥ 0. �

Remark 2.8. It sounds very interesting to consider possible generalization to Corollary
2.7 by replacing m

√
t with any real root of any rational polynomial. But that certainly

goes beyond the scope of knowledge of the author.
4
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3. Investigation of some other number sequences

In this section the author wrote at the beginning the following simple program to count
the statistics of several common number sequences to see if they are subject to Benford’s
law. Here is our program in Visual Basic:

Dim n As Integer
n = Val(InputBox(”n=”))
Dim x(2000) As Double
Dim f(2000) As Double
Dim t(2000) As Double
For j = 1 To n

x(j) = Log(2 ˆ j) / Log(10)
Next j
For d = 1 To 9

t(d) = 0
For j = 1 To n

m = Int(x(j))
u = x(j) - m
If u >= (Log(d) / Log(10)) And u < (Log(d + 1) / Log(10)) Then

t(d) = t(d) + 1
End If
f(d) = t(d) / n

Next j
Print f(d)

Next d

In the process of our calculation, if n > 1500, the author’s PC stops to work. Our
guider suggested us to try to use Matlab. So we spent a lot of time to learn the way in
applying Matlab, a very effective software. Here we provide our small program in Matlab,
which helped us to calculate up to the level n = 50000 successfully.

%Benford Law
function F=F(d)
F=[];
N=[];
% input n
n=1000;
for j=1:n
x(j)=log10(jˆ 100*sin(j));
end
for d=1:9
N(d)=0;
% fractional part
for j=1:n
m=floor(x(j));
u=x(j)-m;
%Statistics
if u>= log10(d) & u< log10(d+1)
N(d)=N(d)+1;

5
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end
F(d)=N(d)/n;
end
end

1. The sequence xn = nµ.
We set n = 1000 and let µ grows larger. Then we obtain the following distributing

frequency F (d):
Table 2.

F (d) d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9
µ = 2 0.194 0.146 0.123 0.111 0.097 0.091 0.084 0.078 0.076
µ = 5 0.256 0.165 0.129 0.100 0.088 0.077 0.070 0.058 0.057
µ = 10 0.278 0.173 0.125 0.100 0.082 0.073 0.062 0.054 0.053
µ = 100 0.303 0.178 0.125 0.095 0.079 0.065 0.060 0.051 0.044

When µ grows larger, Table 2 seems to hint that {nµ} is closer to Benford’s law.

2. The sequence xn = tann.

Table 3.

F (d) d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9
n = 103 0.306 0.170 0.114 0.099 0.078 0.064 0.069 0.049 0.051
n = 104 0.305 0.169 0.115 0.099 0.072 0.067 0.068 0.054 0.050

n = 5 ∗ 104 0.309 0.169 0.118 0.094 0.079 0.069 0.060 0.054 0.049
n = 105 0.309 0.169 0.119 0.094 0.080 0.068 0.060 0.058 0.048

The sequence {tan(n)} shows some symptom of Benford’s law.

3. The sequence xn = nµ ∗ sin(n).
We set n = 1000 and let µ varies.

Table 4.

F (d) d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9
µ = 2 0.248 0.181 0.136 0.099 0.096 0.085 0.065 0.055 0.076
µ = 5 0.285 0.177 0.144 0.100 0.077 0.066 0.060 0.047 0.044
µ = 10 0.276 0.197 0.123 0.097 0.078 0.065 0.063 0.056 0.045
µ = 100 0.305 0.170 0.136 0.082 0.085 0.056 0.071 0.050 0.045

One can investigate many more. The difficulty is to prove the statement rigorously.
The author keeps his interests on this problem.
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